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Abstract—Graph convolutional networks (GCNs) have well-documented performance in various graph learning tasks, but their
analysis is still at its infancy. Graph scattering transforms (GSTs) offer training-free deep GCN models that extract features from graph
data, and are amenable to generalization and stability analyses. The price paid by GSTs is exponential complexity in space and time
that increases with the number of layers. This discourages deployment of GSTs when a deep architecture is needed. The present work
addresses the complexity limitation of GSTs by introducing an efficient so-termed pruned (p)GST approach. The resultant pruning
algorithm is guided by a graph-spectrum-inspired criterion, and retains informative scattering features on-the-fly while bypassing the
exponential complexity associated with GSTs. Stability of the novel pGSTs is also established when the input graph data or the network
structure are perturbed. Furthermore, the sensitivity of pGST to random and localized signal perturbations is investigated analytically
and experimentally. Numerical tests showcase that pGST performs comparably to the baseline GST at considerable computational
savings. Furthermore, pGST achieves comparable performance to state-of-the-art GCNs in graph and 3D point cloud classification
tasks. Upon analyzing the pGST pruning patterns, it is shown that graph data in different domains call for different network
architectures, and that the pruning algorithm may be employed to guide the design choices for contemporary GCNs.

1 INTRODUCTION

HE abundance of graph-abiding data calls for advanced

learning techniques that complement nicely standard
machine learning tools when the latter cannot be directly
employed, e.g., due to irregular data inter-dependencies. Per-
meating the benefits of deep learning to graph data, graph
convolutional networks (GCNs) offer a versatile and powerful
framework to learn from complex graph data [1]. GCNs and
variants thereof have been remarkably successful in social net-
work analysis, 3D point cloud processing, recommender sys-
tems and action recognition. However, researchers have
recently reported less consistent perspectives on the desirable
GCN designs. For example, experiments in social network
analysis have argued that deeper GCNs marginally increase
the learning performance [2], whereas a method for 3D point
cloud segmentation achieves state-of-the-art performance
with a 56-layer GCN network [3]. These ‘controversial’ empir-
ical findings motivate theoretical analysis to understand the
fundamental performance-defining factors, and the resultant
design choices for high-performance GCNs.

Aiming to bestow GCNs with theoretical guarantees, one
promising path is to study graph scattering transforms
(GSTs) — an analysis framework that has been advocated to
assess stability and explain the success of deep neural
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networks (DNNs) [4], [5]. GSTs are non-trainable GCNs
comprising a cascade of graph filter banks followed by non-
linear activation functions. The graph filter banks are
designed analytically to scatter an input graph signal into
multiple channels. GSTs extract stable features of graph
data that can be utilized for downstream graph learning
tasks [6], with competitive performance especially when the
number of training examples is small. Under certain condi-
tions on the graph filter banks, GSTs are endowed with
energy conservation properties [7], as well as stability that
amounts to robustness to graph topology deformations [8].
Inherited from scattering transforms, GSTs however are
known to incur exponential complexity in space and time
that increases with the number of layers (GST depth) [4],
[5]. Furthermore, stability should not come at odds with
sensitivity. A filter’s output should be sensitive to and able
to cope with perturbations of large magnitude. Current GST
efforts have not addressed transform sensitivity to input
noise. Lastly, graph data in different domains (e.g., social
networks versus 3D point clouds) have distinct properties,
which prompts domain-adaptive GST designs.

1.1 Contributions

The present paper develops a data-adaptive pruning app-
roach to systematically retain informative GST features,
which justifies the term pruned graph scattering transform
(pGST). The pruning decisions are guided by a criterion
promoting alignment (matching) of the input graph spec-
trum with that of the graph filters. The optimal pruning
decisions are provided on-the-fly, and alleviate the expo-
nential complexity of GSTs. We prove that the pGST is sta-
ble to perturbations of the input graph data and those of the
network structure. Under certain conditions on the pertur-
bation energy, the resultant pruning patterns before and
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Fig. 1. lllustration of the same pGST applied to different graph datasets. For the social network (a) most GST branches are pruned, suggesting that

most information is captured by local interactions.

after the network and input perturbations are identical, and
the overall pGST is stable. Further, the sensitivity of pGST
to random and localized noise is theoretically and experi-
mentally investigated. It turns out that pGST is more sensi-
tive to noise that is localized in the graph spectrum relative
to noise that is uniformly spread over the spectrum. This is
appealing because pGST can detect transient changes in the
graph spectral domain, while ignoring small random per-
turbations. With extensive experiments we showcase that
the proposed pGSTs perform similar to, and in certain cases
better than, the baseline GSTs that use all scattering fea-
tures, while achieving significant computational savings.
Furthermore, the efficient and stable features extracted can be
utilized towards graph classification and 3D point cloud
recognition. Even without any training on the feature
extraction step, the performance is comparable to state-of-
the-art deep supervised learning approaches, particularly
when training data are scarce. By analyzing the pruning
patterns of the pGST, we deduce that graph data in different
domains call for distinct network architectures; see Fig. 1.
Finally, we establish that the number of pGST layers after
pruning can be utilized to guide the design parameters of
contemporary GCNs.

A preliminary version of this work was presented in [9].
Relative to this, the novelty here is fourfold. First, novel the-
oretical results are derived that establish stability of the
pGST to structural perturbations. An additional interpreta-
tion of the pruining criterion as a rate-distortion tradeoff is
presented. Furthermore, sensitivity analysis of pGST reveals
that the transform is more sensitive to noise that is localized
in the graph spectrum relative to noise that is uniformly
spread over the spectrum, which is appealing because
pGST can detect transient changes in the graph spectral
domain. Finally, new experimental results showcase: i) the
effect of localized and random noise to the pruning algo-
rithm; ii) the competitive performance of pGST for semi-
supervised learning tasks; and, iii) the strong link between
design choices in GCNs, and the pruning patterns of pGST.

2 RELATED WORK

2.1 Graph Convolutional Networks

GCNis rely on a layered processing architecture comprising
trainable graph convolutional operations to linearly combine

features per graph neighborhood, followed by pointwise
nonlinear functions applied to the linearly transformed fea-
tures [1]. Complex GCNs and their variants have shown
remarkable success in graph semi-supervised learning [10],
[11], [12] and graph classification tasks [13]. GCNs as simple
as a single-layer linear module can offer high performance
in certain social network learning applications [2]. On the
other hand, a 56-layer GCN has been employed to achieve
state-of-the-art performance in 3D point cloud segmentation
[3]. Whether simple or complex, designing GCNs guided
by properties of the graph data at hand is of paramount
importance.

