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A  M o m e nt u m- G ui d e d Fr a n k- W olf e  Al g orit h m
Bi n g c o n g  Li ,  M ari o  C o uti ñ o , St u d e nt  M e m b er, I E E E,  G e or gi os  B.  Gi a n n a kis ,  Fell o w, I E E E,

a n d  G e ert  L e us ,  Fell o w, I E E E

A bstr a ct — Wit h t h e  w ell- d o c u m e nt e d p o p ul a rit y of  F r a n k  W olf e
( F W) al g o rit h ms i n  m a c hi n e l e a r ni n g t as ks, t h e p r es e nt p a p e r
est a blis h es li n ks b et w e e n  F W s u b p r o bl e ms a n d t h e n oti o n of  m o-
m e nt u m e m e r gi n g i n a c c el e r at e d g r a di e nt  m et h o ds ( A G Ms).  O n
t h e o n e h a n d, t h es e li n ks r e v e al  w h y  m o m e nt u m is u nli k el y t o
b e eff e cti v e f o r  F W-t y p e al g o rit h ms o n g e n e r al p r o bl e ms.  O n t h e
ot h e r h a n d, it is est a blis h e d t h at  m o m e nt u m a c c el e r at es  F W o n
a cl ass of si g n al p r o c essi n g a n d  m a c hi n e l e a r ni n g a p pli c ati o ns.
S p e ci fi c all y, it is p r o v e d t h at a  m o m e nt u m v a ri a nt of  F W, h e r e
t e r m e d a c c el e r at e d  F r a n k  W olf e ( A F W), c o n v e r g es  wit h a f ast e r
r at e O ( 1

k 2 ) o n s u c h a f a mil y of p r o bl e ms, d es pit e t h e s a m e O ( 1
k

)
r at e of  F W o n g e n e r al c as es.  Disti n ct f r o m e xisti n g f ast c o n v e r g e nt
F W v a ri a nts, t h e f ast e r r at es h e r e r el y o n p a r a m et e r-f r e e st e p si z es.
N u m e ri c al e x p e ri m e nts o n b e n c h m a r k e d  m a c hi n e l e a r ni n g t as ks
c o r r o b o r at e t h e t h e o r eti c al fi n di n gs.

I n d e x  Ter ms — F r a n k  W olf e  m et h o d, c o n diti o n al g r a di e nt
m et h o d,  m o m e nt u m, a c c el e r at e d  m et h o d, s m o ot h c o n v e x
o pti mi z ati o n.

I. IN T R O D U C TI O N

W E  C O N SI D E R ef fi ci e nt  m e a ns of s ol vi n g t h e f oll o wi n g
o pti mi z ati o n pr o bl e m

mi n
x ∈ X

f ( x ) ( 1)

w h er e f is a s m o ot h c o n v e x f u n cti o n.  T h e c o nstr ai nt s et X ⊂ R d

i s ass u m e d t o b e c o n v e x a n d c o m p a ct, a n d d is t h e di m e nsi o n
of t h e v ari a bl e x .  We d e n ot e b y x ∗ ∈ X a  mi ni mi z er of ( 1).
A m o n g pr o bl e ms a cr oss si g n al pr o c essi n g,  m a c hi n e l e ar ni n g,
a n d ot h er ar e as, t h e c o nstr ai nt s et X c a n b e str u ct ur e d b ut dif fi-
c ult or e x p e nsi v e t o pr oj e ct o nt o.  E x a m pl es i n cl u d e t h e n u cl e ar
n or m b all c o nstr ai nt f or  m atri x c o m pl eti o n i n r e c o m m e n d er
s yst e ms [ 1] a n d t h e t ot al- v ari ati o n n or m b all a d o pt e d i n i m a g e

M a n us cri pt r e c ei v e d  O ct o b er 2, 2 0 2 0; r e vis e d  A pril 2 0, 2 0 2 1; a c c e pt e d  M a y
3 1, 2 0 2 1.  D at e of p u bli c ati o n J u n e 1 6, 2 0 2 1; d at e of c urr e nt v ersi o n J u n e
3 0, 2 0 2 1.  T h e ass o ci at e e dit or c o or di n ati n g t h e r e vi e w of t his  m a n us cri pt a n d
a p pr o vi n g it f or p u bli c ati o n  w as  Dr.  A u g ust o  A u br y.  T his  w or k  w as s u p p ort e d b y
t h e  U S  N ati o n al S ci e n c e F o u n d ati o n u n d er  Gr a nt 1 9 0 0 1 1 3 4, a n d t h e  E ur o p e a n
A S PI R E pr oj e ct ( pr oj e ct 1 4 9 2 6  wit hi n t h e S T W  O T P pr o gr a m m e), a n d i n p art
b y t h e  N et h erl a n ds  Or g a ni z ati o n f or S ci e nti fi c  R es e ar c h ( N W O).  T h e  w or k of
M ari o  C o uti n o  w as s u p p ort e d i n p art b y  C O N A C Y T. ( C orr es p o n di n g a ut h or:
G e or gi os  B.  Gi a n n a kis.)

Bi n g c o n g  Li a n d  G e or gi os  B.  Gi a n n a kis ar e  wit h t h e  D e p art m e nt of  El e ctri c al
a n d  C o m p ut er  E n gi n e eri n g a n d t h e  Di git al  Te c h n ol o g y  C e nt er,  U ni v ersit y
of  Mi n n es ot a,  Mi n n e a p olis,  M N 5 5 4 5 5  U S A ( e- m ail: li x x 5 5 9 9 @ u m n. e d u;
g e or gi os @ u m n. e d u).

G e ert  L e us is  wit h t h e  Cir c uits a n d S yst e ms  Gr o u p,  D e p art m e nt of  Mi-
cr o el e ctr o ni cs,  E E M C S,  D elft  U ni v ersit y of  Te c h n ol o g y, 2 6 2 8  C D  D elft,  T h e
N et h erl a n ds ( e- m ail: g.j.t.l e us @t u d elft. nl).

M ari o  C o uti ñ o is  wit h t h e  Cir c uits a n d S yst e ms  Gr o u p,  D e p art m e nt of
Mi cr o el e ctr o ni cs,  E E M C S,  D elft  U ni v ersit y of  Te c h n ol o g y, 2 6 2 8,  C D  D elft,
T h e  N et h erl a n ds, a n d als o  wit h t h e  R a d ar  Te c h n ol o g y,  T N O,  T h e  H a g u e,  T h e
N et h erl a n ds ( e- m ail:  m. a. c o uti n o mi n g u e z @t u d elft. nl).

Di git al  O bj e ct I d e nti fi er 1 0. 1 1 0 9/ T S P. 2 0 2 1. 3 0 8 7 9 1 0

r e c o nstr u cti o n t as ks [ 2].  T h e c o m p ut ati o n al i n ef fi ci e n c y of t h e
pr oj e cti o n, es p e ci all y f or a l ar g e d , i m p airs t h e a p pli c a bilit y of
pr oj e ct e d gr a di e nt d es c e nt ( G D) [ 3] a n d pr oj e ct e d  A c c el er at e d
Gr a di e nt  M et h o d ( A G M) [ 4], [ 5].

A n alt er n ati v e t o  G D f or s ol vi n g ( 1) is t h e Fr a n k  W olf e
( F W)  m et h o d [ 6] –[ 8], als o k n o w n as t h e c o n diti o n al gr a di e nt
a p pr o a c h. F W cir c u m v e nts t h e pr oj e cti o n i n  G D b y first  mi ni-
mi zi n g a n af fi n e f u n cti o n,  w hi c h is t h e s u p p orti n g h y p er pl a n e
of f (x ) at x k , o v er X t o o bt ai n v k + 1 , a n d t h e n u p d ati n g
x k + 1 a s a c o n v e x c o m bi n ati o n of x k a n d v k + 1 .  W h e n d e ali n g
wit h str u ct ur al c o nstr ai nts s u c h as n u cl e ar n or m b alls a n d t ot al
v ari ati o n n or m b alls, a n ef fi ci e nt i m pl e m e nt ati o n  m a n n er or e v e n
a cl os e d-f or m s ol uti o n f or c o m p uti n g v k + 1 i s a v ail a bl e [ 7], [ 9],
r es ulti n g i n r e d u c e d c o m p ut ati o n al c o m pl e xit y c o m p ar e d  wit h
pr oj e cti o n st e ps. I n a d diti o n,  w h e n i niti ali zi n g  w ell, F W dir e ctl y
pr o m ot es l o w r a n k (s p ars e) s ol uti o ns  w h e n t h e c o nstr ai nt s et
is a n u cl e ar n or m ( 1 n or m) b all [ 1]. Pr o vi di n g t h e e asi n ess
i n i m pl e m e nt ati o n a n d e n a bli n g str u ct ur al s ol uti o ns, F W is of
i nt er est i n v ari o us a p pli c ati o ns.  B esi d es t h os e  m e nti o n e d e arli er,
ot h er e x a m pl es e n c o m p ass str u ct ur al S V M [ 1 0], vi d e o c ol o-
c ati o n [ 1 1], p arti cl e filt eri n g [ 1 2], tr af fi c assi g n m e nt [ 1 3], a n d
o pti m al tr a ns p ort [ 1 4], el e ctr o ni c v e hi cl e c h ar gi n g [ 1 5], [ 1 6],
a n d s u b m o d ul ar o pti mi z ati o n [ 1 7].

Alt h o u g h F W h as  w ell d o c u m e nt e d  m erits i n s e v er al a p-
pli c ati o ns, it e x hi bits sl o w er c o n v er g e n c e  w h e n c o m p ar e d t o
A G M. S p e ci fi c all y, F W s atis fi es f (x k ) − f (x ∗ ) = O ( 1

k ) . T his
c o n v er g e n c e sl o w d o w n is c o n fir m e d b y t h e l o w er b o u n d,  w hi c h
i n di c at es t h at t h e n u m b er of F W s u b pr o bl e ms t o s ol v e i n or d er t o
e ns ur e f (x k ) − f (x ∗ ) ≤ , is n o l ess t h a n O ( 1 ) [ 7], [ 1 8].  T h us,
F W is a l o w er- b o u n d- m at c hi n g al g orit h m, i n g e n er al.  H o w e v er,
i m pr o v e d F W t y p e al g orit h ms ar e p ossi bl e i n s p e e d u p r at es f or
c ert ai n s u b cl ass es of pr o bl e ms.

A.  R el at e d  W or ks

T h er e ar e t hr e e c o m m o n a p pr o a c h es t o s el e ct st e p si z es
f or F W a n d its v ari a nts: i) li n e s e ar c h [ 7]; ii)  mi ni mi zi n g a
o n e- di m e nsi o n al q u a dr ati c f u n cti o n o v er [ 0, 1] f or s m o ot h st e p
si z es [ 9], [ 1 9]; a n d iii) p ar a m et er-fr e e st e p si z es; t h at is, O ( 1

k )
[ 7].  M ost of t h e f ast c o n v er gi n g F W it er ati o ns r el y o n c h oi c es
i) or ii),  w hi c h r e q uir e eit h er t h e s m o ot h n ess p ar a m et er or t h e
f u n cti o n v al u e of f . St e p si z e i) is ‘ cl u ms y’  w h e n it is c ostl y
t o a c c ess f u n cti o n v al u es, e. g., i n t h e bi g d at a r e gi m e.  C o n c er ns
wit h c h oi c e ii) aris e  wit h h o w  w ell t h e s m o ot h n ess p ar a m et er is
esti m at e d. I n a d diti o n, it is c h all e n gi n g t o s el e ct t h e s m o ot h n ess
i n d u ci n g n or m, a n d e a c h n or m c a n r es ult i n a c o nsi d er a bl y
diff er e nt s m o ot h n ess p ar a m et er [ 2 0].  T h e n e e d t h us aris es f or
F W v ari a nts r el yi n g o n p ar a m et er-fr e e st e p si z es, es p e ci all y

T his  w or k is li c e ns e d u n d er a  Cr e ati v e  C o m m o ns  Attri b uti o n 4. 0  Li c e ns e. F or  m or e i nf or m ati o n, s e e htt ps:// cr e ati v e c o m m o ns. or g/li c e ns es/ b y/ 4. 0/
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T A B L E I
A C O M P A RI S O N  O F F W  V A RI A N T S W I T H F A S T E R R A T E S

t h os e e n a bli n g f ast er c o n v er g e n c e.  T o t his e n d,  w e first bri e fl y
r e c a p e xisti n g r es ults o n f ast er r at es.

Li n e s e ar c h. J oi ntl y l e v er a gi n g li n e s e ar c h a n d ‘ a w a y st e ps,’
F W-t y p e al g orit h ms c o n v er g e li n e arl y f or str o n gl y c o n v e x pr o b-
l e ms  w h e n X is a p ol yt o p e [ 8], [ 2 3]; s e e als o [ 2 4], [ 2 5], a n d [ 2 1]
w h er e t h e  m e m or y ef fi ci e n c y of a w a y st e ps is als o i m pr o v e d.

S m o ot h st e p siz es. If X is str o n gl y c o n v e x, a n d t h e o pti m al
s ol uti o n is at t h e b o u n d ar y of X , it is k n o w n t h at F W c o n v er g es
li n e arl y [ 1 9]. F or u nif or ml y ( a n d t h us str o n gl y) c o n v e x s ets,
f ast er r at es ar e att ai n e d  w h e n t h e o pti m al s ol uti o n is at t h e
b o u n d ar y of X [ 2 6].  W h e n b ot h f a n d X ar e str o n gl y c o n v e x,
F W  wit h t h e s m o ot h st e p si z e c o n v er g es at a r at e of O ( 1

k 2 ) ,
r e g ar dl ess of  w h er e t h e o pti m al s ol uti o n r esi d es [ 9].  A v ari a nt of
s m o ot h st e p si z e al o n g  wit h  m o di fi c ati o ns o n F W j oi ntl y e n a bl e
f ast er r at es o n a str o n gl y c o n v e x f a n d  G a u g e s et X [ 2 7], at t h e
e x p e ns e of r e q uiri n g e xtr a p ar a m et ers b esi d es t h e s m o ot h n ess
c o nst a nt.

P ar a m et er-fr e e st e p siz es. Wit h o ut a n y p ar a m et er i n v ol v e d
h er e, t h er e is n o c o n c er n o n t h e q u alit y of p ar a m et er esti m ati o n,
w hi c h s a v es ti m e a n d eff ort b e c a us e t h er e is n o n e e d f or t u ni n g
st e p si z es.  Alt h o u g h i m pl e m e nt ati o n ef fi ci e n c y is e ns ur e d, t h e-
or eti c al g u ar a nt e es ar e c h all e n gi n g t o o bt ai n.  T his is b e c a us e
f (x k + 1 ) ≤ f (x k ) c a n n ot b e g u ar a nt e e d  wit h o ut li n e s e ar c h
or s m o ot h st e p si z es. F ast er r at es f or p ar a m et er-fr e e F W ar e
r at h er li mit e d i n n u m b er. I n a r e c e nt  w or k [ 2 2], t h e b e h a vi or of
F W  w h e n k is l ar g e a n d X is a p ol yt o p e is i n v esti g at e d u n d er
t h e str o n g ass u m pti o ns o n f (x ) b ei n g t wi c e diff er e nti a bl e a n d
l o c all y str o n gl y c o n v e x ar o u n d x ∗ .  H e n c e, t h e a n al ysis d o es
n ot h ol d f or e. g., t h e  H u b er l oss,  w hi c h is  wi d el y us e d i n r o b ust
r e gr essi o n b ut is o nl y o n c e- diff er e nti a bl e.  T h e f ast er r at es, al o n g
wit h t h e ass u m pti o ns o n f a n d X , ar e s u m m ari z e d i n  Ta bl e I f or
c o m p aris o n.  T o est a blis h f ast er r at es, o ur s ol uti o n c o n n e cts t h e
F W s u b pr o bl e m  wit h  N est er o v’s  m o m e nt u m,  w hi c h is r e c a p p e d
n e xt.

