
79

Tiered Sampling: An Efficient Method for Counting Sparse

Motifs in Massive Graph Streams

LORENZO DE STEFANI, Brown University

ERISA TEROLLI, Max Planck Institute for Informatics

ELI UPFAL, Brown University

We introduce Tiered Sampling, a novel technique for estimating the count of sparse motifs inmassive graphs

whose edges are observed in a stream. Our technique requires only a single pass on the data and uses a

memory of fixed sizeM , which can be magnitudes smaller than the number of edges.

Our methods address the challenging task of counting sparse motifs—sub-graph patterns—that have a low

probability of appearing in a sample ofM edges in the graph, which is the maximum amount of data available

to the algorithms in each step. To obtain an unbiased and low variance estimate of the count, we partition the

available memory into tiers (layers) of reservoir samples. While the base layer is a standard reservoir sample

of edges, other layers are reservoir samples of sub-structures of the desired motif. By storing more frequent

sub-structures of the motif, we increase the probability of detecting an occurrence of the sparse motif we are

counting, thus decreasing the variance and error of the estimate.

While we focus on the designing and analysis of algorithms for counting 4-cliques, we present a method

which allows generalizing Tiered Sampling to obtain high-quality estimates for the number of occurrence

of any sub-graph of interest, while reducing the analysis effort due to specific properties of the pattern of

interest.

We present a complete analytical analysis and extensive experimental evaluation of our proposed method

using both synthetic and real-world data. Our results demonstrate the advantage of our method in obtaining

high-quality approximations for the number of 4 and 5-cliques for large graphs using a very limited amount

of memory, significantly outperforming the single edge sample approach for counting sparse motifs in large

scale graphs.

CCS Concepts: • Mathematics of computing → Graph enumeration; • Information systems → Data

stream mining; •Human-centered computing→ Social networks; • Theory of computation→ Dynamic

graph algorithms;

Additional Key Words and Phrases: Graph motif mining, reservoir sampling, stream computing

ACM Reference format:

Lorenzo De Stefani, Erisa Terolli, and Eli Upfal. 2021. Tiered Sampling: An Efficient Method for Counting

Sparse Motifs in Massive Graph Streams. ACM Trans. Knowl. Discov. Data 15, 5, Article 79 (May 2021), 52

pages.

https://doi.org/10.1145/3441299

Erisa Terolli part of this work done while visiting Brown University.

This work is supported in part by NSF awards RI-NSF 1813444 and CCF-NSF 1740741.

Authors’ addresses: L. De Stefani and E. Upfal, Brown University, Department of Computer Science, 115Waterman St, Prov-

idence, RI 02906; emails: {lorenzo, eli}@cs.brown.edu; E. Terolli, Max Planck Institute for Informatics, Stuhlsatzenhausweg

4, Saarbrücken, 66123, Germany; email: eterolli@mpi-inf.mpg.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1556-4681/2021/05-ART79 $15.00

https://doi.org/10.1145/3441299

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

https://doi.org/10.1145/3441299
mailto:permissions@acm.org
https://doi.org/10.1145/3441299

79:2 L. De Stefani et al.

1 INTRODUCTION

Counting motifs (sub-graphs with a given pattern) in large graphs is a fundamental primitive in
graph mining with numerous practical applications including link prediction and recommenda-
tion [21], community detection [7], topic mining [13], spam and anomaly detection [6, 14, 22],
protein interaction networks analysis [24], and analysis of temporal patterns [23].
Computing the exact count of motifs inmassive,Web-scale networks is often impractical or even

infeasible. Furthermore, many interesting networks, such as social networks, are continuously
growing. Hence, there is limited value in maintaining an exact count. Rather, the goal is to have,
at any time, a high-quality approximation of the quantity of interest. To obtain a scalable and
efficient solution for massive size graphs, we focus on the well-studied model of one-pass stream
computing. Our algorithms use a memory of fixed size M , where M is significantly smaller than
the size of the input graph. The input graph is observed as a stream of edges in an arbitrary order,
and the algorithm has only one pass on the input. The goal of the algorithm is to compute, at any
given time, an unbiased and low-variance estimate of the count of motif occurrences in the graph
observed up to that time.
Given its theoretical and practical importance, the problem of counting motifs in graph streams

has received a lot of attention in the literature, with particular emphasis on the approximation of
the number of 3-cliques (triangles) [20, 30, 33]. A standard approach to this problem is to sample up
toM edges uniformly at random, using a fixed sampling probability or, more efficiently, reservoir
sampling. A count of the number of motifs in the sample, extrapolated (normalized) appropriately,
gives an unbiased estimate for the number of occurrences in the entire graph. The variance (and er-
ror) of this method depends on the expected number of occurrences in the sample. In particular, for
sparse motifs that are unlikely to appear many times in the sample, this method exhibits high vari-
ance (higher than the actual count), which makes it useless for counting. Note that when the input
graph is significantly larger than the memory sizeM , a motif that is unlikely to appear in a random
sample of M edges may still have a large count in the graph. Also, as we attempt to count larger
structures than triangles, these structures are more likely to be sparse in the graph. It is therefore
important to obtain efficient methods for counting sparser motifs in massive-scale graph streams.
In this work, we introduce the concept of Tiered Sampling in stream computing. To obtain an

unbiased and low variance estimate for the amount of sparse motif in massive-scale graphs, we
partition the available memory to tiers (layers) of reservoir samples. The base tier is a standard
reservoir sample of individual edges, while other tiers are reservoir samples of sub-structures of
the desired motif. This strategy significantly improves the probability of detecting occurrences of
the motif.
Assume that we count motifs with k edges. If all the available memory is used to store a sample

of the edges, we would need k − 1 of the motif’s edges to be in the sample when the last edge of the
motif is observed on the stream. The probability of this event decreases exponentially in k . Assume
now that we use part of the available memory to store a sample of the observed occurrences of
a fixed “prototype” sub-motif with k/2 edges. We are more likely to observe such motifs (we only
need k/2 − 1 of their edges to be in the edge sample when the last edge is observed in the stream),
and they are more likely to stay in the second reservoir sample since they are still relatively sparse.
We now observe a full motif when the current edge in the stream completes an occurrence of the
motif with edges and with a prototype sub-motifs in the two reservoirs. For an appropriate choice
of parameters and with fixed total memory size, this event has a significantly higher probability
than observing the k − 1 edges in the edge sample. To obtain an unbiased estimate of the count, the
number of observed occurrences needs to be carefully normalized by the probabilities of observing
each of the components.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:3

In this work, we make the following main contributions:

—We introduce theTiered Sampling framework for counting sparse motifs in large-scale graph
streams using multi-layer reservoir samples.

—We develop and fully analyze two algorithms for counting the number of 4-cliques in a
graph using two-tier reservoir sampling.

—For the purpose of comparison, we analyze a standard (single-tier) reservoir sample algo-
rithm for counting 4-cliques.

—We verify the advantage of our multi-layer algorithms by analytically comparing their per-
formance to a standard (single-tier) reservoir sample algorithm for 4-cliques counting prob-
lem on random Barábasi–Albert graphs.

—We develop the ATS4C technique, which allows to adaptively adjust the sub-division
of memory space among the two tiers according to the properties of the graph being
considered.

—We conduct an extensive experimental evaluation of our algorithms for counting 4-cliques
on massive graphs with up to hundreds of millions of edges. We show the quality of the
achieved estimations by comparing themwith the actual ground truth value. Our algorithms
are also extremely scalable, showing update times in the order of hundreds of microseconds
for graphs with billions of edges. Further, we show that our methods consistently outper-
form alternative approaches based on edge sampling.

—We present a generalization of the Tiered Sampling approach to count any arbitrary sub-
graph of interest. We show how to greatly simplify the analysis while retaining high-quality
estimates. As an example, we obtain TS5C, which estimates the number of 5-cliques in a
graph stream using an edge reservoir sample and a second reservoir sample of the 4-cliques
observed on the stream.

Paper organization: In Section 2, we introduce the notation used in the presentation and some
fundamental concepts used in this work. In Section 3, we discuss methods and results related to
our work from the literature. In Section 4, we introduce the Tiered Sampling approach and its
application to the problem of counting 4-cliques in a graph steam. In Section 4.1 (resp., Section 4.2),
we present algorithm TS4C1 (resp., TS4C2) and we study its statistical properties. In Section 5, we
delve into the comparison of the methods based on the Tiered Sampling approach with meth-
ods for counting 4-cliques using a single reservoir sample of edges observed on the stream, such
as algorithm FourEst which we present and analyze in Section 5.1. We compare analytically the
variance of the proposedmethods (Section 5.2), and their performance for randomBarábasi–Albert
graphs [5] (Section 5.3). In Section 6, we introduce a variation of the previous Tiered Sampling
algorithms, in which the partition of the memory among the two samples (tiers) being used can
be adjusted dynamically to adapt to the properties of the graph of interest. We showcase the qual-
ity of the estimators provide by Tiered Sampling algorithms and their benefit with respect to
edge-sampling approaches in Section 7 via extensive experimental evaluation on many real-world
graphs of size ranging frommillions to several hundred million edges. Finally, in Section 8, we dis-
cuss how to generalize the Tiered Sampling to any sub-graph of interest. In particular, we show
how an opportune simplified analysis may ease such generalization by reducing the effort of the
analysis. As an example, we present and evaluate algorithm TS5C, which yields an estimate of the
number of 5-cliques in a graph stream.

2 PRELIMINARIES

For any (discrete) time step t ≥ 0, we denote the graph observed up to and including time t as
G (t) = (V (t),E (t)), where V (t) (resp., E (t)) denotes the set of vertices (resp., edges) of G (t) . At time

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:4 L. De Stefani et al.

t = 0 we haveV (t) = E (t) = ∅. For any t > 0, at time t + 1, we receive one single edge et+1 = (u,v)
from a stream, where u,v are two distinct vertices. G (t+1) is thus obtained by inserting the new

edge: E (t+1) = E (t) ∪ {(u,v)}; if either u or v do not belong to V (t) , they are added to V (t+1) . Edges
can be added just once (we discuss a generalization for multigraphs at the end of Section 2) in
an arbitrary adversarial order, i.e., as to cause the worst outcome for the algorithm. However, we
assume that the adversary has no access to the random bits used by the algorithm.
This work explores the idea of storing a sample of prototype sub-motifs in order to enhance the

count of a sparse motif. For concreteness we focus on estimating the counts of 4-cliques and 5-

cliques. Given a graphG (t) = (V (t),E (t)), a k-clique inG (t) is a set of
(
k
2

)
(distinct) edges connecting

a set of k (distinct) vertices.
Problem definition. We study the 4-Clique Counting Problem in Graph Edges Streams, which

requires to compute, at each time t ≥ 0 an estimation of |C ((t))
k
| .

We denote by C (t)
k

the set of all k-cliques in G (t) .
Reservoir Sampling:Ourworkmakes use of the reservoir sampling scheme [34]. Consider a stream

of elements ei observed in discretized time steps. Given a fixed sample size M > 0, for any time
step t the reservoir sampling scheme allows to maintain a uniform sample S of size min{M, t } of
the t elements observed on the stream:

—If t ≤ M , then the element et = (u,v) on the stream at time t is deterministically inserted
in S.

—If t > M , then the sampling mechanism flips a biased coin with heads probability M/t . If
the outcome is “heads”, it chooses an element ei uniformly at random from those currently
in S to be replaced by et . Otherwise, S is not modified.

When using reservoir sampling for estimating the number of occurrences of a sub-graph of
interest, it is necessary to compute the probability of multiple edges elements being in S at the
same time.

Lemma 2.1 (Lemma 4.1 [33]). For any time step t and any positive integer k ≤ t , let B be any subset

of size |B | = k ≤ min{M, t } of the element observed on the stream. Then, at the end of time step t (i.e.,
after updating the sample at time t), we have Pr(B ⊆ S) = 1 if t ≤ M , and Pr(B ⊆ S) =∏k−1

i=0
M−i
t−i

otherwise.

Evaluation: In our experimental analysis (Sections 5.3 and 7), we measure the accuracy of the
obtained estimator through the evolution of the graph in terms of theirMean Average Percentage

Error (MAPE) [16]. The MAPE measures the relative error of an estimator (in this case, κ (t)) with

respect to the ground truth (in this case, |C (t)
k
|) averaged over t time steps, that is:

MAPE =
1

t

t∑
i=1

|κ (t) − |C (t)
k
| |

|C (t)
k
|.

Multigraphs: Our approach can be extended to count the number of subgraphs of a multigraph

represented as a stream of edges. Using a formalization analogous to that discussed for graphs,

for any (discrete) time instant t ≥ 0, let G (t) = (V (t),E (t)) be the multigraph observed up to and

including time t , where E (t) is now a bag of edges between vertices ofV (t) . The multigraph evolves
through a series of edge additions according to a process similar to the one described for graphs.
The definition of the occurrence of a sub-graph (e.g., a 3, 4, or 5-clique) in a multigraph is the

same as in a graph. As before, we denote with C (t)
k

the set of all k-cliques in G (t) , but now this
set may contain multiple k-cliques with the same set of vertices, although each of these triangles

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:5

will be a different set of edges among those vertices, i.e., a subset of the bag E (t) which differ by at
least one element. The problem of 4-clique counting in multigraph edge streams is defined exactly
in the same way as for graph edge streams. For the sake of simplicity, in the remainder of the
presentation we focus on the analysis of graph edges streams.

3 RELATEDWORK

Counting subgraphs in large networks is a well-studied problem in data mining which was origi-
nally brought to attention in the seminal work [24] on the analysis of protein interaction networks.
In particular, many contributions in the literature have focused on the triangle counting problem,
that is, the counting of the number of 3-cliques, including exact algorithms, MapReduce algorithms
[27, 29], and streaming algorithms [1, 19, 30, 33].
Previous works in the literature on counting graph motifs [4, 31] can also be used to estimate

the number of cliques in large graphs. Other recent works on graphlets (i.e., small subgraphs)
counting introduced randomized [17, 28] and MapReduce [15] algorithms. However, these require
prior information on the graph such as its degeneracy (for [17]) or the vertex degree ordering
(for [15]) or the vertex degrees [28]. In [10], Bressan et al. present and compare Monte Carlo and
Color Coding approaches for obtaining estimates of the count of graphlets with five ormore vertices
in the static setting. These approaches are not, however, used in the streaming setting.
The idea of using sub-structures of a graph motif in order to improve the estimation of its fre-

quency in amassive graph has been previously explored in literature. In [9], Bordino et al. proposed
a data stream algorithm that estimates the number of occurrences of a given subgraph by sampling
its “prototypes” (i.e., sub-structures). While this approach is shown to be effective in estimating the
number of occurrences of motifs with three and four edges, it requires multiple passes through the
graph stream and further knowledge on the properties of the graph. In [18], Seshadhri and Pinar
presented an algorithm that effectively and efficiently approximates the frequencies of all 4-vertex
subgraphs by sampling paths of length three. However, this algorithm requires prior knowledge
of the degrees of all the vertices in the graph and cannot be used in the streaming setting. In [2],
reservoir sampling is used to develop the “graph priority sampling” framework for counting sub-
graphs. In a recent work [17], Jain and Seshadhri propose a clique counting method based on
Túran’s Theorem that requires knowledge of the degeneracy of the observed graph. [11] show an
application of the color-coding scheme for the static setting which uses colorful trees as prototypes
to guide the sampling phase. Some alternative approaches focus on counting specific graphs such
as butterfly sub-graphs in bipartite graph streams [32].
In this work, we present a sampling-based, one-pass algorithm for insertion only streams to

approximate the global number of cliques found in large graphs. Furthermore, our algorithms do
not require any further information on the properties of the observed graph.
Using a strategy similar to our Tiered Sampling approach, Seshadhri and Pinar propose in [19] a

one-pass streaming algorithm for triangle counting. This algorithm uses a first reservoir sample for
edges that are then used to generate a stream ofwedges (i.e., paths of length two) stored in a second,
dedicated, reservoir sample. This approach appears to be not worthwhile for triangle counting as
it is consistently outperformed by a simpler strategy based on a single reservoir presented in [33].
This is due to the fact that, as in most large graphs of interest wedges are much more frequent
than edges, it is generally not worth devoting a large fraction of the available memory space to
maintaining wedges over edges.
In [3], a similar approach, based on the use of multiple reservoir sample levels, is used to develop

a sampling-based streaming algorithm for approximate bipartite projection in streaming bipartite
networks: first, they maintain a reservoir of sampled bipartite edges with sampling weights that

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:6 L. De Stefani et al.

favor the selection of high similarity nodes. Second, arriving edges generate a stream of similar-

ity updates based on their adjacency with the current sample. These updates are aggregated in a
second reservoir sample-based stream to yield the final unbiased estimate.
This work extends and completes a preliminary version of results presented in [12].

4 TIERED SAMPLING APPLICATION TO 4-CLIQUE COUNTING

In this section, we present TS4C1 and TS4C2, two applications of our Tiered Sampling approach
for counting the number of 4-cliques in an undirected graph observed as an edge stream. Rather
than counting a 4-cliques only when the currently observed edge completes a 4-clique with five
other edges maintained in an edge sample (similarly to what successfully done for 3-cliques
in [33]), we increase the probability of observing a clique by using a 3-cliques (i.e., triangles) reser-
voir sample. Our two Tiered Sampling algorithms partition the available memory into two sam-
ples: an edges reservoir sample and a triangles reservoir sample. TS4C1 attempts in each step to
construct a 4-cliques using the currently observed edge, two edges from the edge reservoir sample
and one triangle from the triangle reservoir sample. TS4C2 attempts at each step to construct a
4-clique from the currently observed edge and two triangles from the triangle reservoir sample.
That is, both algorithms use triangle sub-patterns of a 4-clique as prototype sub-graphs used to
aid in the detection of an entire 4-clique. At each time step t , both algorithms maintain a running

estimation κ
(t) of |C (t)

4 |. Clearly κ
(0) = 0 and the estimator is increased every time a 4-clique is

“detected” on the stream. The two algorithms also maintains a counter τ (t) for the number of tri-
angles observed in the stream up to time t . This value is used by the reservoir sampling scheme
which manages the triangle reservoir.

4.1 Algorithm TS4C1

Algorithm TS4C1 maintains an edges (resp., triangles) reservoir sampleSe (resp.,SΔ) of fixed sizeMe

(resp.,MΔ). From Lemma 2.1, for any t the probability of any edge e (resp., triangleT) observed on
the stream Σ (resp., observed by the TS4C1) to be included in Se (resp., SΔ) isMe/t (resp.MΔ/τ

(t)).

We denote as S (t)
e (resp., S (t)

Δ) the set of edges (resp., triangles) in Se (resp., SΔ) before any update
to the sample(s) occurring at step t . We denote with NS

(t)
e

u the neighborhood of u with respect to

the edges in S (t)
e , that is NS

(t)
e

u = {v ∈ V S
(t)
e : (u,v) ∈ S (t)

e }.
Let et = (u,v) be the edge observed on the stream at time t . At each step TS4C1 executes three

main tasks:

—Estimation update: TS4C1 invokes the function Update 4-cliqes to detect any 4-clique
completed by (u,v) (see Figure 1 for an example). That is, the algorithm verifies whether in
triangle reservoir SΔ there exists any triangleT which includes u (resp., v). Note that since
each edge is observed just once and the edge (u,v) is being observed for the first time no
triangle in SΔ can include bothu andv . For any such triangleT ′ = {u,w, z} (or {v,w, z}) the
algorithm checks whether the edges (v,w) and (v, z) (resp., (u,w) and (u, z)) are currently
in Se . When such conditions are meet, we say that a 4-clique is “observed on the stream.”
The algorithm then uses ProbCliqe to compute the exact probability p of the observation
based on the timestamps of all its edges. The estimator κ is then increased by p−1/2.

—Triangle sample update: using UpdateTriangles the algorithm verifies whether the edge et
completes any triangle with the edges in S (t)

e . If that is the case, we say that a new triangle
T ∗ is observed on the stream. The counter τ is increased by one and the new triangle is a
candidate for inclusion in SΔ with probabilityMΔ/τ

t .

