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Abstract—This paper focuses on communication-efficient federated learning problem, and develops a novel distributed quantized

gradient approach, which is characterized by adaptive communications of the quantized gradients. Specifically, the federated learning

builds upon the server-worker infrastructure, where the workers calculate local gradients and upload them to the server; then the server

obtain the global gradient by aggregating all the local gradients and utilizes it to update the model parameter. The key idea to save

communications from the worker to the server is to quantize gradients as well as skip less informative quantized gradient

communications by reusing previous gradients. Quantizing and skipping result in ‘lazy’ worker-server communications, which justifies

the term Lazily Aggregated Quantized (LAQ) gradient. Theoretically, the LAQ algorithm achieves the same linear convergence as the

gradient descent in the strongly convex case, while effecting major savings in the communication in terms of transmitted bits and

communication rounds. Empirically, extensive experiments using realistic data corroborate a significant communication reduction

compared with state-of-the-art gradient- and stochastic gradient-based algorithms.

Index Terms—Federated learning, communication-efficient, gradient innovation, quantization

Ç

1 INTRODUCTION

TRAINING today’s machine learning functions (models)
relies on an enormous amount of data collected by a

massive number of mobile devices. This comes with sub-
stantial computational cost, and raises serious privacy con-
cerns when the training is centralized. In addition to cloud
computing, these considerations drive the vision that future
machine learning tasks must be performed to the extent
possible in a distributed fashion at the network edge,
namely devices [2].

When distributed learning is carried out in a server-
worker setup with possibly heterogeneous devices and
datasets as well as privacy considerations, it is referred to as
federated learning [3], [4]. The server updates the learning
parameters utilizing the information (usually gradients)

collected from local workers, and then broadcasts the
parameters to workers. In this setup, the server obtains the
aggregate information without requesting the raw data–
what also respects privacy and mitigates the computation
burden at the server. Such a learning paradigm however,
incurs communication overhead that does not scale with
the number of workers. This is aggravated in deep learning,
which involves high-dimensional learning parameters. In
fact, communication delay has become a bottleneck for fully
exploiting the distributed computing resources to speed up
the training of machine learning models [5], [6].

In this context, communication-efficient federated learning
methods have gained popularity recently [3]. Most methods
build on simple gradient updates, and are centered around
gradient compression to save communication, including gra-
dient quantization and sparsification, as outlined in the follow-
ing overview of the prior art in this area.

1.1 Prior Art

Quantization.Today’s computers usually utilize 32 or 64 bits to
quantize the floating point number, which is assumed to be
accurate enough in most algorithms. By quantization in this
paper, we mean fewer bits are employed. Toward the goal of
reducing communications, quantization compresses transmit-
ted information (e.g., the gradient) by limiting the number of
bits that represent floating point numbers, and has been suc-
cessfully applied to several engineering tasks employing
wireless sensor networks [7]. In the context of distributed
machine learning, a 1-bit binary quantization scheme has
been proposed in [8], [9]. Multi-bit quantization methods
have been developed in [10], [11], where an adjustable quanti-
zation level endows flexibility to balance the communication
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cost and the convergence rate. Other variants of quantized
gradient schemes include ternary quantization [12], variance-
reduced quantization [13], error compensation [14], and gra-
dient difference quantizaiton [11], [15]; and it is shown in [11]
that the linear convergence rate can bemaintainedwith gradi-
ent difference quantization.

Sparsification. Sparsification amounts to discarding some
entries of the gradient and themost straightforward scheme is
to transmit only gradient componentswith large enoughmag-
nitudes [16]. Surprisingly, the desired accuracy can be attained
even with 99 percent of the gradients being dropped in some
cases [17]. To reduce information losses, gradient components
with small values are accumulated and then applied when
they exceed a certain threshold [18]. The accumulated gradi-
ent offers variance reduction for the sparsified stochastic gra-
dient descent (SGD) iterates [19]. With its impressive
empirical performance granted, apart from recent efforts [20],
deterministic sparsification schemes fall short in performance
guarantees. Their randomized counterparts though come
with the so-termed unbiased sparsification, which provably
offers convergence guarantees [21], [22].

Quantization and sparsification can also be employed
jointly [3], [23], [24]. Nevertheless, they both introduce noise to
(S)GDupdates, which deteriorates convergence in general. For
problems with strongly convex losses, gradient compression
algorithms either converge linearly to the neighborhood of the
optimal solution, or, converge at sublinear rate. The exception
is [11], which only focuses on reducing the required bits per
communication, but not the total number of rounds. However,
formessage exchanging, e.g., the p-dimensional model param-
eter or the gradient, other latencies, such as, initiating commu-
nication links, queueing, and propagating the message, can be
comparable to the message size-dependent transmission
latency [25]. This motivates saving the number of communica-
tion rounds, sometimes evenmore than the bits per round.

Apart from the aforementioned gradient compression
approaches, communication-efficient schemes aiming to
reduce communication rounds have been developed by
leveraging higher-order information [26], [27], periodic
aggregation [4], [28], [29], and recently by adaptive aggrega-
tion [30], [31], [32]; see also [33] for a lower bound on the
number of communication rounds. However, simulta-
neously saving communication bits and rounds without
sacrificing the desired convergence guarantees has not been
addressed, and constitutes the goal of this paper. Note that
asynchronous algorithms, such as DC-ASGD [34], which pri-
marily aim to save run time can also result in communication
reduction. Our method and asynchronous schemes are com-
plementary to each other, and our algorithms to be presented
can also be extended to the asynchronous version.

1.2 Context and Contributions in a Nutshell

We first review the standard distributed server-worker
learning architecture that typically aims at solving an opti-
mization problem of the form

min
uu

X
m2M

fmðuuÞ with fmðuuÞ :¼
XNm

n¼1
‘ðxm;n; uuÞ; (1)

where uu 2 Rp denotes the parameter to be learned;M with
jMj ¼M is the set of workers; xm;n represents the nth data

vector at worker m (e.g., feature vector and its label); Nm

is the number of data samples at worker m; while
‘ðx; uuÞ denotes the loss associated with uu and x; and
fmðuuÞ stands for the local loss corresponding to uu and all
data at worker m. For ease in exposition, we further let
fðuuÞ :¼P

m2M fmðuuÞ denote the overall loss function.
Throughout this paper, we consider implementing distrib-

uted gradient descent (GD) in the commonly employed
worker-server setup. Since the data samples are distributed
across the workers, in each iteration the workers need to
download the model parameter from the server, calculate the
local gradient using local data and upload the gradients to the
server; upon receiving all the local gradients, the server then
updates the parameter vector following the GD iteration

GD :GD : uukþ1 ¼ uuk � a
X
m2M

rfm
�
uuk
�
; (2)

where superscript k indexes the iteration, a is the stepsize,
and rfðuukÞ ¼P

m2MrfmðuukÞ is the aggregated (or, global)
gradient. It is clear that to implement (2), the server has to
communicate with all workers to obtain ‘fresh’ gradients
frfm

�
uuk
�gMm¼1. In several settings though, communication

is much slower than computation [5]. Thus, as the number
of workers grows, worker-server communications become
the bottleneck [35]. This becomes more challenging when
adopting popular deep learning models with high-dimen-
sional parameters, and correspondingly large gradients.
This clearly prompts the need for communication-eficient
learning.