N est er o v  m o m e nt u m. Aft er t h e O ( 1
k 2 ) c o n v er g e n c e r at e  w as

est a blis h e d i n [ 3], [ 2 8], t h e ef fi ci e n c y of  N est er o v  m o m e nt u m
is pr o v e n al m ost u ni v ers al; s e e e. g., t h e a c c el er at e d pr o xi m al
gr a di e nt [ 5], [ 2 9], pr oj e ct e d  A G M [ 4], [ 5] f or pr o bl e ms  wit h c o n-
str ai nts; a c c el er at e d  mirr or d es c e nt [ 4], [ 5], [ 3 0], a n d a c c el er at e d
v ari a n c e r e d u cti o n f or pr o bl e ms  wit h fi nit e-s u m str u ct ur es [ 3 1],
[ 3 2]. P ar all el t o t h es e  w or ks,  A G M h as b e e n als o i n v esti g at e d
fr o m a n or di n ar y diff er e nti al e q u ati o n ( O D E) p ers p e cti v e [ 3 0],
[ 3 3] –[ 3 5].  H o w e v er, t h e ef fi ci e n c y of  N est er o v  m o m e nt u m o n
F W t y p e al g orit h ms is s h a d e d gi v e n t h e l o w er b o u n d o n t h e
n u m b er of s u b pr o bl e ms [ 7], [ 1 8].  A  m e a ns t o bri n gi n g  m o m e n-
t u m i nt o F W is t o a d o pt c o n diti o n al gr a di e nt sli di n g ( C G S) [ 3 6],

w h er e t h e pr oj e cti o n s u b pr o bl e m i n t h e ori gi n al  A G M is s u b-
stit ut e d b y gr a di e nt sli di n g  w hi c h s ol v es a s e q u e n c e of F W
s u b pr o bl e ms.  T h e f ast er r at e O ( 1

k 2 ) i s o bt ai n e d  wit h t h e pri c e of:
i) t h e r e q uir e m e nt of at  m ost O (k ) F W s u b pr o bl e ms i n t h e k t h
it er ati o n; a n d ii) a n i n ef fi ci e nt i m pl e m e nt ati o n ( e. g., t h e  A G M
s u b pr o bl e m h as t o b e s ol v e d t o c ert ai n a c c ur a c y, a n d it r eli es
o n ot h er p ar a m et ers t h at ar e n ot n e c ess ar y i n F W, s u c h as t h e
di a m et er of X ).

Alt h o u g h p ar a m et er-fr e e F W is u n d o u bt e dl y attr a cti v e i n s e v-
er al a p pli c ati o ns, t h er e ar e t w o  m ai n c h all e n g es i n est a blis hi n g
f ast er r at es f or s u c h st e p si z es: i) e v e n  A G M a n d  m ost of its
v ari a nts ar e n ot p ar a m et er-fr e e si n c e t h e y i n v ol v e a s m o ot h n ess
p ar a m et er; a n d ii) p ar a m et er-fr e e F W i n g e n er al c a n n ot e ns ur e
p er st e p d es c e nt,  w hi c h is ess e nti al f or f ast er r at es.  T o o v er c o m e
t h es e c h all e n g es,  w e first u n v eil t h e li n ks b et w e e n t h e n oti o n of
m o m e nt u m a n d t h e F W s u b pr o bl e m.  T h e n,  w e l e v er a g e t h es e
c o n n e cti o ns t o pr o vi d e pr o v a bl e c o nstr ai nt- d e p e n d e nt f ast er
r at es.

B.  O ur  C o ntri b uti o ns

I n s u c ci n ct f or m, o ur c o ntri b uti o ns ar e as f oll o ws.
•  We o bs er v e t h at t h e  m o m e nt u m u p d at e i n  A G M pl a ys

a si mil ar r ol e as t h e s u b pr o bl e m i n F W, i nt uiti v el y a n d
a n al yti c all y.  H e n c e, t h e F W s u b pr o bl e m c a n b e l e v er a g e d
t o pl a y t h e r ol e of  N est er o v’s  m o m e nt u m, t h us e n a bli n g
f ast er r at es o n a us ef ul f a mil y of pr o bl e ms.

•  We pr o v e t h at a  m o m e nt u m- g ui d e d F W, t er m e d a c c el er at e d
Fr a n k  W olf e ( A F W), a c hi e v es a f ast er r at e ˜O ( 1

k 2 ) o n a cti v e

p n or m b all c o nstr ai nts  wit h o ut k n o wl e d g e of t h e s m o ot h-
n ess p ar a m et er or t h e f u n cti o n v al u e.  We als o est a blis h t h at
A F W c o n v er g es n o sl o w er t h a n F W o n g e n er al pr o bl e ms.

•  We c orr o b or at e t h e n u m eri c al ef fi ci e n c y of  A F W o n t w o
b e n c h m ar k t as ks.  We v ali d at e f ast er  A F W r at es o n bi n ar y
cl assi fi c ati o n pr o bl e ms  wit h diff er e nt c o nstr ai nt s ets.  We
f urt h er d e m o nstr at e t h at f or  m atri x c o m pl eti o n,  A F W fi n ds
l o w-r a n k s ol uti o ns  wit h s m all o pti m alit y err or  m or e r a pi dl y
t h a n F W.

N ot ati o n: B ol d l o w er c as e l ett ers d e n ot e c ol u m n v e ct ors; x
st a n ds f or t h e 2 n or m of a v e ct or x ; a n d x , y d e n ot es t h e
i n n er pr o d u ct b et w e e n v e ct ors x a n d y .  All  missi n g pr o ofs c a n
b e f o u n d i n t h e  A p p e n di x.

II. PR E LI MI N A R Y

T his s e cti o n bri e fl y r e vi e ws F W st arti n g  wit h t h e ass u m pti o ns
t o cl arif y t h e cl ass of pr o bl e ms  w e ar e f o c usi n g o n.
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Al g o rit h m 1: F W [ 6].

1: I niti ali z e: x 0 ∈ X , δ k = 2
k + 2 , ∀ k .

2: f o r k = 0 , 1 , . . . , K − 1 d o
3: v k + 1 = ar g  mi n x ∈ X ∇ f (x k ) , x
4: x k + 1 = ( 1 − δ k ) x k + δ k v k + 1

5: e n d f o r
6: R et u r n: x K

A ss u m pti o n 1: ( Li ps c hit z  C o nti n u o us  Gr a di e nt.)  T h e f u n c-
ti o n f : R d → R h as L - Li p c hit z c o nti n u o us gr a di e nts; t h at is,
∇ f (x ) − ∇ f (y ) ≤ L x − y , ∀ x , y ∈ R d .
Ass u m pti o n 2: ( C o n v e x  O bj e cti v e F u n cti o n.)  T h e f u n cti o n

f : R d → R is c o n v e x; t h at is, f (y ) − f (x ) ≥ ∇ f (x ), y −
x , ∀ x , y ∈ R d .

Ass u m pti o n 3: ( C o nstr ai nt S et.)  T h e c o nstr ai nt s et X is
c o n v e x a n d c o m p a ct  wit h di a m et er D , t h at is, x − y ≤
D, ∀ x , y ∈ X .

Ass u m pti o ns 1 – 3 ar e st a n d ar d f or F W t y p e al g orit h ms, a n d
t h e y ar e ass u m e d t o h ol d tr u e t hr o u g h o ut.

F W is s u m m ari z e d i n  Al g. 1.  A s u b pr o bl e m  wit h a li n e ar l oss
n e e ds t o b e s ol v e d t o o bt ai n v k + 1 p er it er ati o n.  T his s u b pr o bl e m
is als o r ef err e d t o as a n F W st e p , a n d it a d mits a g e o m etri c al
e x pl a n ati o n. I n p arti c ul ar, v k + 1 c a n b e r e writt e n as

v k + 1 = ar g  mi n
x ∈ X

f ( x k ) + ∇ f (x k ) , x − x k . ( 2)

N oti ci n g t h at t h e  R H S of ( 2) is a s u p p orti n g h y p er pl a n e of f (x )
as x k , it is t h us cl e ar t h at v k + 1 i s a  mi ni mi z er of t his s u p p orti n g
h y p er pl a n e o v er X .  N ot e als o t h at t h e s u p p orti n g h y p er pl a n e i n
( 2) is als o a gl o b al l o w er b o u n d of f (x ) d u e t o t h e c o n v e xit y of
f , i. e., f (x ) ≥ f (x k ) + ∇ f (x k ) , x − x k .  U p o n  mi ni mi zi n g
t his l o w er b o u n d i n ( 2) t o o bt ai n v k + 1 , x k + 1 i s u p d at e d as a
c o n v e x c o m bi n ati o n of v k + 1 a n d x k t o eli mi n at e t h e pr oj e cti o n.

N e xt,  w e bri e fl y r e c a p t h e st e p si z es f or F W t o g ai n i nsi g hts
o n  w h y t h e p ar a m et er-fr e e F W is c h all e n gi n g t o a n al y z e.

S m o ot h st e p siz e. At t h e k t h it er ati o n, t h e st e p si z e δ k i n  Al g. 1
is o bt ai n e d as

δ k = ar g  mi n
δ ∈ [ 0,1]

δ ∇ f (x k ) , v k + 1 − x k +
δ 2 L

2
v k + 1 − x k

2 .

Cl e arl y, it is i m p er ati v e t o esti m at e L a c c ur at el y b e c a us e t his
esti m at e  m ar k e dl y i n fl u e n c es t h e p erf or m a n c e. It h as als o b e e n
ar g u e d t h at al g orit h ms r el yi n g o n a g u ess of L ar e n ot r o b ust [ 3 7].
T u ni n g t o fi n d t h e ‘ b est’ L is e m pl o y e d i n pr a cti c e t o o pti mi z e t h e
p erf or m a n c e e m piri c all y.  O n t h e ot h er h a n d, s m o ot h st e p si z es
e ns ur e d es c e nt p er it er ati o n,  w hi c h is a n al yti c all y attr a cti v e.
I n d e e d,  Ass u m pti o n 1 i m pli es t h at

f (x k + 1 ) − f (x k )

≤ ∇ f (x k ) , x k + 1 − x k +
L

2
x k + 1 − x k

2

( a )
= δ k ∇ f (x k ) , v k + 1 − x k +

δ 2
k L

2
v k + 1 − x k

2
( b )

≤ 0 ( 3)

w h er e ( a) us es x k + 1 = ( 1 − δ k ) x k + δ k v k + 1 , a n d ( b) h ol ds
b e c a us e δ k mi ni mi z es t h e  R H S of ( 3) o v er [ 0, 1].

Al g o rit h m 2: A G M [ 3].

1: I niti ali z e: x 0 = v 0 , δ k = 2
k + 2 , μ 0 = L ,

μ k + 1 = ( 1 − δ k ) μ k .
2: f o r k = 0 , 1 , . . . , K − 1 d o
3: y k = δ k v k + ( 1 − δ k ) x k

4: x k + 1 = y k − 1
L ∇ f (y k )

5: v k + 1 = v k − δ k

μ k + 1
∇ f ( y k )

6: e n d f o r
7: R et u r n: x K

Li n e s e ar c h. A n alt er n ati v e t o t u n e f or t h e b est L is t o e m pl o y
li n e s e ar c h f or d et er mi ni n g t h e l o c al s m o ot h n ess p ar a m et er. I n
p arti c ul ar, t h e st e p si z e is c h os e n as δ k = ar g  mi n δ ∈ [ 0,1] f ( ( 1 −
δ )x k + δ v k + 1 ) .  H o w e v er, t h e pri c e p ai d is t h e n e e d t o c o m p ut e
f (x ),  w hi c h is i n ef fi ci e nt  w h e n f u n cti o n e v al u ati o n is c ostl y
( e. g., i n bi g- d at a r e gi m es).  N ot e t h at f (x k + 1 ) ≤ f (x k ) is a ut o-
m ati c all y e ns ur e d b y li n e s e ar c h.

P ar a m et er-fr e e st e p siz e. T his t y p e of st e p si z es d o es n ot r el y
o n L or ot h er p ar a m et ers, a n d h e n c e it is e xtr e m el y e as y t o
i m pl e m e nt.  T w o p ossi bl e c h oi c es ar e δ k = 2

k + 2 or δ k = 1
k + 1 .

H o w e v er, t h es e st e p si z es d o n ot g u ar a nt e e d es c e nt p er it er ati o n,
w hi c h b e c o m es t h e b ottl e n e c k f or est a blis hi n g f ast er r at es o n
s p e ci fi c c o nstr ai nt s ets.  O ur i nsi g ht t o o v er c o m e t his c o m es fr o m
t h e o bs er v ati o n t h at t h e F W st e p is si mil ar t o t h e  m o m e nt u m i n
A G M f or c o n v e x pr o bl e ms.  H e n c e, t h e F W st e p its elf c a n b e
us e d as a n a p pr o xi m at e  m o m e nt u m.

III.  CO N N E C TI N G M O M E N T U M W I T H F W

T o bri n g i nt uiti o n o n h o w  m o m e nt u m c a n b e h el pf ul f or F W
t y p e al g orit h ms,  w e first r e c a p  A G M f or u n c o nstr ai n e d c o n v e x
pr o bl e ms, i. e., X = R d .  N ot e t h at t h e r e as o n f or dis c ussi n g
t h e u n c o nstr ai n e d pr o bl e m h er e is o nl y f or t h e si m pli cit y of
e x p ositi o n, a n d o n e c a n e xt e n d t h e ar g u m e nts t o c o nstr ai n e d
c as es str ai g htf or w ar dl y.  A G M [ 3], [ 4], [ 2 8] is s u m m ari z e d i n
Al g. 2.  We st art t his s e cti o n b y c h ar a ct eri zi n g t h e b e h a vi or of
{ x k } , { y k } a n d { v k } i n t h e n e xt t h e or e m.

T h e or e m 1: U n d er  Ass u m pti o ns 1 a n d 2,  wit h δ k = 2
k + 3 ,

μ 0 = 2 L , a n d μ k + 1 = ( 1 − δ k ) μ k ,  A G M i n  Al g. 2 g u ar a nt e es
t h at

f (x k ) − f (x ∗ ) = O
f (x 0 ) − f (x ∗ ) + L x 0 − x ∗ 2

k 2
, ∀ k.

∇ f (y k ) 2 ≤ O
L f (x 0 ) − f (x ∗ ) + L x 0 − x ∗ 2

( k + 2) 2
, ∀ k.

I n a d diti o n, it h ol ds f or a n y k t h at v k − x ∗ 2 ≤ 1
L ( f (x 0 ) −

f (x ∗ ) + L x 0 − x ∗ 2 ) .
T h e or e m 1 s h o ws t h at ∇ f (y k ) 2 = O ( 1

k 2 ) ,  w hi c h i m pli es
t h at y k als o c o n v er g es t o a  mi ni mi z er as k → ∞ .  T hr o u g h t h e
i n cr e asi n g st e p si z e δ k

μ k + 1
= O ( k

L ) , t h e u p d at e of v k st a ys i n t h e

b all c e nt er e d at x ∗ wit h r a di us d e p e n di n g o n b ot h x ∗ a n d x 0 .
O n e o bs er v ati o n of  A G M is t h at b y s u bstit uti n g  Li n e 5 i n

Al g. 2  wit h v k + 1 = x k + 1 , t h e  m o di fi e d al g orit h m b oils d o w n t o
G D.  H e n c e, it is cl e ar t h at t h e k e y b e hi n d  A G M’s a c c el er ati o n
is v k a n d t h e  w a y it is u p d at e d.  We c o nt e n d t h at t h e v k + 1 i s
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Fi g. 1. Si mil arit y b et w e e n t h e  R H S of ( 2) a n d ( 4).

o bt ai n e d b y  mi ni mi zi n g a n a p pr o xi m at e d l o w er b o u n d of f (x )
f or m e d as t h e s u m m ati o n of a s u p p orti n g h y p er pl a n e at y k a n d
a r e g ul ari z er.  T o s e e t his, o n e c a n r e writ e  Li n e 5 of  A G M as

v k + 1 = ar g  mi n
x ∈ R d

f ( y k ) + ∇ f (y k ) , x − y k

s u p p orti n g h y p er pl a n e

+
μ k + 1

2 δ k
x − v k

2

r e g ul ari z er

( 4)

w h er e t h e li n e ar p art is t h e s u p p orti n g h y p er pl a n e, a n d μ k + 1

δ k
=

O ( L
k ) . As k i n cr e as es, t h e i m p a ct of t h e r e g ul ari z er μ k + 1

2 δ k
x −

v k
2 i n ( 4)  will b e c o m e li mit e d.  T h us t h e  R H S c a n b e vi e w e d

as a n a p pr o xi m at e d l o w er b o u n d of f (x ).  R e g ar di n g t h e r e a-
s o ns t o p ut a r e g ul ari z er aft er t h e s u p p orti n g h y p er pl a n e, it
first g u ar a nt e es t h e  mi ni mi z er e xists si n c e dir e ctl y  mi ni mi z e
t h e s u p p orti n g h y p er pl a n e o v er R d yi el ds n o s ol uti o n. I n a d-
diti o n, v k + 1 i s e ns ur e d t o b e u ni q u e b e c a us e t h e  R H S of ( 4)
is str o n gl y c o n v e x t h a n ks t o t h e r e g ul ari z er. Si n c e v k + 1 mi n-
i mi z es a n a p pr o xi m at e d l o w er b o u n d of f (x ), it c a n b e us e d
t o esti m at e f (x ∗ ) .  We e x pl ai n i n  T h e or e m 4 i n  A p p e n di x  B
t h at f (y k ) + ∇ f (y k ) , v k + 1 − y k a p pr o xi m at es f (x ∗ ) .  C o n-
s e q u e ntl y, o n e c a n o bt ai n a n esti m at e d s u b o pti m alit y g a p usi n g
f (x k + 1 ) − f (y k ) − ∇ f (y k ) , v k + 1 − y k .