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:7

ALGORITHM 1: TS4C1 - Tiered Sampling for 4-Clique counting

Input: Insertion-only edge stream Σ, integersM ,MΔ

Se ← ∅ , SΔ ← ∅, t ← 0, tΔ ← 0, σ ← 0
for each element (u,v) from Σ do � Process each edge (u,v) coming from the stream in
discretized timesteps

t ← t + 1
Update4Cliqes(u,v) � Update the 4-clique estimator by considering the new 4-cliques

closed by edge (u,v)
UpdateTriangles(u,v) � Update the triangles reservoir with the new triangles formed

by edge (u,v)
SampleEdge((u,v), t) � Update the edges sample with the edge (u,v) according to RS

scheme

function Update4Cliqes((u,v), t)
for each triangle (u,w, z) ∈ SΔ do � For each triangle with vertices u, w and z

if (v,w) ∈ Se ∧ (v, z) ∈ Se then � If triangle (u,w, z) forms a 4-clique (u,v,w,z) with
two edges in Se

p ← ProbCliqe((u,w, z), (v,w), (v, z)) � Calculate probability of observing
4-clique (u,v,w,z)

σ ← σ + p−1/2 � Update the 4-clique estimator

for each triangle (v,w, z) ∈ SΔ do � For each triangle with vertices v, w and z
if (u,w) ∈ Se ∧ (u, z) ∈ Se then � In case triangle (v,w,z) forms a 4-clique (u,v,w,z)

with two edges in Se
p ← ProbCliqe((v,w, z), (u,w), (u, z)) � Calculate probability of observing

4-clique (u,v,w,z)
σ ← σ + p−1/2 � Update the 4-clique estimator

function UpdateTriangles((u,v), t)
NSu,v ← NSu ∩ NSv
for each elementw from NSu,v do � For each triangle (u,v,w)

tΔ ← tΔ + 1 � Increment the number of observed triangles
SampleTriangle(u,v,w) � Update the triangles sample with the triangle (u,v,w)

according to RS Scheme

—Edge sample update: the algorithm updates the edge sample Se according to the Reservoir
Sampling scheme described in Section 2.

Each time a 4-clique is observed on the stream, TS4C1 uses ProbCliqe to compute the exact
probability of the observation. Such computation is all but trivial as it is influenced by both the
order according to which the edges of the 4-clique were observed on the stream and by the number

of triangles observed on the stream τ (t) . The analysis proceeds using a (somehow tedious) analysis
of all the 5! possible orderings of the first five edges of the clique observed on the stream. Before
presenting the analysis for computing the exact probability of observing a 4-clique on the stream
in Lemma 4.2, we introduce Lemma 4.1

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:8 L. De Stefani et al.

Fig. 1. Detection of a 4-clique using triangles.

Lemma 4.1. Let λ ∈ C (t)
4 with λ = {e1, e2, e3, e4, e5, e6} using Figure 1 as reference. Assume further,

without loss of generality, that the edge ei is observed at ti (not necessarily consecutively) and that

t6 > max{ti , 1 ≤ i ≤ 5}. λ can be observed by TS4C1 at time t6 either as a combination of triangleT1 =
{e1, e2,or e4} and edges e3 = (v,w) and e5 = (v, z), or as a combination of triangle T2 = {e1, e3, e5}
and edges e2 = (u,w) and e4 = (u, z).

Proof. As presented in Algorithm 1, TS4C1 can detect λ only when its last edge is observed
on the stream (hence, t6). When e6 is observed, the algorithm first evaluates whether there is

any triangle in S (t6)
Δ that shares one of the two endpoint u or v from e6. Since at this step (i.e.,

the execution of function Update4Cliqes) the triangle sample is yet to be updated based on the
observation of e6, the only triangle sub-structures of λ which may have been observed on the

stream, and thus included in S (t6)
Δ are T1 = {e1, e2, e4} and T2 = {e1, e3, e5}. If any of these is indeed

in S (t6)
Δ , TS4C1 proceeds to check whether the remaining two edges required to complete λ (resp.,

e3, e5 for T1, or e2, e4 for T2) are in Se . λ is thus observed either once or twice depending on which
just one or both of these conditions are verified. �

Lemma 4.2. Let λ ∈ C (t)
4 with λ = {e1, e2, e3, e4, e5, e6} using Figure 1 as reference. Assume further,

without loss of generality, that the edge ei is observed at ti (not necessarily consecutively) and that

t6 > max{ti , 1 ≤ i ≤ 5}. Let t1,2,4 = max{t1, t2, t4,Me + 1}. The probability pλ of λ being observed on

the stream by TS4C1 using the triangleT1 = {e1, e2, e4} and the edges e3, e5, is computed by the Prob-

Clique function as:

pλ =
Me

t1,2,4 − 1
Me − 1
t1,2,4 − 2

min
{
1,

MΔ

τ (t6)

}
p ′,

where

p ′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if t6 ≤ Me
Me

t6−1
Me−1
t6−2 if min{t3, t5} > t1,2,4

Me−1
t6−2

Me−2
t1,2,4−3

t1,2,4−1
t6−1 if max{t3, t5} > t1,2,4 > min{t3, t5}

Me−2
t1,2,4−3

Me−3
t1,2,4−4

t1,2,4−1
t6−1

t1,2,4−2
t6−2 otherwise.

Proof. Let us define the event Eλ = λis observed on the stream by TS4C1 using triangle T1 =

{e1, e2, e4} and edges e3, e5. Further let ET1 = T1 ∈ S
(t6)
Δ , and E3,5 = {e3, e5} ⊆ S (t6)

e . Given the defini-
tion of TS4C1 we have:

Eλ = ET1 ∧ E3,5,

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:9

and hence:

pλ = Pr (Eλ) = Pr
(
ET1 ∧ E3,5

)
= Pr

(
E3,5 |ET1

)
Pr
(
ET1
)
.

In order to study Pr
(
ET1
)
we shall introduce event ES (T1) =“triangle T1 is observed on the stream

by TS4C1.” From the definition of TS4C1, we know that T1 is observed on the stream iff when the
last edge ofT1 is observed on the stream at max{t1, t2, t4} the remaining two edges are in the edge
sample. Applying Bayes’s rule of total probability we have:

Pr
(
ET1
)
= Pr

(
ET1 |ES (T1)

)
Pr
(
ES (T1)

)
,

and thus:

pλ = Pr
(
E3,5 |ET1

)
Pr
(
ET1 |ES (T1)

)
Pr
(
ES (T1)

)
. (1)

Let t1,2,4 = max{t1, t2, t4,M + 1}, in order for T1 to be observed by TS4C1 it is required that when
the last edge of T1 is observed on the stream at t1,2,4 its two remaining edges are kept in Se . From
Lemma 2.1 we have:

Pr
(
ES (T1)

)
=

Me

t1,2,4 − 1
Me − 1
t1,2,4 − 2

, (2)

Pr
(
ET1 |ES (T1)

)
=

Me

τ t6
. (3)

Let us now consider Pr
(
E3,5 |ET1

)
. While the content of SΔ itself does not influence the content

of Se , the fact that T1 is maintained in S (t6)
Δ implies that is has been observed on the stream at a

previous time and hence, that two of its edges have been maintained in Se at least until the last
of its edges has been observed on the stream. We thus have Pr(E3,5 |ET1) = Pr(E3,5 |ES (T1)). In order
to study p ′ = Pr(E3,5 |ES (T1)) it is necessary to distinguish the possible (5!) different arrival orders
for edges e1, e2, e3, e4 and e5. However in an efficient analysis we reduce the number of cases to be
considered to just four:

—t6 ≤ M + e : in this case all the edges observed on the stream up until t6 are deterministically
inserted in Se and thus p ′ = 1.

—min{t3, t5} > t1,2,4: in this cases both edges e3 and e5 are observed after all the edges com-
posing T1 have already been observed on the stream. As for any t > t1,2,4 the event ES (T1)
does not imply that any of the edges of T1 is still in Se we have:

p ′ = Pr
(
E3,5 |ET1

)
= Pr

(
{e3, e5} ⊆ S (t6)

e

)
,

and, thus, from Lemma 2.1:

p ′ =
Me

t6 − 1
Me − 1
t6 − 2

.

—max{t3, t5} > t1,2,4 > min{t3, t5}: in this case, only one of the edges e3, e5 is observed after
all the edges in T1 are observed. We need to therefore take into consideration that the two
edges of T1 are kept in Se until t1,2,4. Let e

M
3,5 (resp., e

m
3,5) denote the last (resp., first) edge

observed on the stream between e3 and e5.

p ′ = Pr
(
eM3,5 ∈ S

(t6)
e |em3,5 ∈ S

(t6)
e

)
Pr
(
em3,5 ∈ S

(t6)
e

)
,

=
Me − 1
t6 − 2

Pr
(
em3,5 ∈ S

(t6)
e |em3,5 ∈ S

(t1,2,4)
e

)
Pr
(
em3,5 ∈ S

(t1,2,4)
e

)
,

=
Me − 1
t6 − 2

t1,2,4 − 1
t6 − 1

Me − 2
t1,2,4 − 3

.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:10 L. De Stefani et al.

—t1,2,4 > max{t2, t4}: in all the remaining cases both e3 and e5 are observed before the last
edge of T1 has been observed. Hence:

p ′ = Pr
(
{e3, e5} ⊆ S (t6)

e |{e3, e5} ⊆ S
(t1,2,4)
e

)
Pr
(
{e3, e5} ⊆ S (t1,2,4)

e

)
,

=
Me − 2
t1,2,4 − 3

Me − 3
t1,2,4 − 4

t1,2,4 − 1
t6 − 1

t1,2,4 − 2
t6 − 2

.

The lemma follows combining the result for the values of p ′ with Equations (2) and (3) in
Equation (1). �

In our proofs, we carefully account for the fact that, as we use reservoir sampling [34], the
presence of an edge (resp., of a triangle) in Se (resp., SΔ) is not independent from the concurrent
presence of another edge (resp., triangle) in SΔ. Further, we account for the fact that whether a
triangle can be in SΔ only if it was previously detected by TS4C1 (using the UpdateTriangles
function from Algorithm 1), which itself is dependent on which edges are held in the sample
when the last edge of the triangle itself is observed on the stream. In order to account for such
dependencies, it is necessary to break down the order of arrival of the edges themselves.
The following corollary provides a lower bound to the probability according to which a 4-clique

is observed by TS4C1. Although generally loose, this result will provide simplification and insight
in the analysis of the variance of the estimate obtained using TS4C1.

Corollary 4.1. Let λ ∈ C (t)
4 defined as in the statement of Lemma 4.2. The probabilitypλ of λ being

observed on the stream by TS4C1 using the triangle T1 = {e1, e2, e4} and the edges e3, e5 is evaluated
by the ProbClique function as:

pλ ≥ min
{
1,
(Me

t − 1

)4 MΔ

τ (t)

}
.

Analysis of the TS4C1 estimator. We now present the analysis of the estimations obtained using
TS4C1. First, we show their unbiasedness, and we then provide a bound on their variance. In the
following, we denote as tΔ the first time step at for which the number of triangles seen by TS4C1

exceedsMΔ.

Theorem 4.3. The estimator κ returned by TS4C1 is unbiased, that is κ
(t) = |C (t)

k
| if t ≤

min{Me , tΔ}. Further, E[κ (t)] = |C (t)
k
| if t ≤ min{Me , tΔ}.

Proof of Theorem 4.3. From Lemma 4.1, we have that TS4C1 can detect any 4-clique λ ∈ C (t)
4

in exactly two ways: either using triangle T1 and edges e3, e5, or by using triangle T2 and edges
e2, e4 (use Figure 1 as a reference).

For each λ ∈ C (t)
4 let us consider the random variable δλ1 (resp. δλ2) which takes value p−1

λ1
/2

(resp., p−1
λ2
/2) if the 4-clique λ is observed by TS4C1 using triangle T1 (resp., T2) or zero otherwise.

Let pλ1 (resp., pλ2) denote the probability of such event: we then have E
[
δλ1
]
= E
[
δλ2
]
= 1/2.

From Lemma 4.2, we have that the estimator κ (t) computed using TS4C1 can be expressed as

κ
(t) =

∑
λ∈C (t)

4

(
δλ1 + δλ2

)
. From the previous discussion and by applying linearity of expectation

we thus have:

E
[
κ

(t)
]
= E

⎡⎢⎢⎢⎢⎢⎢⎣
∑

λ∈C (t)
4

(
δλ1 + δλ2

)⎤⎥⎥⎥⎥⎥⎥⎦
=
∑

λ∈C (t)
4

(
E
[
δλ1
]
+ E
[
δλ2
])
=
∑

λ∈C (t)
4

1 = |C (t)
4 |.

Finally, let t∗ denote the first step for which the number of triangles detected by TS4C1 exceeds

MΔ. For t ≤ min{Me , t
∗}, the entire graphG (t) is maintained in Se and all the triangles inG (t) are

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:11

stored in SΔ. Hence all the cliques in G (t) are deterministically observed by TS4C1in both ways

and we therefore have κ (t) = |C (t)
4 |. �

We now introduce an upper bound to the variance of the TS4C1 estimations. We present here the

most general result for t ≥ Me , tΔ. Note that if t ≤ min{Me , tΔ}, fromTheorem 4.3,κ (t) = |C (t)
k
| and

hence Var[κ (t)] = 0. For min{Me , tΔ} < t ≤ max{Me , tΔ}, Var[κ (t)] admits an upper bound similar
to the one in Theorem 4.4.

Theorem 4.4. For any time t > min{Me , tΔ}, he estimator κ returned by TS4C1 satisfies

Var
[
κ

(t)
]
≤ |C (t)

4 | ��c
(
t − 1
Me

)4 (
τ (t)

MΔ

)
− 1�� + 2a

(t)

(
c
t − 1
Me
− 1
)

+ 2b (t) ��c
(
t − 1
Me

)2 (
1

4

τ (t)

MΔ
+
3

4

t − 1
Me

)
− 1�� ,

(4)

where a (t) (resp., b (t)) denotes the number of unordered pairs of 4-cliques which share one edge (resp.,

three edges) in G (t) , and c ≥ M3
e

(Me−1)(Me−2)(Me−3) .

Similarly to what done in the proof of Theorem 4.3, in the proof of our result on the bound of the
variance of the estimate, we associate two random variables to each of the 4-cliques of the graph
(one for each of the two possible ways of detecting such 4-clique). The proof relies on a careful
analysis of the order of arrival of the edges shared between a pair of two 4-cliques in the stream
(which we assume to be adversarial), as shown in Lemma A.1. When bounding the variance, we
must consider not only pairs of 4-cliques that share edges, but also pairs of 4-cliques sharing no
edges, since the respective presences of the parts used to detect them (i.e., edges and triangles) in
the respective samples are not independent events.
In order to gain some insight on the variance bound in Theorem 4.4, note that the first, and

dominant, term of (4) is given by the total number of 4-cliques in G (t) (i.e., |C (t)
4 |) multiplied by

(c (t−1
Me

)4 (τ
(t)

MΔ
) − 1) which corresponds approximately to c (pλ)

−1, where pλ denotes the lower bound
to the probability of TS4C1 detecting a 4-clique as provided by Corollary 4.1. This suggest a natural
relation between these quantities: as the probability of detecting a 4-clique decreases (resp., the
total number of 4-cliques increases) the variance increases accordingly. For detailed proofs of this
section we refer the reader to Appendix A.

Memory partition across layers. In most practical scenario we assume that a certain amount of
total available memoryM is available for algorithm TS4C1. A natural question that arises is what
is the best way of spitting the available memory between Se and SΔ. While different heuristics are
possible, in our work we chose to assign the available space in such a way that the dominant first
term of upper bound of TS4C1 in Theorem 4.4 is minimized. For 0 < α < 1 letMe = αM andMΔ =

(1 − α)M . Thenwe have that |C (t)
4 |(c (

t−1
αM

)4 (τ (t)−1
(1−α)M) − 1) is minimized forα = 4/5. This convenient

splitting rule works well in most cases, and is used in most of the article. In Section 6, we discuss
a more sophisticated adaptive dynamic allocation of the available memory among the two sample
tiers, named, ATS4C. We present experimental results for this method in Section 7.2.

Concentration bound. Based on the bound on the variance in Theorem 4.4, we now show a con-
centration bound for the estimator κ (t) returned by TS4C1. The proof of Theorem 4.5 is based on
the application of Chebyshev’s inequality [26, Thm. 3.6].

Theorem 4.5. Let t > min{Me , tΔ} and assume |C (t)
4 | > 0. Let a (t) (resp., b (t)) denote the

number of unordered pairs of 4-cliques which share one edge (resp., three edges) in G (t) , and

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:12 L. De Stefani et al.

c ≥ M3
e

(Me−1)(Me−2)(Me−3) . Further, let Me = αM (resp., Me = (1 − α)M), for α ∈ (0, 1). For any ε,δ ∈
(0, 1), if

M>α−1 max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
5

√
α

1 − α
3c (t − 1)4 (τ (t))

δε2 |C (t)
4 |

,
6ca (t) (t − 1)
δε2 |C (t)

4 |2
,

3

√√√
3cb (t)c (t − 1)2

(
ατ (t) + 3(1 − α) (t − 1)

)
2(1 − α)δε2 |C (t)

4 |2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

then the estimator κ (t) returned by TS4C1 satisfies:

Pr
(
|κ (t) − |C (t)

4 | < ε |C (t)
4 |
)
> 1 − δ .

Proof. By Chebyshev’s inequality it is sufficient to prove that

Var
[
κ

(t)
]

ε2 |C (t)
4 |2

< δ .

From Theorem 4.4, we can write:

Var
[
τ (t)

]
ε2 |C (t)

4 |2
≤

(
|C (t)

4 |
(
c
(
t−1
Me

)4 (τ (t)

MΔ

)
− 1
)
+ 2a (t)

(
c t−1
Me
− 1
)
+ 2b (t)

(
c
(
t−1
Me

)2 (1
4
τ (t)

MΔ
+ 3

4
t−1
Me

)
− 1
))

ε2 |C (t)
4 |

<

(
|C (t)

4 |c
(
t−1
Me

)4 (τ (t)

MΔ

)
+ 2a (t)

(
c t−1
Me

)
+ 2b (t)c

(
t−1
Me

)2 (1
4
τ (t)

MΔ
+ 3

4
t−1
Me

))
ε2 |C (t)

4 |

=

(
|C (t)

4 |c
(t−1)4τ (t)

α 4 (1−α)M 5 + 2a
(t)c
(
t−1
αM

)
+ 2b (t)c

(
t−1
αM

)2 ατ (t)+3(1−α)(t−1)
4α (1−α)M

)
ε2 |C (t)

4 |

=

(
|C (t)

4 |c
(t−1)4τ (t)

α 4 (1−α)M 5 + 2a
(t)c
(
t−1
αM

)
+ 2b (t)c

(t−1)2 (ατ (t)+3(1−α)(t−1))
4α 3 (1−α)M3

)
ε2 |C (t)

4 |
.

Hence it is sufficient to impose the following three conditions:

Condition 1.

δ

3
>

1

ε2 |C (t)
4 |2
|C (t)

4 |c
(t − 1)4 τ (t)
α4 (1 − α)M5

α

1 − α
c (t − 1)4 τ (t)

ε2 |C (t)
4 |α5M5

,

which is verified for:

M > α−1 5

√√
3α

1 − α
c (t − 1)4 τ (t)

δε2 |C (t)
4 |

.

Condition 2.

δ

3
>

1

ε2 |C (t)
4 |2

2a (t)c
(t − 1
αM

)
,

which is verified for:

M > α−1
6a (t)c (t − 1)
δε2 |C (t)

4 |2
.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:13

ALGORITHM 2: TS4C2 - Tiered Sampling for 4-Clique counting using 2 triangle sub-structures

function Update4Cliqes((u,v), t)
for each (u,w, z) ∈ SΔ ∧ (v,w, z) ∈ SΔ do � For each 4-clique (u,v,w,z) formed by two

triangles (u,w,z) and (v,w,z)
p ← ProbCliqe((u,w, z), (v,w, z)) � Calculate the probability of observing 4-clique

(u,v,w,z)
σ ← σ + p−1 � Update the 4-clique estimator

Condition 3.

δ

3
>

1

ε2 |C (t)
4 |2

2b (t)c
(t − 1)2

(
ατ (t) + 3 (1 − α) (t − 1)

)
4α3 (1 − α)M3

,

which is verified for:

M > α−1
3

√√√
3b (t)c (t − 1)2

(
ατ (t) + 3 (1 − α) (t − 1)

)
2δε2 (1 − α) |C (t)

4 |2
.

The theorem follows. �

Note that for t ≤ min{Me , tΔ} all the edges (resp., triangles) observed up to time t can be main-

tained in Se (resp., SΔ), and, hence, we have κ (t) = |C (t)
k
| and Var[κ (t)] = 0.

Theorem 4.5, provides a bound on the relative ϵ-approximation of |C (t)
4 | provided by TS4C1. In

particular, Theorem 4.5 suggest that while the variance of the estimator is bound to increase as

|C (t)
4 | increases (as stated in Theorem 4.4), for a given value δ , the size of available sample memory

M required to achieve an ϵ-approximation for |C (t)
4 | with probability at least 1 − δ decreases for

higher values of |C (t)
4 |.