Before introducing our communication-efficient learning
approach, we revisit the canonical form of popular quan-
tized (Q) GD methods [8], [9], [10], [11], [12], [13], [14], [15]
in the simple setup of (1) with one server andM workers

QGD :QGD : uukþ1 ¼ uuk � a
X
m2M

Qm

�
uuk
�
; (3)

where Qm

�
uuk
�

is the quantized gradient that coarsely
approximates the local gradient rfmðuukÞ. While the exact
quantization scheme varies across algorithms, transmitting
Qm

�
uuk
�
generally requires fewer bits than transmitting its

accurate counterpart rfmðuukÞ. Similar to GD however, only
when all the local quantized gradients fQm

�
uuk
�g are col-

lected, the server can update uu.
In this context, the present paper puts forth a quantized

gradient innovation method (as simple as QGD) that also
skips communication rounds. Different from the downlink
server-to-worker communications that can be performed
simultaneously (e.g., by broadcasting uuk), the server in the
uplink receives the workers’ gradients in the presence of
interference, whose mitigation costs resources, e.g., extra
latency or bandwidth. For this reason, our focus here is on
reducing the number of worker-to-server uplink communi-
cations, which we will also refer to as uploads. Our Lazily
AggregatedQuantized (LAQ) GD update is given by (cf. (3))

LAQ :LAQ : uukþ1¼ uuk�ark with rk¼rk�1þ
X

m2Mk

dQk
m; (4)

where rk is an approximate aggregated gradient that
summarizes the parameter change at iteration k, and
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dQk
m :¼ QmðuukÞ�Qmðûuk�1m Þ is the difference between two

quantized gradients of fm at the current iterate uuk and the
previous copy ûuk�1m . With a judiciously selected criterion
that will be elaborated later,Mk denotes the subset of work-
ers whose local dQk

m is uploaded in iteration k, while the
parameter vector iterates are given by ûukm :¼ uuk,
8m 2 Mk, and ûukm :¼ ûuk�1m , 8m =2 Mk. For worker m, the
copy ûuk�1m is employed to remember the model parameter
when last time it is selected to communicate with the server.

In comparison to QGD as (3) where ‘fresh’ quantized gra-
dient is required from each and every worker, the key idea
of LAQ is to obtain rk by refining the previous aggregated
gradient rk�1 with the selected gradient differences
fdQk

mgm2Mk ; that is, using only the new gradients from the
selected workers in Mk, while reusing the outdated gra-
dients from the rest of the workers. With rk�1 stored in the
server, this simple modification scales down the per-
iteration communication rounds from QGD’s M to LAQ’s
jMkj. Note that one round of communication through out
this paper means one worker’s upload.

Compared with alternative quantization schemes, we have
that i) LAQ quantizes the gradient innovation—the difference
of the current gradient relative to the previous quantized gra-
dient; and ii) LAQ skips the gradient communication—if the
gradient innovation of a worker is not significant enough, the
communication of this worker is skipped. We will rigorously
establish that LAQ achieves the same linear convergence as
GD under the strongly convex assumption on the loss func-
tion. Numerical tests will demonstrate that our approach out-
performs competingmethods in terms of both communication
bits and rounds.

Notation. Bold lowercase fonts will be used to denote col-
umn vectors; kxk2 and kxk1 the ‘2-norm and ‘1-norm of x,
respectively; and ½x�i the i-th entry of x; while ab c will stand
for the floor of a; and j � j for the cardinality of a set or vector.

2 LAQ: A LAZILY AGGREGATED QUANTIZED

GRADIENT APPROACH

With the goal of reducing the communication overhead,
two complementary techniques are incorporated in our
algorithm design: i) gradient innovation-based quantiza-
tion; and ii) gradient innovation-based uploading or aggre-
gation—giving the name Lazily Aggregated Quantized
gradient. The former reduces the number of bits per upload,
while the latter cuts down the number of uploads,
and jointly they effect parsimony in communications. The
remainder of this section elaborates further on LAQ.

2.1 Gradient Innovation-Based Quantization

Quantization limits the number of bits to encode a vector dur-
ing communication. Suppose we use b bits to quantize each
coordinate of the gradient in contrast to 32 or 64 bits used by
most computers. With Q denoting the quantization operator,
the quantized gradient perworkerm at iteration k isQmðuukÞ ¼
QðrfmðuukÞ;Qmðûuk�1m ÞÞ, which depends on the gradient
rfmðuukÞ and its previous quantizationQmðûuk�1m Þ. The gradient
is element-wise quantized by projecting to the closest point in
a uniformly discretized grid. The grid is a p-dimensional
hypercube with center at Qmðûuk�1m Þ and radius Rk

m ¼
krfmðuukÞ �Qmðûuk�1m Þk1. With t :¼ 1=ð2b � 1Þ defining the

quantization granularity, the gradient innovation ½fmðuukÞ�i �
½Qmðûuk�1m Þ�i atworkerm ismapped to an integer as

½qmðuukÞ�i ¼
½rfmðuukÞ�i � ½Qmðûuk�1m Þ�i þRk

m

2tRk
m

þ 1

2

$ %
; (5)

which falls in f0; 2; . . . ; 2b � 1g, and thus can be encoded by
b bits. Note that adding Rk

m in the numerator ensures the
non-negativity of ½qmðuukÞ�i, and adding 1=2 in (5) guarantees
rounding to the closest point. Hence, the quantized gradient
innovation at workerm is (with 1 :¼ ½1 � � � 1�>)

dQk
m ¼ QmðuukÞ �Qmðûuk�1m Þ ¼ 2tRk

mqmðuukÞ �Rk
m1; (6)

which can be transmitted by 32þ bp bits (32 bits for Rk
m and

bp bits for qmðuukÞ) instead of the original 32p bits. With the
outdated gradients Qmðûuk�1m Þ stored in the memory and t

known a priori, upon receiving dQk
m the server can recover

the quantized gradient as

QmðuukÞ ¼ Qmðûuk�1m Þ þ dQk
m: (7)

Fig. 1 presents an example for quantizing one coordinate of
the gradient with b ¼ 3 bits. The original value is quantized
with 3 bits and 23 ¼ 8 values, each of which covers an iterval
of length 2tRk

m centered at itself. With ""km :¼ rfmðuukÞ�
QmðuukÞ denoting the local quantization error, it is clear that the
quantization error is not larger that half of the length of the
interval that each value covers, namely,

k""kmk1 � tRk
m: (8)

The aggregated quantized gradient isQðuukÞ ¼P
m2MQmðuukÞ,

and the aggregated quantization error is ""k :¼ rfðuukÞ �
QðuukÞ ¼PM

m¼1 ""
k
m; that is,QðuukÞ ¼ rfðuukÞ � ""k.