2.2 Graph Scattering Transforms

To understand the success of GCNs analytically, recent
works study the stability properties of GSTs with respect to
metric deformations of the domain [7], [8], [14]. GSTs gener-
alize scattering transforms [4], [5] to non-Euclidean domains.
GSTs are a cascade of graph filter banks and nonlinear opera-
tions that is organized in a tree-structured architecture. The
number of extracted GST features grows exponentially with
the number of layers. Theoretical guarantees for GSTs are
obtained after fixing the graph filter banks to implement a
set of graph wavelets. The work in [7] establishes energy
conservation properties for GSTs given that certain energy-
preserving graph wavelets are employed, and also prove
that GSTs are stable to graph structure perturbations; see
also [14] that focuses on diffusion wavelets. On the other
hand, [8] proves stability to relative metric deformations for
a wide class of graph wavelet families. These contemporary
works shed light into the stability and generalization capabil-
ities of GCNs. However, stable transforms are not necessar-
ily informative, and albeit highly desirable, a principled
approach to selecting informative GST features remains still
an uncharted venue.

2.3 Neural Network Based Compression

This work advocates pruning of GSTs to avoid the expo-
nential growth of features with the network depth, which is
naturally related to deep neural network (DNN) based com-
pression [15], [16]. State-of-the-art DNNs typically entail a
large number of network layers and corresponding train-
able parameters, which introduce excessive computational
and memory costs [17], [18]. Confronting these challenges,
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neural network compression aims at reducing the network
parameters and pruning the architecture to facilitate practical
deployment of DNN-based solutions. Typical compression
techniques prune redundant parameters during training,
while minimizing the effect of the pruned parameters to the
learned features [15], [16]. Recent approaches perform net-
work pruning at initialization before training the DNN [19].
Although DNN-based compression is a fruitful direction,
pruning GCNs has not received commensurate attention.
Typical GCNs are applied to relatively small data sets and
require only a small number of layers and training parame-
ters to attain state-of-the-art learning performance [2], [10],
[11], which explains why GCN-based compression is yet to
be explored. Deep GCNs are emerging however, to deal
with web-scale graphs [3], [20]. Such overparameterized
GCNs motivate the development of novel compression
techniques. Our work can be seen as a stepping stone
towards pruning GCNs; meanwhile, pruning GSTs versus
GCNs/DNNs has differences in two aspects. First, GSTs are
nontrainable feature extractors, whereas GCNs/DNNs
introduce trainable parameters that should be considered
by the compression algorithm. Second, GST pruning is
inherently an one-shot process and pruning is performed in
an online and even adaptive fashion, whereas pruning

GCNs or DNNs should be performed offline.

3 BACKGROUND

Consider an undirected graph G := {V, £} with node set V' :
= {v;}lY,, and edge set £:={e;}7,. Its connectivity is
described by the graph shift matrix S € RV*Y, whose
(n,n')th entry S,,, is nonzero if (n,n') € £ or if n=n'. A
typical choice for S is the symmetric adjacency or the Lapla-
cian matrix. Further, each node can be also associated with
a few attributes. Collect attributes across all nodes in the
matrix X := [xq,...,xz] € RV, where each column x; €
RY can be regarded as a graph signal.

3.1 Graph Fourier Transform

A Fourier transform corresponds to the expansion of a sig-
nal over bases that are invariant to filtering; here, this graph
frequency basis is the eigenbasis of the shift matrix S.
Henceforth, S is assumed normal with S = VAV, where
V € RYY forms the graph Fourier basis, and A € RV s
the diagonal matrix of corresponding eigenvalues X, ...,
An—1, that can be thought of as graph frequencies. The
graph Fourier transform (GFT) of x € RV is x = V'x € RY,
while the inverse transform is x = VX. The vector X repre-
sents the signal’s expansion in the eigenvector basis and
describes the graph spectrum of x. The inverse GFT recon-
structs the graph signal from its graph spectrum by com-
bining graph frequency components weighted by the
coefficients of the signal’s graph Fourier transform. GFT is a
theoretical tool that has been popular for analyzing graph
data in the graph spectral domain.

3.2 Graph Convolutional Networks

GCNs permeate the benefits of CNNs from processing
euclidean data to modeling graph structured data. GCNs
model graph data through a succession of layers, each con-
sisting of a graph convolutional operation (a.k.a. graph
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filter), a pointwise nonlinear function o(-), and oftentimes
also a pooling operation. Given x € R”, the graph convolu-
tion operation diffuses each node’s information to its neigh-
bors to obtain Sx with nth entry [Sx|, =)\, Suww
being a weighted average of the one-hop neighboring
features. Successive application of S will reach multi-hop
neighbors, spreading the information across the network.
Summing up, a Kth-order graph convolutional operation
(graph filtering) is

K
h(S)x =Y wiS' = VA(A)X, (1
k=0

where the graph filter (-) is parameterized by the learnable
weights {w;}1, and in the graph spectral domain h(A) =
> ,{‘ZU wiA*. In the graph vertex domain, the learnable
weights capture the influences from various orders of
neighbors; and in the graph spectral domain, those weights
adaptively adjust the focus and emphasize certain graph
frequency bands. GCNs employ various graph filter banks
per layer, and learn the parameters that minimize a prede-
fined learning objective, such as classification, or regression.

3.3 Graph Scattering Transforms

GSTs are the training-free counterparts of GCNs, where the
parameters of graph convolutions are fixed based on a
design criterion. Per GST layer, the input is graph filtered
using a filter bank {hj(S)}le, an elementwise nonlinear
function o(-), and a pooling operator U. At the first layer,
the input x € R" constitutes the first scattering feature vec-
tor z() := x. Next, z(y is processed through {hj(~)}}]:1 and

o(-) to generate {z; }'j]:] with z(;) := o (h;(S)z()). At the sec-
ond layer, the same operation is repeated per j. This yields
a tree structure with J branches stemming out from non-
leaf node; see also Fig. 2. The /th layer of the tree includes
J' nodes. Each node of layer / is indexed by the path p() of
the sequence of ¢ graph convolutions applied to the input x,
ie,p® = (1, @, . . 5O

The scattering feature vector at the tree node indexed by
(p\", j) at layer £ + 1, is

Zy0 4 = U(hj(s)z(p@)))a (2)

where p¥) holds the list of indices of the parent nodes
ordered by ancestry, and all path p*) in the tree with length
¢ are included in the path set P¥) with |[P)| = 2/, The mem-
oryless nonlinearity of(-) disperses the graph frequency
representation through the spectrum, and endows the GST
with increased discriminating power [8]. By exploiting
graph sparsity, the computational complexity of (2) is
O(KE), where E = |€] is the number of edges in® G. Each
feature vector z ), is summarized by an aggregation opera-
tor U(-) defining a scalar scattering coefficient D) =
U (z(pw)), where U(-) is typically an averaging operator that
reduces dimensionality of the extracted features. The

1. A tree node is fully specified by its corresponding path.
2. Any analytical function h(S) can be written as a polynomial of S
with maximum degree N — 1 [21].
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Fig. 2. Scattering pattern of a pGST with J =3 and L = 3. Dashed lines represent pruned branches. An example x and GFTs of filter banks are
depicted too. The third filter j = 3 at ¢ = 1 is pruned because it generates no output (z), = 0).

scattering coefficient per tree node reflects the activation
level at a certain graph frequency band.