M o m e nt u m v k u p d at e as a n  F W st e p. It is o bs er v e d t h at
v k + 1 i n b ot h F W a n d  A G M ( cf. ( 2) a n d ( 4)) ar e o bt ai n e d b y
mi ni mi zi n g a n ( a p pr o xi m at e d) l o w er b o u n d of f (x ),  w h er e t h e
o nl y diff er e n c e li es o n  w h et h er a r e g ul ari z er  wit h d e cr e asi n g
w ei g hts is utili z e d.  T h e si mil arit y b et w e e n t h e  R H S of ( 2) a n d
( 4)  will b e a m pli fi e d  w h e n k is l ar g e; s e e Fi g. 1 f or a gr a p hi c al
ill ustr ati o n o n h o w ( 4) a p pr o a c h es t o a n af fi n e f u n cti o n. I n
ot h er  w or ds, t h e  m o m e nt u m u p d at e i n ( 4) b e c o m es si mil ar t o
a n F W st e p f or a l ar g e k . I n a d diti o n, t h er e ar e als o s e v er al ot h er
c o n n e cti o ns.

C o n n e cti o n 1. T h e v k + 1 u p d at e vi a ( 4) is e q ui v al e nt t o

v k + 1 = ar g  mi n
v ∈ V k

∇ f ( y k ) , v − y k ( 5)

f or V k : = { v | v − v k
2 ≤ r k } wit h r k d e n oti n g t h e ti m e-

v ar yi n g r a di us of t h e n or m b all.  Cl e arl y, r k d e p e n ds o n μ k + 1

2 δ k
,

a n d it is u p p er b o u n d e d b y 2
L ( f (x 0 ) − f (x ∗ ) + L x 0 − x ∗ 2 )

a c c or di n g t o  T h e or e m 1.  B y r e writi n g ( 4) i n its c o nstr ai n e d
f or m ( 5), it c a n b e r e a dil y r e c o g ni z e d t h at f or u n c o nstr ai n e d
pr o bl e ms N est er o v  m o m e nt u m c a n b e o bt ai n e d vi a  F W st e ps
wit h ti m e- v ar yi n g c o nstr ai nt s ets.

Al g o rit h m 3: A F W.

1: I niti ali z e: x 0 = v 0 ∈ X , θ 0 = 0 , δ k = 2
k + 3 , ∀ k .

2: f o r k = 0 , 1 , . . . , K − 1 d o
3: y k = ( 1 − δ k ) x k + δ k v k

4: θ k + 1 = ( 1 − δ k ) θ k + δ k ∇ f (y k )
5: v k + 1 = ar g  mi n x ∈ X θ k + 1 , x
6: x k + 1 = ( 1 − δ k ) x k + δ k v k + 1

7: e n d f o r
8: R et u r n: x K

C o n n e cti o n 2. R e c all t h at i n  A G M, v k + 1 o bt ai n e d vi a ( 4) is
us e d t o c o nstr u ct a n a p pr o xi m ati o n of f (x ∗ ) ,  w hi c h is f (y k ) +
∇ f (y k ) , v k + 1 − y k .  W h e n a c o m p a ct X is pr es e nt, dir e ctl y

mi ni mi zi n g t h e s u p p orti n g h y p er pl a n e f (y k ) + ∇ f (y k ) , x −
y k o v er X als o yi el ds a n esti m at e of f (x ∗ ) .  N ot e t h at t h e l att er
is e x a ctl y a n F W st e p. I n a d diti o n, t h e F W st e p i n  Al g. 1 als o
r es ults i n a s u b o pti m alit y g a p ( k n o w n as F W g a p; s e e e. g., [ 7]),
w hi c h is i n li n e  wit h t h e r ol e of v k i n  A G M. I n a n uts h ell, b ot h
F W st e p a n d  m o m e nt u m u p d at e i n  A G M r es ult i n a n esti m at e d
s u b o pti m alit y g a p.

C o n n e cti o n 3. C o n n e cti o ns b et w e e n  m o m e nt u m a n d F W g o
b e y o n d c o n v e xit y.  We dis c uss i n  A p p e n di x  C t h at  A G M f or
str o n gl y c o n v e x pr o bl e ms u p d at es its  m o m e nt u m usi n g e x a ctl y
t h e s a m e i d e a of F W, t h at is, b ot h o bt ai n a  mi ni mi z er of a l o w er
b o u n d of f (x ), a n d t h e n p erf or m a n u p d at e t hr o u g h a c o n v e x
c o m bi n ati o n.

T h es e li n ks a n d si mil ariti es b et w e e n  m o m e nt u m a n d F W
n at ur all y l e a d us t o e x pl or e t h eir c o n n e cti o ns, a n d s e e h o w
m o m e nt u m i n fl u e n c es F W.

I V.  MO M E N T U M - GUI D E D F W

I n t his s e cti o n  w e s h o w t h at t h e  m o m e nt u m is b e n e fi ci al f or
F W b y pr o vi n g t h at it is eff e cti v e at l e ast o n c ert ai n c o nstr ai nt
s ets. S p e ci fi c all y,  w e  will f o c us o n t h e a c c el er at e d Fr a n k  W olf e
( A F W) s u m m ari z e d i n  Al g. 3, a n d a n al y z e its c o n v er g e n c e
r at e. Si n c e  w e  will s e e l at er t h at δ k = 2

k + 3 ∈ ( 0 , 1) , ∀ k , f or
w hi c h y k , v k a n d x k li e i n X f or all k ,  A F W is pr oj e cti o n
fr e e.  Al b eit r ar el y, it is s af e t o c h o os e v k + 1 = v k , a n d pr o c e e d
w h e n θ k + 1 = 0 .  N ot e t h at t h e x k + 1 u p d at e i n  A F W is sli g htl y
diff er e nt  wit h t h at of  A G M.  T his is b e c a us e  A G M g u ar a n-
t e es f (x k + 1 ) ≤ f (y k ) , ∀ k, t a ki n g a d v a nt a g e of t h e k n o w n L .
H o w e v er, t h e s a m e g u ar a nt e e is dif fi c ult t o b e r e pli c at e d i n a
p ar a m et er-fr e e al g orit h m.

T h e k e y t o  A F W is t h e v k + 1 u p d at e,  w hi c h pl a ys t h e r ol e
of  m o m e nt u m.  T o s e e t his, if o n e u nr olls θ k + 1 ( cf. ( 2 2) i n
A p p e n di x) a n d pl u gs it i nt o  Li n e 5 of  Al g. 3, v k + 1 c a n b e
e q ui v al e ntl y r e writt e n as

v k + 1 = ar g  mi n
x ∈ X

k

τ = 0

w τ [f (y τ ) + ∇ f (y τ ) , x − y τ ] ( 6)

w h er e w τ = δ τ
k
j = τ + 1 ( 1 − δ j ) a n d k

τ = 0 w τ ≈ 1 (t h e e x a ct
v al u e of t h e s u m d e p e n ds o n t h e c h oi c e of δ τ ).  N ot e t h at
f (y τ ) + ∇ f (y τ ) , x − y τ i s a s u p p orti n g h y p er pl a n e of f (x )
at y τ , h e n c e t h e ri g ht- h a n d si d e ( R H S) of ( 6) is a l o w er b o u n d
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f or f (x ) c o nstr u ct e d t hr o u g h a  w ei g ht e d a v er a g e of s u p p orti n g
h y p er pl a n es at { y τ } . I n ot h er  w or ds, v k + 1 i s a  mi ni mi z er of a
l o w er b o u n d of f (x ), h e n c e it is i n li n e  wit h t h e r ol e of  m o m e n-
t u m.  H o w e v er, t h e  m o m e nt u m i n  A F W diff ers fr o m  A G M i n t w o
as p e cts. First, i nst e a d of r el yi n g o n ∇ f (y k ) , t h e u p d at e of v k + 1

utili z es c o ef fi ci e nt θ k + 1 ,  w hi c h is (r o u g hl y) a  w ei g ht e d a v er a g e
of p ast gr a di e nts { ∇ f (y τ ) } k

τ = 1 wit h  m or e  w ei g ht pl a c e d o n
r e c e nt o n es.  T h e s e c o n d diff er e n c e o n t h e v k + 1 u p d at e  wit h
A G M is  w h et h er a r e g ul ari z er is us e d.  As a c o ns e q u e n c e of t h e
n o n-r e g ul ari z e d l o w er b o u n d ( 6), its  mi ni mi z er is n ot g u ar a nt e e d
t o b e u ni q u e.  A si m pl e e x a m pl e is t o c o nsi d er t h e it h e ntr y
[θ k + 1 ]i = 0 . T h e it h e ntr y [v k + 1 ]i c a n t h e n b e c h os e n ar bitr aril y
as l o n g as v k + 1 ∈ X .  T his s u btl e diff er e n c e l e a ds t o a si g ni fi c a nt
g a p b et w e e n t h e p erf or m a n c e of  A F W a n d  A G M, t h at is,  A F W
c a n n ot a c hi e v e a c c el er ati o n o n g e n er al pr o bl e ms, as  will b e
ill ustr at e d s h ortl y.  H o w e v er,  w e c o n fir m t h at  m o m e nt u m is still
h el pf ul si n c e it is eff e cti v e o n a cl ass of pr o bl e ms.

A.  A F W  C o n v er g e n c e f or  G e n er al  Pr o bl e ms

T h e a n al ysis of  A F W r eli es o n a t o ol k n o w n as esti m at e
s e q u e n c e ( E S) i ntr o d u c e d b y [ 3].  E S is c o m m o nl y a d o pt e d t o
a n al y z e pr oj e cti o n b as e d al g orit h ms; s e e e. g., [ 3 1], [ 3 2], [ 3 8],
[ 3 9], b ut s el d o ml y us e d f or F W. F or m all y,  E S is d e fi n e d as
f oll o ws.

D e fi niti o n 1: ( E S.)  A t u pl e ({ Φ k ( x )} ∞
k = 0 , { λ k } ∞

k = 0 ) i s c all e d
a n esti m at e s e q u e n c e of f u n cti o n f (x ) if li mk → ∞ λ k = 0 , a n d
f or a n y x ∈ R d w e h a v e

Φ k ( x ) ≤ ( 1 − λ k ) f (x ) + λ k Φ 0 ( x ).

E S is g e n er all y n ot u ni q u e a n d diff er e nt c o nstr u cti o ns c a n
b e us e d t o d esi g n diff er e nt al g orit h ms.  T o hi g hli g ht o ur a n al ysis
t e c h ni q u e, r e c all t h at q u a dr ati c s urr o g at e f u n cti o ns { Φ k ( x )} ar e
us e d f or t h e d eri v ati o n of  A G M [ 3] ( or s e e ( 1 2) i n  A p p e n di x).
Diff er e nt fr o m  A G M, a n d t a ki n g a d v a nt a g e of t h e c o m p a ct
c o nstr ai nt s et, h er e  w e c o nsi d er li n e ar s urr o g at e f u n cti o ns f or
A F W

Φ 0 ( x ) ≡ f (x 0 ) ( 7 a)

Φ k + 1 ( x ) = ( 1 − δ k ) Φ k ( x )

+ δ k f (y k ) + ∇ f (y k ) , x − y k , ∀ k ≥ 0 . ( 7 b)

E vi d e n c e d b y t h e t er ms i n t h e br a c k et of ( 7 b), i. e., it is a
s u p p orti n g h y p er pl a n e of f (x ), Φ k + 1 ( x ) is a n a p pr o xi m at e d
l o w er b o u n d of f (x ) c o nstr u ct e d b y  w ei g hti n g t h e s u p p orti n g
h y p er pl a n es at { y τ } k

τ = 0 .  N e xt,  w e s h o w t h at ( 7) t o g et h er  wit h
pr o p er { λ k } f or ms a n  E S f or f .  T hr o u g h t h e  E S b as e d pr o of, it
is als o r e v e al e d t h at t h e li n k b et w e e n t h e  m o m e nt u m i n  A G M
a n d t h e F W st e p is als o i n t h e t e c h ni c al pr o of l e v el.

L e m m a 1: Wit h λ 0 = 1 a n d λ k = λ k − 1 ( 1 − δ k − 1 ) , t h e t u pl e
({ Φ k ( x )} ∞

k = 0 , { λ k } ∞
k = 0 ) i n ( 7) is a n E S of f (x ).

Usi n g pr o p erti es of t h e f u n cti o ns i n ( 7) ( cf.  L e m m a 4 i n
A p p e n di x  E), t h e f oll o wi n g l e m m a h ol ds f or  A F W.

L e m m a 2: Wit h Φ ∗
k : =  mi nx ∈ X Φ k ( x ),  A F W is g u ar a nt e e d

t o s atisf y f (x k + 1 ) ≤ Φ ∗
k + 1 + ξ k + 1 , ∀ k ,  w h er e ξ k + 1 = ( 1 −

δ k ) ξ k +
L δ 2

k

2 v k + 1 − v k
2 a n d ξ 0 = 0 .

L e v er a gi n g  L e m m a 2, t h e c o n v er g e n c e r at e of  A F W f or
g e n er al pr o bl e ms c a n b e est a blis h e d.

T h e or e m 2: W h e n  Ass u m pti o ns 1, 2 a n d 3 ar e s atis fi e d, u p o n
c h o osi n g δ k = 2

k + 3 a n d θ 0 = 0 ,  A F W g u ar a nt e es

f (x k ) − f (x ∗ ) ≤
2 ( f (x 0 ) − f (x ∗ ) )

(k + 1)( k + 2)
+

2 L D 2

k + 2
, ∀ k.

T h e or e m 2 ass erts t h at t h e c o n v er g e n c e r at e of  A F W is
O ( L D 2

k ) , c oi n ci di n g  wit h t h at of F W [ 7].  N ot wit hst a n di n g,
A F W is ti g ht i n t er ms of t h e n u m b er of F W st e ps r e q uir e d.  T o
s e e t his, n ot e t h at t h e c o n v er g e n c e r at e i n  T h e or e m 2 tr a nsl at es t o
r e q uiri n g O ( L D 2

) F W st e ps t o g u ar a nt e e f (x k ) − f (x ∗ ) ≤ .
T his  m at c h es t h e l o w er b o u n d [ 7], [ 4 0]. Si mil ar t o ot h er F W
v ari a nts, a c c el er ati o n f or  A F W c a n n ot b e cl ai m e d f or g e n er al
pr o bl e ms.  A F W h o w e v er, is attr a cti v e n u m eri c all y b e c a us e it
c a n all e vi at e t h e zi g- z a g b e h a vi or 1 of F W, as  w e  will s e e i n
S e cti o n  V.

