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Abstract—The emerging Internet of things (IoT) and 5G

applications boost a continuously increasing demand for data

processing, which results in an enormous energy consumption

of data centers (DCs). Considering that existing distributed geo-

graphical load balancing is approaching the limit in reducing the

energy cost of DCs, cloud service providers (SPs) are motivated

to pursue a higher level cooperation. In this context, cross-

SP workload balancing among the DCs operated by different

SPs represents a future trend of the DC industry. This paper

investigates the optimal cross-SP workload balancing when it

couples with the electricity markets. First we assume that there

is a central operator (CO) coordinating the DCs owned by

various SPs. A noncooperative game is formulated to model the

interaction between utilities and CO which serves as a price

maker. Under the centralized coordination of CO, an optimal

solution is obtained with an iterative algorithm. Taking into

account the computation and privacy issues, a decentralized

algorithm is then proposed by utilizing techniques in state based

potential game. Numerical results corroborate the effectiveness

of the proposed algorithm. Simulations using Google workload

trace show that the workload balancing among cross-SP DCs

results in a lower DC operation cost than existing price-taker

approach.

Index Terms—cloud service provider, electricity market,

marker power, decentralized coordination

I. INTRODUCTION

T
HE growing Internet service as well as other data inten-
sive industries in recent years has boosted the demand

of data centers (DCs) for computing service. Along with the
prosperity of DC industry, the huge electricity consumption of
DCs has caught public attention during the past decade. The
need to reduce energy cost has been driving the DC owners
to improve the energy efficiency. Previous efforts have expe-
rienced three phases: single server, single DC (intra DC) and
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single cloud service provider (SP) (inter DCs). To be specific,
the first phase focuses on hardware development to enhance
the efficiency of individual servers [1]. The second phase
involves DC infrastructure and computer network technology.
DCs are carefully designed for the computing machines and
even are built in remote areas with low temperature or plenty
of water for cooling [2]. In addition, networking technologies
such as, virtualization, live migration, and consolidation are
developed for DC [3]. These technologies allow dynamic
resource allocation and consolidation of the workload in a
small number of servers and turn off inactive ones [4], [5].
The third phase devotes to workload balancing among geo-
distributed DCs [6]. These DCs locating in different electricity
markets are operated by a singe SP which coordinates the
workload distribution taking advantage of electricity price
variability. However, the space for further reducing energy cost
of DCs by above mentioned methods is limited. The energy
demand still remains overwhelming, which motivates SPs to
pursue more powerful energy cost reduction schemes. This is
even more urgent because of the upcoming Internet of things
(IoT) and 5G era when the volume of data is expected to grow
exponentially.
The limitations of existing technologies and the new data

explosion naturally prompt SPs to cooperate with each other.
As pointed out by [7], [8], transferring workload across SPs
brings benefits in cost, performance and reliability, and thus
it represents a future trend. To this end, SPs will embrace a
more open DC market where they can share their resources
by sharing the workload, which resembles the direct energy
sharing [9]. Specifically, SPs connect their DCs with those
of other SPs and their workload can be transferred across
SPs for mutual benefits. In order to distinguish from geo-
distributed workload balancing, we term it as cross-SP work-
load balancing. Instead of transferring workload only among
self owned DCs, SPs are offered a lager space for optimization,
which enables underutilized DCs to contribute more to cutting
electricity bill. To the best of our knowledge, this paper is the
first work in literature to investigate workload balancing across
SPs from the perspective of energy cost.
Associated with this particular scenario are challenges con-

cerning computation and privacy. In previous studies, an SP
usually operates a relatively small number of DCs, and the
SP possesses all the information and resources of its DCs.
Therefore, the SP naturally plays the role of central operator
(CO) to calculate the optimal workload transferring strategy.
However, in our considered problem, the DCs are of large
number and are owned by different SPs. Hence, centralized
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optimization can induce intensive computation. Moreover, a
centralized optimizer requires to collect the DC and workload
information from different SPs, which gives rise to privacy
concern. It is concluded that centralized optimization is inap-
propriate to deal with cross-SP workload balancing problems
because of the possible computation issue and privacy leakage.
Therefore, a decentralized optimization method without any
central coordinator is preferred.
Besides, since each data center usually has a large elec-

tricity consumption, its market power, the ability to change
electricity prices, is nonnegligible [10]. SPecifically, the work-
load transfer depends primarily on the electricity prices of
different locations. However, the flexibility of workload being
transferred across DCs itself significantly changes the local
electricity demand, and consequently has impact on electricity
prices [11], [12]. Therefore, a model charactering the recip-
rocal dependency of electricity prices and cross-SP workload
balancing is critical.
Among prior studies, the most relevant category to our

work is geo-distributed workload balancing. It is reported that
implementing geographical workload balancing can help DCs
participate in wholesale electricity markets and offer ancillary
services [13]. The workload transfer strategy of data centers in
electricity market adopting locational marginal price (LMP) is
investigated in [14]. A min-max integer programming problem
is formulated in [15] to optimize the task scheduling on
distributed DCs. A receding horizon control based online
algorithm is proposed in [16] to coordinate the electricity
generation and workload scheduling. Coalition game method
is employed in [17] to coordinate multiple DCs to cope
with workload and electricity price uncertainty. The spatial-
temporal diversity of electricity prices is first exploited by [18],
[19] to reduce the electricity bills of SPs. Furthermore, tem-
poral and spatial flexibility of workload and multiple energy
options of distributed DCs are explored in [20]. The market
power of DC is taken into consideration in [21] that models
the prices with supply function method. A matching game is
constructed to investigate the temporal workload scheduling
and utilities choice in deregulated electricity market [22]. The
market power of DCs is also respected in [23], [24] where the
prices are determined by the Stackelberg game or two-stage
interaction between utilities and DC operators.
Although geo-distributed DC workload balancing problem

has been studied extensively, previous schemes do not apply
to our problem. All the works [13], [15]–[19], [21]–[24]
focus on the DCs owned by a single SP who coordinates
the workload distribution. [13], [15]–[20] employ price taker
model, ignoring the the market power of DCs. Price maker
model is adopted by [21]–[24] in different scenarios from
ours. The DCs are assumed to run in an isolated manner in
[22], i.e., DCs do not conduct workload balancing. In [23],
the optimization is of central free on the utility side, but
is centralized on DC side. The problem is studied in [24]
under the assumption that all the DCs purchase electricity
from a single utility company. Further, the authors assume
that utilities have complete information of DCs, which deviates
significantly from the setting of our problem.
The essential difference between existing work and the

