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Abstract—This paper focuses on communication-efficient federated learning problem, and develops a novel distributed quantized
gradient approach, which is characterized by adaptive communications of the quantized gradients. Specifically, the federated learning
builds upon the server-worker infrastructure, where the workers calculate local gradients and upload them to the server; then the server
obtain the global gradient by aggregating all the local gradients and utilizes it to update the model parameter. The key idea to save
communications from the worker to the server is to quantize gradients as well as skip less informative quantized gradient
communications by reusing previous gradients. Quantizing and skipping result in ‘lazy’ worker-server communications, which justifies
the term Lazily Aggregated Quantized (LAQ) gradient. Theoretically, the LAQ algorithm achieves the same linear convergence as the
gradient descent in the strongly convex case, while effecting major savings in the communication in terms of transmitted bits and
communication rounds. Empirically, extensive experiments using realistic data corroborate a significant communication reduction
compared with state-of-the-art gradient- and stochastic gradient-based algorithms.

Index Terms—Federated learning, communication-efficient, gradient innovation, quantization

1 INTRODUCTION

RAINING today’s machine learning functions (models)
Trelies on an enormous amount of data collected by a
massive number of mobile devices. This comes with sub-
stantial computational cost, and raises serious privacy con-
cerns when the training is centralized. In addition to cloud
computing, these considerations drive the vision that future
machine learning tasks must be performed to the extent
possible in a distributed fashion at the network edge,
namely devices [2].

When distributed learning is carried out in a server-
worker setup with possibly heterogeneous devices and
datasets as well as privacy considerations, it is referred to as
federated learning [3], [4]. The server updates the learning
parameters utilizing the information (usually gradients)
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collected from local workers, and then broadcasts the
parameters to workers. In this setup, the server obtains the
aggregate information without requesting the raw data—
what also respects privacy and mitigates the computation
burden at the server. Such a learning paradigm however,
incurs communication overhead that does not scale with
the number of workers. This is aggravated in deep learning,
which involves high-dimensional learning parameters. In
fact, communication delay has become a bottleneck for fully
exploiting the distributed computing resources to speed up
the training of machine learning models [5], [6].

In this context, communication-efficient federated learning
methods have gained popularity recently [3]. Most methods
build on simple gradient updates, and are centered around
gradient compression to save communication, including gra-
dient quantization and sparsification, as outlined in the follow-
ing overview of the prior art in this area.

1.1 Prior Art

Quantization.Today’s computers usually utilize 32 or 64 bits to
quantize the floating point number, which is assumed to be
accurate enough in most algorithms. By quantization in this
paper, we mean fewer bits are employed. Toward the goal of
reducing communications, quantization compresses transmit-
ted information (e.g., the gradient) by limiting the number of
bits that represent floating point numbers, and has been suc-
cessfully applied to several engineering tasks employing
wireless sensor networks [7]. In the context of distributed
machine learning, a 1-bit binary quantization scheme has
been proposed in [8], [9]. Multi-bit quantization methods
have been developed in [10], [11], where an adjustable quanti-
zation level endows flexibility to balance the communication

0162-8828 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Minnesota. Downloaded on March 07,2022 at 21:35:20 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-2707-8751
https://orcid.org/0000-0002-2707-8751
https://orcid.org/0000-0002-2707-8751
https://orcid.org/0000-0002-2707-8751
https://orcid.org/0000-0002-2707-8751
https://orcid.org/0000-0003-3477-1439
https://orcid.org/0000-0003-3477-1439
https://orcid.org/0000-0003-3477-1439
https://orcid.org/0000-0003-3477-1439
https://orcid.org/0000-0003-3477-1439
https://orcid.org/0000-0002-0196-0260
https://orcid.org/0000-0002-0196-0260
https://orcid.org/0000-0002-0196-0260
https://orcid.org/0000-0002-0196-0260
https://orcid.org/0000-0002-0196-0260
https://orcid.org/0000-0002-1602-8986
https://orcid.org/0000-0002-1602-8986
https://orcid.org/0000-0002-1602-8986
https://orcid.org/0000-0002-1602-8986
https://orcid.org/0000-0002-1602-8986
https://orcid.org/0000-0002-8288-3833
https://orcid.org/0000-0002-8288-3833
https://orcid.org/0000-0002-8288-3833
https://orcid.org/0000-0002-8288-3833
https://orcid.org/0000-0002-8288-3833
mailto:sunjun16sj@gmail.com
mailto:qmyang@zju.edu.cn
mailto:chent18@rpi.edu
mailto:georgios@umn.edu
mailto:yangzy3@sustech.edu.cn

2032

cost and the convergence rate. Other variants of quantized
gradient schemes include ternary quantization [12], variance-
reduced quantization [13], error compensation [14], and gra-
dient difference quantizaiton [11], [15]; and it is shown in [11]
that the linear convergence rate can be maintained with gradi-
ent difference quantization.

Sparsification. Sparsification amounts to discarding some
entries of the gradient and the most straightforward scheme is
to transmit only gradient components with large enough mag-
nitudes [16]. Surprisingly, the desired accuracy can be attained
even with 99 percent of the gradients being dropped in some
cases [17]. To reduce information losses, gradient components
with small values are accumulated and then applied when
they exceed a certain threshold [18]. The accumulated gradi-
ent offers variance reduction for the sparsified stochastic gra-
dient descent (SGD) iterates [19]. With its impressive
empirical performance granted, apart from recent efforts [20],
deterministic sparsification schemes fall short in performance
guarantees. Their randomized counterparts though come
with the so-termed unbiased sparsification, which provably
offers convergence guarantees [21], [22].

Quantization and sparsification can also be employed
jointly [3], [23], [24]. Nevertheless, they both introduce noise to
(S)GD updates, which deteriorates convergence in general. For
problems with strongly convex losses, gradient compression
algorithms either converge linearly to the neighborhood of the
optimal solution, or, converge at sublinear rate. The exception
is [11], which only focuses on reducing the required bits per
communication, but not the total number of rounds. However,
for message exchanging, e.g., the p-dimensional model param-
eter or the gradient, other latencies, such as, initiating commu-
nication links, queueing, and propagating the message, can be
comparable to the message size-dependent transmission
latency [25]. This motivates saving the number of communica-
tion rounds, sometimes even more than the bits per round.