W h y a c c el e r ati o n c a n n ot b e a c hi e v e d i n g e n e r al ? R e c all
fr o m  L e m m a 2, t h at criti c al t o a c c el er ati o n is e ns uri n g a s m all
ξ k ,  w hi c h i n t ur n r e q uir es v k + 1 a n d v k t o st a y s uf fi ci e ntl y cl os e.
T his is dif fi c ult i n g e n er al b e c a us e t h e n o n- u ni q u e n ess of v k pr e-
v e nts o n e fr o m e ns uri n g a s m all u p p er b o u n d of v k − v k + 1

2

∀ v k , ∀ v k + 1 .  T h e i n eff e cti v e n ess of  m o m e nt u m i n  A F W i n
t ur n si g ni fi es t h e i m p ort a n c e of t h e a d d e d r e g ul ari z er i n  A G M
m o m e nt u m u p d at e ( 4).

B.  A F W  A c c el er ati o n f or a  Cl ass of  Pr o bl e ms

I n t his s u bs e cti o n,  w e pr o vi d e c o nstr ai nt- d e p e n d e nt a c c el er-
at e d r at es of  A F W  w h e n X is a b all i n d u c e d b y s o m e n or m.
E v e n f or pr oj e cti o n b as e d al g orit h ms,  m ost a c c el er at e d r at es ar e
o bt ai n e d  wit h L - d e p e n d e nt st e p si z es [ 4 1].  T h us, f ast er r at es f or
p ar a m et er-fr e e al g orit h ms ar e c h all e n gi n g t o est a blis h.  A n e xtr a
ass u m pti o n is n e e d e d i n t his s u bs e cti o n.

Ass u m pti o n 4: T h e c o nstr ai nt is a cti v e; t h at is, ∇ f (x ∗ ) 2 ≥
G > 0 .

T o a n al y z e c o n v er g e n c e of F W it er ati o ns, it is r e as o n a bl e
t o r el y o n t h e p ositi o n of t h e o pti m al s ol uti o n,  w hi c h j usti fi es
w h y t his ass u m pti o n is als o a d o pt e d i n [ 1 9], [ 2 6], [ 4 2], [ 4 3].
F or a n u m b er of si g n al pr o c essi n g a n d  m a c hi n e l e ar ni n g t as ks,
Ass u m pti o n 4 is r at h er  mil d.  R el yi n g o n  L a gr a n gi a n d u alit y,
it c a n b e s e e n t h at pr o bl e m ( 1)  wit h a n or m b all c o nstr ai nt is
e q ui v al e nt t o t h e r e g ul ari z e d f or m ul ati o n mi n x f (x ) + γ g (x ),
w h er e γ ≥ 0 is t h e  L a gr a n g e  m ulti pli er, a n d g (x ) d e n ot es s o m e
n or m. I n vi e w of t his,  Ass u m pti o n 4 si m pl y r e q uir es γ > 0 i n
t h e e q ui v al e nt r e g ul ari z e d f or m ul ati o n, t h at is, t h e n or m b all
c o nstr ai nt pl a ys t h e r ol e of a r e g ul ari z er.  Gi v e n t h e pr e v al e n c e
of r e g ul ari z e d f or m ul ati o ns, it is  w ort h i n v esti g ati n g t h eir e q ui v-
al e nt c o nstr ai n e d f or m ( 1) u n d er  Ass u m pti o n 4.  N e xt,  w e  will
us e t h e 2 n or m b all c o nstr ai nts t o ill ustr at e t h e i nt uiti o n b e hi n d
t h e a c c el er ati o n.

2 n o r m b all c o nst r ai nt. C o nsi d er X : = { x | x 2 ≤ D
2 } . I n

t his c as e, v k + 1 a d mits a cl os e d-f or m s ol uti o n

v k + 1 = ar g  mi n
x ∈ X

θ k + 1 , x = −
D

2 θ k + 1 2
θ k + 1 . ( 8)

T h e u ni q u e n ess of v k + 1 i s e ns ur e d b y its cl os e d-f or m s ol uti o n,
wi pi n g o ut t h e o bst a cl e f or a f ast er r at e. I n a d diti o n, t hr o u g h

1 T h e c h a n g e b et w e e n f ( x k + 1 ) a n d f ( x k ) is l ar g e  wit h hi g h fr e q u e n c y, s o
zi g- z a g e m er g es  w h e n pl otti n g f ( x k ) − f ( x ∗ ) v ers us k .
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( 8) it b e c o m es p ossi bl e t o g u ar a nt e e t h at v k + 1 a n d v k ar e cl os e
w h e n e v er θ k i s cl os e t o θ k + 1 .

T h e or e m 3: If  Ass u m pti o ns 1, 2, 3 a n d 4 ar e s atis fi e d, a n d
X is a n 2 n or m b all, c h o osi n g δ k = 2

k + 3 a n d θ 0 = 0 , A F W
g u ar a nt e es a c c el er ati o n  wit h c o n v er g e n c e r at e

f (x k ) − f (x ∗ ) = O mi n
L D 2 T + C l n k

k 2
,
L D 2

k

w h er e C a n d T ar e c o nst a nts d e p e n di n g o n L , D a n d G .
T h e or e m 3 d e m o nstr at es t h at  m o m e nt u m i m pr o v es t h e c o n-

v er g e n c e of F W b y pr o vi di n g a f ast er r at e.  R o u g hl y s p e a ki n g,
w h e n t h e it er ati o n n u m b er k ≥ T , t h e r at e of  A F W d o mi n at es
t h at of F W.  We n ot e t h at t his  m at c h es o ur i nt uiti o n, t h at is, t h e
m o m e nt u m i n  A G M ( 4) o nl y b e h a v es li k e a n af fi n e f u n cti o n
w h e n k is l ar g e (s o t h at t h e  w ei g ht o n t h e r e g ul ari z er is s m all).
I n a d diti o n, t h e r at e i n  T h e or e m 3 c a n b e  writt e n c o m p a ctl y
as ˜O ( T L D 2

k 2 ) , ∀ k , h e n c e it a c hi e v es a c c el er ati o n  wit h a  w ors e
d e p e n d e n c e o n D c o m p ar e d t o v a nill a F W.  N ot e t h at t h e c h oi c e
f or δ k a n d θ 0 r e m ai ns t h e s a m e as t h os e us e d i n g e n er al pr o bl e ms,
l e a di n g t o a n i d e nti c al i m pl e m e nt ati o n t o n o n- a c c el er at e d c as es.
C o m p ar e d  wit h  C G S,  A F W s a cri fi c es t h e D d e p e n d e n c e i n
t h e c o n v er g e n c e r at e t o tr a d e f or i) t h e n o n n e c essit y of t h e
k n o wl e d g e of L a n d D , a n d ii) e ns uri n g o nl y o n e F W s u b pr o bl e m
p er it er ati o n ( w h er e as at  m ost O (k ) s u b pr o bl e ms ar e n e e d e d i n
C G S).

1 n o r m b all c o nst r ai nt. F or t h e s p arsit y- pr o m oti n g c o n-
str ai nt X : = { x | x 1 ≤ R } , t h e F W st e ps c a n b e s ol v e d i n
cl os e d f or m.  Ta ki n g v k + 1 a s a n e x a m pl e,  w e h a v e

v k + 1 = R · [ 0, . . . , 0 , − s g n[ θ k + 1 ]i , 0 , . . . , 0]

wit h i = ar g  m a x
j

|[θ k + 1 ]j |. ( 9)

We s h o w i n t h e  A p p e n di x ( T h e or e m 5) t h at  w h e n  Ass u m pti o n 4
h ol ds a n d t h e s et ar g  m a x j [∇ f (x ∗ )] j h as c ar di n alit y 1, a f ast er

r at e O ( T 1 L D 2

k 2 ) c a n b e o bt ai n e d.  T h e a d diti o n al ass u m pti o n h er e
is k n o w n as stri ct c o m pl e m e nt arit y , a n d h as b e e n a d o pt e d als o
i n, e. g., [ 4 4], [ 4 5] f or a n al ysis.

p n o r m b all c o nst r ai nt. C o nsi d er a n a cti v e p n or m b all
c o nstr ai nt X : = { x | x p ≤ R } ,  w h er e p ∈ ( 1, + ∞ ) a n d p = 2 .
T h e i-t h e ntr y of v k + 1 i s f o u n d i n cl os e d f or m as

[v k + 1 ]i = − [θ k + 1 ]i
[θ k + 1 ]i

q − 2

θ k + 1
q − 1
q

· R

w h er e 1 / p + 1 / q = 1 .  We dis c uss i n  A p p e n di x  B t h at f ast er
r at es ar e p ossi bl e u n d er  mil d c o n diti o ns.  T h o u g h n ot c o v eri n g
all c as es, it still s h o w c as es t h at t h e  m o m e nt u m is p arti all y h el pf ul
f or p ar a m et er-fr e e F W al g orit h ms.

B e y o n d p n o r m b alls. I n g e n er al,  w h e n a s p e ci fi c str u ct ur e
of x ∗ ( e. g., s p arsit y) is pr o m ot e d b y X (s o t h at x ∗ i s li k el y
t o li v e o n t h e b o u n d ar y), a n d o n e c a n e ns ur e t h e u ni q u e n ess
of v k t hr o u g h eit h er a cl os e d-f or m s ol uti o n or a s p e ci fi c i m-
pl e m e nt ati o n, a c c el er ati o n c a n b e eff e ct e d.  A dir e ct e xt e nsi o n
of t h e r es ults i n t his s u bs e cti o n t o  m atri x s p a c e is  w h e n t h e
c o nstr ai nt is a S c h att e n p n or m b all.  T his is b e c a us e X p : =
σ 1 ( X ), σ2 ( X ), . . . , σr ( X ) p ,  w h er e σ i ( X ) d e n ot es t h e it h si n-

g ul ar v al u e of X .  O ur n u m eri c al r es ults c o n fir m t h e a c c el er ati o n
i n S e cti o n  V- B.

T A B L E II
A S U M M A R Y  O F D A T A S E T S U S E D I N N U M E RI C A L T E S T S

Fi g. 2. P erf or m a n c e of  A F W  w h e n t h e o pti m al s ol uti o n is at i nt eri or.

V.  N U M E RI C A L T E S T S

We v ali d at e o ur t h e or eti c al fi n di n gs as  w ell as t h e ef fi ci e n c y
of  A F W o n t w o b e n c h m ar k e d  m a c hi n e l e ar ni n g pr o bl e ms, bi-
n ar y cl assi fi c ati o n a n d  m atri x c o m pl eti o n i n t his s e cti o n.  All
n u m eri c al e x p eri m e nts ar e p erf or m e d usi n g P yt h o n 3. 7 o n a
d es kt o p e q ui p p e d  wit h I nt el i 7- 4 7 9 0  C P U  @ 3. 6 0  G H z ( 3 2  G B
R A M).  A d diti o n al n u m eri c al t ests usi n g ot h er l oss f u n cti o ns a n d
c o nstr ai nts c a n b e f o u n d i n  A p p e n di x  L.

A.  Bi n ar y  Cl assi fi c ati o n

L o gisti c r e gr essi o n f or bi n ar y cl assi fi c ati o n is a d o pt e d t o t est
A F W.  T h e o bj e cti v e f u n cti o n is

f (x ) =
1

n

n

i = 1

l n ( 1  + e x p(− b i a i , x )) ( 1 0)

w h er e (a i , bi ) is t h e (f e at ur e, l a b el) p air of d at u m i a n d n is t h e
t ot al n u m b er of d at a s a m pl es.  D at as ets fr o m  LI B S V M.2 ar e us e d
i n t h e n u m eri c al t ests pr es e nt e d.  D et ails r e g ar di n g t h e d at as ets
ar e s u m m ari z e d i n  Ta bl e II,  w h er e d is t h e di m e nsi o n of x , n is
t h e n u m b er of d at a, a n d ‘ n o n z er os’ r ef ers t o t h e p er c e nt a g e of
n o n z er o e ntri es i n { a i }

n
i = 1 t o r e fl e ct t h e s p arsit y of t h e d at as et.

T h e c o nstr ai nt s ets c o nsi d er e d i n cl u d e 1 a n d 2 n or m b alls.  As
b e n c h m ar ks, t h e c h os e n al g orit h ms ar e: pr oj e ct e d  G D  wit h t h e
st a n d ar d st e p si z e 1

L ; p ar a m et er-fr e e F W  wit h st e p si z e 2
k + 2 [ 7];

a n d pr oj e ct e d  A G M  wit h p ar a m et ers a c c or di n g t o [ 4].  T h e st e p
si z e of  A F W is δ k = 2

k + 3 a c c or di n g t o  T h e or e ms 2 a n d 3.  N ot e
t h at b ot h  G D a n d  A G M ar e n ot p ar a m et er-fr e e.

We first l et X b e a n 2 n or m b all  wit h a l ar g e e n o u g h r a di us
s o t h at ∇ f (x ∗ ) ≈ 1 0 − 4 .  T his c as e  m a ps t o o ur r es ult i n
T h e or e m 2,  w h er e t h e c o n v er g e n c e r at e of  A F W is O ( 1

k ) . T h e
p erf or m a n c e of  A F W is s h o w n i n Fi g. 2.  O n d at as et a 9 a , A F W
sli g htl y o ut p erf or ms  G D a n d F W, b ut is sl o w er t h a n  A G M.

2 [ O nli n e].  A v ail a bl e: htt ps:// w w w. csi e. nt u. e d u.t w/ \ ; cjli n/li bs v mt o ols/
d at as ets/ bi n ar y. ht ml

https://www.csie.ntu.edu.tw/LY1	extbackslash ;cjlin/libsvmtools/datasets/binary.html
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Fi g. 3. P erf or m a n c e of  A F W o n 2 n or m b alls ( first r o w) a n d 1 n or m b alls (s e c o n d r o w).

E vi d e ntl y,  A F W is  m u c h  m or e st a bl e t h a n F W, as o n e c a n s e e
fr o m t h e s h a d e d ar e as t h at ill ustr at e t h e zi g- z a g r a n g e.

N e xt,  w e c o nsi d er a cti v e 2 n or m b all c o nstr ai nts,  w h er e t h e
di a m et er of X is c h os e n t o  m a xi mi z e t h e g e n er ali z ati o n err or
o n t h e v ali d ati o n d at as et. I n t his c as e, o ur r es ult i n  T h e or e m
3 a p pli es a n d  A F W a c hi e v es a n ˜O ( 1

k 2 ) c o n v er g e n c e r at e.  T h e
p erf or m a n c e of  A F W is list e d i n t h e first r o w of Fi g. 3. I n all
t est e d d at as ets,  A F W si g ni fi c a ntl y i m pr o v es o v er F W,  w hil e
o n d at as ets ot h er t h a n c o vt y p e ,  A F W als o o ut p erf or ms  A G M,
es p e ci all y o n m us hr o o m .

W h e n t h e c o nstr ai nt s et is a n 1 n or m b all, t h e p erf or m a n c e of
A F W is d e pi ct e d i n t h e s e c o n d r o w of Fi g. 3. It c a n b e s e e n t h at o n
d at as ets s u c h as c o vt y p e a n d m nist ,  A F W e x hi bits p erf or m a n c e
si mil ar t o  A G M,  w hi c h is si g ni fi c a ntl y f ast er t h a n F W.  W hil e o n
d at as et m us hr o o m ,  A F W c o n v er g es e v e n f ast er t h a n  A G M.  N ot e
t h at c o m p ari n g  A F W  wit h  A G M is n ot f air si n c e e a c h F W st e p
r e q uir es d o p er ati o ns at  m ost,  w hil e pr oj e cti o n o nt o a n 1 n or m
b all i n [ 4 6] t a k es c d o p er ati o ns f or s o m e c > 1 .  T his  m e a ns t h at
f or t h e s a m e r u n ni n g ti m e,  A F W  will r u n  m or e it er ati o ns t h a n
A G M.  We sti c k t o t his u nf air c o m p aris o n t o hi g hli g ht h o w t h e
o pti m alit y err or of  A F W a n d  A G M e v ol v es  wit h k .