4.2 Algorithm TS4C2

While the version of TS4C1 presented in Algorithm 1 detects 4-cliques by using one triangle sub-
structure form SΔ and two edges from Se , it is possible to use different sub-structures to achieve
the same goal. We now present a variation of TS4C1, called TS4C2, which detects a 4-clique when
the current observed edge completes a 4-clique using two triangles currently in SΔ.
TS4C1 and TS4C2 differ only in the Estimation update step, implemented by the function Up-

date4Cliqes which determinates how the occurrences of 4-cliques are detected and the estima-
tors are correspondingly updated. The pseudocode for TS4C2 is presented in Algorithm 2:

—Whenever a new edge et = (u,v) is observed on the stream at time T , TS4C2 invokes
the function Update 4-cliqes (Algorithm 2) which verifies whether in triangle reservoir
SΔ there exists any (unordered) pair of triangles {T1,T2} such that T1 = {u,w, z} and T2 =
{v,w, z}, for w, z ∈ V (t) . When such conditions are meet, we say that a 4-clique {u,v,w, z}
is “observed on the stream” by TS4C2. The algorithm then uses ProbCliqe to compute the
exact probability p of the observation based on the timestamps of all its edges according to
the results of Lemma 4.7. The estimator κ is then increased by p−1.

—TS4C2 then proceeds in updating the triangle sample SΔ and the edge sample Se follow-
wing the same steps as TS4C1 as described in Section 4.1.

The difference in the way 4-cliques are detected by TS4C2 corresponds to a difference in the
probability of such detections. Before introducing the lemma for calculating the probability of
detecting a 4-clique using TS4C2, we introduce the following technical Lemma 4.6 which states

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:14 L. De Stefani et al.

that each 4-clique can be observed just once using TS4C1. In order to simplify the presentation, in
the following we use the following notation:

tM1,2, ...,i � max{t1, t2, . . . , ti }
tm1,2, ...,i � min{t1, t2, . . . , ti }

Lemma 4.6. Let λ ∈ C (t)
4 with λ = {e1, e2, e3, e4, e5, e6} using Figure 1 as reference. Assume further,

without loss of generality, that the edge ei is observed at ti (not necessarily consecutively) and that

t6 > max{ti , 1 ≤ i ≤ 5}. λ can be observed by TS4C2 at time t6 only by a combination of two triangles

T1 = {e1, e2, e4} and T2 = {e1, e3, e5}.

Proof. TS4C2 can detect λ only when its last edge is observed on the stream (hence, t6). When

e6 is observed, the algorithm first evaluates whether there are two triangles in S (t6)
Δ , that share two

endpoints and the other endpoints are u and v respectively. Since at this step (i.e., the execution
of function Update4Cliqes) the triangle sample is jet to be updated based on the observation of
e6, the only triangle sub-structures of λ which may have been observed on the stream, and thus

included in S (t6)
Δ are T1 = {e1, e2, e4} and T2 = {e1, e3, e5}. λ is thus observed if and only if both of

the triangles T1 and T2 are found in S (t6)
Δ . �

Lemma 4.6 marks an important difference between TS4C2 and TS4C1 as for the latter there are
multiple ways of detecting the same 4-clique as discussed in Section 4. Such difference impacts the
analysis of the probability of detecting a 4-clique using TS4C2:

Lemma 4.7. Let λ ∈ C (t)
4 with λ = {e1, e2, e3, e4, e5, e6} using Figure 1 as reference. Assume further,

without loss of generality, that the edge ei is observed at ti (not necessarily consecutively) and that

t6 > max{ti , 1 ≤ i ≤ 5}. The probability pλ of λ being observed on the stream by TS4C2, is computed

by ProbClique as:

pλ =min
⎧⎪⎨⎪⎩1,

Me

tM1,3,5 − 1
Me − 1
tM1,3,5 − 2

⎫⎪⎬⎪⎭min
{
1,

MΔ

τ (t6)
MΔ − 1
τ (t6) − 1

}
p ′,

where:

p ′ =

⎧⎪⎪⎨⎪⎪⎩

1, i f tM1,2,4 ≤ Me
Me−2
t1−3

Me−3
t1−4 , i f t1 > tM2,3,4,5

Me−2
t1−3

Me−3
t1−4 , i f tM3,5 > t1 > max{tm3,5, t2, t4}

Me−2
tM2,4−3
, i f tM3,5 > tM2,4 > max{tm3,5, tm2,4, t1}

Me

t1−1
Me−1
t1−2 , i f tm3,5 > t1 > tM2,4

Me−1
tM2,4−2

i f tm3,5 > tM2,4 > t1
Me−1
tM2,4−1

Me−2
t1−3

t1−1
t2−1 , i f tM2,4 > t1 > max{Me , t

m
2,4, t

M
3,5}

Me−1
tM2,4−1

Me

t2−1 i f tM2,4 > Me > t1 > max{tm2,4, tM3,5}
t3−1
tM2,4−1

t3−2
tM2,4−2

Me−2
tM3,5−3
, i f tM2,4 > tM3,5 > max{Me , t

m
3,5, t

m
2,4, t1}

Me

tM2,4−1
Me−1
tM2,4−2
, i f tM2,4 > Me > tM3,5 > max{tm3,5, tm2,4, t1}

Me

tM2,4−1
Me−1
tM2,4−2
, i f tm2,4 > t1 > tM3,5

Me−1
tM2,4−2

tM3,5−1
tM2,4−1
, i f tm2,4 > tM3,5 > max{M, t1}

Me−1
tM2,4−2

Me

tM2,4−1
, i f tm2,4 > Me > tM3,5 > t1

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:15

The analysis presents several complications due to the interplay of the probabilities of observing
each of the two triangles that share an edge. For a detailed proof of Lemma 4.2 and of the other
results in this section (Theorems 4.8, 4.9, and 4.10), we refer the reader to Appendix B. The fol-
lowing corollary presents a lower bound to the probability of a 4-clique being observed by TS4C2.
While rather loose, especially for 4-cliques that are detected towards the beginning of the edge
stream, it provides a useful intuition for the analysis of the variance of the estimator presented in
Theorem 4.9.

Corollary 4.2. Let λ ∈ C (t)
4 and let pλ denote the probability of λ being observed on the stream

by TS4C2. We have:

pλ ≤
(Me

t − 1

)4 (MΔ

τ (t)

)2
.

Analysis of TS4C2 estimator

Theorem 4.8. The estimator κ returned by TS4C2 is unbiased, that is κ
(t) = |C (t)

k
| if t ≤

min{Me , tΔ}. Further, E[κ (t)] = |C (t)
k
| if t ≤ min{Me , tΔ}.

The proof of 4.8 closely follows the steps of the proof of 4.3. The main differences are given by
the fact that there is one unique possible way according to which 4-cliques are observed by TS4C2

(Lemma 5.1), and the probability of such event is given by 4.6.
The analysis of the variance of TS4C2 presents considerable differences with respect to the anal-

ysis of the variance of TS4C1, which are due to the different strategies that the two algorithms use
to detect 4-cliques. The key component of the analysis depends on the analysis of the covariance
of all the possible pairs of the binary random variables that are each associated with the detection
of one of the 4-cliques. As stated in Lemma 4.6, for TS4C2 there is just a single possible way ac-
cording to which a 4-clique can be detected. Thus, the number and the distribution of the random
variables considered in the analysis of the variance of TS4C2 are clearly different from those of the
random variables considered in the previous section for the analysis of the variance of TS4C1.

Theorem 4.9. For any time t > min{Me , tΔ}, the estimator κ returned by TS4C2 satisfies

Var
[
κ

(t)
]
≤|C (t)

4 | ��c
(
t − 1
Me

)4 (
τ (t)

MΔ

)2
− 1�� + 2a

(t)

(
c
t − 1
Me
− 1
)

+ 2b (t) ��c
(
t − 1
Me

)2 (
1

4

τ (t)

MΔ
+
3

4

t − 1
Me

)
− 1�� ,

(5)

where a (t) (resp., b (t)) denotes the number of unordered pairs of 4-cliques which share one edge (resp.,

three edges) in G (t) , and c ≥ M3
e

(Me−1)(Me−2)(Me−3) .

Note that the first, and dominant, term of Equation (5) is given by the total number of 4-cliques

in G (t) (i.e., |C (t)
4 |) multiplied by (c (t−1

Me
)4 (τ

(t)

MΔ
)2 − 1) which corresponds approximately to c (pλ)

−1,
where pλ denotes the lower bound to the probability of TS4C2 detecting a 4-clique as provided
by Corollary 4.2. This suggests a natural relation between these quantities: as the probability of
detecting a 4-clique decreases (resp., the total number of 4-cliques increases), the variance increases
accordingly. The bound on the variance of TS4C2 is similar to the corresponding result for TS4C1

in Theorem 4.9. While it appears that the leading term of the variance for TS4C2 is higher than that

those of TS4C2 by a τ (t)

MΔ
factor, it should be noted that this is mostly a result of the simplification

of the analysis which is, however, required to achieve a closed-form expression for the variance. In
our experimental analysis on random (Section 5.3) and real-world graphs (Section 7), we observe

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:16 L. De Stefani et al.

that TS4C1 and TS4C2 generally exhibit comparable performance in terms of the quality of the
produced estimated and their variance.

Memory partition: Following the same criterion discussed in Section 4.1, we use |Me | = 2M/3 and
|MΔ | = M/3 as a general rule for assigning the available memory space between the two sample
levels. Given the fact that there is a much higher emphasis on the role and the use of the triangle
sub-patterns in TS4C2 compared to TS4C1, it should not be surprising that the preferred mem-
ory split for the former assigned a higher fraction of the available memory space to the triangle
sample compared to the latter. We use this assignment in the remainder of the article and for the
experimental evaluation of the performance of our algorithm.

Concentration bound: Based on the bound on the variance in Theorem 4.9, we now show a con-
centration bound for the estimatorκ (t) returned by TS4C2 based on the application of Chebyshev’s
inequality [26, Thm. 3.6].

Theorem 4.10. Let t > min{Me , tΔ} and assume |C (t)
4 | > 0. Let a (t) (resp., b (t)) denote the num-

ber of unordered pairs of 4-cliques which share one edge (resp., three edges) in G (t) , and c ≥
M3
e

(Me−1)(Me−2)(Me−3) . Further, letMe = αM (resp.,Me = (1 − α)M), for α ∈ (0, 1). For any ε,δ ∈ (0, 1),

if

M > α−1 max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3

√
α

1 − α
3c (t − 1)2 (τ (t))2

δε2 |C (t)
4 |

,
6ca (t) (t − 1)
δε2 |C (t)

4 |2
,

3

√√√
6b (t)c (t − 1)2

(
ατ (t) + 3(1 − α) (t − 1)

)
4(1 − α)δε2 |C (t)

4 |2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
then the estimator κ (t) returned by TS4C2 satisfies

Pr
(
|κ (t) − |C (t)

4 | < ε |C (t)
4 |
)
> 1 − δ .

As for Theorem 4.5, note that for t ≤ min{Me , tΔ} all the edges (resp., triangles) observed up to

time t can be maintained in Se (resp., SΔ), and, hence, we have κ
(t) = |C (t)

k
| and Var[κ (t)] = 0.

The proof for Theorem 4.10 follows steps analogous to those discussed for Theorem 4.5.
Although the difference between TS4C1 and TS4C2 may appear of minor interest, our experi-

mental analysis shows that it can lead to significantly different performances depending on the

properties of the graph G (t) . Intuitively, TS4C2 emphasizes the importance of the triangle sub-
structures compared to TS4C1, thus resulting in better performance when the input graph is very
sparse with a low number of occurrences of 3 and 4-cliques.

5 COMPARISON WITH SINGLE SAMPLE APPROACH

Given a certain fixed amount M of available memory space, our Tiered Sampling approach sug-
gest that the user allocates such memory into multiple tiers of reservoir samples in order to exploit
the sparsity of the sub-structures of the motif of interest. However, it is only natural to wonder
how this approach compares to an alternative, somewhat simpler, strategy that maintains a single
sample of edges and that relies only on the edges in the sample to detect occurrences of the motif

in G (t) .
To quantify the advantage of our Tiered Sampling approach, we construct and fully analyze

algorithm FourEst that uses a single edges sample strategy. We thoroughly compare the perfor-
mance achieved by TS4C1 with the performances of an algorithm, named FourEst, that uses a
single reservoir sample strategy. We analyze the estimator provided by FourEst compare the an-
alytical bound on the variance of the estimator, and we then compare their performance on both
synthetic and real-world data (in Section 7).

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:17

ALGORITHM 3: FourEst

Input: Edge stream Σ, integerM ≥ 6
Output: Estimation of the number of 4-cliques κ
Se ← ∅, t ← 0, κ ← 0
for each element (u,v) from Σ do � Process each edge (u,v) coming from the stream in
discretized timesteps

t ← t + 1
Update4Cliqes(u,v) � Update the 4-clique estimator by considering the new 4-cliques

closed by edge (u,v)
SampleEdge((u,v), t) � Update edge sample with (u,v) according to RS scheme

function Update4Cliqes((u,v), t)
NSu,v ← NSu ∩ NSv
for each element (x ,w) from NSu,v × N Su,v do � For each 4-clique formed by (u,v) and 5

edges in the Se
if (x ,w) in Se then � Calculate the probability of observing the new formed 4-clique

if t ≤ M then
p ← 1

else
p ←min{1, M (M−1)(M−2)(M−3)(M−4)

(t−1)(t−2)(t−3)(t−4)(t−5) }
κ ← κ + p−1 � Increase 4-clique estimator by the inverse of the probability of

observing the new 4-clique

5.1 Edge Sampling Approach—FourEst

FourEst (FOUR clique ESTimation) maintains a uniform random sample S of sizeM of the edges
observed over the stream using the reservoir sampling scheme, in order to estimate the number

of four cliques inG (t) . This algorithm is a natural extension of the technique discussed in [33] for
triangle counting. We refer the reader to Appendix C for the complete proofs of the results in this
section.
At each time step t , FourEst maintains a running estimation κ

(t) of |C (t)
4 |. Clearly κ

(0) = 0.
Every time a new edge et = (u,v) is observed on the stream, FourEst verifies whether e (t)

completes any 4-cliques with the edges currently in S (t)
e . If that is the case, the estimator κ

is increased by the reciprocal of the probability p = min{1,∏4
i=0

M−i
t−1−i } of observing that same

4-clique (from Lemma 2.1) using FourEst. Finally, the algorithm updates Se according to the
reservoir sampling scheme discussed in Section 2. The pseudocode for FourEst is presented in
Algorithm 3.

Analysis of the FourEst estimator: Before presenting the proof of the unbiasedness of the esti-
mations obtained using FourEst in Theorem 5.2, we introduce Lemma 5.1 which characterizes
the probability of a 4-clique being observed by algorithm FourEst. The proofs of the following
results share the structure of the proofs of corresponding results for TS4C1 and TS4C2. We refer
the reader to appendix C for the complete presentation of the proofs.

Lemma 5.1. Let λ ∈ C (t)
4 with λ = {e1, e2, e3, e4, e5, e6}. Assume, without loss of generality, that the

edge ei is observed at ti (not necessarily consecutively) and that t6 > max{ti , 1 ≤ i ≤ 5}. λ is observed

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:18 L. De Stefani et al.

by FourEst at time t6 with probability:

pλ =
⎧⎪⎪⎨⎪⎪⎩
0 i f |M | < 5,
1 i f t6 ≤ M + 1,∏5

i=0
M−i
t−i−1 i f t6 > M + 1.

(6)

Proof. Clearly FourEst can observe λ only at the time step at which the last edge e6 is observed
on the stream at t6. Further, from its construction, FourEst observed a 4-clique λ if and only
if when its large edge is observed on the stream its remaining five edges are kept in the edge
reservoir S. S is a uniform edge sample maintained by means of the reservoir sampling scheme.
From Lemma 2.1 we have that the probability of any five elements observed on the stream prior to
t6 being in S at the beginning of step t6 is given by:

Pr ({e1, e2, e3, e4, e5, e6} ⊆) =
⎧⎪⎪⎨⎪⎪⎩
0 i f |M | < 5,
1 i f t6 ≤ M + 1,∏4

i=0
M−i
t−i−1 i f t6 > M + 1.

The lemma follows. �

As for the Tiered Sampling algorithms, the estimator obtained using FourEst is unbiased.

Theorem 5.2. Let κ (t) the estimated number of 4-cliques in G (t) computed by FourEst using

memory of sizeM . κ (t) = |C (t)
4 | if t ≤ M + 1 and E[κ (t)] = |C (t)

4 | if t > M + 1.

We now show an upper bound to the variance of the FourEst estimations for t > M (for t ≤ M

we have κ
(t) = |C (t)

4 | and thus the variance of κ (t) is zero), and a corresponding concentration
bound.

Theorem 5.3. For any time t > M + 1, we have

Var
[
κ

(t)
]
≤ |C (t)

4 |
((t − 1

M

)5
− 1
)
+ a (t)

(t − 1
M
− 1
)
+ b (t)

((t − 1
M

)3
− 1
)
,

where a (t) (resp., b (t)) denotes the number of unordered pairs of 4-cliques which share one edge (resp.,

three edges) in G (t) . Thus, for any ε,δ ∈ (0, 1), if

M > (t − 1)max
{

5

√
3

δε2 |C (t)
4 |
,

3a (t)

δε2 |C (t)
4 |2
, 3

√
3b (t)

δε2 |C (t)
4 |2

}
,

then Pr(|κ (t) − |C (t)
4 | < ε |C (t)

4 |) > 1 − δ .

5.2 Variance Comparison

Although the upper bounds obtained in Theorems 4.4, 4.9, and 5.3 cannot be compared directly,
they still provide some useful insight on which algorithm may be performing better according to

the properties of G (t) .
Let us consider the first, dominant, terms of each of the variance bounds, that is

|C (t)
4 |((

t−1
Me

)4 τ
(t)

MΔ
− 1) for TS4C1, |C (t)

4 |(c (
t−1
Me

)4 (τ
(t)

MΔ
)2 − 1) for TS4C2, and |C (t)

4 |((
t−1
M

)5 − 1) for

FourEst. All the bounds share a similar dependence from the number of pairs of cliques that
share one or three edges in the second and third term. Due to the fact that TS4C1 splits the mem-
ory into two levels (in particular, withMe = 4M/5) we have a higher overall contribution for these
terms.
While TS4C1 exhibits a slightly higher constant multiplicative term cost due to the splitting of

the memory in the Tiered Sampling approach, the most relevant difference is however given by

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:19

the term τ (t)

M
appearing in the bound for TS4C1 compared with an additional t−1

M
appearing in the

bound for FourEst. Recall that τ (t) denotes here the number of triangles observed by the algorithm
up to time t . Due to the fact that the probability of observing a triangle decreases quadratically
with respect to the size of the graph t , we expect that τ < t and, for sparser graphs for which
3 and 4-cliques are indeed “rare patterns,” we actually expect τ (t) << t . Therefore, under these
circumstances, we would expectM/5τ >> M/t .
This is the critical condition for the success of the Tiered Sampling approach. If the sub-

structure selected as a tool for counting the motif of interest is not “rare enough” then there is
no benefit in devoting a certain amount of the memory budget to maintaining a sample of oc-
currences of the sub-structure. Such a problem would, for instance, arise when using the Tiered
Sampling approach for counting triangles using wedges (i.e., two-hop paths) as a sub-structure,
as attempted in [19], as in most real-world graph the number of wedges is much greater of the
number of edges themselves making them not suited to be used as a sub-structure.

5.3 Experimental Evaluation Over Random Graphs

In this section, we compare the performances of our Tiered Sampling algorithms of TS4C1 and
TS4C2 with the performance of the single sample approach FourEst, on randomly generated
graphs. In particular, we analyze random graph based on a variation1 of the Barábasi–Albert ran-
dom graph [5] model, which exhibits the same scale-free property observed in many real-world
graphs of interest such as social networks. The graph are generated as follows: the initial graph
is a star graph with m + 1 nodes and m edges where a node (i.e., the center of the star) is con-
nected to the remainingm ones. Then, n vertices are added one at a time. When the i-th node is
added, form + 1 ≤ i ≤ n, it is connected tom vertices among the i − 1 ones already added which
are chose with a probability that is proportional to the number of links (i.e., edges) that the ex-
isting nodes already have. In particular, the probability that the i-th new node is connected to
node j, for 1 ≤ j ≤ i − 1 is pi , j = dj/

∑i−1
�=1 d� , where dj denotes the degree of the j-th node be-

fore the insertion of the i-th node. The graph constructed at the end of this process has n +m
total vertices and nm total edges. The corresponding graph stream can be constructed by simu-
lating the generating process of the random graph and by selecting randomly the order of the
edges among the m that are generated for each node insertion. Such variation allows the study
of a random preferential attachment graph without starting from a densely connected initial
component.
In our experiments, we set n = 20,000 and we consider various values form from 50 to 2,000 in

order to compare the performances of the two approaches as the number of edges (and thus trian-
gles) increases and the generated graph grows more dense. The algorithms use a memory space
whose size corresponds to 5% of the number of edges in the graph nm. While FourEst devotes
the entire available memory to maintaining an edges reservoir sample, the Tiered Sampling al-
gorithms will split the available space between the edge sample Se and the triangle samples (SΔ)
according to the splitting criteria discusses in the respective sections (i.e., for TS4C1: Me = 4M/5
andMΔ = M/5; for TS4C2 Me = 2M/3 andMΔ = M/3).