These scattering coefficients are collected across all tree
nodes to form a scattering feature map

L
PD(x) := {{¢(p</>)}p<f>ep<e) } o’ (3)
where |®(x)| = 3/, J*. The GST operation resembles a for-
ward pass of a trained GCN. This is why several works
study GST stability under perturbations of S in order to
understand the working mechanism of GCNs [7], [8], [14].

4 PRUNED GRAPH SCATTERING TRANSFORMS

While the representation power of GST increases with the
number of layers, the computational and storage complexity
of the transform also increase exponentially with the num-
ber of layers due to its scattering nature. Hence, even if
informative features become available at deeper layers, the
associated exponential complexity of extracting such fea-
tures is prohibitive. On the other hand, various input data
(e.g., social networks and 3D point clouds) may have dis-
tinct properties, leading to different GST feature maps. In
some cases, just a few nodes of deep layers are informative;
and in other cases, nodes of shallow layers convey most of
the information; see Fig. 1. This motivates the pursuit of a
tuned GST to adaptively capture informative nodes.

Aspiring to improve GST models, we introduce a pruned
(p)GST to systematically retain informative nodes without
extra complexity. Our novel pGST reduces the exponential
complexity and adapts GST to different graph data. Further-
more, pGST offers a practical mechanism to understand the
architecture of GCNs. Based on the pruning patterns, the
proposed pGST suggests when a deeper GCN is desirable,
or, when a shallow one will suffice. Pruning the wavelet
packets has been traditionally employed for compression in
image processing applications [22], where the pruning is
guided by a rate-distortion optimality criterion.

In this work, we consider a graph spectrum inspired cri-
terion. Intuitively, each GST node will be associated with a
unique subband of the graph spectrum. When the subband
of a node does not have sufficient overlap with the graph
signal spectrum, this node cannot capture the underlying
graph signal, and should be pruned. Consider for specificity
a smooth x, where connected nodes have similar signal

values. This implies sparse (low-rank) representation in the
graph spectral domain; that is, X := V'x € RY and [x], =0
for n > b. The graph spectrum of the jth output is then

VTh(S)x = diag (7;(A))X

= )21, 1N, - s (w)EN] )
where ), is the nth eigenvalue of S and each frequency z,, is
welghted by the corresponding transformed eigenvalue

h;j(An). Hence, if the support of the spectrum {h (M)}, 1s
not included in the support of [x],, the jth graph filter out-
put will not capture any information; that is, 2;(S)x = Oy;
see Fig. 2. Thus, identifying such graph filters and pruning
the corresponding tree nodes will result in a parsimonius
and thus computationally efficient GST.

4.1 Pruning Criterion

Motivated by this last observation, we introduce a pruning
criterion to select the scattering branches per node by maxi-
mizing the alignment between the graph spectrum of the fil-
ters and the scattering features. Per node p, the optimization
problem is

max (h ,L — ‘L’)[ ( )}Z>f( 7)

i)} le (Z ®)
S. t. f(p,j)6{071}7 1=1,...,J,

where Zz(,) := Vz, is the graph spectrum of the scattering

feature vector z,); T is a user-specific threshold; and, f,
stands for the pruning assignment variable indicating
whether node (p,j) is active (fy, ;) = 1), or, it should be
pruned (f, = 0). The objective in (5) promotes retaining
tree nodes that maximize the alignment of the graph spec-
trum of Z,, with that of /(). The threshold t introduces a
minimum spectral value to locate those nodes whose corre-
spondmg graph spectral response is small, meaning
hj(A\)* < 7. Note that criterion (5) is evaluated per tree
node p, thus allowing for a flexible and scalable design.

The optimization problem in (5) is nonconvex since f, j
is a discrete variable. Furthermore, recovering z, requires
an eigendecomposition of the Laplacian matrix that incurs
complexity O(N?). Nevertheless, by exploiting the structure
in (5), we will develop an efficient pruning algorithm

Authorized licensed use limited to: University of Minnesota. Downloaded on February 05,2022 at 02:00:26 UTC from IEEE Xplore. Restrictions apply.



1236

attaining the maximum of (5), as asserted by the following
theorem.

Theorem 1. The optimal { I6 j)} “are given by
P

i izl <7
fop = ke~ 0, j=1,.,J (6)

0 otherwise.

The optimal variables f;, , are given by comparing the
energy of the input z,) to t at of the output z, ; per graph
filter j that can be evaluated with linear complexity of order
O(N). Our pruning criterion leads to a principled and scal-
able means of selecting the GST nodes to be pruned. The
pruning objective is evaluated per node p, and pruning
decisions are made on-the-fly. Hence, when f/, = 1, node p
is active and the graph filter bank will be applied to z,),
expanding the tree to the next layer; otherwise, the GST will
not be expanded further at node p, which can effect expo-
nential savings in computations. An example of such a
pruned tree is depicted in Fig. 2. Evidently, the hyperpara-
meter 7 controls the input-to-output energy ratio. A large t
corresponds to an aggressively pruned scattering tree, while
a small t amounts to a minimally pruned scattering tree.
The stable and efficient representation extracted by the
pGST is then defined as

¥(x) = {d)(p) }peT’

where 7 is the set of active tree nodes 7 := {p € P|
=1}

p%)ur pruning approach provides a concise version of
GSTs and effects savings in computations as well as mem-
ory. Although the worst-case complexity of pGST is still
exponential, a desirable complexity can be realized by prop-
erly selecting t. As a byproduct, the scattering patterns of
pGSTs reveal the appropriate depths and widths of the
GSTs for different graph data; see also Fig. 1. The pruning
approach so far is an unsupervised one, since the labels are
not assumed available. Note that the GFT is used through-
out for analytical purposes, and neither the pruning algo-
rithm nor the pGST requires explicit calculation of the GFT.

4.2 Rate-Distortion Tradeoff

Our pruning objective is closely related to the optimal rate-
distrortion objective in signal processing [23], [24]. By judi-
ciously selecting 7, the proposed pruning criterion in (6)
finds also the optimal variables to the following problem

Nl
(p.9)

Z 2 f(m)

J

max

U} = llzll
s. t. f<P~j) €{0,1}, j=1,...,J ¢
J
Z foj < K,
j=1

where K denotes the maximum number of retained scatter-
ing features, that can be dictated by computational com-
plexity constraints. The optimal solution to (7) is to set
fipj =1 for the K scattering features with larger energy
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ratio |\z(p7j)||2/||z<p)|\2 and the rest to zero f,; = 0. Indeed,
by properly choosing 7, the criterion in (6) can be employed
to find the K channels with maximum energy, where t
would be the K'th larger energy ratio. Such energy preserva-
tion objective has been employed in signal processing in the
context of PCA wavelets [23]. Indeed, the hyperparameter ¢
reflects the sweet spot in the rate-distortion tradeoff [24].