B.  M atri x  C o m pl eti o n

We t h e n c o nsi d er  m atri x c o m pl eti o n pr o bl e ms t h at ar e u bi q-
uit o us i n r e c o m m e n d er s yst e ms.  C o nsi d er a  m atri x A ∈ R m × n

wit h p arti all y o bs er v e d e ntri es, t h at is, e ntri es A i j f or (i, j ) ∈ K
ar e k n o w n,  w h er e K ⊂ { 1 , . . . , m} × { 1 , . . . , n} .  N ot e t h at t h e
o bs er v e d e ntri es c a n als o b e c o nt a mi n at e d b y n ois e.  T h e t as k is t o
pr e di ct t h e u n o bs er v e d e ntri es of A .  Alt h o u g h t his pr o bl e m c a n
b e a p pr o a c h e d i n s e v er al  w a ys,  wit hi n t h e s c o p e of r e c o m m e n d er
s yst e ms, a c o m m o nl y a d o pt e d e m piri c al o bs er v ati o n is t h at A
is l o w r a n k [ 4 7] –[ 4 9].  H e n c e t h e pr o bl e m t o b e s ol v e d is

mi n
X

1

2
( i, j ) ∈ K

( X i j − A i j )
2 s.t. X ∗ ≤ R ( 1 1)

Fi g. 4. P erf or m a n c e of  A F W f or  m atri x c o m pl eti o n pr o bl e ms.

w h er e X ∗ d e n ot es t h e n u cl e ar n or m of X , a n d it is l e v er a g e d
t o pr o m ot e a l o w r a n k s ol uti o n. Pr o bl e m ( 1 1) is dif fi c ult t o b e
s ol v e d vi a  G D or  A G M b e c a us e pr oj e cti o n o nt o a n u cl e ar n or m
b all is e x p e nsi v e.  O n t h e c o ntr ar y, F W a n d its v ari a nts ar e  m or e
s uit a bl e f or ( 1 1) gi v e n t h at F W st e p c a n b e s ol v e d e asil y a n d t h e
u p d at e pr o m ot es l o w-r a n k s ol uti o n dir e ctl y [ 1].

We t est  A F W a n d F W o n a  wi d el y us e d d at as et, M o vi e-
L e ns 1 0 0  K 3 ,  w h er e 1 6 8 2  m o vi es ar e r at e d b y 9 4 3 us ers  wit h
6. 3 0 % p er c e nt r ati n gs o bs er v e d.  A n d t h e i niti ali z ati o n a n d d at a
pr o c essi n g ar e t h e s a m e as t h os e us e d i n [ 1].  T h e n u m eri c al
p erf or m a n c e c a n b e f o u n d i n Fi g. 4. I n s u b fi g ur es ( a) a n d ( b),  w e
pl ot t h e o pti m alit y err or a n d r a n k v ers us k c h o osi n g R = 3 . T h e
c h oi c e of R is b as e d o n t h e n u m b er of diff er e nt  m o vi e c at e g ori es.
It is o bs er v e d t h at  A F W e x hi bits i m pr o v e m e nt i n t er ms of b ot h
o pti m alit y err or a n d r a n k of t h e s ol uti o n. I n p arti c ul ar,  A F W
r o u g hl y a c hi e v es 1. 4 x p erf or m a n c e i m pr o v e m e nt c o m p ar e d  wit h
F W i n t er ms of o pti m alit y err or, a n d fi n ds s ol uti o ns  wit h  m u c h
l o w er r a n k.

3 [ O nli n e].  A v ail a bl e: htt ps:// gr o u pl e ns. or g/ d at as ets/ m o vi el e ns/ 1 0 0\ ; k/

https://grouplens.org/datasets/movielens/100LY1	extbackslash ;k/
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VI.  C O N C L U SI O N

We b uilt li n ks b et w e e n t h e  m o m e nt u m i n  A G M a n d t h e F W
st e p b y o bs er vi n g t h at t h e y ar e b ot h  mi ni mi zi n g a n ( a p pr o xi-
m at e d) l o w er b o u n d of t h e o bj e cti v e f u n cti o n.  E x pl ori n g t his
li n k,  w e s h o w h o w  m o m e nt u m b e n e fits p ar a m et er-fr e e F W. I n
p arti c ul ar, a  m o m e nt u m v ari a nt of F W,  w hi c h  w e t er m  A F W,  w as
pr o v e d t o a c hi e v e a f ast er r at e o n a cti v e p n or m b all c o nstr ai nts
w hil e  m ai nt ai ni n g t h e s a m e c o n v er g e n c e r at e as F W o n g e n er al
pr o bl e ms.  A F W t h us stri ctl y o ut p erf or ms F W pr o vi di n g t h e
p ossi bilit y f or a c c el er ati o n.  N u m eri c al e x p eri m e nts v ali d at e o ur
t h e or eti c al fi n di n gs, a n d s u g g est  A F W is pr o misi n g f or bi n ar y
cl assi fi c ati o n a n d  m atri x c o m pl eti o n.

A P P E N DI X

A.  Pr o of of T h e or e m 1

T h e c o n v er g e n c e o n x k i s gi v e n i n [ 4 1], a n d h e n c e  w e d o n ot
r e p e at h er e.  N e xt  w e s h o w t h e b e h a vi or of y k a n d v k .

We us e t h e s a m e s urr o g at e f u n cti o ns  wit h t h os e i n [ 4 1], i. e.,

Φ 0 ( x ) = Φ ∗
0 +

μ 0

2
x − x 0

2 ( 1 2 a)

Φ k + 1 ( x ) = ( 1 − δ k ) Φ k ( x )

+ δ k f (y k ) + ∇ f (y k ) , x − y k , ∀ k ≥ 0 .
( 1 2 b)

I n [ 4 1], it is s h o w n t h at  wit h λ 0 = 1 a n d λ k = λ k − 1 ( 1 − δ k − 1 ) ,
t h e t u pl e ({ Φ k ( x )} ∞

k = 0 , { λ k } ∞
k = 0 ) i s a n  E S of f (x ). I n a d diti o n,

it is als o s h o w n t h at Φ k + 1 ( x ) c a n b e r e writt e n as Φ k ( x ) =
Φ ∗

k + μ k

2 x − v k
2 ,  w h er e μ k + 1 = ( 1 − δ k ) μ k , a n d f (x k ) ≤

Φ ∗
k = mi n x Φ k ( x ).  We  will us e t h es e c o n cl usi o ns dir e ctl y.  R e-

arr a n gi n g t h e t er ms i n Φ k ( x ) = Φ ∗
k + μ k

2 x − v k
2 ,  w e arri v e

at
1

2
x − v k

2 =
1

μ k
( Φ k ( x ) − Φ ∗

k )

=
1

μ k
( Φ k ( x ) − f (x ) + f (x ) − Φ ∗

k )

( a )

≤
λ k

μ k
[ Φ0 ( x ) − f (x )]  +

1

μ k
[f (x ) − f (x k )]

=
1

2 L
[ Φ0 ( x ) − f (x )]  +

1

μ k
[f (x ) − f (x k )]

w h er e ( a) is b e c a us e Φ k ( x ) − f (x ) ≤ λ k ( Φ 0 ( x ) − f (x )) b y
D e fi niti o n 1, a n d f (x k ) ≤ Φ ∗

k s h o w n i n [ 3].  C h o osi n g x as x ∗ ,
w e arri v e at

1

2
x ∗ − v k

2

≤
1

2 L
[ Φ0 ( x ∗ ) − f (x ∗ )] −

1

μ k
[f (x k ) − f (x ∗ )]

≤
1

2 L
[ Φ0 ( x ∗ ) − f (x ∗ )] , ∀ k.

T his f urt h er i m pli es

x ∗ − v k
2 ≤

1

L
[ Φ0 ( x ∗ ) − f (x ∗ )] , ∀ k. ( 1 3)

H e n c e t h e b e h a vi or of v k i n  T h e or e m 1 is pr o v e d.

T o pr o v e t h e c o n v er g e n c e of y k , t h e f oll o wi n g i n e q u alit y is
tr u e as a r es ult of ( 1 3)

v k + 1 − v k ≤ v k + 1 − x ∗ + x ∗ − v k

≤ 2
1

L
[ Φ0 ( x ∗ ) − f (x ∗ )] .

N e xt,  w e li n k ∇ f (y k ) a n d v k + 1 − v k t hr o u g h t h e u p d at e
v k + 1 = v k − δ k

μ k + 1
∇ f ( y k ) t o g et

v k + 1 − v k
2 =

( k + 2) 2

4 L 2
∇ f (y k ) 2

≤
4

L
[ Φ0 ( x ∗ ) − f (x ∗ )] , ∀ k.

R e arr a n gi n g t h e t er ms  w e c a n o bt ai n t h e c o n v er g e n c e of
∇ f (y k ) 2 , t h at is,

∇ f (y k ) 2 ≤
1 6 L

(k + 2) 2
[ Φ0 ( x ∗ ) − f (x ∗ )] .

Pl u g gi n g Φ 0 ( x ∗ ) = f (x 0 ) + L x 0 − x ∗ 2 i n c o m pl et es t h e
pr o of.

B. f (y k ) + ∇ f (y k ) , v k + 1 − y k A p pr o xi m at es f (x ∗ )

We s h o w n e xt t h at a  w ei g ht e d v ersi o n of f (y k ) +
∇ f (y k ) , v k + 1 − y k i s n o l ar g er t h e n f (x ∗ ) + O ( 1

k 2 ) t o el a b-
or at e t h at f (y k ) + ∇ f (y k ) , v k + 1 − y k i s ( al m ost) a n u n d er-
esti m at e of f (x ∗ ) .

T h e or e m 4: If  Ass u m pti o ns 1 a n d 2 h ol d, a n d  w e c h o os e
μ k + 1

δ k
= 2 L

k + 2 ; a n d p er it er ati o n k , w e l et w
( τ )
k = 2 ( τ + 2 )

k ( k + 3 ) f or τ =

0 , 1 , . . . , k − 1 , t h e n i) k − 1
τ = 0 w

( τ )
k = 1 ; a n d, ii)

k − 1

τ = 0

w
( τ )
k [f (y τ ) + ∇ f (y τ ) , v τ + 1 − y τ ] − f (x ∗ )

≤
2 L x 0 − x ∗ 2

k ( k + 3)
.

Pr o of: It is e as y t o v erif y t h at k − 1
τ = 0 w

( τ )
k = 1 . N e xt w e h a v e

f (y k ) + ∇ f (y k ) , v k + 1 − y k

= f (y k ) + ∇ f (y k ) , v k + 1 − x ∗ + ∇ f (y k ) , x ∗ − y k

( a )

≤ f (x ∗ ) + ∇ f (y k ) , v k + 1 − x ∗

= f (x ∗ ) +
μ k + 1

δ k
v k − v k + 1 , v k + 1 − x ∗

( b )
= f (x ∗ ) +

μ k + 1

2 δ k
x ∗ − v k

2

− x ∗ − v k + 1
2 − v k + 1 − v k

2

( c )
= f (x ∗ ) +

L

k + 2
x ∗ − v k

2

− x ∗ − v k + 1
2 − v k + 1 − v k

2 ( 1 4)

w h er e ( a) f oll o ws fr o m t h e c o n v e xit y of f , t h at is,
∇ f (y k ) , x ∗ − y k ≤ f (x ∗ ) − f (y k ) ; ( b) us es 2 a , b = a +

b 2 − a 2 − b 2 ; a n d ( c) is b y pl u g gi n g t h e v al u e of μ k + 1

δ k

i n.  N o w, if  w e d e fi n e d k : = f (y k ) + ∇ f (y k ) , v k + 1 − y k −
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f ( x ∗ ) , r e arr a n gi n g ( 1 4),  w e g et

(k + 2) d k

≤ L x ∗ − v k
2 − x ∗ − v k + 1

2 − L v k + 1 − v k
2

≤ L x ∗ − v k
2 − x ∗ − v k + 1

2

S u m mi n g o v er k ( a n d r e c alli n g v 0 = x 0 ),  w e arri v e at
k − 1

τ = 0

( τ + 2) d τ ≤ L x ∗ − v 0
2 − x ∗ − v k

2

≤ L x ∗ − x 0
2 .

B y t h e d e fi niti o n of w
( τ )
k ,  w hi c h is w

( τ )
k = 2 ( τ + 2 )

k ( k + 3 ) ,  w e o bt ai n

k − 1

τ = 0

w
( τ )
k d τ ≤

2 L x ∗ − x 0
2

k ( k + 3)
( 1 5)

w hi c h c o m pl et es t h e pr o of.

C.  A G M Li n ks  Wit h  F W i n Str o n gl y  C o n v e x  C as e

We s h o w c as e t h e c o n n e cti o n b et w e e n t h e  m o m e nt u m u p d at e
of  A G M i n str o n gl y c o n v e x c as e a n d F W.  We first f or m all y d e fi n e
str o n g c o n v e xit y,  w hi c h is us e d i n t his s u bs e cti o n o nl y.

Ass u m pti o n 5: ( Str o n g c o n v e xit y.)  T h e f u n cti o n f : R d → R
is μ -str o n gl y c o n v e x; t h at is, f (y ) − f (x ) ≥ ∇ f (x ), y − x +
μ
2 y − x 2 , ∀ x , y ∈ R d .

U n d er  Ass u m pti o ns 1 a n d 5, t h e c o n diti o n n u m b er of f is
κ : = L

μ .  T o c o p e  wit h str o n gl y c o n v e x pr o bl e ms,  Li n es 4 – 6 i n
A G M ( Al g. 2) s h o ul d b e  m o di fi e d t o [ 3]

y k =
1

1 + δ
x k +

δ

1 + δ
v k ( 1 6 a)

x k + 1 = y k −
1

L
∇ f (y k ) ( 1 6 b)

v k + 1 = ( 1 − δ )v k + δ y k −
δ

μ
∇ f (y k ) . ( 1 6 c)

w h er e δ = 1√
κ
. H er e v k + 1 i n ( 1 6 c) d e n ot es t h e  m o m e nt u m a n d

t h us pl a ys t h e criti c al r ol e f or a c c el er ati o n.  T o s e e h o w v k + 1 i s
li n k e d  wit h F W,  w e  will r e writ e v k + 1 a s

z k + 1 = ar g  mi n
x

f (y k ) + ∇ f (y k ) , x − y k +
μ

2
x − y k

2

= y k −
1

μ
y k ( 1 7 a)

v k + 1 = ( 1 − δ )v k + δ z k + 1 ( 1 7 b)

N oti c e t h at z k + 1 i s t h e  mi ni mi z er of a l o w er b o u n d of f (x ) ( d u e
t o str o n gl y c o n v e xit y).  T h er ef or e, t h e v k + 1 u p d at e is si mil ar
t o F W i n t h e s e ns e t h at it first  mi ni mi z es a l o w er b o u n d of
f (x ), t h e n u p d at e t hr o u g h c o n v e x c o m bi n ati o n ( cf  Al g. 1).  T his
d e m o nstr at es t h at t h e  m o m e nt u m u p d at e i n  A G M s h ar es t h e
s a m e i d e a of F W u p d at e.

A f e w b asi c l e m m as f or all t h e pr o ofs i n S e cti o n I V ar e
pr o vi d e d b el o w.

D.  Pr o of of L e m m a 1

Pr o of: We s h o w t his b y i n d u cti o n.  B e c a us e λ 0 = 1 , it h ol ds
t h at Φ 0 ( x ) = ( 1 − λ 0 ) f (x ) + λ 0 Φ 0 ( x ) = Φ 0 ( x ). S u p p os e t h at

Φ k ( x ) ≤ ( 1 − λ k ) f (x ) + λ k Φ 0 ( x ) is tr u e f or s o m e k . We h a v e

Φ k + 1 ( x ) = ( 1 − δ k ) Φ k ( x ) + δ k f (y k ) + ∇ f (y k ) , x − y k

( a )

≤ ( 1 − δ k ) Φ k ( x ) + δ k f (x )

≤ ( 1 − δ k ) [( 1 − λ k ) f (x ) + λ k Φ 0 ( x )]  + δ k f (x )

= ( 1 − λ k + 1 ) f (x ) + λ k + 1 Φ 0 ( x )

w h er e ( a) is b e c a us e t h e c o n v e xit y of f ; a n d t h e l ast e q u ati o n is b y
d e fi niti o n of λ k + 1 .  T o g et h er  wit h t h e f a ct t h at li mk → ∞ λ k = 0 ,
t h e t u pl e ({ Φ k ( x )} ∞

k = 0 , { λ k } ∞
k = 0 ) s atis fi es t h e d e fi niti o n of a n

esti m at e s e q u e n c e.