We compare the accuracy of Tiered Sampling and FourEst approaches on random graphs
using the standard MAPE [16] as defined in Section 2.
In Figure 2, we compare the average MAPE of FourEst, TS4C1 and TS4C2 for Barábasi–Albert

random graphs with 20,000 nodes and various values ofm ranging from 50 to 2,000. In columns 2,

1We use the version provided by the NetworkX package https://networkx.github.io/documentation/networkx-1.9.1/

reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

https://networkx.github.io/documentation/networkx-1.9.1/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html
https://networkx.github.io/documentation/networkx-1.9.1/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html

79:20 L. De Stefani et al.

Fig. 2. Average MAPE on Barábasi–Albert random graphs, with n = 20, 000 and various values ofm.

Table 1. Reference for the Notation Used in This Work

Symbol Explanation

Σ Edge stream
t Time Step, i.e., number of edges observed up to step t (included)
tΔ Number of triangles observed up to now

G (t) Graph observed up to time t (included)
et Edge observed in the stream at time t .

C (t)
k

Set of k-cliques in G (t)

κ
(t) Estimation of number of 4-cliques at time t
Se Uniform sample of edges

S (t)
e Content of Se at the beginning of time t
SΔ Sample of observed triangles

S (t)
Δ Content of SΔ at the beginning of time t
M Memory Size
Me Edge sample memory size
MΔ Triangle sample memory size

τ (t) Number of triangles seen by TS4C1 (TS4C2) up to time t

NS
(t)
e

u Neighborhood of u with respect to edges in S (t)
e

NSu,v Common neighbors of u and v
α Splitting coefficient

3, and 5 of Table 2, we present the average of the MAPEs of the ten runs for FourEst, TS4C1, and
TS4C2. In column 4 (resp., 6) of Table 2, we report the percent reduction/increase in terms of the
average MAPE obtained by TS4C1 (resp., TS4C2) with respect to FourEst.

Both Tiered Sampling algorithms consistently outperform FourEst for values ofm up to 400,
that is for fairly sparse graphs for which we expect 3 and 4-cliques to be rare patterns. The advan-
tage over FourEst is particularly strong for values ofm up to 200 with reductions of the average
MAPE up to 30%. For denser graphs, i.e.,m ≥ 750, FourEst outperforms both Tiered Sampling
algorithms. This in consistent with the intuition discussed in Section 5.2, as for denser graphs trian-
gles are not “rare enough” to be worth saving over edges. Note however that in these cases the qual-
ity of all the estimators is very high (i.e., MAPE≤ 1%). We can also observe that TS4C2 outperforms
TS4C1 form ≤ 200. Vice versa, TS4C1 outperforms TS4C2 (and FourEst) for 300 ≤ m ≤ 750. Since,
as discussed in Section 4.2, TS4C2 gives “more importance” to triangles, it works particularly well

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:21

Table 2. Comparison of MAPE of FourEst. TS4C1 and TS4C2

for Barábasi–Albert Graphs

m FourEst TS4C1 Change TS4C1 TS4C2 Change TS4C2

50 0.8775 0.5862 −33.19% 0.5222 −40.49%
100 0.3054 0.1641 −46.27% 0.1408 −53.90%
150 0.1521 0.0937 −38.34% 0.0917 −39.70%
200 0.0899 0.0599 −33.39% 0.0549 −38.95%
300 0.0486 0.0346 −28.80% 0.0417 −14.19%
400 0.0289 0.0249 −13.87% 0.0261 −9.32%
500 0.0221 0.0197 −11.28% 0.0239 8.08%
750 0.0134 0.0132 −1.57% 0.0181 34.90%
1000 0.0088 0.0099 13.14% 0.0146 66.36%

when the graph is very sparse, and triangles are particularly rare. As the graph grows denser (and
the number of triangles increases), TS4C1 performs better until, for highly dense graphs FourEst
produces the best estimates.

6 ADAPTIVE TIERED SAMPLING ALGORITHM

An appropriate partition of the available memory between the layers used in the Tiered Sampling
approach is crucial for the success of the algorithm. While assigning more memory to the triangle
sample allows to maintain more sub-patterns, removing too much space from the edge sample
reduces the probability of observing new triangles.
While in Section 4.1 (resp., Section 4.2), we provide a general rule according to which to decide

how to split the available memory space for TS4C1 (resp., TS4C2), such partition may not always
lead to the best possible results. For instance, if the graph being observed is very sparse, assigning a
large portion of the memory to the triangles would result in a considerable waste of memory space
due to the low probability of observing triangles. Further, as discussed in Section 5, depending

on the properties of G (t) an approach based on simply maintaining a sample of the edges could
perform better than the Tiered Sampling algorithms. As in the graph streaming setting these
properties are generally not known a priori nor stable through the graph evolution, a fixedmemory
allocation policy appears not to be the ideal solution.
In this section, we present ATS4C, an adaptive variation of our TS4C2 algorithm, which dynam-

ically analyzes the properties of G (t) through time and consequently decides how to allocate the
available memory.

Algorithm description: We present a step by step pseudocode description of ATS4C in Algo-
rithm 4. ATS4C has two main “execution regimens”: the “initial regimen” (R1) for which it behaves
exactly as FourEst, and the “stable regimen” (R2) for which it behaves similarly to TS4C2. (R1) is
the initial regimen for ATS4C. Once the algorithm switches to (R2) it does not ever switch back

to (R1). ATS4C maintains an estimate κ
(t) of the number of 4-cliques observed on the stream

up to time t . ATS4C increases κ each time a 4-clique is observed according to the same method
discusses for FourEst while in (R1) (by invoking Update4CliqeFirstRegimen, line 13 of Al-
gorithm 4), and according to the same method discussed for TS4C2while in (R3) (by invoking
Update4CliqeSecondRegimen, line 26 of Algorithm 4). Analogously to what done for the other
algorithms discusses so far, towards guaranteeing that κ is an unbiased estimator, each time a 4-
clique is detected ATS4C computes the probability p of such detection and increases the estimate
by p−1.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:22 L. De Stefani et al.

ALGORITHM 4: ATS4C - Adaptive Version of Tiered Sampling

Input: Insertion-only edge stream Σ,M
1: Se ← ∅ , SΔ ← ∅, S′Δ ← ∅,M

′
Δ ← 0, t ← 0, tΔ ← 0, σ ← 0, r ← 1

2: for each element (u,v) from Σ do
3: t ← t + 1
4: if r = 1 then � Operations while in (R1)
5: if t%M = 0 then � EveryM time steps evaluate whether to switch from (R1) to (R2)
6: α ← SWITCH � Compute recommended splitting coefficient
7: if α > 0 then
8: r ← 2 � Switch to (R2)
9: SΔ ← CreateTriangleReservoir(α) � Create and populate triangles

sample SΔ
10: Se ← Subsample(α ,Se) � Select uniformly at random a subset of size αM of
Se

11: Update4CliqesSecondRegimen((u,v), t) � Update 4-clique estimate

12: else
13: Update4CliqesFirstRegimen((u,v), t) � Remain in (R1), update 4-clique

estimate
14: else if r = 2 then � Operations while in (R2)
15: if t%M = 0 then � EveryM time steps update split proportions between Se and SΔ
16: UpdateMemory � Decide whet er to assign more space to SΔ

17: if t ′Δ < MΔ then
18: UpdateTriangles((u,v), t ′Δ, S

′
Δ)

19: pΔ ←min(1, MΔ
tΔ

), p ′Δ ←min(1,
M ′Δ
t ′Δ

)

20: if pΔ < p ′Δ then � Merge main triangle sample SΔ and temporary S′Δ
21: Smerдed ← ∅
22: for each (x ,y, z) ∈ SΔ do

23: if FlipBiasedCoin(
p′Δ
pΔ
) = heads then � Select the triangles to be moved from

S′Δ to SΔ
24: Smerдed ← Smerдed ∪ (x ,y, z)

25: SΔ ← Smerдed ∪ S ′Δ
26: Update4CliqesSecondRegimen((u,v), t) � Update 4-clique estimate
27: UpdateTriangles((u,v), SΔ) � Update triangles sample

28: SampleEdge((u,v), t) � Update edges sample

29: function Switch � Decide whether to switch from (R1) to (R2)
30: ps ←min(1, M

t
)5

31: pα ←min(1,α M
t
)4 ·min(1, (1 − α)M

tΔ
)2 where a = arдmaxα ∈[23 ,1]

pα
32: if ps < pα then
33: return α � ATS4C switches from (R1) to (R2)
34: else
35: return 0 � ATS4C remains in (R1)

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:23

36: function CreateTriangleReservoir(α)
37: i ← 1
38: MΔ = (1 − α)M
39: while |SΔ | < MΔ do
40: (x ,y) (i) ← Edдe observed at time i

41: for each element z from NS
(i)
x,y do

42: tΔ ← tΔ + 1
43: SΔ ← SΔ ∪ (x ,y, z)

44: while |S | > M −MΔ do
45: (v,w) ← random edдe f rom S
46: S ← S \ {(v,w)}
47: function UpdateMemory
48: t (i+1)MΔ = 2t (iM)

Δ − t ((i−1)M)
Δ � Prediction of number of triangles at (i+1) step

49: pα ←min(1,α M
t
)4 ·min(1, (1 − α) M

t
(i+1)M
Δ

)2 where a = arдmaxα ∈[23 ,1]
pα

50: if α < MΔ
M

then

51: for i ∈ [1, MΔ
M
− α] do

52: (v,w) ← random edдe f rom S
53: S ← S \ {(v,w)}
54: MΔ ← MΔ + 1,M

′
Δ ← M ′Δ + 1

55: function UpdateTriangles((u,v), t) � Update SΔ
56: NSu,v ← NSu ∩ NSv
57: for each elementw from NSu,v do
58: tΔ ← tΔ + 1
59: SampleTriangle(u,v,w)

60: function Update4CliqesFirstRegimen((u,v), t))
61: Update κ using procedure Update4Cliqes((u,v), t) of FourEst algorithm

62: function Update4CliqesSecondRegimen((u,v), t)
63: Update κ using procedure Update4Cliqes((u,v), t) of TS4C2 algorithm

While in (R1), everyM time steps ATS4C decides, based on the number of triangles observed so
far, whether to switch from (R1) to (R2). Recall that, from Lemma 2.1 (resp., Lemma 4.2), the prob-
ability of a 4-clique whose last edge is observed at time t being observed by TS4C2 (resp., FourEst)

is approximately pα = (min{1,αM/t })4 (min{1, (1 − α)M/τ (t) })2 (resp., ps = (min{1,M/t − 1})5),
where 2/3 < α < 1 (resp., 0 < 1 − α < 1/3) denotes the fraction of the available memory which
is assigned to the edge sample (resp., triangle sample). SWITCH determines which partition of the
available space between edge only sample and triangle sample would maximize the approximate
probability of detecting a 4-clique using TS4C2. That is, SWITCH computesα∗ = argmaxα ∈[2/3,1)pα
(line 31 Algorithm 4). SWITCH then evaluates if the approximate probability of detecting a clique
using the FourEst approach is higher than that achievable using TS4C2 while partitioning the
available memory according to α∗ (line 32). If that is the case (i.e., ps > pα ∗), SWITCH returns zero
and ATS4C elects to remain in (R1) (line 11). Vice versa, if ps ≤ pα ∗ , SWITCH returns the value
α∗ and ATS4C transitions to (R2)): the triangle reservoir SΔ is assigned (1 − α∗)M memory space,
and it is filled with the triangles composed by the edges currently in the edge reservoir, using the
reservoir sampling scheme.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:24 L. De Stefani et al.

Finally the edge reservoir Se is constructed by selecting α∗M of the edges in the current sam-
ple uniformly at random, thus ensuring that Se is an uniform sample (lines 7–11). Once ATS4C
switches to (R2) it never goes back to (R1).
While in (R2), as long as |SΔ | < M/3, every M time steps ATS4C evaluates whether it is op-

portune to assign a higher fraction of the available memory to SΔ. Let t = iM , rather than just

using the information of the number of triangles seen so far τ (iM) , ATS4C computes a “prediction”
of the total number of triangles seen until (i + 1)M assuming that the number of triangles seen dur-
ing the nextM steps will equal the number of triangles seen during the lastM steps (line 53), that is

˜τ ((i+1)M) = 2τ (iM) − τ ((i−)M) . ATS4C then evaluates the partitioning of the available memory space
among the two tiers which would maximize the approximate probability of detecting a 4-clique at

time (i + 1)M , i.e., α∗ = argmaxa∈[2/3,1) (min{1,αM/(i + 1)M)})4 (min{1, (1 − α)M/ ˜τ ((i+1)M) })2. Let
α denote the split being used by ATS4C at t = iM :

—If α∗ > α , ATS4C determines that increasing the memory space devoted to the triangles
sample would not improve the algorithm’s likelihood of detecting 4-cliques. ATS4C con-
tinues its execution with no further operations (ATS4C never reduces the memory space
assigned to SΔ).

—Otherwise, if α∗ < α , ATS4C removes (α − α∗)M edges from Se selected uniformly at ran-
dom, thus ensuring that Se is still an uniform sample of the edges observed on the stream,
and the freed space is assigned to SΔ. Let us denote this space as S′Δ.

As ATS4C progresses and observes new triangles it fillsS′Δ using the reservoir sampling scheme.
That isS′Δ is used a temporary buffer to store observed triangle patterns.SΔ andS′Δ are thenmerged

at the first time step for which the probability pΔ of a triangle seen before the creation of S′Δ being
in SΔ becomes lower than the probability pΔ′ of a triangle observed after the creation of S′Δ being
in it. The merged triangle sample contains all the triangles in S′Δ, while the triangles in SΔ are
moved to it with probability pΔ′/pΔ. This ensures that after the merge all the triangles seen on
the stream are kept in the triangle reservoir with probability pΔ′ . After the merge, ATS4C operates
the samples as described in TS4C2. Finally, ATS4C increases the memory space for SΔ only if
all the currently assigned space is used. Once SΔ is filled, ATS4C maintains it a reservoir sample
for the triangle observed on the stream (invoking the UpdateTraingles function, line 55).
The analysis of ATS4C presents several additional challenges compared to those of our previous

algorithms TS4C1 and TS4C2, due to the interplay between execution regimens. Still, as during
(R2) (resp., (R1)) ATS4C behaves effectively as TS4C2 (resp., FourEst), albeit with some further
complication due to the adjustment of the assignment of memory between layer, whenever a 4-
clique is observed, ATS4Cmay compute exactly the probability of observing such clique, by relying
on the properties of TS4C2 and FourEst.

Theorem 6.1. The estimator κ returned by ATS4C is unbiased, that is κ (t) = |C (t)
k
| if t ≤ M . Fur-

ther, E[κ (t)] = |C (t)
k
| if t ≥ M .

The proof of Theorem 6.1, follows a reasoning analogous to that discussed in similar results
for the unbiasedness of TS4C2 and FourEst, and relies on the fact that, as discussed in the algo-
rithm description, whenever a 4-clique is observed, ATS4C can compute exactly the probability of
observing such clique.
We show how the adaptive assignment of the available memory realized by ATS4C succeeds in

combining the advantages of the single edge sample approach (e.g., FourEst), and of the multi-tier
prototype-based approach of Tiered Sampling via experimental evaluation on real-world graphs
presented in Section 7.2.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:25

Table 3. Graphs Used in the Experiments

Graph Nodes Edges
Exact 4-clique

count

Tiered
Sampling
estimate

4-clique count
forM = 0.05|E|

Source

DBLP 986,324 3,353,618 40,675,407 41,750,428 [8]
Patent (Cit) 2,745,762 13,965,132 3,296,890 3,294,045 [33]
LastFM 681,387 30,311,117 46,201,534,449 49,189,084,815 [33]
Live Journal 5,363,186 49,514,271 16,121,317,106 16,035,963,528 [8]
Hollywood 1,917,070 114,281,101 728,184,767,782 727,002,104,249 [8]
Orkut 3,072,441 117,185,083 3,221,163,953 3,210,957,578 [25]
Twitter 25,080,769 100,000,000 19,920,704 20,562,810 [8, 33]

7 EXPERIMENTAL EVALUATION

In this section, we evaluate through extensive experiments the performance of our proposed
Tiered Sampling method when applied for counting 4-cliques and 5-cliques in large graphs ob-
served as streams. We use several real-world graphs with size ranging from 106 to 108 edges (see
Table 3 for a complete list). All graphs are treated as undirected. The edges are observed on the
stream according to the values of the associated timestamps if available, or in random order oth-
erwise. In order to evaluate the accuracy of our algorithms, we compute the “ground truth” exact
number of 4-cliques (resp., 5-cliques) for each time step using an exact algorithm thatmaintains the

entireG (t) in memory. Besides verifying the accuracy of the proposed Tiered Sampling methods,
an important goal of the experimental analysis is to ascertain the benefits of our multi-tier method
compared to approaches for which the estimate is achieved by maintaining simply a reservoir
sample of the observed edges. Therefore, our main term of comparison will be the FourEst algo-
rithm, which is a generalization of the TRIEST algorithm [33]. Our experiments are implemented
in Python and their source code can be found in (https://github.com/erisaterolli/TieredSampling).
The experiments were run on the Brown University CS department cluster2, where each run em-
ployed a single core and used at most 4 GB of RAM.
The section is organized as follows: we first evaluate the performance of TS4C1 and TS4C2 and

we compare them with the estimations obtained using FourEst. We then present practical exam-
ples that motivate the necessity for the adaptive version of our Tiered Sampling approach, and we
show how our ATS4C manages to capture the best of the single and multi-level approach. Finally,
we show how the Tiered Sampling approach can be generalized in order to count structures other
than 4-cliques.

7.1 Counting 4-Cliques

We estimate the global number of 4-cliques on insertion-only streams, starting as empty graphs
and for which an edge is added at each time step, using algorithms FourEst, TS4C1, and TS4C2.
As discussed in Section 4.1 (resp., Section 4.2), in TS4C1 (resp., TS4C2) we split the total avail-
able memory space M as |Se | = 4M/5 and |SΔ | = M/5 (resp., |Se | = 2M/3 and |SΔ | = M/3). The
experimental results show that these fixed memory splits perform well for most cases. We then
experiment with an adaptive splitting mechanism that handles the remaining cases.

2https://cs.brown.edu/about/system/services/hpc/grid/

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

https://cs.brown.edu/about/system/services/hpc/grid/

79:26 L. De Stefani et al.

(a) Live Jouranal (b) Hollywood

Fig. 3. Comparison of |C (t)4 | estimates obtained using TS4C1, TS4C2, and FourEst withM = 5 × 105.

Table 4. Average MAPE of Various Approaches For All Graphs with Available Memories

of 1%, 2%, and 5% of the Size of the Graph

M = 0.01 M = 0.02

FOUR EST TS4C1 TS4C2 TS Change FOUR EST TS4C1 TS4C2 TS Change

DBLP 0.942 0.658 0.599 −36.00% 0.915 0.336 0.526 −63.28%
Holly wood 0.056 0.029 0.023 −59.00% 0.013 0.016 0.01 −23.08%
Last FM 0.07 0.20 0.196 65.00% 0.022 0.239 0.10 354.54%

Live Journal 0.295 0.079 0.148 −73.00% 0.098 0.02 0.025 −79.59%
Orkut 0.789 0.224 0.086 −89.00% 0.116 0.059 0.058 −50.00%
Patent Cit 0.954 0.767 0.188 −80.00% 0.473 0.304 0.141 −70.19%
Twitter 0.928 0.896 0.511 −45.00% 0.928 0.481 0.428 −53.88%

M = 0.05

FOUR EST TS4C1 TS4C2 TS Change

DBLP 0.114 0.069 0.105 −39.47%
Holly wood 0.004 0.006 0.002 −50.00%
Last FM 0.003 0.0304 0.032 866.67%

Live Journal 0.019 0.006 0.006 −68.42%
Orkut 0.013 0.021 0.008 −38.46%
Patent Cit 0.112 0.113 0.039 −65.18%
Twitter 0.205 0.076 0.088 −62.93%

In the TS Change column we report the decrease/increase in MAPE of the best performing Tiered Sampling algorithm

among TS4C1 and TS4C2 compared to the single reservoir algorithm FourEst.

In Figure 3, we present the estimation obtained by averaging 10 runs of respectively TS4C1,
TS4C2, and FourEst using total memory space M = 5 × 105 for the LiveJournal and Hollywood
graphs (i.e., respectively using less than 1% and 0.5% of the graph size). While the average of the
runs for TS4C1 and TS4C2 are almost indistinguishable from the ground truth, the quality of the
estimator obtained using FourEst considerably worsens as the graph size increases.
In Table 4, we report the average MAPE performance over five runs for TS4C1, TS4C2, and

FourEst for graphs listed in Table 3. For each graph, we assign a different total memory space
equal to a 1%, 2%, and 5% fraction of the total number of edges (i.e., of the size of the graph).