Apart from the aforementioned gradient compression
approaches, communication-efficient schemes aiming to
reduce communication rounds have been developed by
leveraging higher-order information [26], [27], periodic
aggregation [4], [28], [29], and recently by adaptive aggrega-
tion [30], [31], [32]; see also [33] for a lower bound on the
number of communication rounds. However, simulta-
neously saving communication bits and rounds without
sacrificing the desired convergence guarantees has not been
addressed, and constitutes the goal of this paper. Note that
asynchronous algorithms, such as DC-ASGD [34], which pri-
marily aim to save run time can also result in communication
reduction. Our method and asynchronous schemes are com-
plementary to each other, and our algorithms to be presented
can also be extended to the asynchronous version.

1.2 Context and Contributions in a Nutshell

We first review the standard distributed server-worker
learning architecture that typically aims at solving an opti-
mization problem of the form

Np

min > fu(0) with £, (6) ::;axme), 1

meM

where 6 € R? denotes the parameter to be learned; M with
|M| = M is the set of workers; x,,,, represents the nth data
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vector at worker m (e.g., feature vector and its label); IV,,
is the number of data samples at worker m; while
{(x;0) denotes the loss associated with 6 and x; and
fm(0) stands for the local loss corresponding to 6 and all
data at worker m. For ease in exposition, we further let
() :==>",,c 1 fm(0) denote the overall loss function.
Throughout this paper, we consider implementing distrib-
uted gradient descent (GD) in the commonly employed
worker-server setup. Since the data samples are distributed
across the workers, in each iteration the workers need to
download the model parameter from the server, calculate the
local gradient using local data and upload the gradients to the
server; upon receiving all the local gradients, the server then
updates the parameter vector following the GD iteration
GD: "' =0"—a > V. (6", @

meM

where superscript k indexes the iteration, « is the stepsize,
and V(") =3 v Vu(6") is the aggregated (or, global)
gradient. It is clear that to implement (2), the server has to
communicate with all workers to obtain ‘fresh’ gradients
{V£n(6")}2 . In several settings though, communication
is much slower than computation [5]. Thus, as the number
of workers grows, worker-server communications become
the bottleneck [35]. This becomes more challenging when
adopting popular deep learning models with high-dimen-
sional parameters, and correspondingly large gradients.
This clearly prompts the need for communication-eficient
learning.

Before introducing our communication-efficient learning
approach, we revisit the canonical form of popular quan-
tized (Q) GD methods [8], [9], [10], [11], [12], [13], [14], [15]
in the simple setup of (1) with one server and M workers

0k+1 _ ok — Z Qm (ek)7 (3)

meM

QGD :

where Q,,(6) is the quantized gradient that coarsely
approximates the local gradient Vf,,(6"). While the exact
quantization scheme varies across algorithms, transmitting
Qn(6") generally requires fewer bits than transmitting its
accurate counterpart V f,,(6"). Similar to GD however, only
when all the local quantized gradients {Q,,(6")} are col-
lected, the server can update 6.

In this context, the present paper puts forth a quantized
gradient innovation method (as simple as QGD) that also
skips communication rounds. Different from the downlink
server-to-worker communications that can be performed
simultaneously (e.g., by broadcasting 6"), the server in the
uplink receives the workers’ gradients in the presence of
interference, whose mitigation costs resources, e.g., extra
latency or bandwidth. For this reason, our focus here is on
reducing the number of worker-to-server uplink communi-
cations, which we will also refer to as uploads. Our Lazily
Aggregated Quantized (LAQ) GD update is given by (cf. (3))

LAQ: 6"'=6"—aV" with V'=V"113"5Qk, )
meMk

where V¥ is an approximate aggregated gradient that
summarizes the parameter change at iteration k&, and
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8QF = Q. (0")—Q,,(65!) is the difference between two
quantized gradients of f,, at the current iterate 6* and the
previous copy @°'. With a judiciously selected criterion
that will be elaborated later, M" denotes the subset of work-
ers whose local 8QF, is uploaded in iteration k, while the
parameter vector iterates are given by Hm =6,
vm € M¥, and 6% := @', vm¢ MF. For worker m, the
copy 01 is employed to remember the model parameter
when last time it is selected to communicate with the server.

In comparison to QGD as (3) where ‘fresh’ quantized gra-
dient is required from each and every worker, the key idea
of LAQ is to obtain V* by refining the previous aggregated
gradient VF1 with the selected gradient differences
{8QF}, v that is, usmg only the new gradients from the
selected workers in M, while reusing the outdated gra-
dients from the rest of the workers. With V*~! stored in the
server, this simple modification scales down the per-
iteration communication rounds from QGD’s M to LAQ’s
|M"|. Note that one round of communication through out
this paper means one worker’s upload.

Compared with alternative quantization schemes, we have
that i) LAQ quantizes the gradient innovation—the difference
of the current gradient relative to the previous quantized gra-
dient; and ii) LAQ skips the gradient communication—if the
gradient innovation of a worker is not significant enough, the
communication of this worker is skipped. We will rigorously
establish that LAQ achieves the same linear convergence as
GD under the strongly convex assumption on the loss func-
tion. Numerical tests will demonstrate that our approach out-
performs competing methods in terms of both communication
bits and rounds.

Notation. Bold lowercase fonts will be used to denote col-
umn vectors; ||x||, and ||x||, the f,-norm and /.-norm of x,
respectively; and [x]; the i-th entry of x; while |a] will stand
for the floor of a; and | - | for the cardinality of a set or vector.

2 LAQ: A LAzILY AGGREGATED QUANTIZED
GRADIENT APPROACH

With the goal of reducing the communication overhead,
two complementary techniques are incorporated in our
algorithm design: i) gradient innovation-based quantiza-
tion; and ii) gradient innovation-based uploading or aggre-
gation—giving the name Lazily Aggregated Quantized
gradient. The former reduces the number of bits per upload,
while the latter cuts down the number of uploads,
and jointly they effect parsimony in communications. The
remainder of this section elaborates further on LAQ.