E.  A  Fe w  Us ef ul L e m m as

L e m m a 3: F or { Φ k ( x )} i n ( 7), if f (x k ) ≤ mi n x ∈ X Φ k ( x ) +
ξ k , it is tr u e t h at

f (x k ) − f (x ∗ ) ≤ λ k ( f (x 0 ) − f (x ∗ ) )  + ξ k , ∀ k.

Pr o of: If f (x k ) ≤ mi n x ∈ X Φ k ( x ) + ξ k h ol ds, t h e n  w e h a v e

f (x k ) ≤ mi n
x ∈ X

Φ k ( x ) + ξ k ≤ Φ k ( x ∗ ) + ξ k

≤ ( 1 − λ k ) f (x ∗ ) + λ k Φ 0 ( x ∗ ) + ξ k

w h er e t h e l ast i n e q u alit y is b e c a us e  D e fi niti o n 1. S u btr a cti n g
f (x ∗ ) o n b ot h si d es,  w e arri v e at

f (x k ) − f (x ∗ ) ≤ λ k ( Φ 0 ( x ∗ ) − f (x ∗ ) )  + ξ k

= λ k ( f (x 0 ) − f (x ∗ ) )  + ξ k

w hi c h c o m pl et es t h e pr o of.
L e m m a 4: L et v 0 = x 0 , θ 0 = 0 , Φ ∗

0 = f (x 0 ) , t h e n Φ k + 1 ( x )
i n ( 7) c a n b e r e writt e n as

Φ k + 1 ( x ) = Φ ∗
k + 1 + x − v k + 1 , θ k + 1 ( 1 8)

wit h

θ k + 1 = δ k ∇ f (y k ) + ( 1 − δ k ) θ k ( 1 9 a)

v k + 1 : = ar g  mi n
x ∈ X

Φ k + 1 ( x ) = ar g  mi n x ∈ X x , θ k + 1 ( 1 9 b)

Φ ∗
k + 1 : =  mi n

x ∈ X
Φ k + 1 ( x ) = Φ k + 1 ( v k + 1 )

= ( 1 − δ k ) Φ ∗
k + δ k f ( y k ) + ( 1 − δ k ) θ k , v k + 1 − v k

+ δ k ∇ f (y k ) , v k + 1 − y k . ( 1 9 c)

Pr o of: We pr o v e t his l e m m a b y i n d u cti o n. First Φ 0 ( x ) =
Φ ∗

0 + x − v 0 , θ 0 ≡ f (x 0 ) . Fr o m ( 7) it is o b vi o us t h at Φ k ( x ) is
li n e ar i n x , a n d h e n c e s u p p os e t h at Φ k ( x ) = Φ ∗

k + x − v k , θ k

h ol ds f or s o m e k .  T h e n  w e  will s h o w t h at Φ k + 1 ( x ) = Φ ∗
k + 1 +

x − v k + 1 , θ k + 1 i s tr u e.  C o nsi d er t h at

Φ k + 1 ( x )

= ( 1 − δ k ) Φ k ( x ) + δ k f (y k ) + ∇ f (y k ) , x − y k

= ( 1 − δ k ) Φ ∗
k + ( 1 − δ k ) x − v k , θ k + δ k f (y k )

+ δ k ∇ f (y k ) , x − y k

= ( 1 − δ k ) Φ ∗
k + δ k f ( y k ) + x , ( 1 − δ k ) θ k + δ k ∇ f (y k )

− ( 1 − δ k ) v k , θ k − δ k ∇ f (y k ) , y k . ( 2 0)
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Cl e arl y, si n c e Φ k + 1 ( x ) is li n e ar i n x , t h e sl o p e is θ k + 1 : =
( 1 − δ k ) θ k + δ k ∇ f (y k ) . I n a d diti o n, b e c a us e v k + 1 i s d e fi n e d
as t h e  mi ni mi z er of Φ k + 1 ( x ) o v er X , fr o m ( 2 0)  w e h a v e
v k + 1 = ar g  mi n x ∈ X x , θ k + 1 .  T h e n, si n c e Φ ∗

k + 1 i s d e fi n e d as
Φ ∗

k + 1 : =  mi nx ∈ X Φ k + 1 ( x ), b y pl u g gi n g v k + 1 i nt o Φ k + 1 ( x ) i n
( 2 0),  w e h a v e

Φ ∗
k + 1 = Φ k + 1 ( v k + 1 ) = ( 1 − δ k ) v k + 1 − v k , θ k

+ ( 1 − δ k ) Φ ∗
k + δ k f ( y k ) + δ k ∇ f (y k ) , v k + 1 − y k .

T h e pr o of is t h us c o m pl et e d.

F.  Pr o of of L e m m a 2

Pr o of: We pr o v e t his l e m m a b y i n d u cti o n. First b y d e fi niti o n
f (x 0 ) = Φ ∗

0 + ξ 0 . S u p p os e n o w  w e h a v e f (x k ) ≤ Φ ∗
k + ξ k f or

s o m e k .  N e xt,  w e  will s h o w t h at f (x k + 1 ) ≤ Φ ∗
k + 1 + ξ k + 1 .

U si n g ( 1 9 c),  w e h a v e

Φ ∗
k + 1 + ( 1 − δ k ) ξ k

= ( 1 − δ k ) Φ ∗
k + δ k f ( y k ) + ( 1 − δ k ) θ k , v k + 1 − v k

+ δ k ∇ f (y k ) , v k + 1 − y k + ( 1 − δ k ) ξ k

( a )

≥ ( 1 − δ k ) f (x k ) + δ k f (y k ) + ( 1 − δ k ) θ k , v k + 1 − v k

+ δ k ∇ f (y k ) , v k + 1 − y k

( b )

≥ ( 1 − δ k ) f (x k ) + δ k f (y k ) + δ k ∇ f (y k ) , v k + 1 − y k

= f (y k ) + ( 1 − δ k ) [ f (x k ) − f (y k )]

+ δ k ∇ f (y k ) , v k + 1 − y k

( c )

≥ f (y k ) + ( 1 − δ k ) ∇ f (y k ) , x k − y k

+ δ k ∇ f (y k ) , v k + 1 − y k

( d )

≥ f (x k + 1 ) −
L

2
x k + 1 − y k

2 + ∇ f (y k ) , y k − x k + 1

+ ( 1 − δ k ) ∇ f (y k ) , x k − y k + δ k ∇ f (y k ) , v k + 1 − y k

( e )
= f (x k + 1 ) −

L

2
x k + 1 − y k

2

w h er e ( a) is b e c a us e Φ ∗
k ≥ f (x k ) − ξ k ; ( b) is b y t h e f a ct

v k = ar g  mi n x ∈ X θ k , x s o t h at θ k , v k + 1 − v k ≥ 0 ; ( c) is
b e c a us e of t h e c o n v e xit y of f ; ( d) is b y  Ass u m pti o n 1,
t h at is f (x k + 1 ) − f (y k ) ≤ ∇ f (y k ) , x k + 1 − y k + L

2 x k + 1

− y k
2 ; ( e) f oll o ws fr o m t h e c h oi c e of x k + 1 = ( 1 − δ k ) x k +

δ k v k + 1 . Fi n all y b y usi n g y k = ( 1 − δ k ) x k + δ k v k , a n d pl u g-
gi n g t h e d e fi niti o n of ξ k + 1 , t h e pr o of is c o m pl et e d.

G.  Pr o of of T h e or e m 2

Pr o of: Si n c e  L e m m a 2 h ol ds, o n e c a n dir e ctl y a p pl y  L e m m a 3
t o h a v e

f (x k ) − f (x ∗ ) ≤ λ k ( f (x 0 ) − f (x ∗ ) )  + ξ k

=
2 ( f (x 0 ) − f (x ∗ ) )

(k + 1)( k + 2)
+ ξ k ( 2 1)

w h er e ξ k i s d e fi n e d i n  L e m m a 2.  Cl e arl y, ξ k ≥ 0 , ∀ k , a n d  w e
c a n fi n d a n u p p er b o u n d f or it i n t h e f oll o wi n g  m a n n er.

ξ k = ( 1 − δ k − 1 ) ξ k − 1 +
L δ 2

k − 1

2
v k − v k − 1

2

≤ ( 1 − δ k − 1 ) ξ k − 1 +
L D 2 δ 2

k − 1

2

=
L D 2

2

k − 1

τ = 0

δ 2
τ

k − 1

j = τ + 1

( 1 − δ j )

=
L D 2

2

k − 1

τ = 0

4

( τ + 3) 2

( τ + 2)( τ + 3)

(k + 1)( k + 2)
≤

2 L D 2

k + 2
.

Pl u g gi n g ξ k i nt o ( 2 1) c o m pl et es t h e pr o of.

H.  Pr o of of T h e or e m 3

T h e b asi c i d e a is t o s h o w t h at u n d er  Ass u m pti o ns 1, 2, 3 a n d
4, v k − v k + 1

2 i s s m all e n o u g h  w h e n k is l ar g e.  T o t his e n d,
w e  will  m a k e us e of t h e f oll o wi n g l e m m as.

L e m m a 5: [ 3,  T h e or e m 2. 1. 5] If  Ass u m pti o ns 1 a n d 2 h ol d,
t h e n it is tr u e t h at

1

2 L
∇ f (x ) − ∇ f (y ) 2 ≤ f (y ) − f (x ) − ∇ f (x ), y − x .

N e xt  w e s h o w t h at t h e v al u e of ∇ f (x ∗ ) is u ni q u e.
L e m m a 6: If b ot h x ∗

1 a n d x ∗
2 mi ni mi z e f (x ) o v er X , t h e n  w e

h a v e ∇ f (x ∗
1 ) = ∇ f (x ∗

2 ) .
Pr o of: Fr o m  L e m m a 5,  w e h a v e

1

2 L
∇ f (x ∗

2 ) − ∇ f (x ∗
1 ) 2

2

≤ f (x ∗
2 ) − f (x ∗

1 ) − ∇ f (x ∗
1 ) , x ∗

2 − x ∗
1

( a )

≤ f (x ∗
2 ) − f (x ∗

1 ) = 0

w h er e ( a) is b y t h e o pti m alit y c o n diti o n, t h at is, ∇ f (x ∗
1 ) , x −

x ∗
1 ≥ 0 , ∀ x ∈ X .  H e n c e  w e c a n o nl y h a v e ∇ f (x ∗

2 ) = ∇ f (x ∗
1 ) .

T his  m e a ns t h at t h e v al u e of ∇ f (x ∗ ) is u ni q u e r e g ar dl ess of t h e
u ni q u e n ess of x ∗ .

L e m m a 7: C h o os e δ k = 2
k + 3 a n d l et M : =  m a xx ∈ X f ( x ) −

f (x ∗ ) , t h e n  w e h a v e

∇ f (y k ) − ∇ f (x ∗ ) ≤
C 1√
k + 3

.

w h er e C 1 =
√

6 L M + 4 L 2 D 2 .
P r o of: B y c o n v e xit y

f (y k ) − f (x ∗ )

≤ ( 1 − δ k ) [ f (x k ) − f (x ∗ )]  + δ k [f (v k ) − f (x ∗ )]

( a )

≤
k + 1

k + 3

2 ( f (x 0 ) − f (x ∗ ) )

(k + 1)( k + 2)
+

2 L D 2

k + 2
+

2 M

k + 3

≤
2 M

(k + 2)( k + 3)
+

2 L D 2

k + 3
+

2 M

k + 3

≤
3 M + 2 L D 2

k + 3
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w h er e ( a) is b y  T h e or e m 2.  N e xt usi n g  L e m m a 5,  w e h a v e

1

2 L
∇ f (y k ) − ∇ f (x ∗ ) 2

≤ f (y k ) − f (x ∗ ) − ∇ f (x ∗ ) , y k − x ∗

( b )

≤ f (y k ) − f (x ∗ ) ≤
3 M + 2 L D 2

k + 3

w h er e ( b) is b y t h e o pti m alit y c o n diti o n, t h at is, ∇ f (x ∗ ) , x −
x ∗ ≥ 0 , ∀ x ∈ X .  T his f urt h er i m pli es

∇ f (y k ) − ∇ f (x ∗ ) ≤
2 L (3 M + 2 L D 2 )

k + 3
.

T h e pr o of is t h us c o m pl et e d.
L e m m a 8: C h o os e δ k = 2

k + 3 , it is g u ar a nt e e d t o h a v e

θ k + 1 − ∇ f (x ∗ ) ≤
4 C 1

3 (
√

k + 3 − 1)
+

2
√

G

(k + 2)( k + 3)
.

I n a d diti o n, t h er e e xists a c o nst a nt C 2 ≤ 4
3 C 1 + 2

3 (
√

3 + 1 )

√
G

s u c h t h at

θ k + 1 − ∇ f (x ∗ ) ≤
C 2√

k + 3 − 1
.

Pr o of: First  w e h a v e

θ k + 1 = ( 1 − δ k ) θ k + δ k ∇ f (y k )

=

k

τ = 0

δ τ ∇ f (y τ )

k

j = τ + 1

( 1 − δ j )

=

k

τ = 0

2 ( τ + 2)

(k + 2)( k + 3)
∇ f (y τ ) . ( 2 2)

N oti ci n g t h at 2 k
τ = 0 ( τ + 2) = ( k + 1)( k + 4) = ( k +

2)( k + 3) − 2 , w e h a v e

θ k + 1 − ∇ f (x ∗ )

=

k

τ = 0

2 ( τ + 2)

(k + 2)( k + 3)
[∇ f (y τ ) − ∇ f (x ∗ )]

−
2

(k + 2)( k + 3)
∇ f (x ∗ )

≤

k

τ = 0

2 ( τ + 2)

(k + 2)( k + 3)
∇ f (y τ ) − ∇ f (x ∗ )

+
2

(k + 2)( k + 3)
∇ f (x ∗ )

( a )

≤

k

τ = 0

2 ( τ + 2)

(k + 2)( k + 3)

C 1√
τ + 3

+
2
√

G

(k + 2)( k + 3)

≤
2 C 1

( k + 2)( k + 3)

k

τ = 0

√
τ + 2 +

2
√

G

(k + 2)( k + 3)

≤
4 C 1

3 ( k + 2)( k + 3)
(k + 3) 3 / 2 +

2
√

G

(k + 2)( k + 3)

=
4 C 1

3 (
√

k + 3 + 1)(
√

k + 3 − 1)

√
k + 3 +

2
√

G

(k + 2)( k + 3)

≤
4 C 1

3 (
√

k + 3 − 1)
+

2
√

G

(k + 2)( k + 3)

w h er e ( a) f oll o ws fr o m  L e m m a 7 a n d  Ass u m pti o n 4.
T h e n t o fi n d C 2 , w e h a v e

θ k + 1 − ∇ f (x ∗ )

≤
4 C 1

3 (
√

k + 3 − 1)
+

2
√

G

(k + 2)( k + 3)

=
4 C 1

3 (
√

k + 3 − 1)
+

2
√

G

(k + 3)(
√

k + 3 + 1)(
√

k + 3 − 1)

( b )

≤
4 C 1

3 (
√

k + 3 − 1)
+

2
√

G

3(
√

3 + 1)(
√

k + 3 − 1)

w h er e i n ( b)  w e us e k + 3 ≥ 3 a n d
√

k + 3 + 1 ≥
√

3 + 1 . T h e
pr o of is t h us c o m pl et e d.

L e m m a 9: T h er e e xists a c o nst a nt T ≤ ( 2 C 2√
G

+ 1 ) 2 − 3 , s u c h

t h at θ k + 1 ≥
√

G
2 , ∀ k ≥ T . I n a d diti o n, it is g u ar a nt e e d t o

h a v e f or a n y k ≥ T + 1

v k + 1 − v k ≤
C 3√

k + 2 − 1

w h er e C 3 ≤ 4 R
G [ 4

√
G C 2 +

2 C 2
2√

T + 4 − 1
].