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:27

Table 5. Average Update Time For All Graphs

Measured in Microseconds

Dataset FourEst TS4C1 TS4C2

DBLP 6.56 19.6 15.8
Hollywood 10.95 15.75 19.95
Lastfm 17.65 45.62 64.92
Live Journal 9.22 10.72 16.49
Orkut 5.55 8.93 7.45
PatentCit 9.25 11.95 12.12
Twitter 9.08 20.49 17.77

Except for LastFM, our Tiered Sampling algorithms clearly and consistently outperform FourEst
for all the considered available memory sizes with the average MAPE reduced by up to 89%. While
the performances of all algorithms are improved (in terms of MAPE reduction) as the size of the
available memory increases, the improvement achieved by or Tiered Sampling algorithms with
respect to FourEst appear to consistent for the various memory sizes being considered. While on
most graphs TS4C1 and TS4C2 produce similar estimates (and, hence, MAPE), it can be noted that
TS4C2 clearly outperforms TS4C1 in graphs for which the number of 4-cliques is low compared to
the number of edges, such as Patent (Cit) and Twitter. In these graphs, triangles are “rare enough”
so that assigning a greater fraction of the available memory to maintain their occurrences and
relying on observed triangles to count 4-cliques leads to tighter estimates.
LastFM is the only graph for which FourEst (considerably) outperforms the Tiered Sampling

algorithms. Such phenomenon is due to the high density of the graph |E |/|V | > 500 and to the fact
that for the LastFM graph triangles are not a rare enough sub-structure to justify the choice of
maintaining them over simple edges.
We analyze the variance reduction achieved using our Tiered Sampling algorithms by com-

paring the empirical variance observed over ten runs for all graphs using available memory M
equal to 1%, 2%, and 5% of the size of the graphs. The results for Live Journal graph are reported
in Figure 4. While for both TS4C1 and TS4C2 the minimum and maximum estimators are close to
the ground truth throughout the evolution of the graph even in cases having a small amount of
available memory, FourEst estimators exhibit very high variance especially towards the end of
the stream and when the available memory is small. This trend is consistently observed for all the
other graphs. As an illustrative example, we show the variance of all algorithms for Twitter with
an available memory size of 5% of the total graph.
Despite the differences between TS4C1 and TS4C2, their variances appear to be strikingly sim-

ilar for the evaluated graph, with TS4C2 exhibiting slightly better performance, especially during
the first half of the stream. This is due to the rarity of the triangle prototype pattern used in the
detection of 4-cliques for the Hollywood graph: compared to TS4C1, TS4C2 devotes a higher frac-
tion of the available memory to SΔ which leads to a higher likelihood of detecting 4-cliques and,
hence, a lower empirical variance.
Our experiments not only verify that TS4C1 and TS4C2 yield high quality estimates which

are in most cases (except for the LastFM graph) superior to the ones achievable using a sin-
gle sample strategy, but also validate the general intuition underlying the Tiered Sampling
approach.
Both Tiered Sampling algorithms are extremely scalable, showing average update times in the

order of hundred microseconds for all graphs as shown in Table 5.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:28 L. De Stefani et al.

(a) FOUREST, M = 0.01*|E| (b) FOUREST, M = 0.02*|E| (c) FOUREST, M = 0.05*|E|

(d) TS4C1, M = 0.01*|E| (e) TS4C1, M = 0.02*|E| () TS4C1, M = 0.05*|E|

(g) TS4C2, M = 0.01*|E| (h) TS4C2, M = 0.02*|E| (i) TS4C2, M = 0.05*|E|

Fig. 4. Variance of various approaches for Live Journal with available memories of 1%, 2%, and 5% of the size

of the graph.

Fig. 5. Variance of various approaches for Twitter with available memory of 5% of the size of the graph.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:29

Fig. 6. |C (t)4 | estimations for Patent (Cit) using TS4C2 withM = 5 × 105 and different memory space assign-

ments among tiers.

7.2 Adaptive Tiered Sampling

In Section 7.1, we showed that TS4C2, allows to obtain high quality estimations for the number
of 4-cliques outperforming in most cases both TS4C1 and FourEst. These results were obtained
splitting the available memory such that |Se | = 2M/3 and |SΔ | = M/3. As discussed in Section 6,
while this is a useful general rule, depending on the properties of the graph, different splitting
rules may yield better results. We verify this fact by evaluating the performance of TS4C2 when
used to analyze the Patent(Cit) graph using different assignments of the total space M = 5 × 105
to the two levels. The results in Figure 6 show that decreasing the space assigned to the triangle
sample fromM/3 toM/9 allows to achieve estimates that are closer to the ground truth leading to
a 31% reduction of the average MAPE. Due to the sparsity of the Patent(Cit) graph, TS4C2 observes
a very small number of triangles for a large part of the stream. Assigning a large fraction of the
memory space to SΔ is thus inefficient as the probability of observing new triangles is reduced,
and the space assigned to SΔ is not fully used.

To overcome such difficulties, in Section 6, we introduced ATS4C, an adaptive version of TS4C2,
which allows to dynamically adjust the use of the available memory space based on the properties
of the graph being observed. We experimentally evaluate the performance of ATS4C over ten
runs on the Patent(Cit) and the LastFM graphs and we compare it with TS4C2 and FourEst using
M = 5 × 105.

As shown in Figure 7, for both graphs, ATS4C produces estimates that are nearly indistinguish-
able from the ground truth. ATS4C clearly outperforms TS4C2 (with |SΔ | = M

3) on Patent(Cit)
where triangles are sparse motifs achieving an ∼85% reduction of the average MAPE compared to
TS4C2. ATS4C returns high quality estimations even for the LastFM graph, for which the single
level approach FourEst outperforms TS4C1 and TS4C2.

8 GENERALIZING THE TIERED SAMPLING APPROACH

While so far we focused on counting the number of occurrences of 4-cliques in a graph stream, the
Tiered Sampling approach can be generalized towards estimating the counts of a wide variety of
graphlets. In this section, we discuss a heuristic that allows generalizing the approach discussed
so far to a general graphlet. As an example, we discuss an application of the Tiered Sampling
approach that yields high-quality estimates of the number of 5-cliques in graph streams, named
TS5C.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:30 L. De Stefani et al.

(a) Patent(Cit) (b) LastFM

Fig. 7. Comparison of |C (t)4 | estimates obtained using ATS4C, TS4C2, and FourEst withM = 5 × 105.

8.1 The Tiered Sampling Framework

LetG ′ = (V ′,E ′) be the graph or pattern of interest for whomwe aim to estimate the number of oc-
currences in the graph stream. Towards obtaining an algorithmA, which provides such estimates,
we apply the Tiered Sampling approach following the following steps:

(1) Identify a “prototype” sub-pattern: We identify a sub-pattern of G ′, henceforth de-
noted as G ′′ = (V ′′,E ′′) such that V ′′ ⊆ V ′ and E ′′ ⊆ E ′. G ′′ will play a role analogous
to that played by triangles towards counting 4-cliques in the stream. Such sub-pattern
serves as a prototype to aid in the detection of instances of the graphlet of interest. Part
of the memory available to algorithmA will be allocated to maintaining a reservoir sam-
ple of the instances of G ′′ observed on the stream by A so far, henceforth named SP ,
while the remaining available memory will be used as a uniform sample of the edges
observed on the stream, henceforth named Se . Both samples are maintained by A ac-
cording to the reservoir sampling mechanism, following steps analogous to those dis-
cussed for TS4C1 and TS4C2. Further, we assume that whenever an occurrence of G ′′ is
selected to be included in SP , A maintains information on the time step at which it was
detected.
Algorithm A operates similarly to TS4C1 and TS4C2: whenever an edge e is observed

in the steam at time t A verifies whether an instance ofG ′ can be obtained by combining

e with one of the prototypes in S (t)
P

and with exactly |E ′ | − |E ′′ | − 1 edges in S (t)
e . A

maintains an estimate κ (t) of the number of occurrences of G ′ in the stream up to time
t which is updated each time an instance of G ′ is detected. Then A determines whether

an instance of the prototypeG ′′ can be detected combining e with |E ′′ | − 1 edges in S (t)
e .

Each detected occurrenceG ′′ is submitted to the reservoir SP . Finally,A inserts e into the
reservoir Se .
While G ′′ can be chosen arbitrarily among the sub-graphs of G ′ some properties ap-

pear to be desirable: (i)G ′′ should be rare enough so that it is worth maintaining instances
of it in memory but not overly rare so that part of the available memory would not be
utilized (unless using the adaptive version of Tiered Sampling); (ii) G ′′ should cover a
significant fraction of the edges of G ′′, that is, it should be possible to complete an in-
stance of G ′ by adding a small number of edges to G ′; and (iii) G ′′ should be connected.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:31

Property (i) is desirable since, as shown for the case of 4-cliques, under such circum-
stances A achieves efficient use of the available memory and the benefit of maintain-
ing rare instances of the prototype towards detecting G ′. Property (ii) is desirable as it
allows for a simpler and less computational intensive detection of instances of G ′ by
composing instances of G ′′ and a few remaining edges. Finally, property (iii) is desir-
able as connected sub-graphs are, in general, rarer than non-connected graphs with the
same number of edges, and they allow for a simpler—less computationally intensive—
algorithmic criteria for detecting occurrences ofG ′ by completing occurrences of the pro-
totype G ′′. While any subgraph satisfying these properties appears desirable to be used
as a prototype, as a heuristic, choosing asG ′′ a clique sub-graph ofG ′ satisfies the desired
properties.

(2) Bounding the probability of observingG ′: AlgorithmA maintains an estimator κ(t)
of the number of occurrences ofG ′ observed on the stream up to step t . Ideally,A would
proceed by increasing κ(t) each time an occurrence ofG ′ is detected on the stream by an
amount which corresponds to the reciprocal of the probability of such occurrence being
observed byA. As discussed in Theorem 4.3 (resp., Theorem 4.8) for TS4C1 (resp., TS4C2),
this does indeed guarantee κ(t) to be anunbiased estimate of the number of occurrences
of G ′. However, computing exactly the probability of observing G ′ and G ′′ is, in general,
rather complicated as it requires breaking down a high number of sub-cases each tied to
the order according to which the edges are observed on the stream and whose number
does, therefore, grow exponentially with respect to the number of edges of G ′. While it
is possible to reduce the number of these cases by matching some common patterns, the
analysis is still rather complex and not easily generalize from one sub-graphG ′ to another
G ′. Rather than computing the exact value, using an approximate of the probability ac-
cording to whomA observes an instance ofG ′ (resp.,G ′′) is generally sufficient to obtain
good quality, albeit generally non-unbiased, estimates for the count of occurrences of G ′

while considerably reducing the effort of the analysis.
Let t denote the time step at whom the last edge e of an occurrence of G ′, denoted

as Ĝ ′ = (V̂ ′, Ê ′), is observed on the stream. Based on the choice of the prototype, it will

be possible for A to detect Ĝ ′ by composing an occurrence of the prototype G ′′ (whose
edges has been previously observed on the stream), which may have been previously de-
tected andmaintained in the reservoir sample used tomaintain instances ofG ′′, with some
edges currently stored in the edge reservoir sample, and e itself. Assume that A detects

by composing an occurrence ofG ′′, henceforth denoted as Ĝ ′′ = (ˆV ′′, Ê ′′). stored in S (t)
Δ ,

|E ′ | − |E ′′ | − 1 edges of Ĝ ′′ in S (t)
e , and the edge e itself. Let p denote the probability ofA

observing Ĝ ′ in such a way, A approximates p as

p̃ = Pr
(
Ĝ ′′ ∈SΔ

)
Pr
(
V̂ ′ \ (ˆV ′′ ∪ {e}) ⊆ S (t)e

)
= Pr

(
Ĝ ′′ ∈SΔ |Ĝ ′′ was observed by A

)
Pr
(
Ĝ ′′ was observed by A

)
Pr
(
V̂ ′\ (ˆV ′′ ∪ {e}) ⊆ S (t)

e

)
.

—A approximates Pr(Ĝ ′′ ∈ SΔ |Ĝ ′′ was observed by A), as the probability that, condi-

tioned on Ĝ ′′ having been observed by A, Ĝ ′′ is stored in the the reservoir SP at time
t , that is:

Pr
(
Ĝ ′′ ∈ SΔ |Ĝ ′′ was observed by A

)
≈ min

{
1,
|SP |
τ (t)

}
,

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:32 L. De Stefani et al.

where |SP | denotes the size of the fraction of the memory space allocated to SP and

τ (t) denotes the number of instances of G ′′ detected by A up to time t − 1.
—A approximates Pr(Ĝ ′′ was observed by A) as the probability that when the last edge

of Ĝ ′′ arrived on the stream its remaining |E ′′ | − 1 were stored in Se . That is:

Pr
(
Ĝ ′′ was observed by A

)
≈
(
min

{
1,
|Se |
t ′ − 1

}) |E′′ |−1
,

where |Se | denotes the size of the fraction of the memory space allocated to Se and t ′ is
the time step at which the last edge of Ĝ ′′ was observed on the stream. The approximate
used here is a simplified version of the exact value computed in Lemma 2.1.

—A approximates Pr(V̂ ′ \ (ˆV ′′ ∪ {e})) as the probability of the |E ′ | − |E ′′ | − 1 edges in

V̂ ′ \ (ˆV ′′ ∪ {e} being included in S� . That is:

Pr
(
V̂ ′ \ (ˆV ′′ ∪ {e})

)
≈
(
min

{
1,
|Se |
t − 1

}) |E′ |− |E′′ |−1
.

The approximate used here is a simplified version of the exact value computed in
Lemma 2.1.
Hence, we have:

p̃ = min

{
1,
|SP |
τ (t)

} (
min

{
1,
|Se |
t ′ − 1

}) |E′′ |−1 (
min

{
1,
|Se |
t − 1

}) |E′ |− |E′′ |−1
.

In general we have that p � p̃. In most cases p̃ is lower than than the actual value p.
(3) Determining increments to the estimate κ: The computed value p̃ approximates the

probability of A detecting Ĝ ′ specifically using the instance Ĝ ′′ of the prototype com-
pleted with edges form Se . However, in general it will be possible for A to detect the

same occurrence Ĝ ′ of the pattern of interest. A similar circumstance was discussed for
TS4C1, as the algorithm can detect a 4-clique in two possible ways (i.e., using two pos-
sible triangle sub-graphs). Correcting for such phenomena is of crucial importance to-
wards avoiding overestimating the number of occurrences of G ′. In order to do so, it

is necessary to determine the number of possible ways for A to detect Ĝ ′ given the

order of the edges on the stream. Let e denote the last edge of Ĝ ′ observed on the

stream. If/when A detects Ĝ ′, it counts the number of possible distinct occurrences of

the prototype G ′′ in the sub-graph (V̂ ′, Ê ′ \ {e}) (i.e., the sub-graph of Ĝ ′ obtained by

removing e). By construction of A, such number, henceforth denoted as c (Ĝ ′) corre-
sponds to the number of possible ways according to whom A may detect Ĝ ′ by com-
bining e , an occurrence of the prototype G ′′, and exactly |V ′ | − |V ′′ | − 1 edges from Se .
c (Ĝ ′) can be derived only from e and Ĝ ′ which are both known to A if/when Ĝ ′ is
detected.
WheneverA observes an instance ofG ′ it increasesκ by p̃−1/c (Ĝ ′). For each occurrence

Ĝ ′ of G ′ let κhatG′ be the random variable which corresponds increment to the estimate

κ due to Ĝ ′. That is, κ =
∑

occurrences of G’ κĜ′ . Towards κ being an unbiased estimate we

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:33

therefore desire E[κĜ′] = 1. By construction of A we have:

E
[
κĜ′

]
=

∑
ways for A to detect Ĝ′

p̃−1

c (Ĝ ′)
Pr
(
A detects Ĝ ′ in the i-th way

)

≈ 1

c (Ĝ ′)

∑
ways for A to detect Ĝ′

p̃−1p̃

=
c (Ĝ ′)

c (Ĝ ′)

= 1.

While, for different combinations of prototypes and edges (i.e., the ways) the probabilities

of detecting Ĝ ′, using the approximate p̃ allows for a considerable simplification of the
analysis (and, in turn, of the algorithm) while still providing good estimates. While the
criteria used deciding how to incrementκ aims to have it function as an unbiased estimate
of the number of occurrences ofG ′, due to the use of the approximate p̃,κ is not, in general,
an actual unbiased estimator. Since, as previously discussed, we have that, in general,
p̃ < p, our estimator κ will generally slightly underestimate the number of occurrences of
the pattern of interest.

(4) Partition of the available memory space among reservoir tiers: Following the
heuristic already used for determining how to partition the available space discussed for
TS4C1 and TS4C2, toward maximizing the probability of A detecting instances of G ′, we
assign |SP | and |S� | in such a way that p̃ is maximized, while setting t , t ′ and τ (t) as
constants.

By following the outlined steps, it is possible to deploy the Tiered Sampling approach to obtain
an algorithmA that produces high-quality estimates of the number of occurrences of the desired
pattern G ′. While the construction of A previously discussed leads to obtaining an algorithm for
which the memory space is statically divided among the edge-only reservoir and the prototype
reservoir, a generalization of the adaptive algorithm ATS4C can be obtained following similar
reasoning.

8.2 Using Tiered Sampling to Count 5-Cliques

To demonstrate the generality of our Tiered Sampling approach, we present TS5C, a one-
pass counting algorithms for 5-clique in a stream. Following the steps outlined in the previ-
ous section, TS5C selects a 4-clique as a prototype sub-pattern to detect 5-cliques. The algo-
rithm maintains two reservoir samples, one for edges and one for 4-cliques. When the cur-
rently observed edge completes a 4-clique with edges in the edge sample the algorithm at-
tempts to insert it to the 4-cliques reservoir sample. A 5-clique is counted when the current
observed edge completes a 5-clique using one 4-clique in the reservoir sample and 3 edges in
the edge sample. Given the choice of the prototype, each occurrence of a 5-clique may be de-
tected by TS5C in at most two different ways. The probability of each detection is approximated
as

p̃ = min
{
1,
MP

τ

} (
min
{
1,

Me

t ′ − 1

})5 (
min
{
1,

Me

t − 1

})3
,

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:34 L. De Stefani et al.

ALGORITHM 5: TS5C - Tiered Sampling for 5-Clique counting

Input: Insertion-only edge stream Σ, integersM ,MC

Se ← ∅ , SP ← ∅, t ← 0, τ ← 0, κ ← 0
for each element (u,v) from Σ do � Process each edge (u,v) coming from the stream in
discretized timesteps

t ← t + 1
Update5Cliqes(u,v) � Update the 5-clique estimator by considering the new 5-cliques

closed by edge (u,v)
Update4Cliqes(u,v) � Update the 4-clique sample with the new 4-clique observed

according to RS scheme
SampleEdge((u,v), t) � Update the edges sample with the edge (u,v) according to RS

scheme

function Update5Cliqes((u,v), t)
for each 4-clique (u,x ,w, z, t ′) ∈ SP do

if (v,x) ∈ Se ∧ (v,w) ∈ Se ∧ (v, z) ∈ Se then
p̃ ← min

{
1, MP

τ

} (
min

{
1, Me

t−1

})3 (
min

{
1, Me

t ′−1

})5 � Approximate probability of

detecting a 5-clique
κ ← κ + p̃−1/2 � Estimate update accounting for two possible ways of detecting

5-cliques

for each 4-clique (v,x ,w, z, t ′) ∈ SΔ do
if (u,x) ∈ Se ∧ (u,w) ∈ Se ∧ (u, z) ∈ Se then

p̃ ← min
{
1, MP

τ

} (
min

{
1, Me

t−1

})3 (
min

{
1, Me

t ′−1

})5
κ ← κ + p̃−1/2

function Update4Cliqes((u,v), t)
NSu,v ← NSu ∩ NSv
for each pair (w, z) from NSu,v × N Su,v do

if (w, z) ∈ Se then
tC ← tC + 1
Sample4Cliqe(u,v,w, z, t)

where Me (resp., MP) denotes the memory space assigned to the edge-only (resp., the prototype/
4-cliques) reservoir, t (resp., t ′) denotes the time step at which the last edge of the 5-clique (reps.,

prototype 4-clique being used) arrived on the stream, and τ (t) denotes the number of 4-clique
prototypes detected by TS5C up to time t . The approximate p̃ is obtained following the breakdown
discussed in step (3) of Section 8.1:

—min{1, MP

τ
} approximates the probability of the 4-clique prototype used to detect the oc-

currence of a 5-clique to be in SP at time t conditioned on the fact that it was observed by
TS5C;

— (min{1, Me

t ′−1 })
5 approximates the probability that the 4-clique prototype used to detect the

occurrence of a 5-clique and whose last edge arrived on the stream at time t ′ was observed

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:35

Fig. 8. Comparison of |C (t)5 | estimates for the DBLP graph obtained using TS5C and FiveEst with

M = 3 × 105. Out of 567,495,440 5-cliques that are present in the DBLP graph, the single reservoir

algorithm FiveEst estimates a number of 153,979,072 and TS5C estimates of number of 565,173,908

5-cliques.

by TS5C (i., the probability that when the last edge of the 4-clique was observed on the

stream the remaining 5 edges were included in S (t ′)
e);

— (min{1, Me

t−1 })
3 approximates the probability that the remaining 3 edges used in the detection

of the 5-clique are included in S (t)
e .

