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Abstract—This paper introduces an adaptive sampling method-
ology for automated compression of Deep Neural Networks (DNNs)
for accelerated inference on resource-constrained platforms. Mod-
ern DNN compression techniques comprise various hyperparame-
ters that require per-layer customization. Our objective is to locate
anoptimal hyperparameter configuration that leads to lowest model
complexity while adhering to a desired inference accuracy. We
design a score function that evaluates the aforementioned opfi-
mality. The optimization problem is then formulated as searching
for the maximizers of this score function. To this end, we de-
vise a non-uniform adaptive sampler that aims at reconstructing
the band-limited score function. We reduce the total number of
required objective function evaluations by realizing a targeted
sampler. We propose three adaptive sampling methodologies, i.e.,
AdaNS-Zoom, AdaNS-Genetic, and AdaNS-Gaussian, where new
batches of samples are chosen based on the history of previous eval-
uations. Our algorithms start sampling from a uniform distribution
over the entire search-space and iteratively adapt the sampling
distribution to achieve highest density around the function maxima.
This, in turn, allows for a low-error reconstruction of the objective
function around its maximizers. Our extensive evaluations corrobo-
rate AdaNS§ effectiveness by outperforming existing rule-based and
Reinforcement Learning methods in terms of DNN compression
rate and/or inference accuracy.

Index Terms—Compact deep neural networks, adaptive
sampling, automated neural network compression, hardware-
aware DNN design, multi-objective optimization.

I. INTRODUCTION

ITH the growing range of applications for Deep Neural
W Networks (DNNs), the demand for higher accuracy has
led to a continuous increase in the complexity of state-of-the-
art models. Such high execution cost hinders the deployment
of DNNs in real-time applications on commodity hardware.
Fortunately, modern neural networks have been shown to incur
high redundancies that can be eliminated without compromising
inference accuracy. Effective identification and removal of such
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redundancies has fueled a myriad of research in two inter-
linked domains: (i) Developing model compression techniques,
e.g., pruning [1]-[9] and coding [10]. (ii) Devising automated
policies that learn how to configure compression techniques to
simultaneously achieve accuracy and compactness [10]-[15]. In
this paper, we focus on the latter.

The effectiveness of contemporary compression techniques
relies on careful tuning of several hyperparameters across DNN
layers, e.g., pruning rates. These hyperparameters directly con-
trol the trade-off between accuracy and execution cost on a
constrained device. The question to be answered is how to find
an optimal hyperparameter configuration that results in a high
compression rate while minimally affecting inference accuracy.
Existing research in automated compression suggests the use of
heuristic methods [2]-[4] or Reinforcement Learning (RL) [12],
[13], [16]. To tackle the high-dimensionality of the search space,
heuristics and RL-based algorithms specify the hyperparameters
one layer at a time. One downside of such approach is the
need for many learning episodes to enable identification of the
inherent inter-layer correlations. This, in turn, results in a rather
slow convergence to the optimal hyperparameter solution.

We propose an alternative approach that simultaneously tunes
the compression hyperparameters for all DNN layers by en-
capsulating them as one fixed-length vector # € R9. Each hy-
perparameter vector translates to a unique compressed DNN
by leveraging the transformations suggested in existing DNN
compression techniques. In this setting, the search for optimal
compression hyperparameters directly translates to optimizing
an objective function f(Z) : R — R over ¥ where f(-) is an
arbitrary measure of quality. We suggest a unified formulation
for f(-), called the score, which assesses the quality of Z by
combining inference accuracy and a desired execution cost.

One major challenge in maximizing f(-) is that the under-
lying algebraic model that relates compression hyperparame-
ters to inference accuracy (and possibly the execution cost)
is not known. In other words, one can evaluate the pertinent
objective function f(Z) for any arbitrary input £ but does
not have access to other information such as the gradient %;—.
Therefore, numerical optimization methods such as stochastic
gradient descent are not directly applicable. Furthermore, since
the vectorized search-space grows exponentially with number
of DNN layers, brute-force search is not feasible, and more
intelligent approaches are required to find the optimal solution.

We resort to empirical evaluations of f(-) and propose AdaNS$,
a non-uniform adaptive sampling methodology that aims at
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reconstructing the opaque objective function f(.) around its
maxima. Different from classic sampling (which accurately re-
constructs the function over the entire input space), our sampler’s
reconstruction objective focuses more on regions of interest, i.e.,
the maximizers of f(.). To the best of our knowledge, this is the
first time that designing compact DNNS, a topic often viewed in
computer engineering, has been framed in the context of adaptive
sampling, an active area of research in signal processing.