Pr o of: C o nsi d er a s p e ci fi c k̃ wit h θ k̃ + 1 <
√

G
2 s atis fi e d. I n

t his c as e  w e h a v e

θ k̃ + 1 − ∇ f (x ∗ ) ≥ ∇ f (x ∗ ) − θ k̃ + 1

>
√

G −

√
G

2
=

√
G

2
.

Fr o m  L e m m a 8,  w e h a v e
√

G

2
< θ k̃ + 1 − ∇ f (x ∗ ) ≤

C 2

k̃ + 3 − 1
.

Fr o m t his i n e q u alit y  w e c a n o bs er v e t h at θ k̃ + 1 c a n b e l ess

t h a n
√

G
2 o nl y  w h e n k̃ < T = ( 2 C 2√

G
+ 1 ) 2 − 3 .  H e n c e, t h e first

p art of t his l e m m a is pr o v e d.
F or t h e u p p er b o u n d of v k + 1 − v k ,  w e o nl y c o nsi d er t h e

c as e  w h er e θ k + 1 = 0 si n c e ot h er wis e v k + 1 = v k a n d t h e l e m m a
h ol ds a ut o m ati c all y. F or a n y k ≥ T + 1 , fr o m ( 8), o n e c a n
r e writ e

v k + 1 − v k

= R
θ k + 1

θ k + 1
−

θ k

θ k

=
R

θ k + 1 θ k
θ k θ k + 1 − θ k + 1 θ k

( a )

≤
4 R

G
θ k θ k + 1 − θ k + 1 θ k ( 2 3)

w h er e ( a) is b y θ k ≥
√

G
2 f or k ≥ T + 1 .  N e xt  w e r e writ e

θ k : = ∇ f (x ∗ ) + γ k . Fr o m L e m m a 8 w e h a v e γ k = θ k −
∇ f (x ∗ ) ≤ C 2√

k + 2 − 1
.  Usi n g t his r el ati o n, t h e  R H S of ( 2 3) b e-

c o m es

θ k θ k + 1 − θ k + 1 θ k
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= ∇ f (x ∗ ) + γ k ∇ f (x ∗ ) + γ k + 1

− ∇ f (x ∗ ) + γ k + 1 ( ∇ f (x ∗ ) + γ k )

≤ ∇ f (x ∗ ) ∇ f (x ∗ ) + γ k − ∇ f (x ∗ ) + γ k + 1

+ γ k + 1 ∇ f (x ∗ ) + γ k − γ k ∇ f (x ∗ ) + γ k + 1

≤
√

G γ k + γ k + 1 + γ k + 1

√
G + γ k

+ γ k

√
G + γ k + 1

≤
4
√

G C 2√
k + 2 − 1

+
2 C 2

2

(
√

k + 2 − 1)(
√

k + 3 − 1)

≤
4
√

G C 2√
k + 2 − 1

+
2 C 2

2

(
√

k + 2 − 1)(
√

T + 4 − 1)
.

Pl u g gi n g b a c k t o ( 2 3), t h e pr o of c a n b e c o m pl et e d.

I.  Pr o of of T h e or e m 3

Pr o of: We first c o nsi d er t h e c o nstr ai nt s et b ei n g a n 2 n or m
b all. Fr o m  L e m m a 2,  w e c a n  writ e

ξ k + 1 = ( 1 − δ k ) ξ k +
L δ 2

k

2
v k + 1 − v k

2

=
L

2

k

τ = 0

δ 2
τ v τ + 1 − v τ

2
k

j = τ + 1

( 1 − δ τ )

( a )
=

L

2

T

τ = 0

δ 2
τ v τ + 1 − v τ

2
k

j = τ + 1

( 1 − δ τ )

+

k

τ = T + 1

δ 2
τ v τ + 1 − v τ

2
k

j = τ + 1

( 1 − δ τ )

( b )

≤
L

2

T

τ = 0

δ 2
τ D 2

k

j = τ + 1

( 1 − δ τ )

+

k

τ = T + 1

δ 2
τ

C 2
3

(
√

τ + 2 − 1) 2

k

j = τ + 1

( 1 − δ τ )

=
L

2

T

τ = 0

4 D 2

( τ + 3) 2

( τ + 2)( τ + 3)

(k + 2)( k + 3)

+

k

τ = T + 1

4

( τ + 3) 2

C 2
3

(
√

τ + 2 − 1) 2

( τ + 2)( τ + 3)

(k + 2)( k + 3)

≤
2 L D 2 ( T + 1)

(k + 2)( k + 3)
+

4 C 2
3

( k + 2)( k + 3)

k

τ = T + 1

1

(
√

τ + 2 − 1) 2

= O
L D 2 ( T + 1) + C 2

3 l n k

(k + 2)( k + 3)

w h er e i n ( a) T is d e fi n e d i n  L e m m a 9; ( b) is b y  L e m m a 9 a n d
Ass u m pti o n 4; a n d i n t h e l ast e q u ati o n c o nst a nts ar e hi d e i n t h e
bi g O n ot ati o n.

Fi n all y, a p pl yi n g  L e m m a 3,  w e h a v e

f (x k ) − f (x ∗ ) ≤
2 [ f (x 0 ) − f (x ∗ )]

(k + 1)( k + 2)
+ ξ k . ( 2 4)

Pl u g gi n g ξ k i n t h e pr o of is c o m pl et e d.
W h e n t h e c o nstr ai nt s et is a n 1 n or m b all, t h e b asi c pr o of

i d e a is si mil ar as t h e 2 n or m b all c as e, i. e., aft er T it er ati o ns
v k a n d v k + 1 ar e n e ar t o e a c h ot h er.  T h e o nl y diff er e n c e is t h at a
r e g ul ari z ati o n c o n diti o n s h o ul d b e s atis fi e d t o e ns ur e t h e u ni q u e-
n ess of v k ( o nl y f or pr o of, n ot n e c ess ar y f or i m pl e m e nt ati o n).
T h er e ar e  m ulti pl e ki n ds of r e g ul ari z ati o n s c h e m es, f or e x a m pl e,
[∇ f (x ∗ )] i − [∇ f (x ∗ )] j = c > 0 ,  w h er e i, j ar e t h e l ar g est a n d
s e c o n d l ar g est e ntr y of ∇ f (x ∗ ) , r es p e cti v el y. I n t his c as e,  w e
o nl y n e e d t o  m o dif y t h e T i n L e m m a 9 as a c d e p e n d e nt c o nst a nt,
a n d all t h e ot h er pr o ofs f oll o w.

J. 1 N or m  B all

I n t his s u bs e cti o n  w e f o c us o n t h e c o n v er g e n c e of  A F W
f or 1 n or m b all c o nstr ai nt u n d er t h e ass u m pti o n t h at
ar g  m a x j [∇ f (x ∗ )] j h as c ar di n alit y 1 ( w hi c h n at ur all y i m pli es
t h at t h e c o nstr ai nt is a cti v e).  N ot e t h at i n t his c as e  L e m m a
6 still h ol ds h e n c e t h e v al u e of ∇ f (x ∗ ) is u ni q u e r e g ar d-
l ess t h e u ni q u e n ess of x ∗ .  T his ass u m pti o n dir e ctl y l e a ds t o
ar g  m a x j [∇ f (x ∗ )] j − | [∇ f (x ∗ )] i | ≥ λ, ∀ i.

W h e n X = { x | x 1 ≤ R } , t h e F W st e ps f or  A F W
c a n b e s ol v e d i n cl os e d-f or m.  We h a v e v k + 1 =
[ 0, . . . , 0 , − s g n[ θ k + 1 ]i R, 0 , . . . , 0] , i. e., o nl y t h e i-t h e ntr y
b ei n g n o n z er o  wit h i = ar g  m a x j |[θ k + 1 ]j |.

L e m m a 1 0: T h er e e xist a c o nst a nt T ( w hi c h is irr e v er e nt  wit h
k ),  w h e n e v er k ≥ T , it is g u ar a nt e e d t o h a v e

v k + 1 − v k + 2 = 0

Pr o of: I n t h e pr o of,  w e d e n ot e i = ar g  m a x j |[∇ f (x ∗ )] j | f or
c o n v e ni e n c e. It c a n b e s e e n t h at  L e m m a 8 still h ol ds.

We s h o w t h at t h er e e xist T = ( 3 C 2

λ
+ 1) 2 − 3 , s u c h t h at f or

all k ≥ T , w e h a v e ar g m a xj |[θ k + 1 ]j | = i,  w hi c h f urt h er i m-
pli es o nl y t h e i-t h e ntr y of v k + 1 i s n o n- z er o. Si n c e  L e m m a 8
h ol ds, o n e c a n s e e  w h e n e v er k ≥ T , it is g u ar a nt e e d t o h a v e

θ k + 1 − ∇ f (x ∗ ) ≤ λ
3 .  T h er ef or e, o n e  m ust h a v e |[θ k + 1 ]j | −

|[∇ f (x ∗ )] j | ≤ λ
3 , ∀ j .  T h e n it is e as y t o s e e t h at |[θ k + 1 ]i | −

|[θ k + 1 ]j | ≥ λ
3 , ∀ j .  H e n c e,  w e h a v e ar g  m a xj |[θ k + 1 ]j | = i.

T h e n o n e c a n us e t h e cl os e d f or m s ol uti o n of F W st e p t o s e e
t h at  w h e n k ≥ T , w e h a v e v k + 1 − v k + 2 = 0 .  T h e pr o of is t h us
c o m pl et e d.

L e m m a 1 1: L et ξ 0 = 0 a n d T d e fi n e d t h e s a m e as i n  L e m m a
1 0.  D e n ot e Φ ∗

k : =  Φk ( v k ) as t h e  mi ni m u m v al u e of Φ k ( x ) o v er
X , t h e n  w e h a v e

f (x k ) ≤ Φ k ( v k ) = Φ ∗
k + ξ k , ∀ k ≥ 0

w h er e f or k < T + 1 , ξ k + 1 = ( 1 − δ k ) ξ k + L D 2

2 δ 2
k , a n d

ξ k + 1 = ( 1 − δ k ) ξ k f or k ≥ T + 1 .
Pr o of: T h e pr o of f or k < T + 1 is si mil ar as t h at i n  L e m m a 2,

h e n c e it is o mitt e d h er e. F or k ≥ T + 1 , usi n g si mil ar ar g u m e nt
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a s i n  L e m m a 2,  w e h a v e

Φ ∗
k + 1 ≥ f (x k + 1 ) +

L δ 2
k

2
v k + 1 − v k

2 − ( 1 − δ k ) ξ k

= f (x k + 1 ) − ( 1 − δ k ) ξ k

w h er e t h e l ast e q u ati o n is b e c a us e of  L e m m a 1 0.
T h e or e m 5: C o nsi d er X is a n 1 n or m b all. If

ar g  m a x j [∇ f (x ∗ )] j h as c ar di n alit y 1, a n d  Ass u m pti o ns 1
- 3 ar e s atis fi e d,  A F W g u ar a nt e es t h at

f (x k ) − f (x ∗ ) = O
1

k 2
.

Pr o of: L et T b e d e fi n e d t h e s a m e as i n  L e m m a 1 0. F or
c o n v e ni e n c e d e n ot e ξ k + 1 = ( 1 − δ k ) ξ k + ζ k .  W h e n k < T + 1 ,

w e h a v e ζ k = L D 2

2 δ 2
k ;  w h e n k ≥ T + 1 , w e h a v e ζ k = 0 .  T h e n

w e c a n  writ e

ξ k + 1 = ( 1 − δ k ) ξ k + θ k

=

k

τ = 0

θ τ

k

j = τ + 1

( 1 − δ j ) =

k

τ = 0

θ τ
( τ + 2)( τ + 3)

(k + 2)( k + 3)

=

T

τ = 0

L D 2

2
δ 2

τ

( τ + 2)( τ + 3)

(k + 2)( k + 3)
=

2 L D 2 ( T + 1)

(k + 2)( k + 3)
.

Fi n all y, a p pl yi n g  L e m m a 3,  w e h a v e

f (x k ) − f (x ∗ ) ≤
2 [ f (x 0 ) − f (x ∗ )]

(k + 1)( k + 2)
+ ξ k .

Pl u g gi n g ξ k i n c o m pl et es t h e pr o of.

K. p N or m  B all

I n t his s u bs e cti o n  w e f o c us o n  A F W  wit h a n a cti v e p n or m
b all c o nstr ai nt X : = { x | x p ≤ R } ,  w h er e p ∈ ( 1, + ∞ ) a n d
p = 2 .  We s h o w t h at if t h e  m a g nit u d e of e v er y e ntr y i n ∇ f (x ∗ )
is b o u n d e d a w a y fr o m 0, i. e., |[∇ f (x ∗ )] i | = λ > 0 , ∀ i, t h e n
A F W c o n v er g es at O ( 1

k 2 ) .
I n s u c h c as es, t h e F W st e p i n  A F W c a n b e s ol v e d i n cl os e d-

f or m, t h at is, t h e i-t h e ntr y of v k + 1 c a n b e o bt ai n e d vi a

[v k + 1 ]i = − s g n ([ θ k + 1 ]i )
[θ k + 1 ]i

q − 1

θ k + 1
q − 1
q

· R

= − [θ k + 1 ]i
[θ k + 1 ]i

q − 2

θ k + 1
q − 1
q

· R ( 2 5)

w h er e 1 / p + 1 / q = 1 . F or si m pli cit y  w e  will e m p h asis o n t h e k
d e p e n d e n c e o nl y a n d us e O n ot ati o n i n t his s u bs e cti o n.  We  will
als o us e θ i

k t o r e pl a c e [θ k ]i f or n ot ati o n al si m pli cit y. I n ot h er
w or ds, θ i

k d e n ot es t h e i-t h e ntr y of θ k .
First a c c or di n g t o  L e m m a 8, a n d us e t h e e q ui v al e n c e of

n or ms,  w e h a v e θ k − ∇ f (x ∗ ) q = O ( 1√
k
) .  H e n c e, t h er e  m ust

e xist T 1 , s u c h t h at θ k q ≤ 2 G, ∀ k ≥ T 1 .  N e xt usi n g si mil ar
ar g u m e nts as t h e first p art of  L e m m a 9, t h er e  m ust e xist T 2 , s u c h
t h at θ k q ≥ G / 2 , ∀ k ≥ T 2 . I n a d diti o n, usi n g a g ai n si mil ar
ar g u m e nts as t h e first p art of  L e m m a 9,  w e c a n fi n d t h at t h er e

e xist T 3 , s u c h t h at |θ i
k | > λ

2 , ∀ k ≥ T 3 .

L et T : =  m a x{ T 1 , T2 , T3 } .  N e xt  w e  will s h o w t h at v k + 1 −
v k

2 = O ( 1
k ) , ∀ k ≥ T .  T o st art, usi n g ( 2 5), o n e c a n h a v e

v i
k + 1 − v i

k

=
R

θ k + 1
q − 1
q θ k

q − 1
q

− θ i
k + 1 |θ i

k + 1 |q − 2 θ k
q − 1
q

+ θ i
k |θ i

k |q − 2 θ k + 1
q − 1
q

=
R

θ k + 1
q − 1
q θ k

q − 1
q

θ i
k + 1 |θ i

k + 1 |q − 2 θ k + 1
q − 1
q

− θ k
q − 1
q + θ k + 1

q − 1
q θ i

k |θ i
k |q − 2 − θ i

k + 1 |θ i
k + 1 |q − 2 .

N e xt usi n g G / 2 ≤ θ k + 1 q ≤ 2 G, ∀ k ≥ T , a n d |θ i
k + 1 | ≤

θ k + 1 q , w e h a v e

|v i
k + 1 − v i

k | = O θ k + 1
q − 1
q − θ k

q − 1
q

+ θ i
k |θ i

k |q − 2 − θ i
k + 1 |θ i

k + 1 |q − 2 . ( 2 6)

We first b o u n d t h e first t er m i n  R H S of ( 2 6).  L et h (x ) =
(x ) q − 1 .  T h e n b y  m e a n v al u e t h e or e m  w e h a v e h (y ) = h (x ) +
∇ h (x )(y − x ) + ∇ 2 h (z ) x − y 2 ,  w h er e z = ( 1 − α )x + α y
f or s o m e α ∈ [ 0, 1] .  Ta ki n g x = θ k q a n d y = θ k + 1 q , a n d
usi n g t h e f a ct G / 2 ≤ θ k q ≤ 2 G f or k ≥ T , w e h a v e

θ k + 1
q − 1
q

= θ k
q − 1
q + O ( θ k q − θ k + 1 q + θ k q − θ k + 1 q

2
)

= θ k
q − 1
q + O

1
√

k
( 2 7)

H e n c e, o n e c a n fi n d t h at t h e first t er m o n t h e  R H S of ( 2 6) is
b o u n d e d b y O ( 1√

k
) .