Other details of the construction of TS5C follow the blueprint outlined in the previous sec-
tion. The pseudocode of TS5C is presented in Algorithm 5. The use of the approximate p̃ al-
lows adapting the Tiered Sampling paradigm to the task of counting 5-cliques while consid-
erably reducing the analysis effort. In contrast, the exact analysis would require a breakdown
of a number of cases corresponding to all the possible ordering of arrival the 11 edges in a
5-clique.
While the use of approximate values of the probability of detecting instances of the pattern

of interest leads to the estimate κ not being unbiased, in the following experimental evalua-
tion, we show that the computed estimate is still very close to the ground truth value. Our
experiments compare the performance of TS5C to that of a standard one-tier edge reservoir
sample algorithm FiveEst (refer to Algorithm 6 in Appendix D), similar to FourEst. We eval-
uate the average performance over 10 runs of the two algorithms on the DBLP graph us-
ing M = 3 × 105. The results are presented in Figure 8. TS5C clearly outperforms FiveEst,
despite the latter providing an unbiased estimate (Theorem D.2), in obtaining much better

estimations of the ground truth value |C (t)
5 | achieving an ∼ 56% reduction of the average

MAPE.

9 CONCLUSIONS

In this work, we study the problem of counting sparse motifs in large-scale graphs streams using
multi-layer (tiered) reservoir sampling. We developed Tiered Sampling, a novel technique for
approximate counting sparse motifs in massive graphs whose edges are observed in a one-pass
stream.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:36 L. De Stefani et al.

We fully analyze and demonstrate the advantage of our method in a specific application
for counting the number the of 4-cliques in a graph using a two-sample approach. Through
extensive experimental analysis, we show that the proposed algorithms produce high quality
and low variance approximations for the number of 4-cliques for large graphs, both synthetic
and real-world, with up to hundreds of millions of edges. We present both analytical proofs
and experimental results, demonstrating the advantage of our method in counting sparse motifs
compared to the standard methods of using just a single edge reservoir sample.
We present a simple process that allows generalizing the Tiered Sampling approach to provide

estimates of the count for any subgraph of interest while considerably reducing the effort for the
analysis by using opportune approximations. We showcase the effectiveness of this approach by
presenting TS5C, an application of Tiered Sampling for counting the number of 5-cliques in a
graph stream.
With the growing interest in discovering and analyzing large motifs in massive-scale graphs

in social networks, genomics, and neuroscience, we expect to see further applications of our
technique.

APPENDIX

A PROOFS OF TECHNICAL RESULTS FOR ALGORITHM TS4C1

Lemma A.1. Any pair (λ,γ) of distinct 4-cliques inG (t) can share either one, three or no edges. If λ
and γ share three edges, those three edges compose a triangle.

Proof. Suppose that λ and γ share exactly two distinct edges. This implies that they share at
least three distinct vertices and, thus, must share the three edges connecting each pair out of said
three vertices. This constitutes a contradiction. Suppose instead that λ and γ share four or five
edges while being distinct. This implies that they must share four vertices, hence they cannot be
distinct cliques. This leads to a contradiction. �

Lemma A.1, allows us to point out the various cases to be considered in the main proof of
Theorem 4.4.

Proof of Theorem 4.4. Assume |C (t)
4 | > 0, otherwise TS4C1 estimation is deterministically

correct and has variance 0 and the thesis holds. For each λ ∈ C (t)
4 let λ = {e1, e2, e3, e4, e5, e6}, with-

out loss of generality let us assume the edges are disposed as in Figure 1. Assume further, with-
out loss of generality, that the edge ei is observed at ti (not necessarily consecutively) and that
t6 > max{ti , 1 ≤ i ≤ 5}. Let t1,2,4 = max{t1, t2, t4,Me + 1}. Let us consider the random variable δλ1
(resp. δλ2) which takes value p−1

λ1
/2 (resp., p−1

λ2
/2) if the 4-clique λ is observed by TS4C1 using tri-

angle T1 = {e1, e2, e4} (resp., T2) and edges e3, e5 (resp., e2, e4) or zero otherwise. Let pλ1 (resp., pλ2)
denote the probability of such event. From Lemma 4.2 we have:

Var
[
δλ1
]
=
p−1
λ1

4
− 1

4
≤ 1

4
�
�
τ (t)

MΔ

3∏
i=0

t − 1 − i
Me − i

− 1�� ,
Var
[
δλ2
]
=
pλ2
4

−1
− 1

4
≤ 1

4
�
�
τ (t)

MΔ

3∏
i=0

t − 1 − i
Me − i

− 1�� .

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:37

Thus,

Var
[
κ

(t)
]
= Var

⎡⎢⎢⎢⎢⎢⎢⎣
∑

λ∈C (t)
4

δλ1 + δλ2

⎤⎥⎥⎥⎥⎥⎥⎦
=
∑

λ∈C (t)
4

∑
γ ∈C (t)

4

∑
i ∈{1,2}

∑
j ∈{1,2}

Cov
[
δλi ,δγj

]

=
∑

λ∈C (t)
4

(
Var
[
δλ1
]
+ Var

[
δλ2
])
+
∑

λ∈C (t)
4

(
Cov
[
δλ1 ,δλ2

]
+ Cov

[
δλ2 ,δλ1

])

+
∑

λ, γ ∈ C (t)4

λ � γ

(
Cov

[
δλ1 ,δγ1

]
+ Cov

[
δλ1 ,δγ2

]
+ Cov

[
δλ2 ,δγ1

]
+ Cov

[
δλ2 ,δγ2

])

=
|C (t)

4 |
2

�
�
τ (t)

MΔ

3∏
i=0

t − 1 − i
Me − i

− 1�� +
∑

λ∈C (t)
4

(
Cov
[
δλ1 ,δλ2

]
+ Cov

[
δλ2 ,δλ1

])

+
∑

λ, γ ∈ C (t)4

λ � γ

(
Cov

[
δλ1 ,δγ1

]
+ Cov

[
δλ1 ,δγ2

]
+ Cov

[
δλ2 ,δγ1

]
+ Cov

[
δλ2 ,δγ2

])

≤
|C (t)

4 |
2

�
�
τ (t)

MΔ
c

(
t − 1
Me

)4
− 1�� +

∑
λ∈C (t)

4

(
Cov
[
δλ1 ,δλ2

]
+ Cov

[
δλ2 ,δλ1

])

+
∑

λ ∈ C (t)4

λ � γ

(
Cov

[
δλ1 ,δγ1

]
+ Cov

[
δλ1 ,δγ2

]
+ Cov

[
δλ2 ,δγ1

]
+ Cov

[
δλ2 ,δγ2

])
. (7)

We now proceed to analyze the various covariance terms appearing in Equation (7). In the fol-
lowing we refer to

—The second summation in Equation (7),
∑

λ∈C (t)
4

(
Cov
[
δλ1 ,δλ2

]
+ Cov

[
δλ2 ,δλ1

])
, concerns

the sum of the covariances of pairs of random variables each corresponding to one of the
two possible ways of detecting a 4-clique using TS4C1. Let us consider one single element
of the summation:

Cov
[
δλ1 ,δλ2

]
= E
[
δλ1δλ2

] − E [δλ1] E [δλ2] = E
[
δλ1δλ2

] − 1/4.
Let us now focus on E

[
δλ1δλ2

]
, according to the definition of δλ1 and δλ2 we have:

E
[
δλ1δλ2

]
=
p−1
λ1
p−1
λ2

4
Pr
(
δλ1 = p

−1
λ1
∧ δλ2 = p−1λ2

)

=
p−1
λ1
p−1
λ2

4
Pr
(
δλ1 = p

−1
λ1
|δλ2 = p−1λ2

)
Pr
(
δλ2 = p

−1
λ2

)

≤
p−1
λ1
p−1
λ2

4
Pr
(
δλ2 = p

−1
λ2

)

≤
p−1
λ1
p−1
λ2

4
pλ2

≤
p−1
λ1

4
.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:38 L. De Stefani et al.

We can therefore conclude:

∑
λ∈C (t)

4

(
Cov

[
δλ1 ,δλ2

]
+ Cov

[
δλ2 ,δλ1

])
≤
|C (t)4 |
2

�
�
τ (t)

MΔ

3∏
i=0

t − 1 − i
Me − i

− 1�� ≤
|C (t)4 |
2

�
�
τ (t)

MΔ
c

(
t − 1
Me

)4
− 1�� .

(8)

—The third summation in Equation (7), includes the covariances of all |C (t)
4 |(2|C

(t)
4 | − 1) un-

ordered pairs of random variables corresponding each to one of the two possible ways of

counting distinct 4-cliques in C (t)
4 . In order to provide a significant bound it is necessary

to divide the possible pairs of 4-cliques depending on how many edges they share (if any).
From Lemma A.1, we have that any pair of 4-cliques λ and γ can share either one, three
or no edges. In the remainder of our analysis, we shall distinguishing three group of pairs
of 4-cliques based on how many edges they share. In the following, we present, without
loss of generality, bounds for Cov[δλ1 ,δγ2]. The results steadily holds for the other possible
combinations Cov[δλ1 ,δγ1], Cov[δλ2 ,δγ1], Cov[δλ2 ,δγ2], Cov[δγ1 ,δλ1], Cov[δγ1 ,δλ2],
Cov[δγ2 ,δλ1], and Cov[δγ2 ,δλ2]

(1) λ and γ do not share any edge:

E
[
δλ1δγ2

]
=
p−1
λ1
p−1γ2

4
Pr
(
δλ1 = p

−1
λ1
∧ δγ2 = p−1γ2

)
=
p−1
λ1
p−1γ2

4
Pr
(
δλ1 = p

−1
λ1
|δγ2 = p−1γ2

)
Pr
(
δλ2 = p

−1
λ2

)
.

The term Pr(δλ1 = p
−1
λ1
|δγ2 = p−1γ2) denotes the probability of TS4C1 observing λ usingT1

and edges e3 and e5 conditioned of the fact that γ was observed by the algorithm using
T3 and edges д3 and д5. Note that as λ and γ do not share any edge, no edge of γ will be
used by TS4C1 to detect λ. Rather, if any edge of γ is included in §e or ifT3 is included in
SΔ, this would lessen the probability of TS4C1 detecting λ usingT 1, e3 and e5 as some of
space in Se or SΔ may be occupied by edges or triangle sub-structures for γ . Therefore
we have Pr(δλ1 = p

−1
λ1
|δγ2 = p−1γ2) ≤ Pr(δλ1 = p

−1
λ1
) and thus:

E
[
δλ1δγ2

]
=
p−1
λ1
p−1γ2

4
Pr
(
δλ1 = p

−1
λ1
|δγ2 = p−1γ2

)
Pr
(
δλ2 = p

−1
λ2

)

≤
p−1
λ1
p−1γ2

4
Pr
(
δλ1 = p

−1
λ1

)
Pr
(
δλ2 = p

−1
λ2

)

≤
p−1
λ1
p−1γ2

4
pλ1pλ2

≤ 1

4
.

We therefore have Cov[δλ1 ,δγ2] ≤ 0. Hence we can conclude that the contribution of
the covariances of the pairs of random variables corresponding to 4-cliques that do not
share any edge to the summation in Equation (7) is less or equal to zero.
(2) λ and γ share exactly one edge e∗ = λ ∩ γ as shown in Figure 9 Let us consider

the event E∗ =“e∗ ∩T1 ∩ E (t1,2,4−1) ∈ St1,2,4e , and e∗ ∩ {e3, e5} ∩ E (t6−1) ∈ S (t6)e ”. Clearly
Pr(δλ1 = p

−1
λ1
|δγ2 = p−1γ2) ≤ Pr(δλ1 = p

−1
λ1
|E∗). Recall from Lemma 4.2 that Pr(δλ1 |E∗) =

Pr({e3, e5} ⊆ S (t6)
e |E∗)Pr(T1 ∈ S (t6)

Δ |E∗)Pr (S (T1) |E
∗), where S (T1) denotes the event “T1

is observed on the stream by TS4C1.” By applying the law of total probability e have that

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:39

Fig. 9. Cliques sharing one edge.

Pr(T1 ∈ S (t6)
Δ |E∗) ≤ Pr(T1 ∈ S (t6)

Δ). The remaining two terms are influenced differently
depending on whether e∗ ∈ T1 or e∗ ∈ {e3, e5}:
—If e∗ ∈ T1: we then have Pr({e3, e5} ⊆ S (t6)

e |E∗) ≤ Pr({e3, e5} ⊆ S (t6)
e). This follows

from the properties of the reservoir sampling scheme as the fact that the edge e∗

is in Se means that one unit of the available memory space required to hold e3 or e5
is occupied, at least for some time, by e∗. If e∗ is the last edge of T1 observed in the
stream we then have:

Pr (S (T1) |E∗) = Pr
(
{e1, e2, e4} \ {e∗} ∈ S (

et1, 2, 4) |E∗
)

= Pr
(
{e1, e2, e4} \ {e∗} ∈ S (

et1, 2, 4)
)

≤ Me

t1,2,4 − 1
Me − 1
t1,2,4 − 2

.

Suppose instead that e∗ is not the last edge of T1. Assume further , without loss of

generality, that t2 > max{t1, t4}. TS4C1 observes T1 iff {e1, e4} ∈ S (
et2). As in E∗ we

assume that once observed e∗ is always maintained in Se until t1,2,4 we have:

Pr (S (T1) |E∗) = Pr
(
{e1, e4} \ {e∗} ∈ S (

et1, 2, 4) |E∗
)

≤ Me − 1
t1,2,4 − 2

.

—If e∗ ∈ {e3, e5}: we then have Pr (S (T1) |E∗) ≤ Pr (S (T1)). This follows from the proper-
ties of the reservoir sampling scheme as the fact that the edge e∗ is in Se means that
one unit of the available memory space required to hold the first two edges ofT1 until
t1,2,4 is occupied, at least for some time, by e∗. Further, using Lemma 4.2 we have:

* if t6 ≤ Me , then Pr({e3, e5} ⊆ S (t6)
e |E∗) = 1;

* if min{t3, t5} > t1,2,4, then Pr({e3, e5} ⊆ S (t6)
e |E∗) ≥ Me

t6−1 ;
* if max{t3, t5} > t1,2,4 > min{t3, t5}, then

Pr
(
{e3, e5} ⊆ S (t6)

e |E∗
)
≥ max

{
Me − 1
t6 − 2

,
Me − 2
t1,2,4 − 3

t1,2,4 − 1
t6 − 1

}
;

* otherwise Pr({e3, e5} ⊆ S (t6)
e |E∗) ≥ Me−2

t1,2,4−3
t1,2,4−1
t6−1 .

Putting together these results we have that

p (−1)
λ

Pr
(
δλ1 = p

−1
λ1
|δγ2 = p−1γ2

)
≤ p (−1)

λ
Pr
(
δλ1 = p

−1
λ1
|E∗
)
≤ c

t6 − 1
Me
,

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:40 L. De Stefani et al.

Fig. 10. Cliques sharing three edges.

with c = s . Hence we have E[δλ1δγ2] ≤ c
4
t6−1
Me
≤ c

4
t−1
Me

. We can thus bound the contri-

bution to the third component of Equation (7) given by the pairs of random variables
corresponding to 4-cliques that share one edge as:

2a (t)
(
c
t − 1
Me
− 1
)
, (9)

where a (t) denotes the number of unordered pairs of 4-cliques which share one edge in

G (t) .
(3) λ and γ share three edges {e∗1 , e∗2 , e∗3 } which form a triangle sub-structure for both
λ and γ . Let us refer to Figure 10, without loss of generality let T1 denote the trian-
gle shared between the two cliques. We distinguish the kind of pairs for the random
variables δλi and δγj cases:

—δλi = p
−1
λi

if T1 ∈ St6−1Δ ∧ {e3, e5} ⊆ St6−1e and δγj = p
−1
γj

if T1 ∈ S
tγ −1
Δ ∧ {д3,д5} ⊆

Stγ −1e , where tγ denotes the time step at which the last edge of γ is observed. This is
the case for which the random variables δλi and δγj corresponds to TS4C1 observing

λ and γ using the shared triangleT1. Let us consider the event E∗ =“T1 ∈ S (t6)
Δ . Clearly

Pr(δλi = p
−1
λi
|δγj = p−1γj) ≤ Pr(δλi = p

−1
λi
|E∗). In this case we have Pr(T1 ∈ S (t6) |E∗) ≤

1, while Pr({e3, e5} ∈ S (t6)
e |E∗) ≤ Prob{e3, e5} ∈ S (t6)

e . This second fact follows from
the properties of the reservoir sampling scheme as the fact that the edges e∗1 , e

∗
2

and e∗3 are in Se at least for the time required for T1 to be observed, means that
at least two unit of the available memory space required to hold the edges e3, e5
are occupied, at least for some time. Putting together these results we have that

p (−1)
λi

Probδλi = p
−1
λi
|δγj = p−1γj ≤ p (−1)

λi
Pr(δλi = p

−1
λi
|E∗) ≤ c (t6−1

Me
)2 τ

(t)

SΔ . Hence we have

E[δλiδγj] ≤ c
4 (

t6−1
Me

)2 τ
(t)

SΔ and Cov[δλi ,δγj] ≤ c
4 (

t6−1
Me

)2 τ
(t)

SΔ −
1
4 .

—In all of the remaining cases, the random variables δλi and δγj correspond to FourEst
not observing λ and γ using the shared triangle T1 for both of them. Let T ∗ denote
the triangle sub-structure used by TS4C1 to count λ with respect to δλi . Let us

consider the event E∗ =“{e∗1 , e∗2 , e∗3 } ∩T1 ∩ E (t1,2,4−1) ∈ St1,2,4e , T1 ∈ S (t6)
Δ unless one of

its edges is the last edge of T ∗ observed on the stream, and {e∗1 , e∗2 , e∗3 } ∩ {e3, e5} ∩
E (t6−1) ∈ S (t6)e if e∗ ∈ {e3, e5}”, where E (t) denotes the set of edges observed up un-
til time t included. Clearly Pr(δλi = p

−1
λi
|δγj = p−1γj) ≤ Pr(δλi = p

−1
λi
|E∗). Note that in

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:41

this case |{e∗1 , e∗2 , e∗3 } ∩T1 | + |{e∗1 , e∗2 , e∗3 } ∩ {e3, e5}|. By analyzing Pr(δλi = p
−1
λi
|E∗) in

this case using similar steps as the ones described for the other sub-cases we

have p (−1)
λi

Pr(δλi = p
−1
λi
|δγj = p−1γj) ≤ p (−1)

λi
Pr(δλi = p

−1
λi
|E∗) ≤ c (t6−1

Me
)3. Hence we have

E[δλiδγj] ≤ c
4 (

t6−1
Me

)3 and

Cov
[
δλi ,δγj

]
≤ c

4

(
t6 − 1
Me

)3
− 1

4
.

We can thus bound the contribution to the third component of Equation (7) given by
the pairs of random variables corresponding to 4-cliques that share three edges as:

2b (t) ��c
(
t − 1
Me

)2 (
1

4

τ (t)

MΔ
+
3

4

t − 1
Me

)
− 1�� , (10)

where b (t) denotes the number of unordered pairs of 4-cliques which share three edges

in G (t) .

The Theorem follows by combining Equations (8), (9), and (10) in Equation (7). �

B PROOFS OF TECHNICAL RESULTS REGARDING TS4C2

In this section, we present proofs for algorithm TS4C2 discussed in Section 4.2.

Proof of Theorem 4.7. Let us define the event Eλ = λis observed on the stream by TS4C2 using
triangle T1 = {e1, e2, e4} and triangle T2 = {e1, e3, e5}. Given the definition of TS4C2 we have:

Eλ = ET1 ∧ ET2 ,
and hence:

pλ = Pr (Eλ) = Pr
(
ET1 ∧ ET2

)
= Pr

(
ET1 |ET2

)
Pr
(
ET2
)
.