To reduce the total number of required function evaluations
while enabling a low-error reconstruction around the maxima,
we choose our samples following two incentives: (i) we should
sample from likely maximas to reach the optimization goal, and
(ii) samples should be drawn from unexplored regions where
we have a high reconstruction error (uncertainty). We satisfy
the above two properties by realizing targeted sampling. Our
proposed algorithm is an iterative process, where a batch of
samples (hyperparameter vectors) are obtained and evaluated
at each phase. The sampling distribution over the input space
for each phase is then refined adaptively based on prior ob-
servations before sampling the next batch of hyperparameter
vectors. AdaNS exploits parallelism to reduce optimization time
by concurrent sample evaluations. We devise three adaptive
sampling subroutines, namely, AdaNS-Zoom, AdaNS-Genetic,
and AdaNS-Gaussian, each of which incorporates a different
(posterior) sampling distribution.

We study the impact of the sampling strategy on the con-
vergence rate and the maximal returned value. Our empirical
evaluations show that AdaNS-Gaussian achieves higher values
of f(-) with a lower number of function evaluations. To demon-
strate AdaNS generalizability, we apply it to optimization tasks
of various complexity. Our experiments show that AdaNS can
learn near-optimal hyperparameters in very high-dimensional
search-spaces; to the best of knowledge, AdaNS is the only black-
box optimization method shown to tackle search-space sizes as
high as 10'32. We show the superiority of AdaNS over prior
work in RL [12], Bayesian optimization [17], expert-designed
architectures [18]-[20], and heuristic methods [1]-[4], [6]-[9],
[21]-[24]. We unveil the full potential of AdaNS by learning
to effectively combine multiple methods: for VGG-16 on Ima-
geNet, AdaNS§ pushes the state-of-the-art FLOPs reduction from
5x to 7.1x with higher accuracy. For compact MobileNets,
AdaNS obtains on average 1.2% higher top-1 accuracy than
the MobileNet Pareto curve. We further show that AdaNS is
highly scalable and enjoys a linear search speedup with number
of distributed computing resources.

Main Contributions:

® We devise three adaptive sampling strategies, i.e., AdaNS-

Zoom, AdaNS-Genetic, and AdaNS-Gaussian, that search
for the optimal hyperparameters ¥ € R¢ for DNN com-
pression. Each strategy iteratively refines the sampling
posterior distribution towards generating better samples.

® We suggest a unified formulation for the optimiza-

tion objective f(Z): R? — R, i.e., the score. Our
customized f(-) simultaneously incorporates accuracy
and execution cost to quantitatively asses compressed
DNNSs.

® We propose a context-aware boundary characterization
scheme that prevents sampling from regions that are un-
likely to contain the optimal solution.

® We connect AdaNS to function reconstruction and sam-
pling theory. Specifically, we devise a non-uniform recon-
struction scheme and empirically show that AdaNS reduces
the reconstruction error around the maxima.

II. BACKGROUND AND RELATED WORK

Automated Policy Making: Designing automated methodolo-
gies for achieving compact and accurate neural networks has
been the focus of recent work [10]-[12], [25], [26]. In order
to achieve high-accuracy and low-complexity neural networks,
genetic algorithms have been applied to Neural Architecture
Search (NAS) [24] and DNN compression [27]. Reinforcement
Learning (RL) [11], [12] is another promising tool for DNN
compression. Although effective in finding near-optimal solu-
tions, RL relies on gradient-based training, which can lead to a
high computational burden and a slow convergence. Also, RL is
not scalable in large continuous action-spaces [23], [28].

In this paper, we develop a multi-objective optimization
method based on an adaptive sampling strategy. AdaNS is
dimensionality-agnostic and can scale well to large search-
spaces. This, in turn, allows for simultaneous optimization of all
layers’ hyperparameters. Our solution offers several benefits:
(1) it is inexpensive to implement since it does not involve
gradient-based algorithms. (2) Unlike RL algorithms that are in-
herently sequential, AdaNS is highly parallelizable and can offer
scalability in distributed settings. (3) AdaNS can support both
continuous and sparse-valued objective functions. (4) AdaNS is
the only known method to-date that optimizes heferogeneous
parameters in search spaces as large as 1032, Prior work either
constrain the search-space size, e.g., [12], [17] or are designed
specifically for one compression task, e.g., [20].