DC utility

CO

workloadelectricity

(a) With CO (b) Without CO

Fig. 1. The infrastructures of centralized/decentralized coordination

proposed work of this paper is that the cross-SP workload
balancing problem is placed in deregulated electricity markets
where the market power of DCs is exercised. Because DCs
and utilities can be distributed across continents, DCs procure
electricity from different utilities that release electricity prices
independently. Thus, either the utilities or DCs possess a
global knowledge of the whole system and only concern about
their local interests.
Our contributions are summarized as follows: 1) The impact

of DCs on electricity markets is considered and a noncoop-
erative game is established to depict the interaction between
utilities and CO which coordinates all DCs. 2) We prove that
there exists a unique Nash equilibrium that can be obtained by
an iterative algorithm. 3) Considering the practical situation
where the CO does not exist, we construct a state based
potential game to develop a decentralized algorithm that yields
the same result as the centralized one. Note that the centralized
algorithm minimizes the total cost of the data centers. Thus if
the decentralized algorithm yields the same solution, it results
in the minimum overall cost. Because we assume that all the
data centers are allied to reduce the overall cost, their ultimate
goal is to obtain a global optimal solution as the centralized
algorithm.
The remaining of the paper is organized as follows: Section

II describes the electricity price model and DCs model and
formulates a noncooperative game between utilities and DCs.
A centralized algorithm assuming a CO coordinates all DCs
is proposed to attain the unique Nash Equilibrium. Then we
propose a distributed algorithm based on the framework of
state based potential game in Section III, providing the same
solution as the centralized counterpart. Section IV presents
the simulation results which verify the effectiveness of the
proposed method. Finally, in Section V we conclude this paper.

II. CENTRALIZED COORDINATION

A. System Model

Suppose that DCs of different SPs collaborate to reduce
the total operational cost of all SPs. Since DCs have market
power, the workload transfer will influence the local electricity
prices. It is clear that the workload transfer and electricity
prices depend on each other. Therefore, there is an intersection
among the DCs and the utilities. For simplicity, we first assume
that there is a virtual CO dictating workload transfer and
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representing DCs to interact with utilities, which is illustrated
in Fig. 1(a). In this scenario, CO takes over all DCs and
purchase electricity for them from different utilities. In this
case, we focus on the interaction between DCs and utilities
without the need to consider the competition among DCs.
In next section we will show that even without this central
operator as illustrated in Fig. 1(b), the DCs can still achieve
the same result with a central-free algorithm.
1) Electricity Market Model: Suppose there is a set I =

{1, 2, · · · , I} of locations where utilities and DCs interact
with each other. Assume local demand responds to the price
following widely used linear demand function [25]:

di(pi) = d0i � ipi, 0  pi 
d0i
i

, (1)

where d0i , ki > 0 are parameters featuring the largest allowed
demand and elasticity of the demand. To focus our attention
on the interaction between utilities and DCs, we assume that
each utility i has possessed the local parameters d0i and i.
With the demand of DC at location i denoted as zi , the total
demand at location i is di+zi, which incurs a generation cost:

Ci(pi) =
1

2
↵i(di + zi)

2 + �i(di + zi), (2)

where ↵i and �i are the parameters of utility i regarding the
electricity generation condition.
The profit of utility company i is

Ui(pi) =pi(zi + di)� Ci(pi)

=(1 + ↵ii)[aip
2
i + bipi + zipi]

�
1

2
↵i(d

0
i + zi)

2
� �i(d

0
i + zi),

(3)

where ai = �
i+ 1

2↵i
2
i

1+↵ii
and bi = (d0i +

�ii

1+↵ii
). Note that i

and ↵i are positive, thus Ui(pi) is a strictly concave function
of pi. The goal of utility i is to maximize its profit, which is
equivalent to the problem below because the last two terms in
(3) are constants for utility i.

max
pi2Pi

aip
2
i + bipi + zipi, (4)

where Pi is the feasible set of pi as indicated in (1).
2) Data Center Model: Assume there is one DC i at

location i, connected to a set of neighboring DCs Ni. The
workload transferred from DC i to its neighbor j ismij , i 2 I,
j 2 Ni. Provided that the workload originally generated at DC
i is z0i and it receives from and sends to its neighbor a fraction
of workload, the resultant workload to be processed at DC i
is:

zi = z0i �

X

j2Ni

mij +
X

j2Ni

mji. (5)

Naturally, DC i has its capacity:

0  zi  Zi, 8i 2 I. (6)

For ease of expression in the rest of the paper, we also write
constraint (6) as

li , �z0i +
X

j2Ni

mij �

X

j2Ni

mji  0, 8i 2 I, (7a)

ui , z0i �

X

j2Ni

mij +
X

j2Ni

mji � Zi  0, 8i 2 I. (7b)

Suppose that the workload transfer incurs cost including the
bandwidth cost and the delay, which can be summarized by a
convex function [26], [27]:

gij(mij) := gaijm
2
ij + gbijmij ,

where gaij > 0 and gbij are constants determined by the distance
and the communication condition between the two DCs.
Obviously, there is bandwidth limit of each communication
link:

0  mij  Mij , 8i 2 I, j 2 Ni. (8)

For brevity, let mi = {mij}j2Ni , 8i 2 I and m =
{mij}i2I,j2Ni collect the workload transfer profile of DC i
and the workload transfer across all DCs, respectively. The
total cost of the DC i consists of the electricity bill and
workload transfer cost:

fi(mi) := pizi + �
X

j2Ni

gij(mij).

B. Interaction Between CO and Utilities

In this part, we assume there exists a CO that takes charge
of all DCs. The CO coordinates the workload transfer among
DCs to minimize the total cost of all the DCs:

F1(m; p) :=
X

i2I
fi(mi).