5 STABILITY AND SENSITIVITY OF PGST

In this section, we study the stability and sensitivity of pGST
when the input graph data and the network topology are
perturbed. We will establish that pGST is stable in the pres-
ence of feature or network perturbations with bounded
power. We will further analyze pGST sensitivity to input
perturbations. To establish these results, we consider graph
wavelets that form a frame with frame bounds A and
B [25], meaning for x € RY, it holds that, A2HX||2 <
Zj;l [h;(S)x||” < B?||x||*. In the graph vertex domain, A
and B characterize the numerical stability of recovering x
from {h;(S)x},. In the graph spectral domain, they reflect
the ability of a graph filter bank to amplify x along each
graph frequency. Tight frame bounds, satisfying A? = B?
are of particular interest because such wavelets lead to
enhanced numerical stability and faster computations [26].
The frame property of a graph wavelet plays an instrumen-
tal role in proving GST stability to perturbations of the
underlying graph structure [7], [8], [14].

5.1 Stability to Graph Data Perturbations
Perturbations present in x may be attributed to modeling
errors, or adversarial intervention aiming to poison learn-
ing. Consider the perturbed graph signal

Xx:=x+8ecR", ®)

where § € RY is the perturbation vector. We wish to study
how and under what conditions our pGST is affected by
such perturbations. A stable transformation should have a
similar output under small input perturbations.

Before establishing that our pGST is stable, we first
show that GST is stable to small perturbations in x. Prior art
deals mainly with GST stability to structure perturbations

(71, [8], [14].

Lemma 1. Consider the GST ®(-) with L layers and J graph fil-
ters; and suppose that the graph filter bank forms a frame with
bound B, while x and x are related via (8). It then holds that

100 — PRI
()]

Zg( i |\5||. )
=0

The squared difference of the GSTs is normalized by the
number of scattering features in ®(-), that is |®(x)| =
S/, J*. The bound in (9) relates to the frame bound of the
wavelet filter bank. Clearly, for tight frames with B = 1, the
normalized stability bound (9) is tight. Let 7 be the struc-
ture of the pruned tree for W¥(x). The following lemma
asserts that the pGST offers the same pruned tree for the
original and the perturbed inputs.
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Lemma 2. Let W(-) denote the pGST with L layers and J graph
filters; z,, the perturbed scattering feature at node p; and, 8, :=
z, — 2z, Ifforallp € Pand j=1,...,.J, we have

117i(S)z,1” = elizoI*] > [1;(8)8,1* + 2 l” — 12|
(10)
it then follows that

i) The pruned scattering transform will output the same
tree for W(x) and W(X); that is, T =T ; and,
i)  With g(x) := ||h;(S)x||* — t||x||*, a necessary condi-
tion for (10) is
l9(zp)| > g(8p) - 11
According to (11), Lemma 2 can be interpreted as a
signal-to-noise-ratio (SNR) condition because under ¢(8,) >
0, it is possible to write (11) as |¢(z,)|/9(8,) > 1. Lemma 2
provides a per-layer and branch condition for pGST to out-
put the same pruned scattering tree for the original or the
perturbed signal. This condition is also experimentally vali-
dated in Section 6, where the structure in 7 remains the
same for Figs. 9b and 9a.
By combining Lemmas 1 and 2, we arrive at the follow-
ing stability result for the pGST network.

Theorem 2. Consider the pGST transform W(-) with L layers
and J graph filters; and suppose that the graph filter bank forms
a frame with bound B, while x and x are related via (8). The
pGST is stable to bounded perturbations 8, in the sense that

H‘I,(X) _‘I’(;()H < Z;:O FZBN||3H
RO DAY

where Fy := [P UT]| is the number of active scattering fea-
tures at layer £, and |W(x)| = Y1, Fy the number of retained
scattering features.

(12)

The bound in (18) is linear in the perturbation power ||§]|,
and hence pGST is stable to perturbations in the input.

5.2 Stability to Structural Perturbations
We next study the effect of network perturbations to the pro-
posed pGST. The goal here is to establish that pGST is also
stable under structural perturbations that can be due to noise
or adversarial attacks [27], [28]. Vanilla scattering transforms
are invariant to translations and stable to perturbations that
resemble translations [4]. Likewise, GSTs are invariant to
permutations and stable to pertubations that are close to per-
mutations [7], [8]. In the graph context, permutations are
regarded as rearrangements of the vertex indices.

Consider a perturbed topology given by the N x N per-
turbed (and permuted) shift matrix S. The set of permuta-

tions that make S close to S are given by
Py := argmin |[P'SP — S|, (13)
PP

where Pisan N x N permutation matrix having entries 0 — 1.
Further, consider the following set of perturbation matrices [8]

D= {A:PTSP:S+ATS+SA,P6PO}, (14)
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where A denotes the N x N perturbation matrix. The error
is captured by the term A'S + SA. Given the set of pertur-
bation matrices in (14), we consider the distance between S
and S as

d(S,S) = min ||A]. (15)
AeD

Without loss of generality, let P = I, otherwise fix a Py € P
and define S to equal P] SP;. Hence, the perturbed topology

can be written as®

S=S+A'S+SA. (16)

Let W(-) denote the pruned scattering transform that is
based on the perturbed topology S, and 7 be the structure
of the pruned tree for W(x). The following lemma asserts
that pGST outputs the same pruned tree for both the origi-
nal and the perturbed graph.

Lemma 3. Suppose S and S satisfy d(S,S) < #/2; and that for
A € D with eigendecomposition A = Udiag(d)U" it holds
that ||A/dwax — || <, where diax is the eigenvalue of A with
maximum absolute value. Suppose the graph filter bank forms a
frame with bound B, and h(X) satisfies the integral Lipschitz
constraint |A\R'(X)| < Cy. Let z, denote the perturbed scatter-
ing feature at the tree node p and 8, = z,, — Z,. If for all nodes
p € Poflayer Land j =1,...,J, it holds that

1175(S)zlI” = llzoll*| > (s CoB IxI)* + <l|8,
)

the pruned scattering transform will then output the same tree
for W(x) and W(x); that is, T = T.