Sampling: Our approach to DNN compression is loosely
related to three classical problems in the literature: Bayesian
empirical optimization [17], [29], [30], spectral methods [31],
and adaptive sampling theory [32]. Bayesian empirical optimiza-
tion provides a method for hyperparameter tuning by assuming
a prior distribution for the score function and then updating
this prior based on new observations. However, this approach
depends on the availability of reliable Bayesian priors which,
in some regimes, might not be realistic. AdaNS does not make
any probabilistic assumptions about the objective function and
is compatible with arbitrary f(-). Furthermore, Bandit methods
such as Bayesian optimization are inherently sequential and
difficult to parallelize while our batch implementation allows
parallelism in distributed settings.

Spectral methods, when applied to empirical optimization,
leverage the structure of the score function together with known
results from Fourier analysis and compressed sensing. The main
drawback of spectral approaches is their reliance on prior knowl-
edge about the sparse structure of the score function, which
cannot be immediately assumed in the context of DNN com-
pression. Adaptive sampling methods are generally well-suited
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to scenarios where the structure of the score function is unknown
but has local features. In such scenarios, sample spacing can be
controlled using the observed values of the variable of interest.
Although adaptive sampling is amenable to many fields of
research, little is concretely known about its optimal strategies.

III. PROBLEM FORMULATION

DNN compression, in high-level, is a transformation T (M, T)
that converts a pretrained model M to a compressed model
M3z with lower computational complexity. In this process, the
adjustable hyperparameter vector ¥ € R controls the complex-
ity and accuracy of the output model. A desirable compressed
network satisfies 2 properties: (i) the generalization capability of
M3z should resemble the original network and (ii) the execution
cost of }\3'5 on the target hardware platform should be low.

We assume we have access to a scoring oracle, f(-), that
assesses £ based on its corresponding compressed model’s
accuracy A(Mz) and complexity C(Mz). Our objective is to
empirically optimize this customized score:

max f(A(Mz), C(Mz)), ()
FcRe

For simplicity, we show f(A(Mz), C(Mz)) as f(Z) in the
rest of the paper. Since full knowledge about f(-) and/or its first
derivatives cannot be assumed, often empirical evaluations and
optimization is the only viable strategy. Brute-force empirical
evaluation of f(-) over ¥ € R9, in general, is infeasible as the
search-space grows exponentially with d. Instead, we propose
an empirical zero®” order optimization based on adaptive non-
uniform sampling, dubbed AdaNSs.

In the context of DNN compression, f(Z) can be viewed as
a band-limited signal, i.e., the corresponding Fourier transform
F(w) is contained in a frequency interval [— B, B]. As such, one
can approximately solve the maximization problem in Eq. (1) by
sampling. AdaNSs iteratively samples the hyperparameter vector
space to find an optimized compression configuration 7*. We
consider an adaptive sampler generating S =S; USaU - U
St where each S; represents a fixed-sized set of b samples to be
evaluated in iteration . Let Tg be the current maximizer of f(-)
on the entire set of observed (evaluated) samples S. Our objective
is to select Sq,Sa, ..., St such that f(Zg) is not too far from
the actual function maximum f*. To this end, AdaNS adopts a
guided search such that samples generated at each iteration are
more competent than the previously observed samples, i.e., they
result in better DNNs with higher f(Z).

IV. AdaNS OVERVIEW

We provide a generic solution to effectively compress a
pre-trained DNN while maximally preserving model accuracy.
AdaNS automation policy acts on a pool of hyperparameters
and explores the corresponding search-space using adaptive
non-uniform sampling. An overview of AdaNS optimization is
shown in Fig. 1 and summarized below:

I. First, a pre-processing step characterizes the search-
space boundaries within which the optimal solution
can reside. These boundaries are specified based on
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Fig. 1. Overview of AdaNS adaptive sampling methodology for hyperparam-
eter customization.

CONV
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Fig.2. Vectorized representation of an example 4-layer DNN for Pruning and
Decomposition. Here, CONV and FC denote convolutional and fully-connected
layers, respectively.

task-enforced constraints on inference accuracy. Us-
ing the boundaries, initial hyperparameter vectors S; =
{#1,...,Tp} are sampled (Section [V-C).

II. Eachiteration, newly generated samples ¥ € S; are trans-
lated to their compressed DNNs }\3% (Section I'V-A). The
scores f(Z) are then evaluated in parallel (Section IV-B).