In order to study Pr
(
ET2
)
, we shall introduce event ES (T2) =“triangle T2 is observed on the stream

by TS4C2.” From the definition of TS4C2, we know that T2 is observed on the stream iff when the
last edge of T2 is observed on the stream at max{t1, t3, t5} the remaining to edges are in the edge
sample. Applying Bayes’s rule of total probability we have:

Pr
(
ET2
)
= Pr

(
ET2 |ES (T2)

)
Pr
(
ES (T2)

)
,

and thus:

pλ = Pr
(
ET1 |ET2

)
Pr
(
ET2 |ES (T2)

)
Pr
(
ES (T2)

)
. (11)

In order for T2 to be observed by TS4c2 it is required that when the last edge of T2 is observed
on the stream at tM1,3,5 its two remaining edges are kept in Se . From Lemma 2.1, we have:

Pr
(
ES (T2)

)
=

Me

t1,3,5 − 1
Me − 1
t1,3,5 − 2

, (12)

and:

Pr
(
ET2 |ES (T2)

)
=

Me

τ t6
. (13)

Let us now consider Pr
(
ET1 |ET2

)
. In order for T1 to be found in SΔ at t6 it is necessary for T1 to

have been observed by TS4C2. Thus, we have that Pr(ET1 |ET2) = Pr(ET1 |ES (T1),ET2)Pr(ES (T1) |ET2)

Pr
(
ET1 |ES (T1)

)
=

MΔ − 1
τ t6 − 1 . (14)

Let us now consider Pr
(
ES (T1) |ET2

)
. While the content of SΔ itself does not influence the

content of Se , the fact that T2 is maintained in SΔ at t6 implies that it has been observed on

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:42 L. De Stefani et al.

the stream at a previous time. We thus have Pr(ES (T1) |ET2) = Pr(ES (T1) |ES (T2)). In order to study
p ′ = Pr(ES (T1) |ES (T2)), it is necessary to distinguish the possible (5!) different arrival orders for
edges e1,e2, e3, e4 and e5. With an efficient analysis, we however reduce the number of cases to be
considered to 13.

—tM1,2,4 ≤ Me : in this case, all edges of T1 are observed on the stream before Me so they are

deterministically inserted in Se and, thus, p ′ = 1;
—t1 > tM2,3,4,5: in this case the edge e1 that is shared byT1 andT2 is observed after e2, e3, e4, e5.

p ′ = P ({e2, e4} ∈ Se (t1) |{e3, e5} ∈ Se (t1))

= P (e2 ∈ Se (t1) |{e3, e4, e5} ∈ Se (t1)) · P (e4 ∈ Se (t1) |{e3, e5} ∈ Se (t1))

=min

(
1,
M − 3
t1 − 4

)
·min

(
1,
M − 2
t1 − 3

)
.

—tM3,5 > t1 > max{tm3,5, t2, t4}: in this case, only one of the edges e3 and e5 is observed after e1,
which is itself observed after all the remaining edges. Here we consider the case when e3 is
the edge to be observed last. The same considerations follows for e5 as well.

p ′ = P ({e2, e4} ∈ Se (t1) |e5 ∈ Se (t1))

= P (e2 ∈ Se (t1) |{e4, e5} ∈ Se (t1)) · P (e4 ∈ Se (t1) |e5 ∈ Se (t1))

=min

(
1,
M − 2
t1 − 3

)
·min

(
1,
M − 1
t1 − 2

)
.

—tM3,5 > tM2,4 > max{tm3,5, tm2,4, t1}: in this case only, one of the edges e3 and e5 is observed after
one of the edges e2 and e4, which is itself observed after all the remaining edges.We consider
the case when e3 and e2 are observed last. The same procedure follows for e4 and e5 as well.

p ′ = P ({e1, e4} ∈ Se (t2) |{e1, e5} ∈ Se (t3))

= P (e1 ∈ Se (t2) |{e1, e4, e5} ∈ Se (t3)) · P (e4 ∈ Se (t2) |{e1, e5} ∈ Se (t3))

= 1 ·min

(
1,
M − 2
t2 − 3

)
.

—tm3,5 > t1 > tM2,4: in this case, both edges e3 and e5 are observed after e1, which is itself ob-
served after all the remaining edges. Here we consider the case when t3 > t5 > t1. The same
procedure follows for the case t5 > t3 > t1.

p ′ = P ({e2, e4} ∈ Se (t1) |{e1, e5} ∈ Se (t3))

= P (e2 ∈ Se (t1) |e4 ∈ Se (t1), {e1, e5} ∈ Se (t3)) · P (e4 ∈ Se (t1) |{e1, e5} ∈ Se (t3))

=min

(
1,
M − 1
t1 − 2

)
·min

(
1,

M

t1 − 1

)
.

—tm3,5 > tM2,4 > t1: in this case, both edges e3 and e5 are observed after one of the edges e2 and
e4, which is observed after e1. We consider the case t2 > t4 and t3 > t5. The same procedure

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:43

follows for t4 > t2 and t5 > t3

p ′ = P ({e1, e4} ∈ Se (t2) |{e1, e5} ∈ Se (t3))

= P (e4 ∈ Se (t2) |e1 ∈ Se (t2), {e1, e5} ∈ Se (t3)) · P (e1 ∈ Se (t3) |{e1, e5} ∈ Se (t3))

=min

(
1,
M − 1
t2 − 2

)
· 1.

—tM2,4 > t1 > max{Me , t
m
2,4, t

M
3,5}: in this case, both edges e2 and e4 are observed after e1, which

is observed after the edge reservoir is filled and after all the remaining edges. We consider
the case when t2 > t4. The same procedure follows for t4 > t2.

p ′ = P ({e1, e4} ∈ Se (t2) |{e3, e5} ∈ Se (t1))

= P (e4 ∈ Se (t2) |e1 ∈ Se (t2), {e3, e5} ∈ Se (t3)) · P (e1 ∈ Se (t2) |{e3, e5} ∈ Se (t1))

=
M − 1
t2 − 2

· M − 2
t1 − 3

· t1 − 1
t2 − 1

.

—tM2,4 > Me > t1 > max{tm2,4, tM3,5}: in this case, both edges e2 and e4 are observed after e1, which
is observed before the edge reservoir is filled and after all the remaining edges. We consider
the case when t2 > t4. The same procedure follows for t4 > t2.

p ′ = P ({e1, e4} ∈ Se (t2) |{e3, e5} ∈ Se (t1))

= P (e4 ∈ Se (t2) |e1 ∈ Se (t2), {e3, e5} ∈ Se (t3)) · P (e1 ∈ Se (t2) |{e3, e5} ∈ Se (t1))

=
M − 1
t2 − 2

· Me

t2 − 1
.

—tM2,4 > tM3,5 > max{Me , t
m
3,5, t

m
2,4, t1}: in this case, only one of the edges e2 and e4 is observed

after one of the edges e3 and e5, which is observed after the edge reservoir if filled and after
all the remaining edges. We consider the case when t2 > t4 and t3 > t5. The same procedure
follows for t4 > t2 and t5 > t3

p ′ = P ({e1, e4} ∈ Se (t2) |{e1, e5} ∈ Se (t3))

= P (e1 ∈ Se (t2) |e4 ∈ Se (t2), {e1, e5} ∈ Se (t3)) · P (e4 ∈ Se (t2) |{e1, e5} ∈ Se (t3))

=
t3 − 1
t2 − 1

· t3 − 2
t2 − 2

· Me − 2
t3 − 3

.

—tM2,4 > Me > tM3,5 > max{tm3,5, tm2,4, t1}: in this case, only one of the edges e2 and e4 is observed
after one of the edges e3 and e5, which is observed before the edge reservoir if filled and after
all the remaining edges. We consider the case when t2 > t4 and t3 > t5. The same procedure
follows for t4 > t2 and t5 > t3

p ′ = P ({e1, e4} ∈ Se (t2) |{e1, e5} ∈ Se (t3))

= P (e1 ∈ Se (t2) |e4 ∈ Se (t2), {e1, e5} ∈ Se (t3)) · P (e4 ∈ Se (t2) |{e1, e5} ∈ Se (t3))

=
Me

t2 − 1
· Me − 1
t2 − 2

.

—tm2,4 > t1 > tM3,5: in this case, both edges e2 and e4 are observed after e1, which is observed after
all the remaining edges. Here we consider the case when t2 > t4 > t1. The same procedure

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:44 L. De Stefani et al.

follows for t4 > t2 > t1.

p ′ = P ({e2, e4} ∈ Se (t1) |{e3, e5} ∈ Se (t1))

= P (e2 ∈ Se (t1) |e4 ∈ Se (t1), {e3, e5} ∈ Se (t1)) · P (e4 ∈ Se (t1) |{e3, e5} ∈ Se (t1))

=min

(
1,
Me − 1
t2 − 2

)
·min

(
1,

Me

t2 − 1

)
.

—tm2,4 > tM3,5 > max{M, t1}: in this case, both edges e2 and e4 are observed after one of the edges
e3 and e5, which is observed after the edge reservoir is filled and after all the remaining
edges.

p ′ = P ({e1, e4} ∈ Se (t2) |{e1, e5} ∈ Se (t3))

= P (e4 ∈ Se (t2) |e1 ∈ Se (t2), {e1, e5} ∈ Se (t3)) · P (e1 ∈ Se (t2) |{e1, e5} ∈ Se (t3))

=
Me − 1
t2 − 2

· t3 − 1
t2 − 1

.

—tm2,4 > Me > tM3,5 > t1: in this case, both edges e2 and e4 are observed after one of the edges
e3 and e5, which is observed before the edge reservoir is filled and after all the remaining
edges.

p ′ = P ({e1, e4} ∈ Se (t2) |{e1, e5} ∈ Se (t3))
= P (e4 ∈ Se (t2) |e1 ∈ Se (t2), {e1, e5} ∈ Se (t3)) · P (e1 ∈ Se (t2) |{e1, e5} ∈ Se (t3))

=
Me − 1
t2 − 2

· Me

t2 − 1
.

The lemma follows combining the result for the values of p ′ with Equations (12), (13), and (14) in
(B). �

Applying this lemma to an analysis similar to the one used in the proof of Theorem 4.3, we
prove that the estimations obtained using TS4C2 are unbiased.

Proof of Theorem 4.8. Let t∗ denote the first step at which the number of triangles seen ex-

ceeds MΔ. For t ≤ min{Me , t
∗}, the entire graph G (t) is maintained in Se and all the triangles in

G (t) are stored in SΔ. Hence all the cliques inG (t) are deterministically observed by TS4C1and we

have κ (t) = |C (t)
4 |.

Assume now t > min{Me , t
∗} and assume that |C (t)

4 | > 0. Otherwise, the algorithm determin-

istically returns 0 as an estimation, and the statement trivially follows. For any 4-clique λ ∈ C (t)
4

which is observed by TS4C2 with probability pλ , consider a random variable Xλ which takes value
p−1 iff λ is actually observed by TS4C2 (i.e., with probability pλ) or zero otherwise. We thus have
E[Xλ] = p

−1
λ
Pr(Xλ = p

−1
λ
) = p−1

λ
pλ = 1. Recall that every time TS4C2 observes a 4-clique on the

stream it evaluates the probability p (according its correct value as shown in Lemma 4.7) of ob-
serving it and it correspondingly increases the running estimator by p−1. We therefore can express

the running estimator κ (t) as:
κ

(t) =
∑

λ∈C (t)
4

Xλ .

From linearity of expectation, we thus have:

E
[
κ

(t)
]
=
∑

λ∈C (t)
4

E[Xλ] =
∑

λ∈C (t)
4

p−1λ pλ = |C (t)
4 |.

�

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:45

The following proof for Theorem 4.9 follows a structure similar to the one presented for Theo-
rem 4.4. However, the two proofs differ reflecting the different way according to which 4-cliques
are detected by TS4C2 compared to TS4C1.

Proof of Theorem 4.9. Assume |C (t)
4 | > 0, otherwise TS4C1 estimation is deterministically

correct and has variance 0 and the thesis holds. For each λ ∈ C (t)
4 let λ = {e1, e2, e3, e4, e5, e6},

without loss of generality, let us assume the edges are disposed as in Figure 1. Assume further,
without loss of generality, that the edge ei is observed at ti (not necessarily consecutively) and
that t6 > max{ti , 1 ≤ i ≤ 5}. Let t1,2,4 = max{t1, t2, t4,Me + 1}. Let us consider the random variable
δλ which takes value p−1

λ
if the 4-clique λ is observed by TS4C2 using triangles T1 = {e1, e2, e4},

T1 = {e1, e3, e5} and the final edge e6, or zero otherwise. Let pλ denote the probability of such event.
Since, from Lemma 4.2 we know:

Var [δλ] = E
[
δ 2λ
]
− E [δλ]2 = pλ−1 − 1 ≤

1∏
i=0

τ (t) − 1
MΔ − 1

3∏
i=0

t − 1 − i
Me − i

− 1.

For the estimator κ (t) maintained by TS4C2 we thus have:

Var
[
κ

(t)
]
= Var

⎡⎢⎢⎢⎢⎢⎢⎣
∑

λ∈C (t)
4

δλ

⎤⎥⎥⎥⎥⎥⎥⎦
=
∑

λ∈C (t)
4

∑
γ ∈C (t)

4

Cov
[
δλ ,δγ

]

=
∑

λ∈C (t)
4

Var [δλ] +
∑

λ, γ ∈ C (t)4

λ � γ

Cov
[
δλ ,δγ

]

≤ |C (t)
4 | ��

1∏
i=0

τ (t) − i
MΔ − i

3∏
i=0

t − 1 − i
Me − i

− 1�� +
∑

λ, γ ∈ C (t)4

λ � γ

Cov
[
δλ ,δγ

]
. (15)

We now focus on the analysis of the sum of covariances in the right-hand side of the previous
inequality. From the definition of covariance, we have:

Cov
[
δλ ,δγ

]
= E

[
δλδγ

]
− E [δλ] E

[
δγ

]
= E

[
δλδγ

]
− 1,

where the last passage follows as, by construction, for all λ ∈ C (t)
4 we have E [δλ] = 1. To complete

the analysis of the covariance we will therefore consider the term E[δλδγ]. We have:

E
[
δλδγ

]
= p−1λ p−1γ Pr

(
δλ = p

−1
λ ∧ δγ = p

−1
γ

)
= p−1λ p−1γ Pr

(
δλ1 = p

−1
λ |δγ = p

−1
γ

)
Pr
(
δλ = p

−1
λ

)
= p−1λ Pr

(
δλ = p

−1
λ |δγ = p

−1
γ

)
. (16)

In order to conclude our analysis it will therefore be necessary to study the probability according
to which TS4C2 observes λ conditioned on the fact that γ was observed. We divide the possible
pairs of 4-cliques depending on how many edges they share (if any). From Lemma A.1 we have
that any pair of 4-cliques λ and γ can share either one, three or no edges, hence:

(1) λ and γ do not share any edge: As λ and γ do not share any edge, no edge of γ will be
used by TS4C2 to detect λ. Rather, if any of the edges (resp., triangles) of γ is included in
§e (resp., SΔ), this would lessen the probability of TS4C2 detecting λ as some of space in

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:46 L. De Stefani et al.

Se or SΔ may be occupied by edges or triangle sub-structures for γ . Therefore we have
Pr(δλ = p

−1
λ
|δγ = p−1γ) ≤ Pr(δλ = p

−1
λ
) and, thus, from Equation (16):

E
[
δλδγ

]
= p−1λ Pr

(
δλ = p

−1
λ |δγ = p

−1
γ

)
≤ p−1λ Pr

(
δλ = p

−1
λ

)
= 1.

Therefore, we have Cov[δλ ,δγ] ≤ 0, and we can conclude that the contribution of the
covariances of the pairs of random variables corresponding to 4-cliques that do not share
any edge to the summation in Equation (15) is less or equal to zero.

(2) λ and γ share exactly one edge e∗ = λ ∩ γ as shown in Figure 9. Note first of all that if the
shared edge is the last to be observed on the stream for either λ or дamma, then the same
considerations presented for the case in which λ and γ do not share any edge apply an
hence, Cov[δλ ,δγ] ≤ 0.
In the following, we assume that e∗ is not the last edge observed on the stream

for neither λ nor γ . Let us consider the event E∗ =“e∗ ∩T1 ∩ E (t1,2,4−1) ∈ St1,2,4e , or e∗ ∩
T2 ∩ E (t1,3,5−1) ∈ St1,3,5e ”. Clearly Pr(δλ1 = p

−1
λ1
|δγ2 = p−1γ2) ≤ Pr(δλ1 = p

−1
λ1
|E∗). Recall from

Lemma 4.2 that Pr(δλ1 |E∗) = Pr({e3, e5} ⊆ S (t6)
e |E∗)Pr(T1 ∈ S (t6)

Δ |E∗)Pr(S (T1) |E
∗), where

S (T1) denotes the event “T1 is observed on the stream by TS4C1”. By applying the law of

total probability e have that Pr(T1 ∈ S (t6)
Δ |E∗) ≤ Pr(T1 ∈ S (t6)

Δ). The remaining two terms
are influenced differently depending on whether e∗ ∈ T1 or e∗ ∈ {e3, e5}:
—If e∗ ∈ T1: we then have Pr({e3, e5} ⊆ S (t6)

e |E∗) ≤ Pr({e3, e5} ⊆ S (t6)
e). This follows from

the properties of the reservoir sampling scheme as the fact that the edge e∗ is in Se
means that one unit of the available memory space required to hold e3 or e5 is occupied,
at least for some time, by e∗. If e∗ is the last edge of T1 observed in the stream we then
have:

Pr (S (T1) |E∗) = Pr
(
{e1, e2, e4} \ {e∗} ∈ S (

et1, 2, 4) |E∗
)

= Pr
(
{e1, e2, e4} \ {e∗} ∈ S (

et1, 2, 4)
)

≤ Me

t1,2,4 − 1
Me − 1
t1,2,4 − 2

.

Suppose instead that e∗ is not the last edge of T1. Assume further , without loss of gen-

erality, that t2 > max{t1, t4}. TS4C1 observes T1 iff {e1, e4} ∈ S (
et2). As in E∗ we assume

that once observed e∗ is always maintained in Se until t1,2,4 we have:

Pr (S (T1) |E∗) = Pr
(
{e1, e4} \ {e∗} ∈ S (

et1, 2, 4) |E∗
)
≤ Me − 1

t1,2,4 − 2
.

—If e∗ ∈ {e3, e5}: we then have Pr (S (T1) |E∗) ≤ Pr (S (T1)). This follows from the properties
of the reservoir sampling scheme as the fact that the edge e∗ is in Se means that one
unit of the available memory space required to hold the first two edges ofT1 until t1,2,4
is occupied, at least for some time, by e∗. Further, using Lemma 4.2 we have:

—if t6 ≤ Me , then Pr({e3, e5} ⊆ S (t6)
e |E∗) = 1;

—if min{t3, t5} > t1,2,4, then Pr({e3, e5} ⊆ S (t6)
e |E∗) ≥ Me

t6−1 ;

—if max{t3, t5} > t1,2,4 > min{t3, t5}, then Pr({e3, e5} ⊆ S (t6)
e |E∗) ≥

max{Me−1
t6−2 ,

Me−2
t1,2,4−3

t1,2,4−1
t6−1 }; and

—otherwise, Pr({e3, e5} ⊆ S (t6)
e |E∗) ≥ Me−2

t1,2,4−3
t1,2,4−1
t6−1 .

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:47

Putting together these various results we have that

p (−1)
λ

Pr
(
δλ1 = p

−1
λ1
|δγ2 = p−1γ2

)
≤ p (−1)

λ
Pr
(
δλ1 = p

−1
λ1
|E∗
)
≤ c

t6 − 1
Me
,

with c = s . Hence we have E[δλ1δγ2] ≤ c
4
t6−1
Me
≤ c

4
t−1
Me

. We can thus bound the contribution

to the third component of Equation (7) given by the pairs of random variables correspond-
ing to 4-cliques that share one edge as:

2a (t)
(
c
t − 1
Me
− 1
)
, (17)

where a (t) denotes the number of unordered pairs of 4-cliques which share one edge in

G (t) .
(3) λ and γ share three edges {e∗1 , e∗2 , e∗3 } which form a triangle sub-structure for both λ and

γ . Let us refer to Figure 10, without loss of generality let T1 denote the triangle shared
between the two cliques. We distinguish the kind of pairs for the random variables δλi
and δγj cases:

—δλi = p
−1
λi

if T1 ∈ St6−1Δ ∧ {e3, e5} ⊆ St6−1e and δγj = p
−1
γj

if T1 ∈ S
tγ −1
Δ ∧ {д3,д5} ⊆ S

tγ −1
e ,

where tγ denotes the time step at which the last edge of γ is observed. This is the
case for which the random variables δλi and δγj corresponds to FourEst observing λ

and γ using the shared triangle T1. Let us consider the event E∗ =“T1 ∈ S (t6)
Δ . Clearly,

Pr(δλi = p
−1
λi
|δγj = p−1γj) ≤ Pr(δλi = p

−1
λi
|E∗). In this case we have Pr(T1 ∈ S (t6) |E∗) ≤ 1,

while Pr({e3, e5} ∈ S (t6)
e |E∗) ≤ Pr({e3, e5} ∈ S (t6)

e). This second fact follows from the
properties of the reservoir sampling scheme as the fact that the edges e∗1 , e

∗
2 , and

e∗3 are in Se at least for the time required for T1 to be observed, means that at
least two unit of the available memory space required to hold the edges e3 and e5
are occupied, at least for some time. Putting together these various results we have

thatp (−1)
λi

Pr(δλi = p
−1
λi
|δγj = p−1γj) ≤ p (−1)

λi
Pr(δλi = p

−1
λi
|E∗) ≤ c (t6−1

Me
)2 τ

(t)

SΔ . Hencewe have

E[δλiδγj] ≤ c
4 (

t6−1
Me

)2 τ
(t)

SΔ and Cov[δλi ,δγj] ≤ c
4 (

t6−1
Me

)2 τ
(t)

SΔ −
1
4 .