Lemma 3 establishes conditions under which the pGST
based on the original and perturbed graphs will output
the same scattering tree. The assumption on the eigenval-
ues of the pertubation, that is ||A/dy.x — || < ~, limits the
structural changes in the graph such as edge insertions or
deletions; see also [8]. The integral Lipschitz constraint
AR (X)| < Cp is an additional stability requirement on the
wavelet h(-). Note that these conditions are not required to
establish stability to input noise in Theorem 2. By combin-
ing Lemma 3 with Proposition 3 in [8], we can show the
stability of pGST to structural perturbations.

Theorem 3. Under the conditions of Lemma 3 it holds that

W) ¥ _
()

Zf:o Fep
Zz%:o Fy
where Fy .= |PY) UT| is the number of active scattering fea-

tures at layer £, and |W(x)| = St Fy the number of retained
scattering features.

1[I, (18)

The bound in (18) is linear in the perturbation #, which
establishes the stability of pGST. As the bound depends
also linearly in the Lipstitz constant Cjy and the number of
layers L, these terms also appear in the stability results for
traditional GST [8]. For tight frames with B = 1, the bound
in (18) can be further simplified. By contrasting the bounds

3. Unless it is stated otherwise the ¢, norms are employed.
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in (12) and (18), we deduce that (12) is tighter than (18) by a
factor ¢. This follows because the topology perturbation
in (18) implies a perturbed wavelet that is repeatedly
applied to the scattering features. Hence, the error in (18) is
accumulated layer by layer, giving rise to the ¢ factor
in (18). On the other hand, for (12) the perturbation is intro-
duced only at the first layer £ = 0. Theorems 2 and 3 can be
combined to guarantee stability under joint perturbations of
both the input and the topology.

5.3 Sensitivity to Graph Data Perturbations
Next, the sensitivity of pGST is analyzed for different types
of noises in input signals.* Although the stability of a trans-
form is unquestionably important, pGST should be sensitive
to signal perturbation that have some specific pattern. For
example, signal perturbations may be distributed over all
the nodes but are localized in the graph spectrum.
Specifically, two classes of input signal perturbations are
considered, each having distinct graph spectral properties.
Highly Localized Noise. Here the energy of the perturba-
tion signal is localized in the graph spectrum; that is,

EY = {5, e RV[3, = V5y, HSLH <e 19)

§H=1.
L, }

Random Noise. Here the energy of a perturbation signal is
uniformly spread over the graph spectrum; that is,
EY = {8z € RV|[8gr = Vog, [8s]° < ¢/N}. (20)

The following corollary establishes the sensitivity bound for
these classes of perturbation signals.

Corollary 1. Let W(-) be a pGST with L layers and J = N filter.
The jth filter has a transform function h;(S) with h;j(\,) =1
for n= j, and 0 for n # j. Consider two types of the perturbed
inputs: X;, := X + 8, where §;, € Er,, and xp := x + 8p, where
8r € Eg. It then holds that

[W(x) = ¥(xg)|| <

=1

L
E,B*
(Z ZN Jrl)e

[W(x) =P <

L
(Z F/B* + 2) €,
(=2

where Fy:=|PYUTy| and F):=[POUT,| are the
retained features in the cases of random and localized noise.

Corollary 1 suggests that pGST is more sensitive to &,
than to 8. This is appealing because pGST can detect tran-
sient changes in the graph spectral domain while ignoring
small random perturbations. These results will be numeri-
cally corroborated in Section 6. Specifically, Fig. 9 shows
that relative to the original 7, the pruned tree changes

4. The sensitivity analysis for structural perturbations does not pro-
vide interesting results; see the experimental validation in Section 6.3.2.
Highly localized signal perturbation would affect only a few scattering
filters; however, arbitrary structural perturbation would affect all scat-
tering filters {/;(S)};. Furthermore, different from data perturbations,
the perturbed graph introduces errors at each GST layer. This makes
the analysis non-trivial.
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considerably when the noise is localized in the input spec-
trum, while the tree remains the same for random noise.

6 EXPERIMENTS

This section evaluates the performance of our pGST in vari-
ous graph classification tasks. Graph classification amounts
to predicting a label y; given x; and S; for the ith graph. Our
PGST extracts the efficient and stable representation ¥(x;),
which is utilized as a feature vector for predicting y;. During
training, the structure of the pGST 7 is determined, which
is kept fixed during validation and testing. The parameter t
is selected via cross-validation. Our goal is to provide tangi-
ble answers to the following research questions.

RQ1 How does the proposed pGST compare to GST?

RQ2 How does pGST compare to state-of-the-art GCNs in
graph-based classification tasks?

RQ3 Given graph data, what are pruned scattering
patterns?

RQ4 What is the impact of signal perturbations in the
scattering patters?

RQ5 Can the effective GCN depth linked with the pGST
depth?

6.1 Pruned GST Compared to Traditional GST

To address RQ1, we reproduce the experiments of two tasks
in [8]: authorship attribution and source localization. For
the scattering transforms, we consider three implementa-
tions of graph filter banks: the diffusion wavelets (DS) in
[14], the monic cubic wavelets (MCS) in [25] and the tight
Hann wavelets (THS) in [26].° The scattering transforms use
J =5 filters, L =5 layers, and t = 0.01. The extracted fea-
tures from GSTs are subsequently utilized by a linear sup-
port vector machine (SVM) classifier.

Authorship attribution amounts to determining if a cer-
tain text was written by a specific author. Each text is repre-
sented by a graph with NV = 244, where words (nodes) are
connected based on their relative positions in the text, and x
is a bag-of-words representation of the text; see also [14].
Fig. 3a reports the classification accuracy as the number of
training samples (texts) increases. GSTs utilize >0 5° =
781 scattering coefficients, while pGSTs rely only on |7| =
61 for pDS, |7| = 30 for PMCS, and |7 | = 80 for PTHS. Evi-
dently, pGST achieves comparable performance as the base-
line GST, whereas pGST uses only a subset of features (12.8,
3.8 and 10.2 percent, respectively). The SVM classifier pro-
vides a coefficient that weighs each scattering scalar. The
magnitude of each coefficient shows the importance of the
corresponding scattering feature in the classification. Fig. 3c
depicts the percentage of features retained after prunning in
the top-2|7 | most important GST features given by the SVM
classifier. It is observed, that although pGST does not take

5. PDS, PMCS, PTHS denote the pruned versions of these transforms.
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Fig. 3. Classification accuracy against number of samples in the authorship attribution (a) and SNR in dB for source localization (b). The percentage
of features after prunning retained in the top-2|7 | most important GST features given by the SVM classifier (c).

into account the labels, the retained features are indeed
informative for classification.

Source localization amounts to recovering the source of a
rumor given a diffused signal over a Facebook subnetwork
with N = 234; see the detailed settings in [14]. Fig. 3b shows
the classification accuracy of the scattering transforms as the
SNR (in dB) increases. In accordance to Lemma 1 and Theorem
2, both pGST and GST are stable over a wide range of SNR.
Furthermore, the performance of pGST matches that of GST,
while the pGST uses only a subset of features. Finally, Fig. 4
depicts the runtime of the different scattering approaches,
where the computational advantage of the pruned methods is
evident.