2.2 Gradient Innovation-Based Aggregation

The intuition behind lazy gradient aggregation is that if the
difference of two consecutive locally quantized gradients is
small, it is safe to skip the redundant gradient upload, and
reuse the previous one at the server. In addition, we also
ensure the server has a relatively “fresh” gradient for each
worker by enforcing communication if any worker has not
uploaded during the last �t rounds. We set a clock
tm; m 2 M for worker m counting the number of iterations
since last time it uploaded information. Equipped with the
quantization and selection, our LAQ update takes the form
we presented in (4).

Now it only remains to design the selection criterion to
decide which worker to upload the quantized gradient or
its innovation. We propose the following communication
criterion: worker m 2 M skips the upload at iteration k, if it
satisfies

Fig. 1. Quantization example ðb ¼ 3Þ.
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kQmðûuk�1m Þ �QmðuukÞk22 �
1

a2M2

XD
d¼1

�dkuukþ1�d � uuk�dk22

þ 3 k""kmk22 þ k"̂"k�1m k22
� �

;

(9a)

tm � �t; (9b)

where D � �t and f�dgDd¼1 are predetermined constants, and
"̂"k�1m ¼ rfmðûuk�1m Þ �Qmðûuk�1m Þ is the quantization error of the
local gradient when last time worker m uploads gradient
innovation to the server. We will prove in the next section
that the LAQ iterates in (4) converge, and are communica-
tion efficient.

With reference to Fig. 2, LAQ can be summarized as fol-
lows. At iteration k, the server broadcasts the learning
parameter vector to all workers. Each worker computes the
gradient, and quantizes it to decide whether to upload the
quantized gradient innovation dQk

m. Upon receiving the gra-
dient innovation from selected workers, the server updates
the learning vector. These steps are listed in Algorithm 2.

Note that in this paper, by privacy preserving, we mean
the private raw data of each worker are not released to other
workers nor the server. It is true that the local information
might be partially inferred by reverse engineering of the
gradient. However, the gradient compression of LAQ intro-
duces noise to the gradient, which helps promote privacy
[36], [37]. To further investigate how to mitigate privacy
leakage and quantify the degree of privacy remains to be
our future work.

3 CONVERGENCE AND COMMUNICATION ANALYSIS

Our subsequent convergence analysis of LAQ relies on the
following assumptions on fmð�Þ and fð�Þ:
Assumption 1. The local gradient rfmð�Þ is Lm-Lipschitz con-

tinuous, and the global gradient rfð�Þ is L-Lipschitz continu-
ous; i.e., there exist constants Lm and L such that

krfmðuu1Þ � rfmðuu2Þk2 � Lmkuu1 � uu2k2; 8uu1; uu2; (10a)

krfðuu1Þ � rfðuu2Þk2 � Lkuu1 � uu2k2; 8uu1; uu2: (10b)

Assumption 2. The function fð�Þ is m-strongly convex, mean-
ing that there exists a constant m > 0 such that

fðuu1Þ � fðuu2Þ � rfðuu2Þ; uu1 � uu2h i þ m

2
kuu1 � uu2k22; 8uu1; uu2:

Algorithm 1. QGD

1: Input: stepsize a > 0, quantization bit b.
2: Initialize: uu0.
3: for k ¼ 1; 2; . . . ;K do
4: Server broadcasts uuk to all workers.
5: form ¼ 1; 2; . . . ;M do
6: Workerm computesrfmðuukÞ and QmðuukÞ.
7: Workerm uploads dQk

m via (6).
8: end for
9: Server updates uu following (4) withMk ¼M.
10: end for

Algorithm 2. LAQ

1: Input: stepsize a > 0, b,D, f�dgDd¼1 and �t.
2: Initialize: uuk, and fQmðûu0mÞ; tmgm2M.
3: for k ¼ 1; 2; . . . ;K do
4: Server broadcasts uuk to all workers.
5: form ¼ 1; 2; . . . ;M do
6: Workerm computesrfmðuukÞ and QmðuukÞ.
7: if (9) holds for workerm then
8: Workerm uploads nothing.
9: Set ûukm ¼ ûuk�1m and tm  tm þ 1.
10: else
11: Workerm uploads dQk

m via (6).
12: Set ûukm ¼ uuk, and tm ¼ 0.
13: end if
14: end for
15: Server updates uu according to (4).
16: end for

Before establishing our performance analysis results, we
first present salient features of our communication skipping
rule. The rationale behind the selection criterion (9) is to
judiciously compare the descent amount of GD versus that
of LAQ.

3.1 Development of the Communication Skipping
Rule

To illuminate the difference between LAQ and GD, consider
re-writing (4) as

uukþ1 ¼ uuk � a½rQðuukÞ þ
X

m2Mk
c

ðQmðûuk�1m Þ �QmðuukÞÞ�

¼ uuk � a½rfðuukÞ � ""k þ
X

m2Mk
c

ðQmðûuk�1m Þ �QmðuukÞÞ�;

where Mk
c :¼MnMk denotes the subset of workers that

skip communication with the server at iteration k. Com-
pared with the GD iteration in (2), the gradient employed
here degrades due to the quantization error ""k and the
missed gradient innovation

P
m2Mk

c
ðQmðûuk�1Þ �QmðuukÞÞ�. It

is clear that if a sufficiently large number of bits is used to
quantize the gradient, and all f�dgDd¼1 are set to 0, causing
Mk :¼M, then LAQ reduces to GD. Thus, adjusting b and
f�dgDd¼1 directly influences the performance of LAQ.

To compare the descent amount of LAQ with that of GD,
we first establish the one step descent for both algorithms.
Based on Assumption 1, the next lemma holds for GD.

Fig. 2. Federated learning via LAQ.
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Lemma 1. The GD update yields the following descent

fðuukþ1Þ � fðuukÞ � Dk
GD; (11)

where Dk
GD :¼ �ð1� aL

2 ÞakrfðuukÞk22.
The descent of LAQ differs from that of GD due to the

quantization and selection, as specified in the next lemma.
(For readability, some proofs are deferred to Section 7)

Lemma 2. The LAQ update yields the following descent

fðuukþ1Þ � fðuukÞ � Dk
LAQ þ ak""kk22; (12)

where Dk
LAQ :¼ � a

2 krfðuukÞk22 þ akPm2Mk
c
ðQmðûuk�1m Þ�

QmðuukÞÞk22 þ ðL2 � 1
2aÞkuukþ1 � uukk22.