2.1 Gradient Innovation-Based Quantization
Quantization limits the number of bits to encode a vector dur-
ing communication. Suppose we use b bits to quantize each
coordinate of the gradient in contrast to 32 or 64 bits used by
most computers. With Q denoting the quantization operator,
the quantized gradient per worker m atiteration & is @, (9"' ) =
oV fm(ek ), Q,,L(an ), which depends on the gradient
V f,,(6") and its previous quantization Q,, (5 !). The gradient
is element-wise quantized by projecting to the closest point in
a uniformly discretized grid. The grid is a p-dimensional
hypercube with center at Q,,(#*!) and radius Rl =

[V £ (6F) — Qun (85| .. With 7:=1/(2" — 1) defining "the

2033
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Fig. 1. Quantization example (b = 3).

quantization granularity, the gradient innovation [f,,(8")], —
(@ (6571)], at worker m is mapped to an integer as
m ek ! + Rk 1
[Q k( m )] m 4 - , (5)
2tR 2

m

\
(g (8), = | (@i =

which falls in {0,2,...,2" — 1}, and thus can be encoded by
b bits. Note that adding RF, in the numerator ensures the
non-negativity of [¢,,(6")];, and adding 1/2 in (5) guarantees
rounding to the closest point. Hence, the quantized gradient
innovation at worker m is (with 1 := [1---1]")

5QF = Qu(0) — Qu(0 ") = 2eRE ,,(6") — RE 1, ©)

which can be transmitted by 32 + bp bits (32 bits for R*, and
bp bits for ¢,,(6")) instead of the original 32p bits. With the
outdated gradients @Q,,(#*~!) stored in the memory and t
known a priori, upon receiving (SQm the server can recover
the quantized gradient as
Qm (91«) =Qn (éﬁr;l) + SQfﬁ' @
Fig. 1 presents an example for quantizing one coordinate of
the gradient with b = 3 bits. The original value is quantized
with 3 bits and 23 = 8 values, each of which Covers an iterval
of length 2tRE centered at itself. With &* :=Vf, (8")—
Qm(0 ) denoting the local quantization error, it is clear that the
quantization error is not larger that half of the length of the
interval that each value covers, namely,

lemllo < TRy ®)

The aggregated quantized gradient is Q(6*) = Zme Qi (6Y),
and the aggregated quantization error is &":= Vf(@") —

Q(ek) - 2717{ 1 m'that 18, Q(ek) Vf(gk) - 6 .

2.2 Gradient Innovation-Based Aggregation

The intuition behind lazy gradient aggregation is that if the
difference of two consecutive locally quantized gradients is
small, it is safe to skip the redundant gradient upload, and
reuse the previous one at the server. In addition, we also
ensure the server has a relatively “fresh” gradient for each
worker by enforcing communication if any worker has not
uploaded during the last ¢ rounds. We set a clock
tm, m € M for worker m counting the number of iterations
since last time it uploaded information. Equipped with the
quantization and selection, our LAQ update takes the form
we presented in (4).

Now it only remains to design the selection criterion to
decide which worker to upload the quantized gradient or
its innovation. We propose the following communication
criterion: worker m € M skips the upload at iteration £, if it
satisfies
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Fig. 2. Federated learning via LAQ.

Skl kt1-d _ gk—d
||Qm(0m ) Qm( )H aQMQ Z§ HG -0 HZ (9a)
+ 3(Ham||2 +IIEs 1)
tm <1, (9b)

where D <7 and {£;}}. y are predetermined constants, and
EFl =V £,,(6571) — Q,n(6571) is the quantization error of the
local gradient when last "time worker m uploads gradient
innovation to the server. We will prove in the next section
that the LAQ iterates in (4) converge, and are communica-
tion efficient.

With reference to Fig. 2, LAQ can be summarized as fol-
lows. At iteration k, the server broadcasts the learning
parameter vector to all workers. Each worker computes the
gradient, and quantizes it to decide whether to upload the
quantized gradient innovation §Q* . Upon receiving the gra-
dient innovation from selected workers, the server updates
the learning vector. These steps are listed in Algorithm 2.

Note that in this paper, by privacy preserving, we mean
the private raw data of each worker are not released to other
workers nor the server. It is true that the local information
might be partially inferred by reverse engineering of the
gradient. However, the gradient compression of LAQ intro-
duces noise to the gradient, which helps promote privacy
[36], [37]. To further investigate how to mitigate privacy
leakage and quantify the degree of privacy remains to be
our future work.

3 CONVERGENCE AND COMMUNICATION ANALYSIS

Our subsequent convergence analysis of LAQ relies on the
following assumptions on f,,(-) and f(-):

Assumption 1. The local gradient V f,,(-) is Ly,-Lipschitz con-
tinuous, and the global gradient ¥V f(-) is L-Lipschitz continu-
ous; i.e., there exist constants L,, and L such that

vam(el) - vf771(02)||2 < Lm”01 - 62“27 veh 02; (10&)

[Vf(61) = Vf(62)y < L[|61 — 02|y, V01, 6. (10b)

Assumption 2. The function f(-) is u-strongly convex, mean-
ing that there exists a constant y > 0 such that

1(61) = £(82) = (V/(62),61 — 02) + 1161 — 025, Vo1, 6.
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Algorithm 1. QGD
1: Input: stepsize @ > 0, quantization bit b.
2: Initialize: 6°.
3: fork=1,2,...

, K do

4:  Server broadcasts " to all workers.
5. form=1,2,...,Mdo

6 Worker m computes V f,,(8") and Q,,,(6%).
7: Worker m uploads $QF, via (6).

8: end for

9:  Server updates 6 following (4) with M" = M.
0

10: end for

Algorithm 2. LAQ

1: Input: stepsizea > 0, b, D, {5,1},?:1 and t.
2: Initialize: 6", and {Q,, (6",
3: fork=1,2,...,K do

4:  Server broadcasts 6" to all workers.

5. form=1,2,...,M do

6: Worker m computes V f,, (%) and Q,,,(6%).
7

8

)7 L2 }meM'

if (9) holds for worker m then
Worker m uploads nothing.

9: Set6* =6 landt,, —t, + 1.
10: else
11: Worker m uploads 5QF, via (6).
12: Set éfn =6 and t,, = 0.
13: end if
14:  end for
15:  Server updates 6 according to (4).
16: end for

Before establishing our performance analysis results, we
first present salient features of our communication skipping
rule. The rationale behind the selection criterion (9) is to
judiciously compare the descent amount of GD versus that
of LAQ.