III. Based on the knowledge acquired by new evaluations
and previously observed samples, AdaNS adaptive sam-
pling subroutine identifies a batch of more compe-
tent hyperparameter vectors S;.1. We propose three
different subroutines that select the new set of sam-
ples, namely, AdaNS-Zoom, AdaNS-Genetic, and AdaNS§-
Gaussian (Section V).

A. Search-Space Definition

An initial step for the application of AdaNS is defining the
pertinent search-space for black-box optimization. To this end,
we propose a vectorized representation of the hyperparameters
for various compression methods. The problem of compression
optimization can then be solved by performing a search over
this vector-space. We focus on four compression tasks, namely,
structured [4] and non-structured [33] Pruning, Singular Value
Decomposition (SVD) [34], and Tucker-2 approximation [35].

Fig. 2 shows a high-level view of our vectorized compression
hyperparameters for a 4-layer neural network. For pruning, we
allocate one continuous value p € [0, 1], per layer, inside Z to
represent the ratio of non-zero values. We apply SVD on weight
parameters of fully-connected layers and point-wise convolu-
tions. To represent the integer-valued rank € {1,..., R} for
SVD, we allocate one continuous value rank € [%, 1] per de-
composed layer to form Z. Tucker-2 is applied on 4-way weight
tensors W € R¥*k¥x¢xf in convolution layers where the com-
pression parameter is a tuple of integer-valued approximation
ranks. To form I, we allocate two normalized and real-valued
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Fig. 3. AdaNS accuracy penalty function with Ay, = 80% and baseline
accuracy A(M) = 93.5%.

hyperparameters rank; € [, 1] and rank; € [%, 1] per convo-
lution. We have provided further details on each compression
method’s hyperparameters and their (unique) interpretation as
compressed models, i.e., T (M, Z), in Appendix A.

B. Scoring Mechanism

We formalize a multi-objective score f(Z) which simultane-
ously reflects the compressed DNN’s accuracy and computa-
tional complexity. This score can thus be leveraged to assess the
compression quality of each hyperparameter vector Z. To define
f(-), let us first represent DNN compression as a constrained
optimization as follows:

max AC(M, ) s.t. A(Mz) > Awnr @)

TcRd
where AC(M, ) represents the normalized difference in hard-
ware cost, e.g., FLOPs, betweisn the uncompressed network, M,
and the compressed model, Mz. Here, Ay, is a task-enforced
threshold on the post-compression accuracy. Having an accuracy
constraint is crucial since the optimization algorithm will con-
verge to a model size of zero otherwise. To solve the constrained
optimization problem in Eq. (2), we formulate it as a primal
unconstrained optimization using penalty methods [36]:

max AC(M, 7) — log(PEN (#))) 3)

where the term log(PEN 4(Z)) is the exterior penalty func-
tion [37] that enforces a constraint on the compressed model’s
accuracy, i.e., A(M’i) > Apr. The function PEN 4(Z) mea-
sures the accuracy degradation as follows:

AA(M, %)  A(M;) > Ay
AA(M, z) + A=A A(My) < Agpy
@)

Fig. 3 visualizes the accuracy penalty. To prevent undesirable
drop of accuracy, we greatly diminish the score of individuals

that cause lower accuracies than the set constraint, A;p,. The
log penalty term is estimated as follows:

PEN 4(%) = {

7 Ts) >
log(PEN 4 (x)) = IOQ(AA(,HJ,A.E)) A(ﬂ:fx) > Athr
Athr — A(Mz) A(Mz) < Athr
(&)
For accuracy values satisfying the threshold, this term en-
forces the accuracy maximization objective. Applying the log-
arithm smoothens the accuracy variations by damping sudden

changes. For accuracy values below Ap,, a linear penalty is

w g

Fig. 4. Search-space for pruning a 2-layer DNN.

applied to stop further accuracy loss. To avoid numerical insta-
bility, we define the exponential of the primal optimization in
Eq. (3) as our score function:

£AC(M 3)

f(f)zm

(6)

Maximizing the score function of Eq. (6) is equivalent to
maximizing its logarithm value in Eq. (3). To ensure efficiency,
inference accuracies are measured on a small held-out portion of
the training samples, dubbed validation set. AdaNS§ scoring func-
tion successfully models the ultimate goal of high compression
with minimal accuracy degradation; it is applicable to various
compression tasks and can reflect different hardware costs, e.g.,
power, memory, and runtime.