—In all the remaining cases, then the random variables δλi and δγj corresponds to
FourEst not observing λ and γ using the shared triangle T1 for both of them. Let
T ∗ denote the triangle sub-structure used by TS4C1 to count λ with respect to δλi .

Let us consider the event E∗ =“{e∗1 , e∗2 , e∗3 } ∩T1 ∩ E (t1,2,4−1) ∈ St1,2,4e ,T1 ∈ S (t6)
Δ unless one

of its edges is the last edge of T ∗ observed on the stream, and {e∗1 , e∗2 , e∗3 } ∩ {e3, e5} ∩
E (t6−1) ∈ S (t6)e if e∗ ∈ {e3, e5}”, where E (t) denotes the set of edges observed up until time
t included. Clearly Pr(δλi = p

−1
λi
|δγj = p−1γj) ≤ Pr(δλi = p

−1
λi
|E∗). Note that in this case

|{e∗1 , e∗2 , e∗3 } ∩T1 | + |{e∗1 , e∗2 , e∗3 } ∩ {e3, e5}|. By analyzing Pr(δλi = p
−1
λi
|E∗) in this case us-

ing similar steps as the ones described for the other sub-cases, we have p (−1)
λi

Pr(δλi =

p−1
λi
|δγj = p−1γj) ≤ p (−1)

λi
Pr(δλi = p

−1
λi
|E∗) ≤ c

(
t6−1
Me

)3
. Hencewe have E[δλiδγj] ≤ c

4 (
t6−1
Me

)3

and Cov[δλi ,δγj] ≤ c
4 (

t6−1
Me

)3 − 1
4 .

We can thus bound the contribution to the third component of Equation (15) given by the
pairs of random variables corresponding to 4-cliques that share three edges as:

2b (t) ��c
(
t − 1
Me

)2 (
1

4

τ (t)

MΔ
+
3

4

t − 1
Me

)
− 1�� , (18)

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:48 L. De Stefani et al.

where b (t) denotes the number of unordered pairs of 4-cliques which share three edges in

G (t) .

The Theorem follows by combining Equations (17) and (18) in Equation (15). �

C PROOFS OF TECHNICAL RESULTS REGARDING FourEst

In this section, we present proofs for algorithm FourEst discussed in Section 5.

Proof of Theorem 5.2. Recall that when a new edge et is observed on the stream FourEst

updates the estimatorκ (t) before decidingwhether the new edge is inserted inS. For t ≤ M + 1, the
entire graphG (t) \ {et } is maintained in S, thus whenever an edge et is inserted at time t ≤ M + 1,
FourEst observes all the triangles which include et in G (t) with probability 1 thus increasing
κ by one. By a simple inductive analysis we can therefore conclude that for t ≤ M + 1 we have

κ
(t) = |C (t)

4 |.
Assume now t > M + 1 and assume that |C (t)

4 | > 0, otherwise, the algorithm deterministically
returns 0 as an estimation, and the thesis follows. Recall that every time FourEst observes a
4-clique on the stream a time t it computes the probability p =

∏4
i=0

M−i
t−i−1 of observing it and

it correspondingly increases the running estimator by p−1. From Lemma 2.1, the probability p
computed by FourEst does indeed correspond to the correct probability of observing a 4-clique at

time t . For any 4-clique λ ∈ C (t)
4 which is observed by TS4C1with probabilitypλ , consider a random

variable Xλ which takes value p−1 iff λ is actually observed by FourEst (i.e., with probability pλ)
or zero otherwise. We thus have E[Xλ] = p

−1
λ
Pr(Xλ = p

−1
λ
) = p−1

λ
pλ = 1.

We therefore can express the running estimator κ (t) as: κ (t) =
∑

λ∈C (t)
4

Xλ .

From linearity of expectation, we thus have:

E
[
κ

(t)
]
=
∑

λ∈C (t)
4

E[Xλ] =
∑

λ∈C (t)
4

p−1λ pλ = |C (t)
4 |.

�

Proof of Theorem 5.3. Assume |C (t)
4 | > 0 and t > M + 1, otherwise (from Theorem 5.2) TS4C1

estimation is deterministically correct and has variance 0 and the thesis holds. For each λ ∈ C (t)
4

let λ = {e1, e2, e3, e4, e5, e6}, without loss of generality let us assume the edges are disposed as in
Figure 1. Assume further, without loss of generality, that the edge ei is observed at ti (not necessar-
ily consecutively) and that t6 > max{ti , 1 ≤ i ≤ 5}. Let us consider the random variable δλ (which
takes value p−1

λ
if the 4-clique λ is observed by FourEst, or zero otherwise. From Lemma 5.1, we

have:

pλ = Pr
(
δλ = p

−1
λ

)
=

4∏
i=0

M − i
t − i − 1 ,

and thus:

Var [δλ] = p
−1
λ − 1.

We can express the estimator κ (t) as κ (t) =
∑

λ∈C (t)
4
. We therefore have:

Var
[
κ

(t)
]
= Var

⎡⎢⎢⎢⎢⎢⎢⎣
∑

λ∈C (t)
4

δλ

⎤⎥⎥⎥⎥⎥⎥⎦
=
∑

λ∈C (t)
4

∑
γ ∈C (t)

4

Cov
[
δλ ,δγ

]
=
∑

λ∈C (t)
4

Var [δλ] +
∑

λ, γ ∈ C (t)4

λ � γ

Cov
[
δλ ,δγ

]

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:49

≤ |C (t)
4 | ��

4∏
i=0

t − 1 − i
M − i − 1

�
� +

∑
λ, γ ∈ C (t)4

λ � γ

Cov
[
δλ ,δγ

]
. (19)

From Lemma A.1, we have that two distinct cliques λ and γ can share one, three, or no edges. In
analyzing the summation of covariance terms appearing in the right-hand-side of Equation (19),
we shall therefore consider separately the pairs that share, respectively, one, three, or no edges.

—λ and γ do not share any edge:

E
[
δλδγ

]
= p−1λ p−1γ Pr

(
δλ = p

−1
λ ∧ δγ = p

−1
γ

)
= p−1λ p−1γ Pr

(
δλ = p

−1
λ |δγ = p

−1
γ

)
Pr
(
δλ = p

−1
λ

)
.

The termPr(δλ = p
−1
λ
|δγ = p−1γ) denotes the probability of FourEst observing λ conditioned

of the fact that γ was observed. Note that as λ and γ do not share any edge, no edge of γ
will be used by FourEst to detect λ. Rather, if any edge of γ is included in S, this lowers
the probability of FourEst detecting λ as some of space available in S may be occupied by
edges of γ . Therefore we have Pr(δλ = p

−1
λ
|δγ = p−1γ) ≤ Pr(δλ = p

−1
λ
) and thus:

E
[
δλδγ

]
= p−1λ p−1γ Pr

(
δλ = p

−1
λ |δγ = p

−1
γ

)
Pr
(
δγ = p

−1
γ

)
≤ p−1λ p−1γ Pr

(
δλ = p

−1
λ

)
Pr
(
δγ = p

−1
γ

)
≤ p−1λ p−1γ pλpγ

≤ 1.

As Cov[δλ ,δγ] = E[δλδγ] − 1, we therefore have Cov[δλ ,δγ] ≤ 0. Hence we can conclude
that the contribution of the covariances of the pairs of random variables corresponding to
4-cliques that do not share any edge to the summation in Equation (19) is less or equal to
zero.

—λ and γ share exactly one edge e∗ = λ ∩ γ (as shown in Figure 9). Let us consider the event
E∗ =“e∗ ∈ St6 unless e∗ is observed at t6”. Clearly Pr(δλ = p−1λ |δγ = p

−1
γ) ≤ Pr(δλ = p

−1
λ
|E∗).

Recall from Lemma 5.1 that Pr(δλ |E∗) = Pr({e1, . . . , e5} ⊆ S (t6)
e |E∗). We can distinguish two

cases: (a) e∗ = e6: in this case we have Pr(δλ |E∗) = Pr({e1, . . . , e5} ⊆ S (t6)
e) = pλ ; (b) e

∗ � e6:

in this case we have Pr(δλ |E∗) = Pr({e1, . . . , e5} \ {e∗} ⊆ S (t6) |e∗ ∈ S (t6)
e) =

∏3
i=0

M−1−i
t6−2−i . We

can therefore conclude:

E
[
δλδγ

]
= p−1λ p−1γ Pr

(
δλ = p

−1
λ |δγ = p

−1
γ

)
Pr
(
δγ = p

−1
γ

)
≤ p−1λ Pr

(
δλ = p

−1
λ |δγ = p

−1
γ

)
≤ t6 − 1

M
.

We can thus bound the contribution to covariance summation in Equation (19) given by
the pairs of random variables corresponding to 4-cliques that share one edge as:

a (t)
(t − 1

M
− 1
)
, (20)

where a (t) denotes the number of unordered pairs of 4-cliques which share one edge inG (t) .

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:50 L. De Stefani et al.

—λ and γ share three edges {e∗1 , e∗2 , e∗3 } which form a triangle sub-structure for both λ and

γ . Let us refer to Figure 10. Let us consider the event E∗ =“{e∗1 , e∗2 , e∗3 } ∩ E (t6−1) ⊆ S (t6) .

Clearly Pr(δλ = p
−1
λ
|δγ = p−1γ) ≤ Pr(δλ = p

−1
λ
|E∗). Recall that Pr(δλ |E∗) = Pr({e1, . . . , e5} ⊆

S (t6) |E∗). We can distinguish two cases:
(a) e6 ∩ {e∗1 , e∗2 , e∗3 } � ∅: in this case we have |{e1, . . . , e5} \ ({e∗1 , e∗2 , e∗3 } \ {e6}) | = 3 hence

Pr(δλ |E∗) = Pr({e1, . . . , e5} \ ({e∗1 , e∗2 , e∗3 } \ {e6}) |({e∗1 , e∗2 , e∗3 } \ {e6}) ⊆ S (t6)) =
∏2

i=0
M−2−i
t6−3−i ;

(b) e6 ∩ {e∗1 , e∗2 , e∗3 } = ∅: in this case we have |{e1, . . . , e5} \
(
{e∗1 , e∗2 , e∗3 } \ {e6}

)
| = 2 hence

Pr (δλ |E∗) = Pr
(
{e1, . . . , e5} \ {e∗1 , e∗2 , e∗3 }|{e∗1 , e∗2 , e∗3 }) ⊆ S (t6)

)
=
∏1

i=0
M−3−i
t6−4−i ;. For the pairs

of 4-cliques which share three edge we therefore have:

E
[
δλδγ

]
= p−1λ p−1γ Pr

(
δλ = p

−1
λ |δγ = p

−1
γ

)
Pr
(
δγ = p

−1
γ

)
≤ p−1λ Pr

(
δλ = p

−1
λ |δγ = p

−1
γ

)
≤

2∏
i=0

t − 1 − i
M − i .

We can thus bound the contribution to covariance summation in Equation (19) given by the
pairs of random variables corresponding to 4-cliques that share one edge as:

b (t) ��
2∏
i=0

t − 1 − i
M − i − 1

�
� = b

(t)c ′
(t
M

)5
(21)

where b (t) denotes the number of unordered pairs of 4-cliques which share three edges in

G (t) and c ′ = (M − 1) (M − 2)/M2.

The bound on the variance follows form the previous considerations and by combining by com-
bining Equations (20) and (21) in Equation (19). Finally, the concentration bound is obtained by
applying Chebyshev’s inequality [26, Thm. 3.6]. The proof follows a reasoning analogous to that
in the proof of Theorem 4.5. �

D FIVEEST: 5-CLIQUE COUNTING USING AN EDGE-ONLY SAMPLE

Lemma D.1. Let λ ∈ C (t)
5 with λ = {e1, . . . , e10}. Assume, without loss of generality, that the edge

ei is observed at ti (not necessarily consecutively) and that t10 > max{ti , 1 ≤ i ≤ 9}. λ is observed by

FiveEst at time t10 with probability:

pλ =
⎧⎪⎪⎨⎪⎪⎩
0 i f |M | < 9,
1 i f t10 ≤ M + 1,∏9

i=0
M−i
t−i−1 i f t10 > M + 1.

(22)

TheoremD.2. Letκ (t) the estimated number of 5-cliques inG (t) computed by FiveEst using mem-

ory of sizeM > 9. κ (t) = |C (t)
5 | if t ≤ M + 1 and E[κ (t)] = |C (t)

5 | if t > M + 1.

The proof for Lemma D.1 (resp., Theorem D.2), closely follows the steps of the proof of
Lemma 5.1 (resp., Theorem 5.2).

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

Tiered Sampling: An Efficient Method for Counting Sparse Motifs 79:51

ALGORITHM 6: FiveEst - Single Reservoir Sampling for 5-cliques counting

Input: Edge stream Σ, integerM ≥ 6
Output: Estimation of the number of 5-cliques κ
Se ← ∅, t ← 0, κ ← 0
for each element (u,v) from Σ do � Process each edge (u,v) coming from the stream in
discretized timesteps

t ← t + 1
Update5Cliqes(u,v) � Update the 5-clique estimator by considering the new 5-cliques

closed by edge (u,v)
SampleEdge((u,v), t) � Update the edges sample with the edge (u,v) according to RS

scheme

function Update5Cliqes(u,v)
NSu,v ← NSu ∩ NSv
for each element (x ,w, z) from NSu,v × N Su,v × N Su,v do

if {(x ,w), (x , z), (w, z)} ⊆ Se then
if t ≤ M + 1 then

p ← 1
else

p ←∏9
i=0

M−i
t−i−1

κ ← κ + p−1

REFERENCES

[1] Nesreen K. Ahmed, Nick Duffield, Jennifer Neville, and Ramana Kompella. 2014. Graph sample and hold: A framework

for big-graph analytics. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. 1446–1455.

[2] Nesreen K. Ahmed, Nick Duffield, Theodore Willke, and Ryan A. Rossi. 2017. On sampling from massive graph

streams. Proceedings of the VLDB Endowment 10, 11 (2017).

[3] Nesreen K. Ahmed, Nick Duffield, and Liangzhen Xia. 2018. Sampling for approximate bipartite network projection.

In Proceedings of the 27th International Joint Conference on Artificial Intelligence. 3286–3292.

[4] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick Duffield. 2015. Efficient graphlet counting for large

networks. In Proceedings of the 2015 IEEE International Conference on Data Mining. IEEE, 1–10.

[5] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex networks. Reviews of Modern Physics

74, 1 (2002), 47.

[6] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2010. Efficient algorithms for large-scale local

triangle counting. ACM Transactions on Knowledge Discovery from Data 4, 3 (2010), 1–28.

[7] Jonathan W. Berry, Bruce Hendrickson, Randall A. LaViolette, and Cynthia A. Phillips. 2011. Tolerating the commu-

nity detection resolution limit with edge weighting. Physical Review E 83, 5 (2011), 056119.

[8] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Layered label propagation: A multiresolution

coordinate-free ordering for compressing social networks. In Proceedings of the 20th International Conference onWorld

Wide Web. 587–596.

[9] Ilaria Bordino, Debora Donato, Aristides Gionis, and Stefano Leonardi. 2008. Mining large networks with subgraph

counting. In Proceedings of the 2008 8th IEEE International Conference on Data Mining. IEEE, 737–742.

[10] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and Alessandro Panconesi. 2018. Motif counting

beyond five nodes. ACM Transactions on Knowledge Discovery from Data 12, 4 (2018), 1–25.

[11] Marco Bressan, Stefano Leucci, and Alessandro Panconesi. 2019. Motivo: Fast motif counting via succinct color coding

and adaptive sampling. Proceedings of the VLDB Endowment 12, 11 (2019), 1651–1663.

[12] Lorenzo De Stefani, Erisa Terolli, and Eli Upfal. 2017. Tiered sampling: An efficient method for approximate counting

sparse motifs in massive graph streams. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data

’17). IEEE, 776–786.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

79:52 L. De Stefani et al.

[13] Jean-Pierre Eckmann and Elisha Moses. 2002. Curvature of co-links uncovers hidden thematic layers in the world

wide web. Proceedings of the National Academy of Sciences 99, 9 (2002), 5825–5829.

[14] Dhivya Eswaran, Christos Faloutsos, Sudipto Guha, and Nina Mishra. 2018. Spotlight: Detecting anomalies in stream-

ing graphs. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

1378–1386.

[15] Irene Finocchi, Marco Finocchi, and Emanuele G. Fusco. 2015. Clique counting in MapReduce: Algorithms and ex-

periments. Journal of Experimental Algorithmics 20 (2015), 1–20.

[16] Rob J. Hyndman and Anne B. Koehler. 2006. Another look at measures of forecast accuracy. International Journal of

Forecasting 22, 4 (2006), 679–688.

[17] Shweta Jain and C. Seshadhri. 2017. A fast and provable method for estimating clique counts using Turán’s theorem.

In Proceedings of the 26th International Conference on World Wide Web. 441–449.

[18] Madhav Jha, C. Seshadhri, and Ali Pinar. 2015. Path sampling: A fast and provable method for estimating 4-vertex

subgraph counts. In Proceedings of the 24th International Conference on World Wide Web. 495–505.

[19] Madhav Jha, C. Seshadhri, and Ali Pinar. 2015. A space-efficient streaming algorithm for estimating transitivity and

triangle counts using the birthday paradox. ACM Transactions on Knowledge Discovery from Data 9, 3 (2015), 1–21.

[20] Konstantin Kutzkov and Rasmus Pagh. 2014. Triangle counting in dynamic graph streams. In Proceedings of the Scan-

dinavian Workshop on Algorithm Theory. Springer, 306–318.

[21] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for social networks. Journal of the Associ-

ation for Information Science and Technology 58, 7 (2007), 1019–1031.

[22] Yongsub Lim and U. Kang. 2015. Mascot: Memory-efficient and accurate sampling for counting local triangles in

graph streams. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 685–694.

[23] Paul Liu, Austin R. Benson, andMoses Charikar. 2019. Samplingmethods for counting temporal motifs. In Proceedings

of the 12th ACM International Conference on Web Search and Data Mining. 294–302.

[24] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. 2002. Network motifs:

Simple building blocks of complex networks. Science 298, 5594 (2002), 824–827.

[25] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and Bobby Bhattacharjee. 2007. Mea-

surement and analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM Conference on Internet

Measurement. 29–42.

[26] Michael Mitzenmacher and Eli Upfal. 2017. Probability and Computing: Randomization and Probabilistic Techniques in

Algorithms and Data Analysis. Cambridge University Press.

[27] Rasmus Pagh and Charalampos E. Tsourakakis. 2012. Colorful triangle counting and a MapReduce implementation.

Information Processing Letters 112, 7 (2012), 277–281.

[28] Kirill Paramonov, Dmitry Shemetov, and James Sharpnack. 2019. Estimating graphlet statistics via lifting. In Proceed-

ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 587–595.

[29] Ha-Myung Park and Chin-Wan Chung. 2013. An efficient MapReduce algorithm for counting triangles in a very large

graph. In Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. 539–548.

[30] A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-LungWu. 2013. Counting and Sampling Triangles from

a Graph Stream. In Proceedings of the International Conference on Very Large Data Bases. 1870–1881.

[31] Mahmudur Rahman, Mansurul Alam Bhuiyan, and Mohammad Al Hasan. 2014. Graft: An efficient graphlet counting

method for large graph analysis. IEEE Transactions on Knowledge and Data Engineering 26, 10 (2014), 2466–2478.

[32] Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyuce, and Srikanta Tirthapura. 2018. Butterfly counting in bipartite net-

works. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

2150–2159.

[33] Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal. 2017. Triest: Counting local and global tri-

angles in fully dynamic streams with fixed memory size. ACM Transactions on Knowledge Discovery from Data 11, 4

(2017), 1–50.

[34] Jeffrey S. Vitter. 1985. Random sampling with a reservoir. ACM Transactions on Mathematical Software 11, 1 (1985),

37–57.

Received March 2019; revised March 2020; accepted December 2020

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 5, Article 79. Publication date: May 2021.