3.1 Development of the Communication Skipping
Rule

To illuminate the difference between LAQ and GD, consider
re-writing (4) as

6" =6" —a[VQE") + Y (Qu(B") — Qu(8"))]
meMb
a[VIOF) ="+ > (Qu(B ") — Qu(6M))],
meMk
where M}(f = M\M" denotes the subset of workers that

skip communication with the server at iteration k. Com-
pared with the GD iteration in (2), the gradient employed
here degrades due to the quantization error & and the
missed gradient innovation -,y (Qm @) — Q(0M)]. Tt
is clear that if a sufficiently large number of bits is used to
quantize the gradient, and all {¢;}7, are set to 0, causing
M" .= M, then LAQ reduces to GD. Thus, adjusting b and
{€,}5, directly influences the performance of LAQ.

To compare the descent amount of LAQ with that of GD,
we first establish the one step descent for both algorithms.
Based on Assumption 1, the next lemma holds for GD.
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Lemma 1. The GD update yields the following descent

FO) — f(6") < ALp,
—(1 =LY VF(6")]5-

The descent of LAQ differs from that of GD due to the
quantization and selection, as specified in the next lemma.
(For readability, some proofs are deferred to Section 7)

(11)

L
where Aé.p =

Lemma 2. The LAQ update yields the following descent

FO) = f(6") < AL aq +alle"ll5, (12)

ZUhET’E A]LAQ = ) va(ok)HZ + Ol” Zme,/\/l}‘ (Qm( m )

Qu(@D + (& = 516" — 6|5

At this point, it is instructive to shed more light on LAQ’s
gradient skipping rule. If we fix for simplicity o = 1/L, it
follows readily that

=SV A(69)1[3
SIVFEIE+all Y (Qus) = Qu@))I.

mGMI‘

[ A—
Adp =

k
ALAQ ==

The lazy aggregation criterion selects the quantized gra-
dient innovation by assessing its contribution to the loss
function decrease. For LAQ to be more communication effi-
cient than GD, each LAQ upload should bring more
descent, that is

ALag _ Aty
M| T M

(13)

After simple manipulation, it can be shown that (13) boils
down to

L , ME 4
1Y @@~ @uelE <2 vpen ap
meMk
which implies that since
12 (Qu(B) = QuE)Il3
< IME D 1Qu(85) = Qu(@Ml:,
meMb
the following condition is sufficient to guarantee (14):
1(Qu(@1,) = Qu(6")II3 < [[VF(6")][3/(2M?), Ym € ML
(16)

However, it is impossible to check (16) locally per worker,
because the fully aggregated gradient Vf(6") is required,
which is exactly what we want to avoid. This motivates cir-
cumventing ||V £(6")||; by using its approximation

D

Z

k=

OA,+1—d

V(093 =~ — 01, an

where {£,}7 | are constants. The main reason why (17)
holds is that V £(8") can be approximated by weighting past

2035

gradients or parameter differences since f(-) is L-smooth.
Combining (17) and (16) leads to (9a) with the quantization
error ignored.

3.2 Convergence Analysis

The rationale of the previous subsection regarding LAQ’s
skipping rule is not mathematically rigorous, but we will
establish here that it guarantees convergent iterates. To this
end, and with 6* denoting the optimal solution of (1), con-
sider the Lyapunov function associated with LAQ as

V(") = f(6") — f(6")
D D£
DD S P WIS
d=1 j=d meM

(18)

Before we quantify the process of V(#") in the ensuing
lemma, it is worth pointing out that the Lyapunov function
associated with LAQ is a strict generalization of that used in
GD or LAG [30], [31], which not only takes into account the
delayed iterates but also the quantization error.

Lemma 3. Under Assumptlons 1 and 2, and by fixing pamme-
ters & =& =--=¢&, By = D—iﬂ)f/ a=2, and yo? =L,
with a,b > 0, the Lyapunov function obeys the mequallty "

V(0F) < o,V (6F) + BMp* L max v('), (19)
Y h—t<t' <k—1
where the constant is defined as
3a  3a 9L
B= D M,
2L+( +3D¢ 4+ 9a b) L ML2]
and o1 = 1 — cwith
2
| R—4(a+2De+6ab)a 3~ (Ga+DE+ 3ab)+ 1
c=min , .
K D—-d+1
(20)
Proof. It follows from (8) that
len 1% < (R
= TV £u(0") = V(6" + V fu(6")
- Qm(gk) + Qm(ek) - Qm(éfﬁ)||2 (21)
< 3T Ly [|0"" — 6Y[13 + 37 leh, |5
+37[1Qu(6") — Qu (B, I3-

Then the one-step Lyapunov function difference is
bounded as
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V(0k+1) _ V(@k)
< —a(V£(6),Q(09) +5 V6"

_” Z Qm Ok 1 Qm(ek)H2

mEM"

L 2712 k41 k112
+(2 +ﬁ1+3)/7: Lm)He _9”2

D—1 ) )
+ ) (Basr = B0 = 0 — B0 — 0P

d=1
+yBT =1 D lleh I +3vT Y Q85 — Q613

meM meM

+5 V56"

Z]HZQ,,, 65— Qu(@M]3

nLEM ¢

+ By + 3y L) (1 + py)?(|Q(6Y) |15

< —a(Vf(6"),Q(6"))

L f
+| +(§+ﬂ1+3yr1L2 (1+p5"

R

+(

s

D-1
+ > (B — BN — 053

d=1
Bl =P — 0PI+ y(37 = 1) D lleh 1%
meM

+3y7° Y [Qu8l ) — Qu(6)]5,

meM

where the second mequahty follows from Young's mequal—
ity, namely [la + bll; < (1 + p)[lall; + (1 + o) Bll5-
Considering the criterion (9a), we have

1Y Qu@ ) —Qu(e");
mEM,
< |MIS| Z HQm(éfn_l)_Qm(ek)”g
mEMk
lM i Zﬁ 16" 6|5+ 3IMELD (Nl 15 + l1en 113)
2 2 2 mil2 m
|M| mEMI'
225 16"~ — 015+ 30 (lle I3 + 15 112)-
mEMX‘

(22)

Thus, the one-step Lyapunov difference satisfies
V(0" — V(6"
< =S IVAE) +o(VF(6)). ")