In the electricity markets, the selfish and rational partic-
ipants, the utilities and the data centers, take actions for
their own interest— the utilities maximize their profits and
the CO (or the data centers) minimizes the cost of the data
centers, or equivalently maximizes the negative cost. With the
demand reported from the data centers, the utilities release
the electricity prices, and accordingly the data centers transfer
workload and purchase electricity from the utilities. The best
strategies of the utilities and the data centers rely on each
other. The profit of the utilities comes from part of the
cost of the data centers. This is naturally a noncooperative
game; namely, the interaction between the CO and the utilities
can be formulated as a noncooperative game. Following the
convention, we use p = (p1, p2, · · · , pI) to denote the strategy
profile of the utilities, and p�i to represent the strategy of all
the utilities other than utility i. Denoted by P and M the
feasible set of p and m, respectively. The interaction between
CO and utilities is modeled as following game G1:

• Players CO and utility i, i 2 I.
• Strategy CO: workload transfer m 2 M; Utility i:

electricity price pi 2 Pi, i 2 I;
• Payoff CO: �

P
i2I fi(mi); Utility i: Ui(pi).

Remark 1. Deregulated electricity markets feature the com-

petitive environment where the electricity consumers are free

to choose the electricity producers (or providers) and the

producers attract consumers by offering low prices. In the

considered model, the competition among utilities can be

understood from the following two perspectives:

I. The utilities at different locations attract the electricity

consumption (i.e., the workload of the data centers) via

tuning the prices, because the CSP can transfer the workload
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from one site to another. In this regard, the CSP maintaining

multiple data centers are free to choose the distributed

utilities and the utilities compete indirectly with each other

taking the data centers as bridge.

II. Although we assume for simplicity that there is at

most one utility at each location, this model can capture the

scenario where there are multiple utilities at a location. This

corresponds to the case in our model that there are multiple

utilities and data centers with different indexes sharing the

same geographical location and the workload transfer prices

across these data centers (physically one singe data center)

are accordingly 0. Therefore, at a single location, whether it

is oligopolistic, monopolistic or competitive market depends

on how many electricity providers are there in practice. Nev-

ertheless, our model is able to encompass all these situations

in theory.

We will show by the theorem below that G1 has a unique
Nash equilibrium.

Theorem 1. The Nash equilibrium of preceding game G1

exists and is unique.

Before proving Theorem 1, we first present the following
lemma, of which the proof is in the appendix.

Lemma 1. Define H(x, y) as

H(x, y) = h1(x) + h2(y) + cxy, x 2 X , y 2 Y,

where h1(x), x 2 X is strictly concave and h2(y), y 2 Y is

strictly convex and c is a constant, then H(x, y) has a unique

saddle point (ex, ey), that is,

H(x, ey)  H(ex, ey)  H(ex, y), 8x 2 X , y 2 Y.

Then we prove Theorem 1.

Proof. Define H(p,m) as

H(p,m) =
X

i2I
(aip

2
i + bipi + zipi) + �

X

i2I

X

j2Ni

gij(mij).

It is straightforward that H(p,m) is the sum of a strictly
concave function in p, a strictly convex function in m and
a bilinear term of p and m (the bilinear term comes from
substituting (5) in to pizi). According to Lemma 1, there exists
a unique saddle point (ep, em):

H(p, em)  H(ep, em)  H(ep,m), 8p 2 P,m 2 M. (9)

It can be observed from its definition that H(p,m) is
separable across the utilities. Thus, that p̃ = (p̃1, p̃2, · · · , p̃I)
maximizes H(p, m̃) indicates p̃i individually maximizes
H(pi, p̃�i, m̃) for all i 2 I. That is, the saddle point satisfies
the following inequilities.

H(p̃i, p̃�i, m̃) � H(pi, p̃�i, m̃), 8pi 2 Pi

H(p̃1, p̃2, · · · , p̃I , m̃)  H(p̃1, p̃2, · · · , p̃I ,m), 8m 2 M

As for game G1, it is not difficult to verify that given m
utility i adopts a strategy pi optimizing the problem:

max
pi2Pi

H(pi, p�i,m).

Algorithm 1 Centralized coordination of DCs
1: set ✏1 = �1 to be small enough positive constant, ⌘1 = 0.5,

k = 0, and randomly initialize pk.
2: while (�1 � ✏1) do
3: update mk+1 according to (10) and submit zi to utilities.
4: update pk+1

i according to (11) and release prices to CO.
5: update �1 = kpk+1 � pkk and set k  k + 1.
6: end while

Given p the CO adopts a strategy m optimizing the problem:

min
m2M

H(p,m).

Suppose that (p⇤1, p
⇤
2, · · · , p

⇤
I ,m

⇤) is a Nash equilibrium,
then it must satisfy:

H(p⇤i , p
⇤
�i,m

⇤) � H(pi, p
⇤
�i,m

⇤), 8pi 2 Pi

H(p⇤1, p
⇤
2, · · · , p

⇤
I ,m

⇤)  H(p⇤1, p̃2, · · · , p
⇤
I ,m), 8m 2 M

Therefore, the Nash equilibrium of the game (p⇤,m⇤) and
the saddle point of H(p,m) are equivalent. We have obtained
that there exists a unique saddle point (ep, em). Thus, the Nash
equilibrium of the game exists and is unique.

C. Centralized Iterative Algorithm for the Game

We propose an algorithm that describes the interaction
between CO and utilities to approach the equilibrium of G1 by
CO and utilities iteratively updating their strategies. At each
iteration, CO acting as a central coordinator determines the
workload transfer strategy according the electricity prices:

mk+1 = arg min
m2M

H(pk,m). (10)

Then, CO submits the bid zi to the local utility i, i 2 I. Next,
the utilities update the prices following (11) and release them
to CO.

pk+1
i = PrPi [p

k
i + ⌘1

@H(pki , p
k
�i,m

k+1)

@pi
], 8i 2 I, (11)

where PrPi [·] denotes the projection to feasible set Pi. This
process repeats until the prices converge. We summarize this
iterative process in Algorithm 1, of which the convergence is
guaranteed [28].
In Algorithm 1, there is a virtual CO coordinating the

workload transfer among DCs. We refer to this algorithm as
centralized interaction between CO and utilities to distinguish
it from the decentralized algorithm to be presented in the next
section.