N e xt  w e f o c us o n t h e s e c o n d t er m of ( 2 6) b y c o nsi d eri n g
w h et h er θ i

k a n d θ i
k + 1 h a v e diff er e nt si g ns.

C as e 1: θ i
k a n d θ i

k + 1 h a v e t h e s a m e si g n. T h e n  w e h a v e

θ i
k |θ i

k |q − 2 − θ i
k + 1 |θ i

k + 1 |q − 2

= |θ i
k |q − 1 − | θ i

k + 1 |q − 1 ≤ O
1

√
k

( 2 8)

w h er e t h e l ast i n e q u alit y us es t h e s a m e  m e a n- v al u e-t h e or e m

ar g u m e nt as ( 2 7) a n d t h e f a ct |θ i
k | ≥ λ

2 .
C as e 2: θ i

k a n d θ i
k + 1 h a v e diff er e nt si g ns. We ass u m e θ i

k + 1 ≥
0 w.l. o. g. I n t his c as e, b y t h e u p d at e  m a n n er of θ k + 1 , w e h a v e
|θ i

k + 1 | ≤ |δ k [∇ f (y k )] i | = O (δ k ) = O ( 1
k ) .  T his is i m p ossi bl e

gi v e n t h e f a ct |θ i
k + 1 | > λ

2 w h e n k ≥ T .
T h er ef or e,  w e h a v e t h e s e c o n d t er m i n ( 2 6) b o u n d e d b y

O ( 1√
k
) .  H e n c e, it is e as y t o s e e t h at

v k + 1 − v k
2 = O

1

k
.

A p pl yi n g t h e s a m e ar g u m e nt i n t h e pr o of of  T h e or e m 3,
w e h a v e t h at  w h e n k ≥ T , ξ k + 1 = ˜O ( 1

k 2 ) .  T his f urt h er i m pli es

f (x k ) − f (x ∗ ) = ˜O ( 1
k 2 ) a s  w ell.
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Fi g. 5. P erf or m a n c e of  A F W o n n -s u p p ort n or m b alls.

Fi g. 6. P erf or m a n c e of  A F W o n l o g-s u m- e x p l oss es.

L.  A d diti o n al  N u m eri c al Tests

A F W is t est e d o n ot h er l oss f u n cti o ns a n d c o nstr ai nts t o
d e m o nstr at e its ef fi ci e n c y.

n -s u p p o rt n o r m b all c o nst r ai nt. We first c o nsi d er l o gisti c
r e gr essi o n o v er a n -s u p p ort n or m b all [ 5 0].  T his is c h all e n g-
i n g d u e t o t h e c o nstr ai nt X = c o n v { x | x 0 ≤ n, x 2 ≤ R } ,
w h er e c o n v {· } d e n ot es t h e c o n v e x h ull.  G D a n d  A G M ar e
e x p e nsi v e f or s u c h a c o nstr ai nt s et si n c e ef fi ci e nt pr oj e cti o n is
u n cl e ar,  w hil e t h e F W s u b pr o bl e m c a n b e s ol v e d e asil y [ 5 1]. F or
t his r e as o n,  w e o nl y c o m p ar e F W  wit h  A F W, a n d t h e n u m eri c al
r es ults d e pi ct e d i n Fi g. 5 d e m o nstr at e t h at  A F W o ut p erf or ms
F W.

L o g-s u m- e x p l oss. We als o t est  A F W usi n g t h e l o g-s u m- e x p
l oss f u n cti o n, t h at is,

f (x ) = l n

n

i = 1

e x p ( a i , x ) . ( 2 9)

We s et n = 1 0 0 0 a n d d = 5 0 0 , a n d dr a w a i fr o m a st a n d ar di z e d
n or m al distri b uti o n.  T h e 2 n or m b all a n d n -s u p p ort n or m b alls
ar e us e d as c o nstr ai nts.  T h e r es ults i n Fi g. 6 c orr o b or at e t h at
A F W o ut p erf or ms F W.
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[ 4 5]  D.  G ar b er, “ R e visiti n g Fr a n k – W olf e f or p ol yt o p es: Stri ct c o m pl e m e nt ar y
a n d s p arsit y,” 2 0 2 0, ar Xi v: 2 0 0 6. 0 0 5 5 8 .

[ 4 6] J.  D u c hi, S. S h al e v- S h w art z,  Y. Si n g er, a n d  T.  C h a n dr a, “ Ef fi ci e nt pr oj e c-
ti o ns o nt o t h e l 1- b all f or l e ar ni n g i n hi g h di m e nsi o ns,” i n Pr o c. I nt.  C o nf.
M a c h. L e ar n. , 2 0 0 8, p p. 2 7 2 – 2 7 9.

[ 4 7] J.  B e n n ett et al. “ T h e  N et fli x Pri z e,” i n Pr o c.  K D D  C u p  w or ks h o p ,
v ol. 2 0 0 7.  N e w  Yor k,  N Y,  U S A., 2 0 0 7, p p. 3 5 – 3 5.

[ 4 8]  R.  M.  B ell a n d  Y.  K or e n, “ L ess o ns fr o m t h e  N et fli x Pri z e c h all e n g e,”
Si G K D D  E x pl or ati o ns , v ol. 9, n o. 2, p p. 7 5 – 7 9, 2 0 0 7.

[ 4 9]  M. F a z el, “ M atri x r a n k  mi ni mi z ati o n  wit h a p pli c ati o ns,” P h. D. t h esis,
St a nf or d  U ni v., 2 0 0 2.

[ 5 0]  A.  Ar g yri o u,  R. F o y g el, a n d  N. Sr e br o, “ S p ars e pr e di cti o n  wit h t h e k -
s u p p ort n or m,” i n Pr o c.  A d v.  N e ur al I nf.  Pr o c ess. S yst. , 2 0 1 2, p p. 1 4 5 7 –
1 4 6 5.

[ 5 1]  B.  Li u,  X.- T.  Yu a n, S.  Z h a n g,  Q.  Li u, a n d  D.  N.  M et a x as, “ Ef fi ci e nt k-
s u p p ort- n or m r e g ul ari z e d  mi ni mi z ati o n vi a f ull y c orr e cti v e Fr a n k – W olf e
m et h o d,” i n Pr o c. I nt. J oi nt  C o nf.  Artif. I nt ell. , 2 0 1 6, p p. 1 7 6 0 – 1 7 6 6.

Bi n g c o n g  Li r e c ei v e d t h e  B. E n g. d e gr e e ( wit h hi g h est
h o n ors) i n c o m m u ni c ati o n s ci e n c e a n d e n gi n e eri n g
fr o m F u d a n  U ni v ersit y, S h a n g h ai,  C hi n a, i n 2 0 1 7,
a n d t h e  M. S c. d e gr e e i n el e ctri c al a n d c o m p ut er e n-
gi n e eri n g ( E C E) fr o m t h e  U ni v ersit y of  Mi n n es ot a
( U M N),  Mi n n e a p olis,  M N,  U S A, i n 2 0 1 9,  w h er e h e
is c urr e ntl y  w or ki n g t o w ar d t h e P h. D. d e gr e e.  His
r es e ar c h i nt er ests i n cl u d e o pti mi z ati o n a n d  m a c hi n e
l e ar ni n g,  wit h a p pli c ati o ns t o c y b er p h ysi c al s yst e ms.
H e  w as t h e r e ci pi e nt of t h e  N ati o n al S c h ol ars hi p
t wi c e fr o m  C hi n a i n 2 0 1 4 a n d 2 0 1 5, a n d  U M N  E C E
D e p art m e nt F ell o ws hi p i n 2 0 1 7.

M a ri o  C o uti ñ o ( St u d e nt  M e m b er, I E E E) r e c ei v e d
t h e  M. S c. a n d t h e P h. D. d e gr e e ( c u m l a u d e) i n el e c-
tri c al e n gi n e eri n g fr o m t h e  D elft  U ni v ersit y of  Te c h-
n ol o g y,  D elft,  T h e  N et h erl a n ds, i n J ul y 2 0 1 6 a n d
A pril 2 0 2 1, r es p e cti v el y. Si n c e  O ct o b er 2 0 2 0, h e
h as b e e n a Si g n al Pr o c essi n g  R es e ar c h er  wit h  R a d ar
Te c h n ol o g y  D e p art m e nt,  T N O,  T h e  N et h erl a n ds.  H e
h as h el d p ositi o ns  wit h  T h al es  N et h erl a n ds, d uri n g
2 0 1 5, a n d  B a n g  &  Ol ufs e n, d uri n g 2 0 1 5 – 2 0 1 6.  His
r es e ar c h i nt er ests i n cl u d e arr a y si g n al pr o c essi n g, si g-
n al pr o c essi n g o n n et w or ks, s u b m o d ul ar a n d c o n v e x

o pti mi z ati o n, a n d n u m eri c al li n e ar al g e br a.  H e  w as t h e r e ci pi e nt of t h e  B est
St u d e nt P a p er  A w ar d f or his p u bli c ati o n at t h e  C A M S A P 2 0 1 7 c o nf er e n c e
i n  C ur a c a o a n d  w as a  Visiti n g  R es e ar c h er  wit h  RI K E N  AI P a n d t h e  Di git al
Te c h n ol o gi c al  C e nt er,  U ni v ersit y of  Mi n n es ot a, i n 2 0 1 8 a n d 2 0 1 9, r es p e cti v el y.

G e o r gi os  B.  Gi a n n a kis ( F ell o w, I E E E) r e c ei v e d t h e
Di pl o m a i n el e ctri c al e n gi n e eri n g fr o m t h e  N ati o n al
Te c h ni c al  U ni v ersit y of  At h e ns,  At h e ns,  Gr e e c e, i n
1 9 8 1, t h e  M. S c. d e gr e e i n el e ctri c al e n gi n e eri n g, t h e
M. S c. d e gr e e i n  m at h e m ati cs, a n d t h e P h. D. d e gr e e
i n el e ctri c al e n gi n e eri n g fr o m t h e  U ni v ersit y of t h e
S o ut h er n  C alif or ni a,  L os  A n g el es,  C A,  U S A, i n 1 9 8 3,
1 9 8 6, a n d 1 9 8 6, r es p e cti v el y.  H e  w as a f a c ult y  m e m-
b er  wit h t h e  U ni v ersit y of  Vir gi ni a,  C h arl ott es vill e,
V A,  U S A, fr o m 1 9 8 7 t o 1 9 9 8, a n d si n c e 1 9 9 9, h e h as
b e e n a Pr of ess or  wit h t h e  U ni v ersit y of  Mi n n es ot a,

Mi n n e a p olis,  M N,  U S A,  w h er e h e h el d a n  A D C  E n d o w e d  C h air of t el e c o m m u-
ni c ati o ns,  w as t h e  Dir e ct or of t h e  Di git al  Te c h n ol o g y  C e nt er fr o m 2 0 0 8 t o 2 0 2 1,
a n d si n c e 2 0 1 6, h e is h as b e e n a  U ni v ersit y of  Mi n n es ot a  M c K ni g ht Pr esi d e nti al
C h air i n  E C E.

H e h as a ut h or e d or c o a ut h or e d  m or e t h a n 4 8 0 j o ur n al p a p ers, 7 8 0 c o nf er e n c e
p a p ers, 2 5 b o o k c h a pt ers, t w o e dit e d b o o ks, a n d t w o r es e ar c h  m o n o gr a p hs i n his
r es e ar c h fi el d,  w hi c h i n cl u d e st atisti c al l e ar ni n g, si g n al pr o c essi n g, c o m m u ni-
c ati o ns, a n d n et w or ki n g.  His c urr e nt r es e ar c h i n cl u d e d at a s ci e n c e, a n d n et w or k
s ci e n c e  wit h a p pli c ati o ns t o t h e I nt er n et of  T hi n gs, a n d p o w er n et w or ks  wit h
r e n e w a bl es.  H e is t h e c o-i n v e nt or of 3 4 iss u e d p at e nts.  H e  w as t h e c o-r e ci pi e nt
of t h e t e n  B est J o ur n al P a p er  A w ar ds fr o m t h e I E E E Si g n al Pr o c essi n g ( S P)
a n d  C o m m u ni c ati o ns S o ci eti es, i n cl u di n g t h e  G.  M ar c o ni Pri z e P a p er  A w ar d
i n  Wir el ess  C o m m u ni c ati o ns.  H e  w as als o r e ci pi e nt of t h e I E E E- S P S  N or b ert
Wi e n er S o ci et y  A w ar d ( 2 0 1 9), t h e  E U R A SI P’s  A. P a p o ulis S o ci et y  A w ar d
( 2 0 2 0),  Te c h ni c al  A c hi e v e m e nt  A w ar ds fr o m t h e I E E E- S P S ( 2 0 0 0) a n d fr o m
E U R A SI P ( 2 0 0 5), t h e I E E E  C o m S o c  E d u c ati o n  A w ar d ( 2 0 1 9), a n d t h e I E E E
F o uri er  Te c h ni c al Fi el d  A w ar d ( 2 0 1 5).  H e is a F or ei g n  M e m b er of t h e  A c a d e mi a
E ur o p a e a, a n d a F ell o w of t h e  N ati o n al  A c a d e m y of I n v e nt ors, t h e  E ur o p e a n
A c a d e m y of S ci e n c es, a n d  E U R A SI P.  H e h as s er v e d t h e I E E E i n a n u m b er of
p osts, i n cl u di n g a  Disti n g uis h e d  L e ct ur er f or t h e I E E E- S P S.

G e e rt  L e us ( F ell o w, I E E E) r e c ei v e d t h e  M. S c. a n d
P h. D. d e gr e es i n el e ctri c al e n gi n e eri n g fr o m  K U  L e u-
v e n,  L e u v e n,  B el gi u m, i n J u n e 1 9 9 6 a n d  M a y 2 0 0 0,
r es p e cti v el y.  H e is c urr e ntl y a F ull Pr of ess or  wit h t h e
F a c ult y of  El e ctri c al  E n gi n e eri n g,  M at h e m ati cs a n d
C o m p ut er S ci e n c e,  D elft  U ni v ersit y of  Te c h n ol o g y,
D elft,  T h e  N et h erl a n ds.  H e is a F ell o w of  E U R A SI P.
H e  w as a  M e m b er- at- L ar g e of t h e  B o ar d of  G o v er n ors
of t h e I E E E Si g n al Pr o c essi n g S o ci et y, t h e  C h air of
t h e I E E E Si g n al Pr o c essi n g f or  C o m m u ni c ati o ns a n d
N et w or ki n g  Te c h ni c al  C o m mitt e e, a n d t h e  E dit or-i n-

C hi ef of t h e E U R A SI P J o ur n al o n  A d v a n c es i n Si g n al  Pr o c essi n g .  H e is c urr e ntl y
t h e  C h air of t h e  E U R A SI P  Te c h ni c al  Ar e a  C o m mitt e e o n Si g n al Pr o c essi n g f or
M ultis e ns or S yst e ms a n d t h e  E dit or-i n- C hi ef of t h e E U R A SI P Si g n al  Pr o c essi n g .
H e  w as t h e r e ci pi e nt of t h e 2 0 2 1  E U R A SI P I n di vi d u al  Te c h ni c al  A c hi e v e m e nt
A w ar d, t h e 2 0 0 5 I E E E Si g n al Pr o c essi n g S o ci et y  B est P a p er  A w ar d, a n d t h e
2 0 0 2 I E E E Si g n al Pr o c essi n g S o ci et y  Yo u n g  A ut h or  B est P a p er  A w ar d.
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