B+ (5+B) (1403 e
oM

2 M+3 .[2 D !
] 14 Zé-dHOkJrlfd_ekdeg
d=1

+ By +3yT Ly ) (1 + po)e’||VF(6") — "5

_|_

+

S~
IS

+) (B —B)O =055 — ppll@F TP —6F P 3
=

3
+5 at ( L 38, 4 9y L2)(1 + p; ) + By M

x Z ||6 N5+ €512 +vB7 = 1) Y llen I

meMk meM

n_

(23)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 4, APRIL 2022

Since for any p; > 0, it holds that

(VF(6").€) <5 mHVf(Gk)IIﬁ—H&kHz, (24)

we can rewrite (23) as

V(9k+1) _ V(Ok)

1 1 )
<[5+ 2pl>a + (L 428, +6yT° L) (1+ o) [V F(O9)]13
o 272 —1y,2 9 €D

G+ G+ B+ 3P L)+ g )M+ 3y27) 52
~Bp }||6’““*Dfo’”’||§
L 1 2 M 2 gd

+Z{ +/31+3VT m)( +p2 ) ) +3VT](XQM
+ Baar — B0 =61

3a 3L 272 1y 2 2
g+ G+ 36+ 7P L)L+ gy )a? + 3y
x> (lleb 113 + 185 13)

mEMf{

1
g (L4 28+ 6y’ L)1+ p2)e’]||€¥][3
+y(3P 1) ) bk
meM
(25)

It is straightforward that the following condition guar-
antees the first three terms in (25) are nonpositive

1 1
(=5 ot (L+28 +6yT° L) (1+ pp)o® <O;

{[&+(E+B,+3y7?L2) (1+p3 | M +3yT }p
o’ M

{[&+ &+ B, +3y72 L2) (14 py e | M+ 3yT2 ),
o’ M

< Bp;

<Bi—Ba1-

(26)

For ease of exposition, we define the constants c and B
as

¢ :min{(l = pr)a = 2u(L + 2B, + 6y’ L} ) (1 + py)?,

-

Bisr G+ G+ +3yT° L) (1+p; " )o?

L 272 NNENY 2 &b
+(*+/31+3VT L) (1+py o) M +3yt ]OtQM/%’

YM+3yt2)€, }

1—

Ba a*MB, 7
(27)
and,
3 3L
B= max{ [;4—(——0—3,31 +9y?L2)(1 + p;l)az—l—?)yrz} M.
1
55 T (L 2B+ 67T L)(1 + po)e’ |
P

Assumption 2 implies that f(-) satisfies the PL condi-
tion
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2u(£(0%) — £(67)) < IV £(6")]]3. (28)

Plugging (28) into (25) gives

V(O <oV (0" + Blle" s+ Y (llehlls + l1en 113)]
meM

+yB =1 Y ek

meM
<o V(0" + [BMp* + B+y(37 —1)] Y _ |lek |3

meM
+Bp* > ek s,
meM

whereo; =1 —c.
By choosing parameter stepsize « that impose the fol-
lowing inequality hold

[BMp® + B+ (30 = 1)] <0, (29)
one can obtain
: . 1 1)
V() <o V(0F) + BpP =y Y Ik 3
meM
1 /
< o, V(6") + Bp*— Z max V(6")
Y i st <k
. 1 /
<o V(") +BMp*~ max V(6").
Y k—t<t/<k—1
For simplicity, we fix p; =3, py =1, B; = (0727“)5, o=

#,and Yl = Lb—g ,with a,b > 0. Consequently, we obtain

L
B= [37“ + (37 + 38, + 9y L2 Yo + 3)/12} M
3a  3a 2a  9bL
= |22 4+ (22 4+ 3Dg + 9ab) — ]M,
[2L+(2 +3DE+9ab) Tt 4
and
2
e min [f—4(a+2D&+6ab)]a %—(%a—l—Dﬁ—ﬁ—?’ab)—l—ai’%SM
B K ’ D—d+1
(30)
Here the proof is complete. ]

Theorem 1. Under the same assumptions and parameters of
Lemma 3, the Lyapunov function converges at a linear rate;
that is, there exists a constant o9 € (0, 1) such that

V(") < kv (9), (31)

1
where oy = (07 + BMp? %)1_#

Proof. We first present a critical lemma that will be used to
prove our result. 0

Lemma 4. [38, Lemma 3.2] Let {V*} denote a sequence of non-
negative real numbers satisfying the following inequality for
some nonnegative constants p and q.

max VP k>0. (32)

VkJrl < ka +q
(k—d(k)), <I<k

2037

Ifp+q < 1and 0 < d(k) < dyax for some positive constant
Aax, then
VE < phyo,

Yk > 1, (33)

1
where r = (p + ¢)TFduax.

Following [38, Lemma 3.2], given that the Lyapunov
function obeys (19) and if the following condition is satisfied

o1+ BMpQ)l/ < 1, (34)
then it guarantees (31) holds with oy = (o7 + BMp? l)1+rt

In the sequel, we will show that we can indeed gi/nd a set
of parameters that make (34) hold. For the design parameter
D, we impose D < k. From (20), it is obvious that the follow-
ing condition

1 1 1 3bL2?
——4 2D b <——|= D b —_—
5 (a+ 5—1—6(1)}(1_2 <2a+ £+3a)+aL$nJ\1’
(35)
guarantees
14 2D¢ + 6ab
¢ = b= 4a+2DE+ 6ab)la (36)

K

1
Thus, we obtaino; =1—-c=1 —M.
It can be verified that choosing a = 55, b = 15, D§ = 55 and
93L2 97 . L o
T < o /[MPp* (5575 + )] is a sufficient condition for (26),

(35) and (34) being satisfied. With above selected parame-

ters, we can obtain oy = 1 — 55 and
1
1 932 9 S\ T+
=(1- M?p? m 2 0,1
o2 ( 1000k TP (100L2 + 10M)r € O,
37

which together with (31) indicates the linear convergence of
the Lyapunov function and completes the proof.

Algorithm 3. SLAQ

1: Input: stepsizea > 0,b, D, {&1};}:1 and ¢, and batchsize S.

2: Initialize: 6%, and {Q,,(6°,),tm } -

3: fork=1,2,...,K do

4:  Server broadcasts 6" to all workers.

5. form=1,2,...,M do

6 Worker m draws S samples and computes the average
gradient at these S samples V fin(689), along with the
quantized gradient Q,,(6").