6.1.1 Ablation Study

Fig. 5 reports how the pGST is affected by varying the
threshold t in the task of source localization, with J = 6 and
L = 5. Fig. 5a shows the classification accuracy that gener-
ally decreases as 1 increases since the number of active fea-
tures |7 | decreases; cf. Fig. 5b. Fig. 5¢ reports the runtime in
seconds. Figs. 6 and 7 showcase the classification perfor-
mance of pGST with v = 0.01 for varying L with J = 3, and
for varying J with L = 3, respectively. It is observed, that
the classification performance generally improves with L
and J.

6.2 Pruned GST for Graph-Based Classification
Tasks

In response to RQ2, we consider three graph-based classifica-

tion tasks: graph classification, graph-based 3D point cloud

classification, and semi-supervised node classification.

6.2.1 Graph Classification

We compare the proposed pGST with the following state-
of-the-art methods.® The kernel methods shortest-path [29],
and Weisfeiler-Lehman optimal assignment (WL-OA) [30];
the deep learning approaches PatchySan [31], GraphSage
[32], edge-conditioned filters in CCNs (ECC) [33], Set2-
Set [34], SortPool [35], and DiffPool [13]; and the geometric
scattering classifier (GSC) [6]. Results are presented on the
protein data sets D&D, Enzymes and Proteins, and the sci-
entific collaboration data set Collab. The parameters of

6. For the competing approaches we report the 10-fold cross-valida-
tion numbers reported by the original authors; see also [13].

these datasets are listed in Table 1. Since the Collab dataset
did not have nodal features, x was selected as the vector that
holds the node degrees. We performed 10-fold cross valida-
tion and report the classification accuracy averaged over the
10 folds. The gradient boosting classifier is employed for
pGST and GST with parameters chosen based on the perfor-
mance on the validation set. The graph scattering transforms
use the MC wavelet with L =5, J = 5, and 7 = 0.01. Table 2
lists the classification accuracy of the proposed and compet-
ing approaches. Even without any training on the feature
extraction step, the performance of pGST is comparable to
the state-of-the-art deep supervised learning approaches
across all datasets. GST and pGST outperform also GSC,
since the latter uses a linear SVM to classify the scattering
features.

6.2.2 Point Cloud Classification

We further test pGST in classifying 3D point clouds. Given a
point cloud, a graph can be created by connecting points
(nodes) to their nearest neighbors based on their Euclidian
distance. Each node is also associated with 6 scalars denot-
ing its x-y-z coordinates and RGB colors. For this experi-
ment, GSTs are compared against PointNet++ [36], [37],
3dShapeNets [38] and VoxNet [39], that are state-of-the-art
deep learning approaches. Fig. 8 reports the classification
accuracy for the ModelNet40 dataset [38] for increasing L.
In Fig. 8a 9,843 clouds are used for training and 2,468 for
testing using the gradient boosting classifier; whereas, in
Fig. 8b only 615 clouds are used for training and the rest
for testing using a fully connected neural network classi-
fier with 3 layers. The scattering transforms use an MC
wavelet with J =5 for Fig. 8a, and J =9 for Fig. 8b. Fig. 8
showcases that scattering transforms are competitive to
state-of-the-art approaches, while pGST outperforms GST.
This may be attributed to overfitting effects, since a large
number of GST features is not informative. Furthermore,

N DS I PDS HEE MCS
[ PMCS 1 THS 1 PTHS

i

Authorship Facebook

101

Seconds

10-?

Fig. 4. Runtime comparison of the scattering transforms for Fig. 3.
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Fig. 5. Performance of pGSTs for varying .

the exponential complexity of GSTs prevents their applica-
tion with L = 6. Fig. 8b shows that when the training data
are scarce, GST and pGST outperform the PointNet++,
which requires a large number of training data to optimize
over the network parameters.

6.2.3 Semi-Supervised Node Classification

A task of major importance at the intersection of machine
learning and network science is semi-supervised learning
(SSL) over graphs. Given the topology S, the features in the
N x F' matrix X, and labels only at a subset £ of nodes
{Yn}ner with £ CV, the goal of is to predict the labels
{Yn }ney of the unlabeled set of nodes. For this task, we uti-
lize the pGST algorithm to extract the feature vectors
{z(y)},e7 from X, which are then utilized by a fully con-
nected neural network with 3 layers to predict the missing
labels. To facilitate comparison, we reproduce the experi-
mental setup of [10], namely the same split of the data for
training, validation, and testing sets, and compare the
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Fig. 7. Classification accuracy over .J.

(b) Number of active features |T|

T

(c) Runtime in seconds

various methods in the Cora dataset with N = 2,708 nodes,
C =7 classes and F' = 1,433 features. The pGST algorithm
employs the TH wavelet with L =5, J =3, and v = 0.01.
We also compare to [7], where the GST is employed, the full
scattering coefficients are extracted and then dimensionality
reduction is effected using PCA to handle the large number
of features. The so obtained features are processed by a fully
connected network. Table 3 reports the classification accu-
racy of several state-of-the-art methods. Our method that
performs unsupervised feature extraction is highly competi-
tive and outperforms all except the GAT approach. It is
worth noting that pGST performs comparably to the GST
approach in [7], which suggests that our spectrum-inspired
criterion has a ‘PCA-like’ effect. However, PCA needs all
the scattering features to process them offline, while pGST
prunes the scattering features on-the-fly, and allows for
increased scalability.

TABLE 1
Dataset Characteristics
Dataset Graphs Features F Max N per graph
Collab 5000 1 492
D&D 1178 89 5748
Enzymes 600 3 126
Proteins 1113 3 620
TABLE 2
Graph Classification Accuracy
Method Data Set
ENzZYMES D&D COLLAB PROTEINS
S SHORTEST-PATH 42.32 78.86 59.10 76.43
& WL-OA 60.13 79.04 80.74 75.26
PATCHYSAN - 76.27 72.60 75.00
GRAPHSAGE 54.25 75.42 68.25 70.48
" ECC 53.50 74.10 67.79 72.65
% SET2SET 60.15 78.12 71.75 74.29
© SORTPOOL 57.12 79.37 73.76 75.54
DIFFPOOL-DET 58.33 75.47 82.13 75.62
DiFFPOOL-NOLP 62.67 79.98 75.63 77.42
DIFrFPooOL 64.23 81.15 75.50 78.10
CED GSC 53.88 76.57 76.88 74.03
% GST 59.84 79.28 77.32 76.23
A PGST (Ours) 60.25 81.27 78.40 78.57
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Fig. 8. 3D point cloud classification.