C. Boundary Characterization for Directed Search

A naive initialization of samples in the first iteration can
resultin slow and sub-optimal convergence. We utilize boundary
characterization as a pre-processing step to enable a targeted
initialization. This approach eliminates unnecessary exploration
of outlier subspaces, i.e., regions that are unlikely to contain
the optimization solution. Inference accuracy for a compressed
DNN M is coordinate-wise monotonic with respect to per-layer
compression rates: as the compression rates increase, the accu-
racy drops. As such, we can characterize the boundaries of Z[1]
on a per-layer basis, based on the accuracy threshold without
performing any fine-tuning. Fig. 4 visualizes the search-space
and the outlier regions for pruning a two-layer model.

The optimal solution to the search problem is a configuration
with the highest score. The outlier regions in Fig. 4 are therefore
the flat sectors of the space. We find a threshold vector 6 where
each element constrains a single hyperparameter correspond-
ing to the compressed DNN. In Fig. 4, g has two elements,
each presented by a dashed line. Below we describe how the
boundaries 6[:] are obtained given an accuracy threshold A¢pr
for each compression task.

Pruning: The threshold vector elements §[i] € [0, 1) specify
the maximum pruning rate for layer ¢ such that the compressed
DNN’s accuracy does not violate A¢pp:

Gli] = maz{p} st. Z[j] = {ﬁ j ;z A(Vz) > Anr

Fig. 5 demonstrates an example of boundary characterization
for pruning a VGG network on CIFAR-10. Each curve is ob-
tained by varying the pruning rate for one layer while no other
layer is pruned. The collision between the dashed horizontal
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Fig. 5. Boundary characterization for pruning a VGG network trained on
CIFAR-10 with A¢py = 80%.

line, i.e., the accuracy threshold, and the ith
threshold boundary ;.

Decomposition: For SVD and Tucker-2 decomposition, the
threshold vector § represents per-layer minimum ranks 6‘[ | e
(0, 1] satisfying A;p, where a normalized rank of 1 corresponds
to a non-decomposed layer:

curve provides the

6] = min{rank} s.t. z; = {Tank J _E_ A(Mz) > Aspr
1 jFi

Note that real-world models have many more layers and the
pertinent search-space is of much higher dimensionality than in
Fig. 4. For a d-dimensional space, the proposed boundary char-
acterization scheme reduces the effective (continuous) search
volume from 1 to [J%, li] for pruning and []?_, (1 — Als])
for decomposition, therefore, significantly improving search
convergence and solution quality.

By filtering out the non-optimal regions, AdaNS sampling
can find the near-optimal solution within the found margins.
After boundary characterization, we randomly draw the initial
samples from the space enclosed by the threshold vector 6. For
pruning, the i*" element #[i] in each sample vector is drawn
from N (9[i] /2, 8[i] /2). For decomposition, the i*" element Z[i]
is randomly selected from U[6[i], 1].

D. Optimization through Adaptive Sampling

In this section, we enclose the mathematical formulation of
AdaNS adaptive sampling and its connection to optimization. Let
us consider a pool of samples S = {Z;}}¥; which are generated
iteratively and then evaluated via the scoring oracle. Also, let
T'g be the current maximizer for f(-), found across the observed
samples. To maximize the probability of finding a near-optimal
solution, we seek the following property on S:

msa‘x p(f(fé) > a’mamf*)a 0 < amar <1 @)
where P(-) denotes probability and c,q, is a constant value
called the proximity parameter. As o, — 1, the sampled
maxima gets closer to the real function maximizer, i.e., f(Tg) —
f*. To achieve the objective of Eq. (7), we devise an adaptive
sampler for generating S based on two core ideas:

* We choose our samples (S) sequentially: S, S, ...

such that f(S(1.4) is utilized? in choosing Sy ;.

:STI

I'S; is the set of samples from the t*" iteration of AdaNs.
2We use the notation f(S) as follows: f(S) = {f(£)|Z € S}

Algorithm 1: Overview of AdaNS Sampling.

Inputs: Previous samples Sy, fitness oracle f(-), batch
size b, target proximity parameter amqq

Outputs: Sy 1), f(S1:e41))

I: f* =max f(Sp.y)
2! @ = MaXae(0,amq,] (@)t [{T € Syl f(Z) >
af}[>b )
Sg ={Z € S|f(%) > aef*}
procedure SAMPLING SUBROUTINE
Update sampling distribution G;1(-) based on S,
Sample S¢y1 = {Z:}7—; ~ Ger1(")
return S;
end procedure
Sii:e41) = Spp41) Y Spiy
f(Spzt41)) = f(St41) U f(Spag)

e NsEw

[y

e We allow Sq,...,St to be random sets. That is, instead
of choosing S;,1 deterministically, we devise a sampling
distribution G;1(-) such that S¢11 ~ G¢1(-). More pre-
cisely, S¢41 is a random draw from the conditional distri-
bution gt+1|t('|S[1:t])'