7: if (9) holds for worker m then

8: Worker m does not upload anything.
9: Set@" =6 'andt, — t, + 1.

10: else

11: Worker m uploads $QF, via (6).

12: Set 6" =6, and t,, = 0.

13: end if

14:  end for

15:  Server updates 6 according to (4).

16: end for

From (37), it is obvious that if the quantization is accurate
enough, i.e., 72 — 0, and no communication is skipped, i.e.,
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t =1, the dependence of convergence rate on condition
number is of order 1, the same as the gradient descent.

Compared to the LAG analysis in [30], the analysis for
LAQ is more involved, because it needs to deal with not
only outdated but also quantized (inexact) gradients. The
latter challenges the monotonicity of the Lyapunov function
in (18), which is the building block of the analysis in [30].
We tackle this issue by i) considering the outdated gradient
in the quantization (6); and, ii) accounting for the quantiza-
tion error in the new selection criterion (9). As a result,
Theorem 1 establishes that LAQ retains the linear conver-
gence rate even when quantization error is present. This is
because a controlled quantization error also converges at a
linear rate. As for the improvement relative to the confer-
ence version [1], the convergence rate o5 is explicitly charac-
terized by the quantization parameter v and the maximum
communication skipping interval ¢.

Proposition 1. If under Assumption 1, we choose {£;}7_, to sat-
isfy &1 > & > -+ > Ep, and define d,,,, m € M as
dy, = msmx{d|L,2 < &/(3«’M*D), d € {1,2,...,D}}.

m —

(38)

it suffices for worker m to have at most k/(d,, + 1) uploads
with the server until the k-th iteration.

This proposition asserts that the communication inten-
sity per worker is determined by the smoothness of the cor-
responding local loss function. Workers with smaller
smoothness constant communicate with the server less fre-
quently, which justifies the term lazily communication.

For some technical issues, the current bound on the con-
vergence rate is relatively loose in order to account for the
worst-case performance. Due to the error €, introduced by
the communication skipping and gradient compression, it
is not theoretically established that LAQ outperforms GD.
However, our empirical studies will demonstrate that LAQ
significantly outperforms GD in terms of communication.
To prove that LAQ is more communication-efficient than
GD is more challenging and is in our future agenda.

4 GENERALIZING LAQ

In this section, we broaden the scope of LAQ by developing
the stochastic LAQ and the two-way communication-efficient
LAQ-driven federated learning, as we elaborate next.

4.1 Stochastic LAQ

Thanks to its well-documented merits in reducing complexity,
stochastic gradient descent has been widely employed by
learning tasks involving large-scale training data. Here we
show that LAQ can also benefit from its stochastic counter-
part, namely SLAQ, that is developed with a simple modifica-
tion in the criterion. Specifically, (9a) in SLAQ is replaced by

. . 1 & . g
1Q5,(851) — Q5,5 < =~ > _ &allF ' — 3
o M? ; (39)

U2 ak-1)2
+3(llek I3 + 185 13) + var,
where superscript s will henceforth denote the stochastic

counterpart of LAQ quantities defined so far; and var is a
constant. Compared with (9a), the constant added in the
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stochastic case is to compensate for the variance coming
from the stochastic sampling. In practice, we can use the
empirical variance to approximate the variance, that is, the
variance computed according to the drawn samples per
iteration.

Algorithm 4. TWO-LAQ
1: Input: stepsizea > 0,b, D, {5,1}511 and t.

2: Initialize: 8!, 8° = 6°, and {Qm(égl), tin e -

3: fork=1,2,...,Kdo

4:  Server calculate 8" broadcasts quantized model innova-
tion 86" to all workers.

5. form=1,2,...,Mdo
6: Worker m computes o according to (41) and V f,,,,(é"')
and Q,,(6").
7 if (9) holds for worker m then
8: Worker m does not upload anything.
9: Set 95,1 = 95;1 and t,, < t,, + 1.
10: else
11: Worker m uploads $QF, via (6).
12: Set @fn =0" and ¢, = 0.
13: end if
14:  end for
15:  Server updates o1 according to (4).
16: end for

Apart from the criterion, SLAQ is different from LAQ
only in the local (stochastic) gradient calculation. Specifi-
cally, the worker randomly draws S samples from its train-
ing set and computes the stochastic gradient as

1 S
\% ,sn(g) = § Z vﬂe(xrrmﬁ 0) (40)
n=1

The quantization and other operations are the same as
before. The SLAQ is summarized in Algorithm 3. Following
the convention, we also consider here that the global loss
function is scaled by the total number of training samples.

4.2 Two-Way Quantization

So far, communication savings have been achieved by skip-
ping uploads and quantizing the uploaded gradient innova-
tion. A natural extension is to also quantize the model
innovation in the downlink, which results in what we term
Two Way Lazily Aggregated Gradient (TWO-LAQ).

Let 6F = Q(Qk, ék’l) describe the quantization model.
First, the model innovation is quantized as (5), and thus we
omit the details. Then, for the server to workers communi-
cation, only the quantized model innovation 86" is broad-
cast. With ! stored in memory, both the server and the
workers update 6" as

o = 0" + 50" (41)

Different from possible alternatives, each worker m does
not have the accurate model 6*. As a result, each worker has
to compute the local gradient V f,, (6") based on @*. The rest
follows the LAG algorithm, meaning workers quantize the
gradient innovation, and upload it, if it is large enough; oth-
erwise, they skip this upload round.
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Fig. 3. Federated learning via TWO-LAQ.

The steps of TWO-LAQ are summarized in Algorithm 4,
whose implementation is illustrated in Fig. 3. Comparing
Fig. 3 with gradient descent, TWO-LAQ improves commu-
nication efficiency at the expense of extra memory at the
server and workers. Indeed, the server needs to store 6%, 6*
and V% and each worker m needs to store 6", 8 and
Q,,(8"). In contrast, GD only requires the server to store 6*.

5 NUMERICAL TESTS

To validate our theoretical analysis and demonstrate the per-
formance of LAQ in improving communication efficiency for
practical machine learning tasks, we evaluate our algorithm on
the regularized logistic regression (LR), which is strongly con-
vex, and a neural network (NN) classifier involving a noncon-
vex loss. For our experiments, we use the MNIST dataset [39],
which is equally distributed across M = 10 workers. Through-
out,weset D =10, & =--- = &p = 0.8/D,and t = 100.