At this point, it is instructive to shed more light on LAQ’s
gradient skipping rule. If we fix for simplicity a ¼ 1=L, it
follows readily that

Dk
GD ¼ �

a

2
jjrfðuukÞjj22;

Dk
LAQ ¼ �

a

2
jjrfðuukÞjj22 þ ajj

X
m2Mk

c

ðQmðûuk�1m Þ �QmðuukÞÞjj22:

The lazy aggregation criterion selects the quantized gra-
dient innovation by assessing its contribution to the loss
function decrease. For LAQ to be more communication effi-
cient than GD, each LAQ upload should bring more
descent, that is

Dk
LAQ

jMkj �
Dk
GD

M
: (13)

After simple manipulation, it can be shown that (13) boils
down to

jj
X

m2Mk
c

ðQmðûuk�1m Þ �QmðuukÞÞjj22 �
jMk

c j
2M

jjrfðuukÞjj22; (14)

which implies that since

jj
X

m2Mk
c

ðQmðûuk�1m Þ �QmðuukÞÞjj22

� jMk
c j

X
m2Mk

c

jjðQmðûuk�1m Þ �QmðuukÞjj22;
(15)

the following condition is sufficient to guarantee (14):

jjðQmðûuk�1m Þ �QmðuukÞjj22 � jjrfðuukÞjj22=ð2M2Þ; 8m 2 Mk
c :

(16)

However, it is impossible to check (16) locally per worker,
because the fully aggregated gradient rfðuukÞ is required,
which is exactly what we want to avoid. This motivates cir-
cumventing jjrfðuukÞjj22 by using its approximation

jjrfðuukÞjj22 �
2

a2

XD
k¼1

�djjuukþ1�d � uuk�djj22; (17)

where f�dgDd¼1 are constants. The main reason why (17)
holds is that rfðuukÞ can be approximated by weighting past

gradients or parameter differences since fð�Þ is L-smooth.
Combining (17) and (16) leads to (9a) with the quantization
error ignored.

3.2 Convergence Analysis

The rationale of the previous subsection regarding LAQ’s
skipping rule is not mathematically rigorous, but we will
establish here that it guarantees convergent iterates. To this
end, and with uu	 denoting the optimal solution of (1), con-
sider the Lyapunov function associated with LAQ as

VðuukÞ :¼ fðuukÞ � fðuu	Þ

þ
XD
d¼1

XD
j¼d

�j
a
kuukþ1�d � uuk�dk22 þ g

X
m2M

k""kmk21:

(18)

Before we quantify the process of VðuukÞ in the ensuing
lemma, it is worth pointing out that the Lyapunov function
associated with LAQ is a strict generalization of that used in
GD or LAG [30], [31], which not only takes into account the
delayed iterates but also the quantization error.

Lemma 3. Under Assumptions 1 and 2, and by fixing parame-
ters �1 ¼ �2 ¼ � � � ¼ �, bd ¼ ðD�dþ1Þ�a

, a ¼ a
L , and gt2 ¼ bL

L2
m
,

with a; b > 0, the Lyapunov function obeys the inequality

Vðuukþ1Þ � s1VðuukÞ þBMp2
1

g
max

k��t�t0�k�1
Vðuut0 Þ; (19)

where the constant is defined as

B ¼ ½3a
2L
þ ð3a

2
þ 3D� þ 9abÞ 2a

L
þ 9bL

ML2
m

�M;

and s1 ¼ 1� c with

c¼min
½12�4ðaþ2D�þ6abÞ�a

k
;

1
2�ð12 aþD� þ 3abÞþ 3bL2

aL2
mM

D� dþ 1

8<
:

9=
;:

(20)

Proof. It follows from (8) that

k""kþ1m k21 � t2ðRkþ1
m Þ2

¼ t2krfmðuukþ1Þ � rfmðuukÞ þ rfmðuukÞ
�QmðuukÞ þQmðuukÞ �QmðûukmÞk21
� 3t2Lmkuukþ1 � uukk22 þ 3t2k""kmk21
þ 3t2kQmðuukÞ �QmðûukmÞk22:

(21)

Then the one-step Lyapunov function difference is
bounded as
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Vðuukþ1Þ �VðuukÞ
� �a rfðuukÞ; QðuukÞ� �þ a

2
krfðuukÞk22

þ a

2
k

X
m2Mk

c

Qmðûuk�1m Þ �QmðuukÞk22

þ ðL
2
þ b1 þ 3gt2L2

mÞkuukþ1 � uukk22

þ
XD�1
d¼1
ðbdþ1 � bdÞkuukþ1�d � uuk�dk22 � bDkuukþ1�D � uuk�Dk22

þ gð3t2 � 1Þ
X
m2M

k""kmk21 þ 3gt2
X
m2M

kQmðûuk�1m Þ �QmðuukÞk22

� �a rfðuukÞ; QðuukÞ� �þa
2
krfðuukÞk22

þ½a
2
þðL

2
þb1þ3gt2L2

mÞð1þr�12 Þa2�k
X

m2Mk
c

Qmðûuk�1m Þ�QmðuukÞk22

þ ðL
2
þ b1 þ 3gt2L2

mÞð1þ r2Þa2kQðuukÞk22

þ
XD�1
d¼1
ðbdþ1 � bdÞkuukþ1�d � uuk�dk22

� bDkuukþ1�D � uuk�Dk22 þ gð3t2 � 1Þ
X
m2M

k""kmk21

þ 3gt2
X
m2M

kQmðûuk�1m Þ �QmðuukÞk22;

where the second inequality follows fromYoung’s inequal-
ity, namely kaaþ bbk22 � ð1þ rÞkaak22 þ ð1þ r�1Þkbbk22.