Algorithm 1 presents a high-level overview of one iteration in
AdaNS sampling methodology. At each iteration £, the current
estimate of the function maxima f* is obtained based on the pre-
vious observations (Line 1). AdaNS uses a proximity parameter
a; € [0, 1] to extract the set of good samples S, from the history
of previous observations S[m] where S, is the set of samples
T € Sy With f(T) > a¢ f* (Lines 2 & 3). A large value for
the proximity parameter (= 1) is ideal since it allows for better
identification of the function maximum. However, setting the
proximity parameter to a high initial value causes the underlying
sampling to become biased towards the initial good samples
when the local maxima are not yet found. To mitigate this issue,
we adaptively tune o, throughout iterations, such that S, has
a diverse set of members, therefore balancing exploration and
exploitation in the sampling distributions. At each iteration, a;
is set to the maximum value within [0, ctymq-] that allows S, to
have at least b members (Line 2). In practice, o; becomes close
to zero in the initial search iterations and gradually increases
towards amar = 0.95 as the AdaNS search algorithm proceeds.

Once the set of good samples S, is extracted, a sampling
subroutine is applied to generate a new set of samples, S;, ;.
The sampling subroutine utilizes S, to update the sampling
distribution G, 1 from which the next batch of samples S, are
drawn (Lines 5 & 6). The details of AdaNS sampling subroutines
are enclosed in Section V. The newly generated samples are
then evaluated and appended to the sample history. This process
is repeated until convergence, or up to a maximum number of
iterations (T°).

V. AdaNS ADAPTIVE SAMPLING ROUTINES

Recall that AdaNS iteratively establishes a set of evaluated
samples, S[l:T] = S;U---USr, such that the samples gener-
ated at each iteration are more competent than the previously
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observed samples. In other words:

max f(Sp:¢41]) > max f(Sp1.) (&)

This, in turn, ensures that the evaluated samples gradually
move closer to the objective function maximizer. The choice
of new samples at each iteration in AdaNS§ is based on the
adaptive sampling distribution G;1(-) utilized in the sampling
subroutine (see Algorithm 1). The choice of G;.1(-) directly
affects optimization performance, i.e., the maximal returned
value for the objective function as well as the convergence time.
To investigate such effects, we design three different sampling
subroutines for AdaNS, namely, AdaNS-Zoom, AdaNS-Genetic,
and AdaNS-Gaussian. While each subroutine incorporates a
different prior for G¢11(+), all of the sampling distributions are
developed based on the following key insights:

1) In the absence of prior knowledge, uniform sampling
provides the most effective exploration of the functional
landscape of the optimization objective f(-).

2) Assuming mild regularity conditions on f(-), itis intuitive
that increasing sampling rate locally around “good sam-
ples” observed so far is more likely to result in additional
(future) high-score observations.

3) Assuming mild regularity conditions on f(-), itis intuitive
that the line connecting two good samples is likely to be
aligned with the optimal (but unknown) gradient ascend.

In the following, we explain how the above insights are

leveraged to design the sampling policy for AdaNS subroutines.

A. AdaNS-Zoom Sampling Subroutine

Our first sampling subroutine, i.e., AdaNS-Zoom, establishes
Gi+1(-) using a set of uniform probability distributions as the
prior. Uniform sampling requires a large number of samples
that maximally cover the optimization space, in order to locate
the objective function maximizers. This solution, however, is
infeasible for the problem at hand as the number of required sam-
ples and evaluations increases exponentially with the number of
DNN layers. To alleviate this high sample count, we propose an
adaptive methodology that intelligently distributes random sam-
ples across the search-space. AdaNS-Zoom iteratively (1) divides
the space into multiple sub-regions and (2) adaptively tunes the
per-region sample density.