5.1 Simulation Setup

LR Classifier. Consider a multi-class classifier with say C' = 10
classes, that relies on logistic regression trained using the
MNIST dataset. Each training vector x,,, comprises a fea-
ture-label pair (x/, ,,x., ), where x/ € R" is the feature
vector and x/, , € RY denotes the one-hot label vector. The
model 6 € RE*F here is a matrix, which is slightly different
from previous description, and it is adopted for convenience
but does not change the learning problem. The estimated
probability of (m, n)-th sample to belong to class i is given by

)A(ﬁnn = softrnax(ﬁ’xfn,n)7 (42)
which can be explicitly written as
e[oxgz,n]i
X, 1= —, Vie{l,2,...,C}. (43)
’ C 1 6[9"771,,71]]'
=

2039

The regularized logistic regression classifier relies on the
following cross-entropy loss plus a regularizer

(44)

C
A
? mne:fE: L Vloglx 1. +ZTr(6%0
(X 5TV ) l[xm.nh Og [Xm,n]z+2 T( )7

=

where Tr(-) denotes trace operator, and 6" is the transpose
of . Having defined ¢(x,,,,0), the local loss functions are

fm(0) = Zﬁfl‘l {(Xm.n;0), and the global loss function is
given by

J0) =5 3 1u0) (45)

meM

where N is the total number of data samples. In our tests,
we set the regularizer coefficient to A = 0.01.

NN Classifier. In our tests, we employ a ReLU network
comprising one hidden layer having 200 nodes with dimen-
sions of the input and output layers being 784(28 x 28) and
10, respectively. The regularizer parameter is set to A =
0.01. CNN classifier. For the test in CIFAR 10 dataset, we
adopt the convolutional neural network (CNN) which con-
sists of 3 VGG-type blocks [40]. Each block is constructed by
stacking two convolutional layers with small 3 x 3 filters
followed by a max pooling layer. The numbers of filters for
the convolutional layers in the three blocks are 32, 64, and
128, respectively. ReLU activation function is used in each
layer and padding is utilized on the convolutional layers to
ensure the height and width of the output feature matches
the inputs. Additionally, each block is followed by a drop-
out layer with the rate of 20 percent. This is followed by a
fully connected layer with 128 nodes and then the softmax
layer. We add an I, regularization with coefficient 0.001.

5.2 Numerical Tests

Fig. 4 illustrates the convergence with different number of
quantization bits. It shows that utilizing fewer bits to quantize
the gradient moderately increases the number of iterations, but
markedly reduces the overall number of transmitted bits. To
benchmark LAQ, we compare it with two classes of algorithms,
namely GD and minibatch SGD ones, corresponding to the fol-
lowing two tests.

Parameters. For GD algorithms, we fix D =10, & =& =
<+ =¢&p=0.8/D, t =100, and we set « = 0.02, and b = 4 or
8 for LR and NN classifiers, respectively. For minibatch
SGD algorithms, the minibath size is 500 and « = 0.008;
b =3 for LR and b = 8 for NN.

10!

10°
“~10°t “10t
| |
=10 Z102
= =
3 93 3
g 3
B 104 @
g0 3
107°
107 1076

1000
Number of Communications

0 1000 2000 3000 0

Number of iterations

(a) Loss v.s. iteration

(b) Loss v.s. communication

3000 106 107 108 107
Number of bits

(c) Loss v.s. bit

2000

Fig. 4. Convergence of LAQ under different quantization bits (logistic regression).
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Fig. 5. Convergence of the loss function (logistic regression).
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Fig. 6. Convergence of gradient norm (neural network).
TABLE 1
Comparison of Gradient-Based Algorithms
Algorithm Iteration # Communication # Bit # Accuracy
LAQ 2626 572 6.78 x 108 0.9082
o TWO-LAQ 2576 734 1.04 x 10% 0.9082
Logistic GD 2763 27630 7.63 x 10° 0.9082
QGD 2760 27600 1.56 x 107 0.9082
LAG 2620 2431 1.27 x 10° 0.9082
LAQ 8000 32729 8.23 x 10%0 0.9433
TWO-LAQ 8000 30741 4.93 x 100 0.9433
Neural network GD 8000 80000 4.48 x 10" 0.9433
QGD 8000 80000 1.42 x 10" 0.9433
LAG 8000 30818 1.98 x 10! 0.9433

For logistic regression, all algorithms terminate when loss residual reaches 1075, for neural network, all algorithms run a fixed number of iterations.

Gradient-Based Tests. The benchmark algorithms include
GD, QGD [11] and lazily aggregated gradient (LAG) [30].
Fig. 5 shows the convergence of loss residual for the LR
problem. Clearly, Fig. 5a corroborates Theorem 1, namely
the linear convergence for the strongly convex loss function.
As illustrated in Fig. 5b, LAQ incurs a smaller number of
communication rounds than GD and QGD thanks to our
innovation selection rule, yet more rounds than LAG due to
the quantization error. Nevertheless, the total number of
transmitted bits of LAQ is significantly reduced compared
with that of LAG, as demonstrated in Fig. 5c. For the NN
classifier, Fig. 6 reports the convergence of the gradient
norm, where LAQ also shows competitive performance for
nonconvex loss functions. Similar to what is observed for
LR classification, LAQ outperforms the benchmark algo-
rithms in terms of transtimitted bits. TWO-LAQ which
additionally leverages model innovation quantization saves

more bits than LAQ as show in Figs. 5c and 6c. Table 1 sum-
marizes the detailed comparison of mentioned algorithms
including the number of iterations, uploads and bits needed
to reach a given accuracy.

Tests on More Datasets. Fig. 7 exhibits the test accuracy of the
aforementioned algorithms on three commonly used datasets,
namely MNIST, ijenn1 and covtype. Applied to all these data-
sets, LAQ saves transmitted bits while maintaining the same
accuracy. In addition, we test our algorithm on more challeng-
ing dataset—CIFAR 10, for which CNN is utilized and Adam
[41] is applied. The convergence of the loss function is plotted
in Fig. 8, and the validation accuracy is shown in Fig. 11. A
detailed comparison with above mentioned benchmark algo-
rithms is summarized in Table 2. These tests with different
datasets and different algorithms (gradient descent, Adam
and the following stochastic gradient descent) all demonstrate
that the proposed communication saving scheme indeed
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Fig. 7. Tests on different datasets.
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Fig. 8. Convergence of loss function (CNN for CIFAR 10).
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Fig. 9. Convergence of loss function (logistic regression).

provides satisfied improvement in communication efficiency
and thus has promising potential for variety of distributed
learning applications.