III. DECENTRALIZED COORDINATION OF DCS

In this section, we focus on the realistic scenario without
CO, and the problem becomes how DCs attain the workload
transfer strategy in a decentralized fashion. To be specific,
in previous centralized algorithm, at each iteration given the
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electricity prices, the CO minimizes the aggregated cost of all
DCs, namely, solves the problem below:

P1 : min
m

X

i2I
fi(mi)

s.t. (6), (8).
Now the DCs have to solve P1 in a decentralized manner.
In essence, P1 couples all DCs in both the objective

function and the constraints. Therefore, information exchange
is necessary for the decentralized algorithm. Here we have two
assumptions for the communication: 1) the DCs are connected,
and 2) the communication is bidirectional.
The goal of the decentralized algorithm is to obtain the

same solution as the centralized algorithm. However, each DC
only possesses local information, and can only conduct local
optimization based on the estimates of global information.
Communication with neighbors helps the DCs update the
estimates and drives them to the real value. Therefore, to
solve P1 requires an iterative process where the DCs need
to exchange information, update estimates and conduct opti-
mization. The decentralized algorithm will be developed in
the framework of state based potential game introduced in the
ensuing subsection.

A. State Based Potential Game Preliminary

A state based game is typically characterized by the follow-
ing components [29]:
(i) A set of players: N = {1, 2, · · · , n};
(ii) A state space: X ;
(iii) An action set: A(x) =

Q
i2N Ai(x), x 2 X , where

Ai(x), 8i 2 N , is the strategy set of player i;
(iv) A cost function: Ji(x, a): X ⇥A ! R for each i 2 N ;
(v) A state transition function f(x, a): X ⇥A ! X , that is,

x(t+ 1) = f(x(t), a(t)).
A null action 0 2 A(x) is the one that does not change

the current state, namely, x = f(x,0). State based game
captures a dynamic process in which the players play the game
repeatedly. The actions adopted by the game drive the system
to different states, according to which the cost for each player
is generated.

Definition 1. Stationary state Nash equilibrium: A state action

pair (x⇤, a⇤) is called stationary state Nash equilibrium if

c-1 a⇤i minimizes Ji given x⇤
and a⇤�i:

Ji(x⇤, a⇤i , a
⇤
�i)  Ji(x⇤, ai, a⇤�i), 8i 2 N , 8ai 2 Ai;

c-2 x⇤
is a fixed point of f : x⇤ = f(x⇤, a⇤).

Definition 2. State based potential game: A state based game

with a null action is a state based potential game if there exists

a potential function �: X ⇥ A ! R such that the following

two conditions hold for any x 2 X :

c-1 For any player i 2 N , action a 2 A(x) and action a0i 2
Ai(x), the equality below holds:

Ji(x, a
0
i, a�i)� Ji(x, a) = �(x, a0i, a�i)� �(x, a).

c-2 The potential function satisfies the following equality

for any action a 2 A(x) and the consequent state

x0 = f(x, a):
�(x, a) = �(x0,0)

The reason we resort to potential game is that the existence
of a Nash equilibrium is guaranteed in a potential game [30].

B. Potential game based decentralized Coordination

In this part, we propose a distributed algorithm based on the
framework of state based potential game. First, we construct
a game according to our problem and show that this game is
a potential game. Then, we prove that the equilibrium of the
game is the optimal solution to P1. Last, we specify the action
of the game and demonstrate that the action can lead the game
to its equilibrium.
1) Construction of state based game: The state based game

G2 is formed as below:
(i) Players: The DCs I = {1, 2, · · · , I}.
(ii) State: The state xi, i 2 I includes inner state {mij}j2Ni

and communication state ei = {riij , r
i
ji, l

i
k, u

i
k}k2I,j2Ni ,

where riij and riji are the DC i’s estimates of mij and
mji, respectively; lik and ui

k are DC i’s estimates of lk and
uk, which are defined in (7). All states are collected as
x = {xi}i2I .
(iii) Action: ai includes inner action {m̂ij}j2Ni and com-

munication action êi = {r̂iij , r̂
i
ji, l̂

i
k, û

i
k}k2I,j2Ni . All actions

are collected as a = {ai}i2I .
(iv) State transition functions for any i, k 2 N and j 2 Ni:

mij(t+ 1) =mij(t) + m̂ij(t); (12a)

riij(t+ 1) =riij(t) + 2m̂ij(t)� r̂iij(t) + r̂jij(t); (12b)

riji(t+ 1) =riji(t)� r̂iji(t) + r̂jji(t); (12c)

lik(t+ 1) =lik(t) +
a
i (k)

X

j2Ni

m̂ij(t)�
b
i (k)m̂ik (12d)

�

X

j2Ni

l̂ik +
X

j2Ni

l̂jk; (12e)

ui
k(t+ 1) =ui

k(t)�
a
i (k)

X

j2Ni

m̂ij(t) +
b
i (k)m̂ik (12f)

�

X

j2Ni

ûi
k +

X

j2Ni

ûj
k; (12g)

where a
i (k) and b

i (k) are two indicator functions: a
i (k) =

1, if k = i, otherwise, a
i (k) = 0; b

i (k) = 1, if k 2 Ni,
otherwise, b

i (k) = 0.
The decentralized algorithm is built upon the communica-

tions among the neighboring DCs. The information to be ex-
changed is the communication state ei and the communication
action êi. Each DC updates its own state according to above
state transition function (12).
From the transition function, the game can be compared to

a bargaining process between each DC and its neighbors. Take
mij , riij and rjij as an example where mij is the amount of
workload that DC i is going to transfer to DC j, riij can be
regarded as the amount DC i applies to DC j that it wants to
transfer, and rjij is the amount that DC j is willing to accept.
At beginning, DC i tends to ask for a large riij , but DC j

wants a small rjij . Then, they exchange their opinion, r̂iij and
r̂jij , and update their estimates by compromising with their
neighbors, i.e, attaching more weight to the neighbors’ opinion
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and cutting the interests of their own. Through the repeated
bargaining, the DCs hope to reach an agreement with their
neighbors.
During the bargaining, mij(t) should capture the willing-

ness of DC i and DC j, that is,

2mij(t) = riij(t) + rjij(t) (13)

At the end when agreement is reached ([·]⇤ denotes the variable
at the equilibrium),

ri⇤ik = rk⇤ik = m⇤
ik, 8i 2 I, k 2 Ni (14)

By carefully elaborating the initial value of the state, it can
be guaranteed that (13) is satisfied, and it will be shown later
by lemma 2 that by properly designing local cost function for
DCs, (14) hold at the equilibrium.
Suppose that the DCs can manage their workload without

workload transfer; thus the initial value can be set as mij(0) =
0, i 2 I, j 2 Ni. It can be verified that the following initial
values can guarantee (13).

riij(0) = 2mij(0), r
i
ji(0) = 0, i 2 I, j 2 Ni (15)