Considering the criterion (9a), we have

k
X

m2Mk
c

Qmðûuk�1m Þ�QmðuukÞk22

� jMk
c j
X

m2Mk
c

kQmðûuk�1m Þ�QmðuukÞk22

� jM
k
c j2

a2jMj2
XD
d¼1

�dkuukþ1�d� uuk�dk22þ3jMk
c j
X

m2Mk
c

ðk""kmk22 þ k"̂"k�1m k22Þ

� 1

a2

XD
d¼1

�dkuukþ1�d � uuk�dk22 þ 3M
X

m2Mk
c

ðk""kmk22 þ k"̂"k�1m k22Þ:

(22)

Thus, the one-step Lyapunov difference satisfies

Vðuukþ1Þ �VðuukÞ
� �a

2
krfðuukÞk22 þ a rfðuukÞ; ""k� �

þ ½
a
2þðL2þb1Þð1þr�12 Þa2�Mþ3gt2

a2M

XD
d¼1

�dkuukþ1�d�uuk�dk22

þ ðL
2
þ b1 þ 3gt2L2

mÞð1þ r2Þa2krfðuukÞ � ""kk22

þ
XD�1
d¼1
ðbdþ1�bdÞkuukþ1�d�uuk�dk22 � bDkuukþ1�D�uuk�Dk22

þ ½3a
2
þ ð3L

2
þ 3b1 þ 9gt2L2

mÞð1þ r�12 Þa2 þ 3gt2�M



X
m2Mk

c

ðk""kmk22 þ k"̂"k�1m k22Þ þ gð3t2 � 1Þ
X
m2M

k""kmk21:

(23)

Since for any r1 > 0, it holds that

rfðuukÞ; ""k� � � 1

2
r1krfðuukÞk22 þ

1

2r1
k""kk22; (24)

we can rewrite (23) as

Vðuukþ1Þ �VðuukÞ
� ½ð� 1

2
þ 1

2
r1Þaþ ðLþ 2b1 þ 6gt2L2

mÞð1þ r2Þa2�krfðuukÞk22

þ f½ða
2
þ ðL

2
þ b1 þ 3gt2L2

mÞð1þ r�12 Þa2ÞM þ 3gt2� �D
a2M

� bDgkuukþ1�D � uuk�Dk22

þ
XD�1
d¼1
f½ða

2
þ ðL

2
þ b1 þ 3gt2L2

mÞð1þ r�12 Þa2ÞM þ 3gt2� �d
a2M

þ bdþ1 � bdgkuukþ1�d � uuk�dk22
þ ½3a

2
þ ð3L

2
þ 3b1 þ 9gt2L2

mÞð1þ r�12 Þa2 þ 3gt2�M



X
m2Mk

c

ðk""kmk22 þ k"̂"k�1m k22Þ

þ ½ 1
2r1

aþ ðLþ 2b1 þ 6gt2L2
mÞð1þ r2Þa2�k""kk22

þ gð3t2 � 1Þ
X
m2M

k""kmk21:

(25)

It is straightforward that the following condition guar-
antees the first three terms in (25) are nonpositive

ð� 1

2
þ 1

2
r1Þaþ ðLþ 2b1 þ 6gt2L2

mÞð1þ r2Þa2 � 0;

f½a2þðL2þb1þ3gt2L2
mÞð1þr�12 Þa2�Mþ3gt2g�D
a2M

� bD;

f½a2þðL2þb1þ3gt2L2
mÞð1þr�12 Þa2�Mþ3gt2g�d
a2M

�bd�bdþ1:

(26)

For ease of exposition, we define the constants c and B
as

c ¼min
n
ð1� r1Þa� 2mðLþ 2b1 þ 6gt2L2

mÞð1þ r2Þa2;

1�½ða
2
þðL

2
þb1þ3gt2L2

mÞð1þr�12 Þa2ÞMþ3gt2� �D
a2MbD

;

1�bdþ1
bd

�½ð
a
2þðL2þb1þ3gt2L2

mÞð1þr�12 Þa2ÞMþ3gt2��d
a2Mbd

o
;

(27)

and,

B ¼ max
nh 3a

2
þð3L

2
þ3b1þ9gt2L2

mÞð1þ r�12 Þa2þ3gt2
i
M;

1

2r1
aþ ðLþ 2b1 þ 6gt2L2

mÞð1þ r2Þa2
o
:

Assumption 2 implies that fð�Þ satisfies the PL condi-
tion
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2mðfðuukÞ � fðuu	ÞÞ � krfðuukÞk22: (28)

Plugging (28) into (25) gives

Vðuukþ1Þ � s1VðuukÞ þB½k""kk22 þ
X
m2M
ðk""kmk22 þ k"̂"k�1m k22Þ�

þ gð3t2 � 1Þ
X
m2M

k""kmk21

� s1VðuukÞ þ ½BMp2 þBþ gð3t2 � 1Þ�
X
m2M

k""kmk22

þBp2
X
m2M

k"̂"k�1m k22;

where s1 ¼ 1� c.
By choosing parameter stepsize a that impose the fol-

lowing inequality hold

½BMp2 þBþ gð3t2 � 1Þ� � 0; (29)

one can obtain

Vðuukþ1Þ � s1VðuukÞ þBp2
1

g
� g

X
m2M

k"̂"k�1m k22

� s1VðuukÞ þBp2
1

g

X
m2M

max
k��t�t0�k�1

Vðuut0 Þ

� s1VðuukÞ þBMp2
1

g
max

k��t�t0�k�1
Vðuut0 Þ:

For simplicity, we fix r1 ¼ 1
2 , r2 ¼ 1, bd ¼ ðD�dþ1Þ�a

, a ¼
a
L , and gt2 ¼ bL

L2
m
, with a; b > 0. Consequently, we obtain

B ¼
h 3a
2
þ ð3L

2
þ 3b1 þ 9gt2L2

mÞa2 þ 3gt2
i
M

¼
h 3a
2L
þ ð3a

2
þ 3D� þ 9abÞ 2a

L
þ 9bL

ML2
m

i
M;

and

c¼min
½12�4ðaþ2D�þ6abÞ�a

k
;

1
2�ð12 aþD� þ 3abÞþ 3bL2

aL2
mM

D� dþ 1

8<
:

9=
;:

(30)

Here the proof is complete. tu
Theorem 1. Under the same assumptions and parameters of

Lemma 3, the Lyapunov function converges at a linear rate;
that is, there exists a constant s2 2 ð0; 1Þ such that

VðuukÞ � sk
2Vðuu0Þ; (31)

where s2 ¼ ðs1 þBMp2 1
g
Þ 1
1þ�t.

Proof. We first present a critical lemma that will be used to
prove our result. tu

Lemma 4. [38, Lemma 3.2] Let fVkg denote a sequence of non-
negative real numbers satisfying the following inequality for
some nonnegative constants p and q.

Vkþ1 � pVk þ q max
ðk�dðkÞÞþ�l�k

Vk; k � 0: (32)

If pþ q < 1 and 0 � dðkÞ � dmax for some positive constant
dmax, then

Vk � rkV0; 8k � 1; (33)

where r ¼ ðpþ qÞ 1
1þdmax .

Following [38, Lemma 3.2], given that the Lyapunov
function obeys (19) and if the following condition is satisfied

s1 þBMp2
1

g
< 1; (34)

then it guarantees (31) holds with s2 ¼ ðs1 þBMp2 1
g
Þ 1
1þ�t.