6.3 Scattering Patterns Analysis

To address RQ3, we depict the scattering structures of
pGSTs, with an MC wavelet, J = 3, and L = 5, for the Col-
lab, Proteins, and ModelNet40 datasets in Fig. 1. Evidently,
graph data from various domains require an adaptive scat-
tering architecture. Specifically, most tree nodes for the aca-
demic collaboration dataset are pruned, and hence most
informative features reside at the shallow layers. This is
consistent with the study in [2], which experimentally
shows that deeper GCNs do not contribute as much for
social network data. These findings are further supported
by the small-world phenomenon in social networks, which
suggests that the diameter of social networks is small [44].
On the other hand, the tree nodes for a 3D point cloud are
minimally pruned, which is in line with the work in [3] that
showcases the advantage of deep GCNs in 3D point clouds
classification.

6.3.1 Sensitivity of the pGST Tree to Signal

Perturbations

Next, we evaluate noise effects in the pruning algorithm to
provide an answer to RQ4. Corollary 1 suggests that local-
ized noise will have a more prominent effect on the pGST
than random noise. This is appealing because pGST can
detect transient changes in the graph spectral domain, while
ignoring small random perturbations. Here, we attempt to
establish the changes to the structure in the scattering pat-
terns of pGST under localized and random noise.

For this experiment, the Cora dataset is tested with N =
2,708 nodes, C =7 classes and F = 1,433 features. We

TABLE 3
SSL Classification Accuracy
Method Cora
ManiReg [40] 59.5
SemiEmb [41] 59.0
LP [42] 68.0
Planetoid [43] 75.7
GCN [10] 81.5
GAT [11] 83.0
GST [7] 81.9
pGST (ours) 81.9
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draw random and localized noise from (20) and (19) respec-
tively, which is added to the nodal features. The noise is
selected so that the signal to noise (SNR) energy ratio is -20
dB. We observe that for smaller noise power, the scattering
patterns are invariant, which corroborates the theoretical
result in Lemma 2.

Fig. 9 plots the scattering patterns of the pGST using the
TH wavelet with L =3, J =5, and 7 = 0.1. It is observed
that the set of pruned features given the original features
without noise in Fig. 9a, is almost the same as the set of
pruned features given the randomly perturbed features in
Fig 9b. On the other hand, the set of pruned features when
the localized noise is employed, is quite different; see
Fig. 9c.

6.3.2 Sensitivity of the pGST Tree to Structural
Perturbations

For the same setting as Fig. 9 the effect of the structural per-
turbations in the structure of pGST is also tested. The adja-
cency matrix was perturbed by adding noise in the
eigenvalues such that the SNR is -20 dB. Random noise in
this scenario means that the noise is distributed over the
eigenvalues, whereas localized noise affects only a subset of
the eigenvalues significantly. Fig. 10 shows that the local-
ized and random noise do not alter the scattering patterns
significantly. This is in accordance with the stability results
in Theorem 3.

6.3.3 Scattering Patterns Insights for GCN Design

Finally, we empirically explore the connections between
PGST and GCN design, in response to RQ5. We validate the
scattering patterns in Fig. 1 for the Protein datasets. The val-
idation employs DiffPoll that is a state-of-the-art GCN;
see [13].

Fig. 11 depicts the pruned scattering patterns for the
three protein datasets (Enzyme, Protein and DD). Most con-
nections after [ = 5 are pruned. This suggests that for pro-
tein data L =5 graph convolution layers capture most
information.

Fig. 12 shows the performance of DiffPool for these data-
sets as the number of GCN layers increases. The perfor-
mance of DiffPool does not improve significantly for more
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(a) Pruned tree 7~ without signal perturba-(b) Pruned tree 7 with random signal (c) Pruned tree T with localized signal

tion perturbation

perturbation

Fig. 9. The pGST applied to the Cora dataset with and without signal perturbation, corroborating the result of Corollary 1.

(a) Pruned tree 7~ without structural pertur-(b) Pruned tree 7~ with random structural (c¢) Pruned tree 7 with localized structural

bation perturbation

perturbation

Fig. 10. The pGST applied to the Cora dataset with and without structural perturbations.

I

(a) DD

(b) Protein

(c) Enzymes

Fig. 11. lllustration of the pGST applied to three protein datasets. Observe that after [ = 5 most features are pruned.
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Fig. 12. Performance of DiffPool for different number of GCN layers.

than 5 GCN layers, which corroborates the insights obtained
from the pGST patterns.

7 CONCLUSION

This paper developed a novel approach to pruning the
graph scattering transform. The proposed pGST relies on a
graph-spectrum-based data-adaptive criterion to prune less
informative features on-the-fly, and effectively reduce the
computational complexity of GSTs. Stability of pGST is
established in the presence of perturbations in the input or
the network structure. Sensitivity analysis of pGST reveals
that the transform is more sensitive to noise that is localized
in the graph spectrum relative to noise that is uniformly
spread over the spectrum, which is appealing since pGST
can detect transient changes in the graph spectral domain.
The novel pGST extracts efficient and stable features of

(b) DD dataset

Number of GCN layers

(c) Protein dataset

graph data. Experiments demonstrated i) the performance
gains of pGSTs relative to GSTs; ii) that pGST is competitive
in a variety of graph classification tasks; and (iii) graph data
from different domains exhibit unique pruned scattering
patterns, which calls for adaptive network architectures.

8 PROOFs

8.1 Proof of Theorem 1
By its definition, the objective in (5) can be rewritten as
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By introducing the scalars «; := 2& (diaug(l/{j()\))2 — 1)z,

forj=1,...,J,(5) can be rewritten as
J
max a;fi
i ; o (21)

st fie{0,1}, j=1,...,J.

The optimization problem in (21) is nonconvex since f; is a
discrete variable. However, maximizing the sum in (21)
amounts to setting f; = 1 for the positive «; over j. Such an
approach leads to the optimal pruning assignment variables

_ 1 ifotv,- > 0, -
fi= { (0.5e2]0 ifa; < 0.0 7~ Loy de 22
The rest of the proof focuses on rewriting «; as
~ . o~ 2 ~
aj = z&) (diag (h;(X)) — D)z, (23)
= [[diag (h;(X)2)[I” = 7ll2g) 1* 24)

Furthermore, since matrix V is orthogonal, it holds that
IZo I = IV 2 |I> = |1z ||” from which it follows that

[ diag (7 (A)Z) I” = 175(S)z ) |I” (25)
= oSz o
= ||zl

where the second line follows because o(-) is applied ele-
mentwise, and does not change the norm.