Division: This step determines the boundaries that divide up
the search-space into the aforementioned sub-regions. Our di-
vision algorithm gradually generates a hierarchy of sub-regions
based on the information acquired from previously observed
samples. We start with the whole search-space considered as
one sub-region as shown in Fig. 6(a). Our goal is to use samples
to accurately characterize sub-regions that are more likely to
contain near-optimal solutions. To increase sampling resolution
in such good areas, AdaNS§ gradually zooms into high-quality
sub-regions by dividing them in half as shown in Fig. 6(b)
and 6(d). We quantify the quality of the i*" sub-region by its
share of good samples w;:

_ ISgls

w; = (C))
|S[1:t]|s

Iteration 1 Iteration 2
3 H 2
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[ ] x & % ®
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e X S| [v1=z i
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w|=% ® i .x mwz=% W2=§ X o

Fig. 6. AdaNS-Zoom algorithm. Here, the good and bad samples are shown
with blue circles and red crosses, respectively.
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Overview of AdaNS-Genetic sampling subroutine.
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Fig. 7.

where | - |; counts the total number of samples contained in sub-
region ¢ throughout all iterations. We then choose the sub-region
with maximum w; in each iteration to be divided in half along
its longest dimension.

Sampling: In the first iteration of the algorithm, we uniformly
sample the entire search-space since no prior knowledge is avail-
able. Throughout next iterations, after each division takes place,
new w;s are computed to reflect the portion of good samples
lying in the new sub-regions. To generate a new sample, we
randomly select a sub-region with w; representing the (relative)
chance of the i*" region being selected. We then draw a sample
from a uniform distribution over the selected sub-region. By
repeating this process b times, we obtain the next batch of
samples S 1 = {#;}}_, in Algorithm 1, Line 6.

B. AdaNS-Genetic Sampling Subroutine

To generate higher quality samples based on previous ob-
servations, our second subroutine utilizes a genetic algorithm.
Genetic algorithms are metaheuristic approaches inspired by
natural evolution and the notion of “survival of the fittest.” These
methods can be leveraged as powerful tools to explore large
search-spaces while enjoying high scalability and significantly
low training overhead [23], [38], [39].

Our prior work on utilizing genetic algorithms for DNN
compression has shown impressive results [40]. In this paper,
we aim to utilize similar genetic operations and investigate
AdaNS-Genetic from a sampling point of view. At iteration ¢,
the genetic algorithm evolves the previously evaluated good
samples S, into a new, more competent batch of samples. This
is achieved by performing a set of bio-inspired operations, i.e.,
selection, crossover, and mutation, shown in Fig. 7. Below we
delineate the details of each aforementioned operation.
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Fig. 8. 2D illustration of AdaNS-Gaussian sampling strategies.

_ Selection: The selection step chooses high-quality samples
St ={Z1...,Tp} from S, that will be utilized in generating
the next batch of samples. This is done by performing a non-
uniform sampling (without replacement) from Sy, where the
probability of selecting each sample Z7 is proportional to its
score f; = f(Z7). We normalize the scores as follows:

fi B fmin
- Z‘:il(fi - fmm)’

Here, fmin is the minimum score within f(S,). Subtraction
of the minimum score ensures that the probability of selecting
the lowest-quality sample is zero and it is always eliminated.
Such score-based selection is inherently random and allows for
exploration. As the same time, due to the score-proportionate
selection, high-quality samples are more likely to appear in the
selection. This approach enables AdaNS-Genetic sampling to
achieve a balance between exploration/exploitation.
Crossover: Given the selected set S; = {T; ... Ty}, crossover
generates two offspring by randomly swappingh the vector ele-

fi

(10)

ments in pairs of adjacent samples {Zox_1, ZTox } 2, . We use two
parameters to control the degree of crossover operation: peress
determines the probability of applying crossover between two
samples, and pgyqp is the per-element swapping probability.
The intuition behind crossover is to allow high-quality hyperpa-
rameter configurations to exchange learned patterns and enable
knowledge transfer across samples.

Mutation: Mutation randomly tweaks the elements in each
sample vector in the crossover-ed set g;. Similar to crossover,
we define two control parameters: pp,yate is the probability that
the sample gets mutated and p¢yeq determines the per-element
tweaking probability. Mutation allows for the exploration of
neighborhoods around the selected points. By choosing a small
Pmutate aNd Piyear, We ensure that the desirable qualities of
strong samples are preserved. Each element of a sample 7; € R¢
is mutated by adding a random value drawn from a zero-mean
Normal distribution (0, 0.2). We then clip the values to ensure
they remain in the valid range, i.e., [0,1].

C. AdaNS-Gaussian Sampling Subroutine

Our last sampling subroutine utilizes a combination of Gaus-
sian and uniform distributions to model the adaptive sampling
distribution G(-) based on the previously observed good samples
Sg. Specifically, we draw the new set of samples from a com-
bination of three sampling distributions that collectively form
G(-) as illustrated in Fig. 8; here, previously observed good
samples are shown in dark blue, red crosses denote observed

low-score (bad) samples, and the sampling density is marked
with light blue. We design each of AdaNS-Gaussian sampling
distributions to address one of the insights mentioned at the
begining of Section V:

1) We draw a portion of new samples uniformly from X C
[0,1]¢ (Fig. 8(a)), dubbed Uniform samples. This policy
explores the whole space without prior knowledge.