In the sequel, we will show that we can indeed find a set
of parameters that make (34) hold. For the design parameter
D, we imposeD � k. From (20), it is obvious that the follow-
ing condition

1

2
� 4ðaþ 2D� þ 6abÞ

� 	
a � 1

2
� 1

2
aþD� þ 3ab


 �
þ 3bL2

aL2
mM

;

(35)

guarantees

c ¼ ½
1
2� 4ðaþ 2D� þ 6abÞ�a

k
: (36)

Thus, we obtain s1 ¼ 1� c ¼ 1� ½12�4ðaþ2D�þ6abÞ�a
k

.
It can be verified that choosing a ¼ 1

20 , b ¼ 1
10 ,D� ¼ 1

50 and
t2 � 1

100k =½M2p2ð93L2
m

10L2 þ 9
MÞ� is a sufficient condition for (26),

(35) and (34) being satisfied. With above selected parame-
ters, we can obtain s1 ¼ 1� 1

1000k and

s2 ¼ 1� 1

1000k
þM2p2

93L2
m

100L2
þ 9

10M


 �
t2


 � 1
1þ�t
2 ð0; 1Þ;

(37)

which together with (31) indicates the linear convergence of
the Lyapunov function and completes the proof.

Algorithm 3. SLAQ

1: Input: stepsize a > 0, b,D, f�dgDd¼1 and �t, and batchsize S.
2: Initialize: uuk, and fQmðûu0mÞ; tmgm2M.
3: for k ¼ 1; 2; . . . ;K do
4: Server broadcasts uuk to all workers.
5: form ¼ 1; 2; . . . ;M do
6: Worker m draws S samples and computes the average

gradient at these S samples rfmðuukÞ, along with the
quantized gradient QmðuukÞ.

7: if (9) holds for workerm then
8: Workerm does not upload anything.
9: Set ûukm ¼ ûuk�1m and tm  tm þ 1.
10: else
11: Workerm uploads dQk

m via (6).
12: Set ûukm ¼ uuk, and tm ¼ 0.
13: end if
14: end for
15: Server updates uu according to (4).
16: end for

From (37), it is obvious that if the quantization is accurate
enough, i.e., t2 ! 0, and no communication is skipped, i.e.,
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�t ¼ 1, the dependence of convergence rate on condition
number is of order 1

k
, the same as the gradient descent.

Compared to the LAG analysis in [30], the analysis for
LAQ is more involved, because it needs to deal with not
only outdated but also quantized (inexact) gradients. The
latter challenges the monotonicity of the Lyapunov function
in (18), which is the building block of the analysis in [30].
We tackle this issue by i) considering the outdated gradient
in the quantization (6); and, ii) accounting for the quantiza-
tion error in the new selection criterion (9). As a result,
Theorem 1 establishes that LAQ retains the linear conver-
gence rate even when quantization error is present. This is
because a controlled quantization error also converges at a
linear rate. As for the improvement relative to the confer-
ence version [1], the convergence rate s2 is explicitly charac-
terized by the quantization parameter t and the maximum
communication skipping interval �t.

Proposition 1. If under Assumption 1, we choose f�dgDd¼1 to sat-
isfy �1 � �2 � � � � � �D, and define dm,m 2 M as

dm :¼ max
d

djL2
m � �d=ð3a2M2DÞ; d 2 f1; 2; . . . ; Dg� 


: (38)

it suffices for worker m to have at most k=ðdm þ 1Þ uploads
with the server until the k-th iteration.

This proposition asserts that the communication inten-
sity per worker is determined by the smoothness of the cor-
responding local loss function. Workers with smaller
smoothness constant communicate with the server less fre-
quently, which justifies the term lazily communication.

For some technical issues, the current bound on the con-
vergence rate is relatively loose in order to account for the
worst-case performance. Due to the error ""km introduced by
the communication skipping and gradient compression, it
is not theoretically established that LAQ outperforms GD.
However, our empirical studies will demonstrate that LAQ
significantly outperforms GD in terms of communication.
To prove that LAQ is more communication-efficient than
GD is more challenging and is in our future agenda.

4 GENERALIZING LAQ

In this section, we broaden the scope of LAQ by developing
the stochastic LAQ and the two-way communication-efficient
LAQ-driven federated learning, as we elaborate next.

4.1 Stochastic LAQ

Thanks to itswell-documentedmerits in reducing complexity,
stochastic gradient descent has been widely employed by
learning tasks involving large-scale training data. Here we
show that LAQ can also benefit from its stochastic counter-
part, namely SLAQ, that is developedwith a simple modifica-
tion in the criterion. Specifically, (9a) in SLAQ is replaced by

kQs
mðûuk�1m Þ �Qs

mðuukÞk22 �
1

a2M2

XD
d¼1

�dkuukþ1�d � uuk�dk22

þ 3 k""kmk22 þ k"̂"k�1m k22
� �

þ var;

(39)

where superscript s will henceforth denote the stochastic
counterpart of LAQ quantities defined so far; and var is a
constant. Compared with (9a), the constant added in the

stochastic case is to compensate for the variance coming
from the stochastic sampling. In practice, we can use the
empirical variance to approximate the variance, that is, the
variance computed according to the drawn samples per
iteration.

Algorithm 4. TWO-LAQ

1: Input: stepsize a > 0, b,D, f�dgDd¼1 and �t.
2: Initialize: uu1, ~uu0 ¼ uu0, and fQmðûu0mÞ; tmgm2M.
3: for k ¼ 1; 2; . . . ;K do
4: Server calculate ~uuk broadcasts quantized model innova-

tion duuk to all workers.
5: form ¼ 1; 2; . . . ;M do
6: Worker m computes ~uuk according to (41) and rfmð~uukÞ

and Qmð~uukÞ.
7: if (9) holds for workerm then
8: Workerm does not upload anything.
9: Set ûukm ¼ ûuk�1m and tm  tm þ 1.
10: else
11: Workerm uploads dQk

m via (6).
12: Set ûukm ¼ ~uuk, and tm ¼ 0.
13: end if
14: end for
15: Server updates uukþ1 according to (4).
16: end for

Apart from the criterion, SLAQ is different from LAQ
only in the local (stochastic) gradient calculation. Specifi-
cally, the worker randomly draws S samples from its train-
ing set and computes the stochastic gradient as

rfsmðuÞ ¼
1

S

XS
n¼1
ruu‘ðxm;n; uuÞ: (40)

The quantization and other operations are the same as
before. The SLAQ is summarized in Algorithm 3. Following
the convention, we also consider here that the global loss
function is scaled by the total number of training samples.