Similarly, if the initial state lik(0), i, k 2 I satisfiesP
i2I lik(0) = lk(0) = �z0k +

P
j2Nk

mkj(0) � mjk(0), then

during the evolution induced by above state transition function,
lik(t), i, k 2 I always satisfies:

X

i2I
lik(t) = lk(t) (16)

It is straightforward that the following initialization of lik(t),
i, k 2 I, satisfies above condition:

lik(0) =

(
lk(0), i = k

0, i 6= k
(17)

In this way, constraint (7a) is equivalent to
X

i2I
lik(t)  0, 8k 2 I

Similarly, when ui
k(t) is initialized as

ui
k(0) =

(
uk(0), i = k

0, i 6= k
(18)

ui
k(t) always satisfies:

X

i2I
ui
k(t) = uk(t), 8k 2 I (19)

Remark 2. Particularly in this paper, by privacy preserving

we mean that the private parameters of each data center are

not released to other data centers. The private information

includes the workload processing capacity Zi, the original

workload z0i , the processed workload zi, and the workload

transfer capacity between data centers Mij , (i 2 I, j 2 Ni).

In this sense, the initialization, (15), (17) and (18) respects

the privacy of all DCs, because each DC i only requires the

workload originating in DC i, z0i and the DC capacity Zi.

In addition, the state transition together with the privacy-
preserving initialization ensures (13), (16) and (19) hold,

which, as will be shown later, is essential to guarantee that
the equilibrium of the potential game is the optimal solution
of P1.
(v) Cost function: For ease of exposition, we drop index

t when no confusion occurs, and define f j
i and zji for any

i, j 2 I respectively as:

f j
i = piz

j
i +

X

k2Ni

gik(r
j
ik)

and
zji = z0i �

X

k2Ni

rjik +
X

k2Ni

rjki.

The cost of each DC consists of three components:

Ji(x, a) = J0
i (x, a) + µ1J

1
i (x, a) + µ2J

2
i (x, a),

where
J0
i (x(t), a(t)) = J0

i (x(t+ 1),0)

= f i
i (t+ 1) +

X

j2Ni

(f j
i (t+ 1) + f i

j(t+ 1) + f j
j (t+ 1));

J1
i (x(t), a(t)) = J1

i (x(t+ 1),0)

=
X

j2Ni

(riij(t+ 1)� rjij(t+ 1))2 + (riji(t+ 1)� rjji(t+ 1))2;

J2
i (x(t), a(t)) = J2

i (x(t+ 1),0)

=
X

k2N
max{0, lik(t+ 1)}2 +max{0, ui

k(t+ 1)}2

+
X

j2Ni

X

k2N
max{0, ljk(t+ 1)}2 +max{0, uj

k(t+ 1)}2

Notice that J0
i centers the cost of DC i and its neighbors, J1

i

represents a penalty to the disagreement on the estimates of the
same variable by different DCs and J2

i charges the violation
of constraint (6). For DC i, the first part of cost J0

i includes its
own cost and the cost of its neighbors. These cost are based
on the estimation of itself and its neighbors. This shows that
DCs respect the interest and opinion of their neighbors.
The potential function � is defined to be:

� =
X

i2I
J0
i + µ1

X

i2I
J1
i + µ2

X

i2I
J2
i

It can be verified that game G2 is a state based potential game.
Therefore, it is guaranteed that there exists a Nash equilibrium
of this game.
2) Equilibrium of Game G2: Suppose that (x⇤, a⇤) is the

equilibrium of the state based potential game, namely, (x⇤, a⇤)
satisfies conditions c-1 and c-2 in Definition 1. First, we will
show that at the equilibrium, the states of the game exhibit the
properties stated in the lemma below.

Lemma 2. The local estimates of different DCs at the equi-

librium satisfy for any i, j, q 2 I and k 2 Ni:

(a) ri⇤ik = rk⇤ik = m⇤
ik;

(b) max{0, li⇤q } = max{0, lj⇤q } = 1
Imax{0,�z⇤q};

(c) max{0, ui⇤
q } = max{0, uj⇤

q } = 1
Imax{0, z⇤q � Zq}.

All the proofs for here and the rest of the paper can be found
in the appendix. This lemma implies that at the equilibrium,
the DCs will reach a consensus about the estimates: any
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Algorithm 2 Decentralized Coordination of DCs
1: set ✏1 = �1, ✏2 = �2 to be small enough positive constants,

⌘1 = 0.5, ⌘2 = 0.01, k = 0, and randomly initialize pk.
2: while (�1 � ✏1) do
3: set t = 0, initial mij(0) = 0 and initialize ei according to

(15), (17) and (18).
4: while (�2 � ✏2) do

5: calculate action ai(t) following (20) and broadcast ai(t) to
its neighbors.

6: update state xi(t) according to (12) and broadcast xi(t) to
its neighbors.

7: update �2 = ||a(t)|| and set t  t+ 1.
8: end while

9: update mk+1 = m(t) and submit zi (i 2 I) to utilities.
10: update pk+1

i (i 2 I) according to (11) and release prices to
corresponding data cneters.

11: update �1 = ||pk+1 � pk|| and set k  k + 1.
12: end while

two connected DCs agree on the workload transfer between
them, and all the DCs have the same opinion on whether any
constraint in (6) is violated.
Then by the theorem below it is established that the con-

structed game is effective in obtaining the optimal solution of
problem P1.

Theorem 2. With µ2 selected such that µ2 > �BI
2d , the

equilibrium of game G2 corresponds to the optimal solution of

problem P1 (�, B and d are finite constants that are specified

in the appendix).

Due to space limitations, the complete proof for the lower
bound of µ2 is included in the supplementary file, i.e., the
one-column version. At this point, only the action a leading
game G2 to its equilibrium remains to be determined.

3) Action and Convergence: A simple projected gradient
action is adopted for each DC i, i 2 I:

ai(t) = PrAi(xi(t))[�⌘2
@Ji(x(t), 0)

@ai
] (20)

where ⌘2 is a positive small enough step size and PrAi(xi(t))[·]
means projection to the feasible set Ai(xi(t)). Specifically,
m̂ij should satisfy 0  mij(t) + m̂ij(t)  Mij , thus

m̂ij(t) =

8
><

>:

�mij(t), mij(t) + ⌘ @Ji(x(t),0)
@mij

< 0;

Mij �mij(t), mij(t) + ⌘2
@Ji(x(t),0)

@mij
> Mij ;

⌘2
@Ji(x(t),0)

@mij
, otherwise.