Stochastic Gradient-Based Tests. The stochastic version of
LAQ abbreviated as SLAQ is tested and compared with sto-
chastic gradient descent, quantized stochastic gradient
descent (QSGD) [10], sparsified stochastic gradient descent
(SSGD) [21], deep gradient compression (DGC) [18], sign-
SGD, [8] and tern-Grad [12]. For the all the stochastic-based
algorithms, each worker draws a bath of 500 data samples
to calculate a stochastic local gradient per iteration. As dem-
onstrated in Figs. 9 and 10, SLAQ requires the lowest num-
ber of communication rounds and bits. Albeit sign-SGD and
tern-Grad need only 1 bit and 2 bits for each entry of the
gradient, respectively, they have larger quantization error
and require a smaller stepsize to ensure convergence. There-
fore it takes more iterations for these two algorithms to

10000 15000 20000 0.0 0.5 1.0 1.5 2.0 2.5
Number of communications Number of bits x10°
(b) Loss v.s. communication (c) Loss v.s. bit
TABLE 2
Tests for CIFAR 10 With CNN
Algorithm Iteration # ~ Communication # Bit # Accuracy
LAQ 1000 6359 3.34 x 1010 87.96
TWO-LAQ 1000 5785 2.76 x 10'° 87.92
GD 1000 10000 1.09 x 101 87.86
QGD 1000 10000 4.69 x 100 87.95
LAG 1000 6542 7.44 x 1010 87.91

reach the same loss (or accuracy), and needs to transmit
more bits than that for SLAQ. In this stochastic gradient
test, although the improvement of communication effi-
ciency by SLAQ is not as evident as LAQ compared with
GD-based algorithms, SLAQ still outperforms the cutting-
edge schemes, namely QSGD, SSGD, sign-SGD and tern-
Grad. The results are summarized in Table 3.
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Fig. 10. Convergence of loss function (neural network).
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TABLE 3
Performance Comparison of Mini-Batch Stochastic Gradient-Based Algorithms
Algorithm [ Tteration # [ Communication # [ Bit# [ Accuracy
SLAQ 1000 4494 1.06 x 10° 0.9060
SGD 1000 10000 2.51 x 107 0.9044
g
Logistic QSGD 1000 10000 6.89 x 10" | 0.9062
SSGD 1000 10000 1.26 x 10 0.9056
DGC 1000 10000 5.21 x 107 0.9082
sign-SGD 2000 20000 1.57 x 10° | 0.8905
tern-Grad 2000 20000 3.14 x 10° 0.8942
SLAQ 1500 4342 4.14 x 10° 0.9360
SGD 1500 15000 7.63 x 10" | 0.9354
10
Neural network |__QSGD 1500 15000 381107 | 09353
SSGD 1500 15000 1.14 x 10 0.9356
DGC 1500 15000 3.60 x 10™ 0.9362
sign-SGD 3000 30000 4.77 x 107 0.9277
tern-Grad 3000 30000 9.54 x 10” 0.9299
termed TWO-LAQ and SLAQ), also exhibit promising perfor-
! mance and outperform prevalent compression schemes in
0.85 1 the empirical studies.
>
§ 0.801 7 PROOFS
8 D 7.1 Proof of Lemma 2
— LAG For successive LAQ updates, it is not difficult to show that
0.751 QGD
— g 76°) - £6")
=== TWO-LAQ
0.70 1 k k ok~ 1 k
: : . . : ; 0") 0%) m (0, 0
00 02 04 06 08 10 <Vf( v/ et Zk Q) = Qnl ))}>
Number of bits x 101 meMe

Fig. 11. Accuracy versus bit for CIFAR 10.

6 CONCLUSION

This paper investigated communication-efficient federated
learning, and developed LAQ—an approach that integrates
quantization and adaptive communication techniques based
on gradient innovation. Compared with GD method, LAQ
introduces errors to gradient, yet still preserves linear con-
vergence for strongly convex problems. This is a remarkable
result considering that LAQ significantly reduces both com-
munication bits and rounds. Experiments on strongly convex
and nonconvex learning problems verified our theoretical
analysis and demonstrated the merits of LAQ over recent
popular approaches. Furthermore, two variants of LAQ,

L, . »
5 16— 65

N :
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where the second equality follows from the identity
(a,b) = L(||a|® + 1] — Ha—bH ), and the last inequality
from the fact that || Y1 1al||2 <ny !, lla:||*.

7.2 Proof of Proposition 1

Suppose that at current iteration k the last iteration when
worker m communicated with the server is d’, where 1 <
d <d,.Having Gfgl = 0’“"1', we thus deduce that

HQm(éfnil) - Qm(ek)”‘_%
:HQm(ek_d,) - me (ek_d/) - Qvn(ek) + vfrn(ek)
+ V(0 = V £ (09)]5
<3([£m(8") = VI ()5 + b 115 + ek 113)
<BLL 1164 — 6%(15 + 3(llek, |15 + llef, “113) (46)
d/
=3L2 || > — 05 + 3(llek I3 + ek 1)
pr
<3L?,ld'Z||e"“ T 65 + 3(llek 115 + ek 115)-
t=1
From the definition of d,, and since & > & > -+ > &p, it
can be inferred that
L2 < % ?€J\d42D for all d satisfying 1 < d < d,,. 47
Substituting (47) into (46) yields
1Qun(8) = Qu (6"
gd k+1—d k—d
CIZA[Z Zg He -6 H2+3 ||€mH2+ ||8m || (48)
1 .
<a2MZZ£ 10441 — 013+ Bl 13 + 185, 115,

d=1

which exactly implies that (9a) is satisfied. Since d,, < D <1,
the criterion (9) holds, which means that worker m will not
upload her/his information until at least t,, iterations after
last upload. In the first k iterations, worker m will therefore
have at most k/(d,, + 1) uploads to the server.
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