4.2 Two-Way Quantization

So far, communication savings have been achieved by skip-
ping uploads and quantizing the uploaded gradient innova-
tion. A natural extension is to also quantize the model
innovation in the downlink, which results in what we term
TwoWay Lazily AggregatedGradient (TWO-LAQ).

Let ~uuk ¼ Qðuuk; ~uuk�1Þ describe the quantization model.
First, the model innovation is quantized as (5), and thus we
omit the details. Then, for the server to workers communi-
cation, only the quantized model innovation duuk is broad-
cast. With ~uuk�1 stored in memory, both the server and the
workers update ~uuk as

~uuk ¼ ~uuk�1 þ duuk: (41)

Different from possible alternatives, each worker m does
not have the accurate model uuk. As a result, each worker has
to compute the local gradient rfmð~uukÞ based on ~uuk. The rest
follows the LAG algorithm, meaning workers quantize the
gradient innovation, and upload it, if it is large enough; oth-
erwise, they skip this upload round.
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The steps of TWO-LAQ are summarized in Algorithm 4,
whose implementation is illustrated in Fig. 3. Comparing
Fig. 3 with gradient descent, TWO-LAQ improves commu-
nication efficiency at the expense of extra memory at the
server and workers. Indeed, the server needs to store uuk, ~uuk

and rk; and each worker m needs to store ûuk, ~uuk and
Qmð~uuuukÞ. In contrast, GD only requires the server to store uuk.

5 NUMERICAL TESTS

To validate our theoretical analysis and demonstrate the per-
formance of LAQ in improving communication efficiency for
practical machine learning tasks, we evaluate our algorithm on
the regularized logistic regression (LR), which is strongly con-
vex, and a neural network (NN) classifier involving a noncon-
vex loss. For our experiments, we use the MNIST dataset [39],
which is equally distributed acrossM ¼ 10workers. Through-
out, we setD ¼ 10; �1 ¼ � � � ¼ �D ¼ 0:8=D, and �t ¼ 100.

5.1 Simulation Setup

LR Classifier. Consider amulti-class classifierwith sayC ¼ 10
classes, that relies on logistic regression trained using the
MNIST dataset. Each training vector xm;n comprises a fea-
ture-label pair ðxfm;n; x

l
m;nÞ, where xfm;n 2 RF is the feature

vector and xlm;n 2 RC denotes the one-hot label vector. The
model uu 2 RC
F here is a matrix, which is slightly different
from previous description, and it is adopted for convenience
but does not change the learning problem. The estimated
probability of ðm;nÞ-th sample to belong to class i is given by

x̂lm;n ¼ softmaxðuuxfm;nÞ; (42)

which can be explicitly written as

½x̂lm;n�i ¼
e½uux

f
m;n�iPC

j¼1 e
½uuxfm;n�j

; 8i 2 f1; 2; . . . ; Cg: (43)

The regularized logistic regression classifier relies on the
following cross-entropy loss plus a regularizer

‘ðxm;n; uuÞ ¼ �
XC
i¼1
½xlm;n�i log ½x̂lm;n�i þ

�

2
TrðuuT uuÞ; (44)

where Trð�Þ denotes trace operator, and uuT is the transpose
of uu. Having defined ‘ðxm;n; uuÞ, the local loss functions are

fmðuuÞ ¼
PNm

n¼1 ‘ðxm;n; uuÞ, and the global loss function is

given by

fðuuÞ ¼ 1

N

X
m2M

fmðuuÞ; (45)

where N is the total number of data samples. In our tests,
we set the regularizer coefficient to � ¼ 0:01.

NN Classifier. In our tests, we employ a ReLU network
comprising one hidden layer having 200 nodes with dimen-
sions of the input and output layers being 784ð28
 28Þ and
10, respectively. The regularizer parameter is set to � ¼
0:01. CNN classifier. For the test in CIFAR 10 dataset, we
adopt the convolutional neural network (CNN) which con-
sists of 3 VGG-type blocks [40]. Each block is constructed by
stacking two convolutional layers with small 3 
 3 filters
followed by a max pooling layer. The numbers of filters for
the convolutional layers in the three blocks are 32, 64, and
128, respectively. ReLU activation function is used in each
layer and padding is utilized on the convolutional layers to
ensure the height and width of the output feature matches
the inputs. Additionally, each block is followed by a drop-
out layer with the rate of 20 percent. This is followed by a
fully connected layer with 128 nodes and then the softmax
layer. We add an l2 regularization with coefficient 0.001.

5.2 Numerical Tests

Fig. 4 illustrates the convergence with different number of
quantization bits. It shows that utilizing fewer bits to quantize
the gradientmoderately increases the number of iterations, but
markedly reduces the overall number of transmitted bits. To
benchmarkLAQ,we compare itwith two classes of algorithms,
namely GD andminibatch SGD ones, corresponding to the fol-
lowing two tests.

Parameters. For GD algorithms, we fix D ¼ 10; �1 ¼ �2 ¼
� � � ¼ �D ¼ 0:8=D, �t ¼ 100, and we set a ¼ 0:02, and b ¼ 4 or
8 for LR and NN classifiers, respectively. For minibatch
SGD algorithms, the minibath size is 500 and a ¼ 0:008;
b ¼ 3 for LR and b ¼ 8 for NN.

Fig. 3. Federated learning via TWO-LAQ.

Fig. 4. Convergence of LAQ under different quantization bits (logistic regression).
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Gradient-Based Tests. The benchmark algorithms include
GD, QGD [11] and lazily aggregated gradient (LAG) [30].
Fig. 5 shows the convergence of loss residual for the LR
problem. Clearly, Fig. 5a corroborates Theorem 1, namely
the linear convergence for the strongly convex loss function.
As illustrated in Fig. 5b, LAQ incurs a smaller number of
communication rounds than GD and QGD thanks to our
innovation selection rule, yet more rounds than LAG due to
the quantization error. Nevertheless, the total number of
transmitted bits of LAQ is significantly reduced compared
with that of LAG, as demonstrated in Fig. 5c. For the NN
classifier, Fig. 6 reports the convergence of the gradient
norm, where LAQ also shows competitive performance for
nonconvex loss functions. Similar to what is observed for
LR classification, LAQ outperforms the benchmark algo-
rithms in terms of transtimitted bits. TWO-LAQ which
additionally leverages model innovation quantization saves

more bits than LAQ as show in Figs. 5c and 6c. Table 1 sum-
marizes the detailed comparison of mentioned algorithms
including the number of iterations, uploads and bits needed
to reach a given accuracy.