All the other actions are unconstrained, thus the projection
imposes no additional operation on the gradient.
Due to limited space, we omit the calculation of the gra-

dient. It is worth mentioning that for any DC the calculation
of the gradient only requires the electricity prices and state
from its neighbors. That is, the workload information and
the parameters of other DCs are not necessary. Therefore, the
privacy of the DCs is protected.
Now, we demonstrate by the following theorem that the

gradient based action guarantees to lead game G2 to its
equilibrium.

Theorem 3. Let r�(x, a) denote the derivative of �(x, a)
with respect to a, i.e., r�(x, a) = [@�(x,a)

@a1
, · · · , @�(x,a)

@aI
]T .

Assume �(x, a) is L-smooth in a, or equivalently, there exists

a constant L such that

�(x, a)� �(x,0)� aTr�(x,0) 
L

2
||a||22. (21)

Let the stepsize ⌘ = min{ 1
L ,

kx(1)�x⇤k
L
p
⇠t

}, then �(x(t), 0)

enjoys
1p
t
-sublinear convergence, and the state-action will

converge to equilibrium (x⇤,0). To be specific, �(x(t),0) �
�(x⇤,0) satisfies

�(x(t),0)� �(x⇤,0) 
⇠Lkx(1)� x⇤

k2
p
t

(22)

where ⇠ is a constant such that

@�(x, a)

@x
 ⇠r�(x, a) (23)

Note that ⇠ exists since the state transition function f(x, a) is
a linear function of a (Please see the appendix for detailed

explanation).

Here the decentralized algorithm design following the
framework of state based potential game is finished and it is
summarized in Algorithm 2. It is a two-loop algorithm, where
the inner loop yields the optimal workload transfer strategy
given the prices in a decentralized manner and the outer loop
generates the electricity prices.

Remark 3. In the proposed decentralized algorithm, the

data centers only use their own local parameters and the

communication information from their neighbors. This concept

of privacy protection is also adopted in some distributed op-

timization and federated learning literature [31], [32], where

the raw data or parameters are maintained in the local agents

and the communicated information is derived from the local

information. Indeed there are a bunch of works that deal with

privacy in a different way. For example, in the literature of

differential privacy, when the private data have to be shared,

noise is injected to them and the privacy is quantified to

capture how much of the original information can be recovered

from the perturbed data [33], [34].

We have to admit that in the present algorithm, the commu-
nication information is calculated from the private information
which thus might be partially inferred by reverse engineering.
We agree on that this paper does not aim to provide a
fully private solution under this consideration. Henceforth,
to develop a differentially private algorithm is in our future
agenda.

IV. SIMULATIONS

1) Synthetic Simulation: In this part, we use workload ran-
domly generated to validate the effectiveness of the proposed
algorithm. We emulate 6 distributed DCs in our simulation.
First, we show the converging process of the inner loop,

that is, given price, the distributed coordination of the DCs.
Fig. 2(a) exhibits the bargaining procedure between DC 1
and DC 2 on how much workload to transfer between them.
Fig. 2(b) demonstrates the real and estimated constraint func-
tions. Fig. 2(a) and Fig. 2(b) verify Lemma 2 and equalities
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(a) Workload transfer between DC 1 and DC 2
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(b) Local constraint estimates
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(c) The total cost of the DCs

Fig. 2. Convergence of the decentralized coordination of the DCs
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Fig. 3. The electricity prices at different locations
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Fig. 4. The cost of DCs and profit of utilities

(13) and (16). Fig 2(c) illustrates during the interaction be-
tween DCs, the total cost of DCs keeps diminishing. Then
Fig. 3 and Fig 4 show the convergence of the interaction be-
tween DCs, or CO and utility companies. The prices obtained
by the decentralized algorithm coincide with the prices by the
centralized algorithm. Fig. 4 demonstrates that the cost of DCs
and profit of utilities completely match despite of slight price
mismatch.
Fig. 2 shows that it takes thousands of iterations for the inner

loop to converge to the optimal point. Although that each inner
iteration only involves simple calculation of the gradients and
state update, large number of inner loop iterations translates
to intensive communications. Therefore, we propose to reduce
the communication by cut the number of inner loop iterations.
In other words, we set a limit on the number of inner iteration
and stop it before it reaches the optimal. Fig. 5 shows the
convergence process by implementing this idea. At first 20
outer loop iterations, we set the limit as 1000, and it is
demonstrated that at the end when 25 outer iterations are
finished the result is the same as that in Fig. 3. In this way,
the communication expenditure is significantly reduced.
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Fig. 5. Convergence with inexact optimal inner solution
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The algorithms are tested using a MacBook Pro with 2.3
GHz Intel Core i5. The running times for the centralized
algorithm, the decentralized algorithm, and the decentralized
algorithm with reduced iterations are 30.21 seconds, 854
seconds and 201 seconds, respectively. Note that because
the decentralized algorithms is actually simulated in a single
laptop, the communication time is not taken into account.
To explore the impact of the coordination of the data centers,
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Fig. 7. Prices at different locations
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TABLE I
IMPACT OF WORKLOAD TRANSFER ON THE COST OR PROFIT OF THE
MARKET PARTICIPANTS (THE COST AND PROFIT IS IN TERMS OF 103

DOLLARS. ABBREVIATIONS USED IN THE TALBLE: POU—PROFIT OF
UTILITIES, CODC—COST OF DATA CENTERS, COOU—COST OF OTHER

USERS)

PoU CoDC CoOU

With coordination 1.82 2.75 3.96
No coordination 2.09 3.03 4.27

we compare the profit of the utilities, the cost the data centers
and the cost of other users when there is workload transfer
among data centers and when there is none. As demonstrated
in Table I, the costs of the data centers and other users are cut
down, while the overall profit of the utilities is reduced. Thus,
it is concluded that the workload transfer is beneficial for the
electricity users. This is because the workload transfer results
in lower electricity prices.
2) Simulation based on Google Cluster Workload Trace:

For the realistic data analysis, we use the workload trace from
Google cluster [35]. The workload trace represents 29 days’
workload on a cluster of about 12.5k servers in May 2011. We
scale and translate the trace to produce the workload of 6 DCs.
We compare the results with that of the price taker model in
[20] where the DCs are not aware that the workload transfer
can change the electricity prices. Hence, the historical average
prices are used to guide the workload transfer, and there is no
interaction between DCs and utilities. The proposed scheme in
this paper acknowledges the market power of DCs, and adopts
an iteration between DCs and utilities. The simulation in this
part verifies that the price maker model is superior to price
taker model in that it results in better electricity generation.
As illustrated in Fig. 6 that workload transfer aware of market
power reduces the aggregated cost of DCs by about 8% in
one month. The total profit of utilities also declines compared
with that of the price taker model. This is because that the
price maker model reduces the electricity prices, as shown
in Fig. 7. The reductions of electricity prices are the results
of the negotiation between DCs and utilities. It should be
noted that in the deregulated electricity market, some more
competent utilities will gain more profit. The competitiveness
of the utilities is determined by the generation, the elasticity
of local demand, and the connection of DCs, which is implicit
and is not the scope of this paper. It is seen in Table. II that the
profit of utility 1 and 4 increases, meaning that they are more
competent in free market. (In Table. II, the profits are in terms
of million dollars, and profit(m) and profit(t) denote the profit
of price maker model and price taker model, respectively).

V. CONCLUSIONS

In this paper, we investigate the cross-SP DC workload
transfer in deregulated electricity markets. The market power
of DCs is taken into considertaion, which results in a nonco-
operative game capturing the interaction between utilities and
DCs. It is shown that there exists a unique Nash equilibrium,
which can be obtained by a centralized algorithm that admits
a CO coordinating all DCs. Then, considering the practical

TABLE II
PROFIT OF THE UTILITIES

↵i �i ki profit(m) profit(t)

utility 1 0.16 0.08 1.6 0.820 0.806
utility 2 0.16 0.08 0.8 1.268 1.274
utility 3 0.8 0.8 0.8 0.952 1.015
utility 4 0.08 0.04 0.8 1.516 1.512
utility 5 0.16 0.08 0.8 1.427 1.429
utility 6 0.16 0.08 0.6 1.518 1.681

computation and privacy issues induced by the centralized
algorithm, we propose a decentralized algorithm following the
framework of sate based potential game. The decentralized
algorithm requires only communications among neighboring
DCs and enables DCs to obtain the optimal strategies without
central coordination. Simulations building upon Google work-
load trace show that the proposed method outperforms existing
schemes in reducing the operational cost of DCs.
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APPENDIX A
PROOF OF LEMMA 1

Proof. Since h1(x) is strictly concave,

h1(x1) < h1(x0) +rh1(x0)(x1 � x0), 8x1, x0 2 X , x1 6= x0

Therefore,
h1(x1)� h1(x0) < rh1(x0)(x1 � x0)

h1(x0)� h1(x1) < rh1(x1)(x0 � x1)

Adding above two inequalities yields: for any x1, x0 2

X , x1 6= x0,

(x1 � x0)(rh1(x1)�rh1(x0)) < 0 (24)

Similarly, since h2(y) is strictly convex, we have for any y1,
y0 2 Y, y1 6= y0,

(y1 � y0)(rh2(y1)�rh2(y0)) > 0 (25)

Let K = X ⇥ Y , and L(x, y) =
[�rxH(x, y) OyH(x, y)]T = [�rh1(x)�cy rh2(y)+cx]T .
That z solves variational inequality V I(K, L), namely,
z 2 SOL(K, L), is equivalent to (please see the definitions
of V I and SOL in Appendix F in the one-column version):

(z0 � z)TL(z) � 0, 8z0 2 K (26)

Suppose (ex, ey) is a saddle point of H(x, y).

H(ex, ey) � H(x, ey), 8x 2 X ,

(x� ex)T [�rxH(ex, ey)] � 0, 8x 2 X
(27)

H(ex, ey)  H(ex, y), 8y 2 Y ,

(y � ey)TryH(ex, ey) � 0, 8y 2 Y
(28)

(27) and (28) can be written as

[(x� ex) (y � ey)]TL(x, y) � 0, 8x 2 X , y 2 Y (29)

which means (ex, ey) and SOL(K, L) are equivalent.
Next, we will show that SOL(K, L) exists and is unique

by showing that V I(K, L) is strictly monotone.
Let z1 = [x1 y1]T , z0 = [x0 y0]T 2 K and z1 6= z0, then

(z1 � z0)
T (L(z1)� L(z0))

=

"
x1 � x0

y1 � y0

#T "
�(rh1(x1)�rh1(x0))� c(y1 � y0)

rh2(y1)�rh2(y0) + c(x1 � x0)

#

=� (x1 � x0)(rh1(x1)�rh1(x0))

+ (y1 � y0)(rh2(y1)�rh2(y0)) > 0
(30)

where the inequality follows from (24) and (25). (30) indicates
that V I(K, L) is strictly monotone. Therefore, SOL(K, L),
i,e, the saddle point (ex, ey) ofH(x, y) exists and is unique.

APPENDIX B
PROOF OF LEMMA 2

Proof. Directly from c-2 of Definition 1 we can obtain the
following equalities for any i, p 2 I, j 2 Ni:

@Ji(x⇤, a⇤)

@r̂iij
= ��g0ij(r

i⇤
ij )� ri⇤ij + �g0ij(r

j⇤
ij ) + rj⇤ij = 0

@Ji(x⇤, a⇤)

@ l̂ip
= �

X

j2Ni

2max{0, li⇤p }+ 2max{0, lj⇤p } = 0

where the first equation indicates ri⇤ij = ri⇤ij , because function
�g0(r) + r is strictly increasing. Note that (13) holds, thus
ri⇤ij = ri⇤ij = m⇤

ij , namely, (a) is proved.
The second equation, if written in a matrix form for any

p 2 I, is as below

A[max{0, l1⇤p } max{0, l2⇤p } · · ·max{0, l2⇤p }]T = 0 (31)

where the (i, j) entry of A, Aij = 1, if j 2 Ni, and
Aii = �|Ni|, if j = i, otherwise Aij = 0. We have assumed
that the communication graph is undirected and is connected.
Therefore, it is straightforward that A · 1 = 0, that is, A is
irreducible and rank(A) = I � 1. Thus, the solution of (31)
must satisfies max{0, li⇤p } = max{0, lj⇤p }, which together
with (16) results in (b). Similarly, we can prove (c) holds.