8.2 Proof of Lemma
By the definition in (3), it holds that

L
1D (x) = Z Z B0 @7)
eplt
which suggests bounding each summand in (27) as
B0y = Don| = U (20, — Uzl (28)
< [0z 0, — Z 00l (29)

where (29) follows since the norm is a sub-multiplicative
operator. Next, we will show the recursive bound

Hz(p(m —Z,0) |

- (30)
= llo(hy0 (S)z(, 1)) = o (b (S)Z 1)l
< NoOQllAy0 (S)Z -1y = by (S)Z -l 3D
< NP0 (8)z -1y = by (S)Z 1) (32)
< o (S)IZ -1y = Ze-ny I, (33)

where (31), (33) hold because the norm is a sub-multiplica-
tive operator, and (32) follows since the nonlinearity is non-
expansive, i.e., ||[o()|| < 1. Hence, by applying (33) ¢ —1
times, the following condition holds
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”Z(N)) —Z,0), |

< hjo (SR (S - [ (S)HIx = X,

and by further applying the frame bound and (8), we
deduce that

(34)

20, — 20yl < B8 (35)

(1)

Combining (29), (35) and the average operator property
||lU]| = 1 it holds that

|60 — D0 | < BJ8]I. (36)

By applying the bound (36) for all entries in the right
hand side of (27) it follows that

L

<> > Bl

=0 () eplo

[[®(x) (37)

By factoring out ||§| and observing that the sum in the right
side of (37) does not depend on the path index p it follows
that

L
l(x) — E)|* < (ZP“)IB”)IBII2~ (38)
=0

Finally, since the cardinality of the paths at ¢ is [P)| = .J*

and L (B2)) = ((BZJ)L) /(B2J — 1) it holds
1900 - 0 < | L0 g (9

8.3 Proof of Lemma 2
We will prove the case for ¢ =0, where Z,0) =X, since
the same proof holds for any /. First, we adapt (10) to the
following

15 (S)XI* = zlIxI*| > 1hy(S)8II* + <lIx|* — IX[*[.  (40)
The proof will examine two cases and will follow by contra-
diction. For the first case, consider that branch j is pruned
in ¥(x) and not pruned in ¥(x), i.e., (j)¢ 7 and (j) € T
By applying (6) for z(;) = o(h;(S)x) there exists C > 0 such
that

||XH
1R (S)XII* < <lIx|I* = Clx. (42)
Furthermore, from (6) it holds for Z;) = o(h;(S)x) that
IS .
X

By applying (8) to (43), and using the triangular inequality it
follows that
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1hj(S)XII” + 11;(S)8]1* = lIXI*. (44)
Next, by applying (42) it holds that
7lx||* = Cllx|* + [|;(8)3]1* > %] (45)
o(lIx]I” = [I%]%) + [IR;(S)3]I” > Cllx]*. (46)

Next, by utilizing (40) and the absolute value property |a| >
a to upper-bound the left side of (46) it follows that

1hi(S)xII” = 7llx|I* > Cllx]*. (47)
Finally, by applying (42) the following is obtained
0 > 2C|x*, (48)

which implies that C' < 0. However, this contradicts (41)
since C' > 0. Following a similar argument we can complete
the proof for the other case.

8.4 Proof of Lemma3
The proof of Lemma 3 requires the following result.

Lemma 4. Consider the shift matrix S and the perturbed matrix
S, such that d(S,S) < /2. Further, for A € D with eigende-
composition A = Udiag (d)U" it holds that ||A/dyax — 1| <
#, where dy,y is the eigenvalue of A with maximum absolute
value. At layer ( consider the scattering feature indexed by p!*)
of the original transform W(x) as z,), and of the perturbed
transform W(x) as - Suppose also that graph filter bank
forms a frame with bound B, and h(\) satisfies the integral Lip-
schitz constraint |\ (X)| < Cy. It then holds that

1200 = Zgy0 |l < £CoB~|x]|. (49)

Proof. First, we add and substract on (49) the term

(b0 (S)a(hy-(S)---a(hn (S)x)--)

12,00 = 20l (50)

< lo(hyo (S)alhye-(S) -~ o(hn) (S)x) ---)
—U(h 1(8)a (1) (S) -+~ a(hja)(S)x) - ) 1)

hyo(8)o(hye1)(S) - - o (hym) (S)x) - )

+U(h 1(8)o(hye—1)(S) -~ alhyn (§)x) )|

< lo(hj0 (S)a(hye-(S) -~ (b (S)x) ---))
= a(hjn(S)o(hye1)(S)---o(hyn(S)x) )l 2

+ [lo (b (S)o ( e0(8) -+ o (b (8)x) - )

oy (8)%) )l

By a similar argument as in (34), it holds for the first sum-
mand in (52) that

— (R0 (S)o(hyu-(S) -

lo(h0 (S)a(hyen(S) -~ (k) (S)x)
— (R (S)o (R (S) -~ () (S)X)|

: (53)

< B||i(p(£71) - Z(p(zq))H-
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For the second summand in (52), we consider the following

1z 0l < 110 (S e (S)II---
< Bl
which can be derived following (34). Also by utilizing the
result of Proposition 2 in [8] it can be shown that

h(S
172500y ()1l 50

1h5(8) = hi(S)Il < Co. (55)
where Cj is the integral Lipschitz constant |AR'(N)] < C.
By combining (53)-(55) we arrive to the following recur-

sive condition
120 = 200l < 121 = Zpe-n |l + (€ = 1) CoB~ x|

which can be solved to arrive at (49). m|

Now that Lemma 1 is established we proceed with the
proof for Lemma 3 follows. The proof will examine two
cases and will follow by contradiction. For the first case,
con51der that branch j is pruned in ¥(x) and not pruned in

W(x), ie, (j)¢ 7T and (j) € T. By applying (6) for z,
cr(hj(S)z y) there exists C' > 0 such that
h; 2
P2l < ¢ 56)
Iz

17;(S)zp)|I” < Tllzg)lI* = Cllzgy 1. (57)

Furthermore, from (6) it holds for Z(, ;) = o(h;(S)z,)) that

17;(8)z) II°

So— (58)
12
By using the triangle inequality to (58), we obtain
1782 I” + 115(8)25) — hi(S)zs) I = l1 25 I, (59)
and upon applying (57), we arrive at
2 s 12 &\a 2 2
iz 7 = 12 7)) + 1R(S)2() — 1i(S)zp) I” ZCllzp I
(60)

Next, we leverage Lemma 1 and the absolute value property
la| > a to upper-bound the left side of (60) as

l8) I + (L CoB ) > Cllzg | (61
By applying (17) in Lemma 3, we deduce that
1h;(S)zlI” = zlizsll” > Clizgy)|*. (62)
Finally, by applying (57), we find
0 > 20|z, (63)

which implies that C' < 0. However, this contradicts (56)
since C' > 0. Following a symmetric argument, we can com-
plete the proof for the other case too.
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