Tests onMoreDatasets. Fig. 7 exhibits the test accuracy of the
aforementioned algorithms on three commonly used datasets,
namelyMNIST, ijcnn1 and covtype. Applied to all these data-
sets, LAQ saves transmitted bits while maintaining the same
accuracy. In addition, we test our algorithm onmore challeng-
ing dataset—CIFAR 10, for which CNN is utilized and Adam
[41] is applied. The convergence of the loss function is plotted
in Fig. 8, and the validation accuracy is shown in Fig. 11. A
detailed comparison with above mentioned benchmark algo-
rithms is summarized in Table 2. These tests with different
datasets and different algorithms (gradient descent, Adam
and the following stochastic gradient descent) all demonstrate
that the proposed communication saving scheme indeed

Fig. 5. Convergence of the loss function (logistic regression).

Fig. 6. Convergence of gradient norm (neural network).

TABLE 1
Comparison of Gradient-Based Algorithms

Algorithm Iteration # Communication # Bit # Accuracy

Logistic

LAQ 26262626 572572 6:78
 1086:78
 108 0:90820:9082
TWO-LAQ 25762576 734734 1:04
 1081:04
 108 0:90820:9082
GD 2763 27630 7:63
 109 0.9082
QGD 2760 27600 1:56
 109 0.9082
LAG 2620 2431 1:27
 109 0.9082

Neural network

LAQ 80008000 3272932729 8:23
 10108:23
 1010 0:94330:9433
TWO-LAQ 80008000 3074130741 4:93
 10104:93
 1010 0:94330:9433
GD 8000 80000 4:48
 1011 0.9433
QGD 8000 80000 1:42
 1011 0.9433
LAG 8000 30818 1:98
 1011 0.9433

For logistic regression, all algorithms terminate when loss residual reaches 10�6; for neural network, all algorithms run a fixed number of iterations.
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provides satisfied improvement in communication efficiency
and thus has promising potential for variety of distributed
learning applications.

Stochastic Gradient-Based Tests. The stochastic version of
LAQ abbreviated as SLAQ is tested and compared with sto-
chastic gradient descent, quantized stochastic gradient
descent (QSGD) [10], sparsified stochastic gradient descent
(SSGD) [21], deep gradient compression (DGC) [18], sign-
SGD, [8] and tern-Grad [12]. For the all the stochastic-based
algorithms, each worker draws a bath of 500 data samples
to calculate a stochastic local gradient per iteration. As dem-
onstrated in Figs. 9 and 10, SLAQ requires the lowest num-
ber of communication rounds and bits. Albeit sign-SGD and
tern-Grad need only 1 bit and 2 bits for each entry of the
gradient, respectively, they have larger quantization error
and require a smaller stepsize to ensure convergence. There-
fore it takes more iterations for these two algorithms to

reach the same loss (or accuracy), and needs to transmit
more bits than that for SLAQ. In this stochastic gradient
test, although the improvement of communication effi-
ciency by SLAQ is not as evident as LAQ compared with
GD-based algorithms, SLAQ still outperforms the cutting-
edge schemes, namely QSGD, SSGD, sign-SGD and tern-
Grad. The results are summarized in Table 3.

Fig. 7. Tests on different datasets.

Fig. 8. Convergence of loss function (CNN for CIFAR 10).

Fig. 9. Convergence of loss function (logistic regression).

TABLE 2
Tests for CIFAR 10 With CNN

Algorithm Iteration # Communication # Bit # Accuracy

LAQ 1000 6359 3:34
 1010 87.96
TWO-LAQ 1000 5785 2:76
 1010 87.92
GD 1000 10000 1:09
 1011 87.86
QGD 1000 10000 4:69
 1010 87.95
LAG 1000 6542 7:44
 1010 87.91
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6 CONCLUSION

This paper investigated communication-efficient federated
learning, and developed LAQ—an approach that integrates
quantization and adaptive communication techniques based
on gradient innovation. Compared with GD method, LAQ
introduces errors to gradient, yet still preserves linear con-
vergence for strongly convex problems. This is a remarkable
result considering that LAQ significantly reduces both com-
munication bits and rounds. Experiments on strongly convex
and nonconvex learning problems verified our theoretical
analysis and demonstrated the merits of LAQ over recent
popular approaches. Furthermore, two variants of LAQ,

termed TWO-LAQ and SLAQ, also exhibit promising perfor-
mance and outperform prevalent compression schemes in
the empirical studies.

7 PROOFS

7.1 Proof of Lemma 2

For successive LAQ updates, it is not difficult to show that

fðuukþ1Þ � fðuukÞ
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Fig. 10. Convergence of loss function (neural network).

TABLE 3
Performance Comparison of Mini-Batch Stochastic Gradient-Based Algorithms

Fig. 11. Accuracy versus bit for CIFAR 10.
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where the second equality follows from the identity
aa; bbh i ¼ 1

2 ðkaak2 þ kbbk2 � kaa� bbk2Þ, and the last inequality
from the fact that kPn

i¼1 aaik22 � n
Pn

i¼1 kaaik2.

7.2 Proof of Proposition 1

Suppose that at current iteration k the last iteration when
worker m communicated with the server is d0, where 1 �
d0 � dm. Having uuk�1m ¼ uuk�d

0
, we thus deduce that

kQmðûuk�1m Þ �QmðuukÞk22
¼kQmðuuk�d0 Þ � rfmðuuk�d0 Þ �QmðuukÞ þ rfmðuukÞ
þ rfmðuuk�d0 Þ � rfmðuukÞk22
�3ðkfmðuuk�d0 Þ � rfmðuukÞk22 þ k""kmk22 þ k""k�d

0
m k22Þ

�3L2
mkuuk�d

0 � uukk22 þ 3ðk""kmk22 þ k""k�d
0

m k22Þ

¼3L2
mk

Xd0
d¼1

uukþ1�d � uuk�dk22 þ 3ðk""kmk22 þ k""k�d
0

m k22Þ

�3L2
md
0Xd0
t¼1
kuukþ1�d � uuk�dk22 þ 3ðk""kmk22 þ k""k�d

0
m k22Þ:

(46)

From the definition of dm and since �1 � �2 � � � � � �D, it
can be inferred that

L2
m �

�d0

3a2M2D
; for all d0 satisfying 1 � d0 � dm: (47)

Substituting (47) into (46) yields

kQmðûuk�1m Þ �QmðuukÞk22

� �d0

a2M2

Xd0
d¼1

�dkuukþ1�d � uuk�dk22 þ 3ðk""kmk22 þ k"̂"k�1m k22Þ

� 1

a2M2

XD
d¼1

�dkuukþ1�d � uuk�dk22 þ 3ðk""kmk22 þ k"̂"k�1m k22Þ;

(48)

which exactly implies that (9a) is satisfied. Since dm � D � �t,
the criterion (9) holds, which means that worker m will not
upload her/his information until at least tm iterations after
last upload. In the first k iterations, worker m will therefore
have at most k=ðdm þ 1Þ uploads to the server.
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