APPENDIX C
PROOF OF THEOREM 2

Proof. First we show that the equilibrium is the optimal
solution of the following problem:

P2 : min
m

F1m)

s.t. (8).

where F2(m) =
P

i2I fi(mi) +
µ2

2I

P
i2I[(max{0,�zi})2 +

(max{0, zi � Zi})2].
Assume that m̄ is optimal solution of P2, then the sufficient

and necessary condition for m̄ij to be the optimal solution is:

@F2(m̄)

@mij
(m0

ij � m̄ij) � 0, 8i 2 I, j 2 Ni,m
0
ij 2 [0,Mij ].

where
@F2(m̄)

@mij
= �pi + pj + �g0(mij) +

µ2

I
(max{0,�zi}

�max{0,�zj}�max{0, zi � Zi}+max{0, zj � Zj})

The first order condition for (x⇤, a⇤) minimizing Ji includes
the inequality holds for any i 2 I, j 2 Ni,m0

ij 2 A(x⇤).

@Ji(x⇤, a⇤)

@m̂ij
(m̂0

ij � m̂⇤
ij) � 0 (32)

which is equivalent to

@Ji(x⇤, a⇤)

@m̂ij
(m0

ij �m⇤
ij) � 0, 8m0

ij 2 [0,Mij ]. (33)
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Applying chain rule, we can obtain

@Ji(x⇤, a⇤)

@m̂ij
= 2[�pi + pj + �g0(ri⇤ij )] + 4µ1(r

i⇤
ij � rj⇤ij ) + 2µ2

(max{0, li⇤i }�max{0, li⇤j }�max{0, ui⇤
i }+max{0, ui⇤

j })
(34)

Substituting the equalities in Lemma 2 into (34) yields:

@Ji(x⇤, a⇤)

@m̂ij
= 2[�pi + pj + �g0(m⇤

ij)] + 2µ2(max{0,�z⇤i }

�max{0,�z⇤j }�max{0, z⇤i � Zi}+max{0, z⇤i � Zi})

= 2
@F2(m⇤)

@mij
.

(35)
Substituting (35) into (32) attains

@F2m⇤)

@mij
(m0

ij �m⇤
ij) � 0, 8i 2 I, j 2 Ni,m

0
ij 2 [0,Mij ].

which means that m⇤ is the optimal solution of P2. When µ2

is set to be large enough, m⇤ is the optimal solution of P1.
Due to space limitations, the complete proof for the lower

bound of µ2 is included in the complete version.

APPENDIX D
PROOF OF THEOREM 3

Proof. From the smoothness of r�(x, a) we have that

�(x(t+ 1),0)� �(x(t),0) = �(x(t), a(t))� �(x(t),0)

 aTr�(x(t),0) +
L

2
||a(t)||22

(36)
It can be verified that @�(x,a)

@ai
= @Ji(x,a)

@ai
holds for any i 2 I.

Then, from the property of projection and the fact that 0 2

Ai(xi(t)), we obtain

(⌘r�(x(t),0) + a(t))T (0+ a(t))  0

that is,
⌘r�(x(t),0)Ta(t)  �||a(t)||22. (37)

Substituting (37) into (36) results in

�(x(t+ 1),0)� �(x(t),0)  (
L

2
�

1

⌘
)||a(t)||22  0 (38)

�(x(t),0) is lower bounded and decreasing along x(t),
therefore it will arrive at a fixed point (x,0), the equilibrium.
The projected gradient update can be decomposed into two

steps:

y(t+ 1) = x(t)� ⌘r�(x(t), a(t)); (39)
x(t+ 1) = PrX [y(t+ 1)]. (40)

From the definition of �(x(t), a(t)) we have that �(x(t), a(t))
is convex in x(t), which indicates

�(x(t),0)� �(x⇤,0) 

⌧
@�(x(t),0)

@x(t)
, x(t)� x⇤

�
(41)

Recalling the definition of r�(x, a), it can be written as
follows using chain rule.

r�(x, a) =
@�(x, a)

@a
=

@�(x, a)

@x

@x

@a
(42)

Since the the state transition function f(x(t), a(t)) in (12) is
linear in a(t), @x

@a is a constant matrix. Consequently, from
(42) we can obtain

@�(x, a)

@x
 ⇠r�(x, a) (43)

where ⇠ is a constant determined by the transition function
(12).
Plugging (43) into (41) gives

�(x(t),0)� �(x⇤,0)

 ⇠ hr�(x(t),0), x(t)� x⇤
i

=
⇠

⌘
hx(t)� y(t+ 1), x(t)� x⇤

i

=
⇠

2⌘

⇥
kx(t)� y(t+ 1)k22 + kx(t)� x⇤

k � ky(t+ 1)� x⇤
k
2
2

⇤

(44)

Due to the fact that x⇤ is in X and x(t) is the projection of
y(t) in X , it holds that

ky(t+ 1)� x⇤
k
2
2 � kx(t+ 1)� x⇤

k
2
2. (45)

With L-smoothness of � implies, we have that

kx(t)� y(t+ 1)k22 = ⌘2kr�(x, a)k2  ⌘2L2. (46)

Combining (44), (45) and (46) yields

�(x(t),0)� �(x⇤,0)


⇠

2⌘

⇥
⌘2L2 + kx(t)� x⇤

k � kx(t+ 1)� x⇤
k
2
2

⇤
. (47)

Summing (47) over 1 to t and dividing the result gives

1

t

tX

⌧=1

�(x(⌧),0)� �(x⇤,0)


⇠

2⌘

1

t

tX

⌧=1

[⌘2L2 + kx(⌧)� x⇤
k
2
2 � kx(⌧ + 1)� x⇤

k
2
2]


⇠⌘L2

2
+

⇠

2⌘t
kx(1)� x⇤

k
2
2 (48)

Recalling the obtained result (38) indicates that �(x(t),0)�
�(x⇤,0) is decreasing along x(t), thus we obtain the following

�(x(t),0)� �(x⇤,0)


1

t

tX

⌧=1

�(x(⌧),0)� �(x⇤,0)


⇠⌘L2

2
+

⇠

2⌘t
kx(1)� x⇤

k
2
2 (49)

Let ⌘ = min{ 2
L ,

kx(1)�x⇤k
L
p
⇠t

}, then we have

�(x(t),0)� �(x⇤,0) 
⇠Lkx(1)� x⇤

k2
p
t

(50)

which means that �(x(t),0) enjoys O( 1p
t
)-sublinear conver-

gence. Here we complete the proof.
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