2) We draw another portion of samples, dubbed Local, from
the vicinity of good samples S, (Fig. 8(b)). The underlying
PDF is a mixture of Gaussians, with centers located at S.

3) We draw the last portion of samples, dubbed Cross, from
a mixture of Gaussians centered in the mid-points of good
samples S, (Fig. 8(c)). This policy has a high sampling
density along the line connecting two good samples.

The intuitions behind AdaNS-Gaussian sampling strategy
rest upon a line of work in sampling theory [41]-[43] that
prove Gaussian Kernels with adaptive variances can recon-
struct smooth non-linear functions. Inspired by that, we vary
the Gaussian variance spatially according to local information
about the approximand [41]; the parameters of the Gaussian
Mixture Models (GMMs) are chosen to maximize the likelihood
of previously successful samples. Below we elaborate on the
above sampling policies.

Uniform Samples: To allow AdaNS-Gaussian to explore un-
seen regions, we select a portion of samples uniformly at random
from the entire search-space. This prevents the search from
becoming too localized upon observing several good samples
in a small region.

Local Samples: To effectively explore the vicinity of good
samples, we use a GMM for sampling [44]. Formally, the
sampling PDF is:

K
P@E) =) w N, %), z{eS,

i=1

(1D

where N (Z, X) is a multi-variate Gaussian distribution [45] with
mean vector # € R% and diagonal covariance matrix represented
with ¥ € R? x R?. Here, w; is a weight parameter that adjusts
the probability of choosing the i*" multi-variate Gaussian. We set
the weights proportional to the value of the objective function,
i.e., w; o< f(£;7). The standard deviation ¥ is determined such
that the Gaussians AV (-, -) cover the so-far observed span of S,:

£j] — min Z3])° V) € {1...d)

TES, TES, (12)
ij = Vi #i

The above choices for the weights and the covariance matrix
allow for an adaptive sampling scheme. First, by incorporat-
ing the scores into the weights (w; oc f(Z;?)), regions around
high-score samples are given a higher priority to be explored.
Second, the standard deviation in Eq. (12) adaptively configures
the sampling range in all dimensions: if members of S, agree
on dimension j, the corresponding U_?j will be small and the
generated samples will be very similar in the j** dimension;
conversely, if members of S, disagree on dimension j, the
corresponding a;‘.’j will be large and the generated samples will
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be scattered in the j** dimension. This enables AdaNS-Gaussian
to automatically tune exploration and exploitation.

Cross Samples: The line connecting two good samples may
represent the direction of gradient ascent for the objective func-
tion f(-). To explore such regions, we draw a portion of samples
from the mid points of current good samples S,. To generate
one sample, we pick a pair of good samples {Z1,Z2} € Sy, and
draw a sample from the multivariate Gaussian N (1,2, X1 2).
The mean value is fi; 2 = # and the diagonal covariance
matrix is set as:

o3 = (1] — Z2[i])*/4  Vie{l...d} (13)
0 =0 EX
This approach searches for samples in the confined space
between pairs of good samples. Multiple Cross samples are
generated by repeating the above process. We explore several
strategies for selecting {F1, T2 }:
@ Select both 7y and 75 randomly from S,.
® Sortall possible pairs {1, T2} € S, based on their sum of
scores f(Z1) + f(Z2) and select pairs from the sorted list.
® Sort individual members T € S, based on their scores
f(Z), sequentially select 1 from the sorted list and T2
as the sample with maximum Euclidean distance to 7.
® Choose 7; as in case @ but select T randomly.
Our experiments show that the fourth strategy renders the
best performance on average. Therefore throughout the rest of
the paper, we use the latter method for pair selection.

VI. RECONSTRUCTION

In this section, we provide an empirical analysis to verify
the effectiveness of the designed sampling distributions G(-) in
finding near-optimal solutions. Towards this goal, we devise a
methodology that reconstructs the opaque objective function,
based on previously evaluated samples. Specifically, at each
iteration ¢, we create an estimate f(-) for the hidden function
f(-) using f(S(1:¢). Upon obtaining the new batch of (unseen)
samples S;; 1 and new measurements f(S; 1), we compute the
(normalized) estimation errors as:

f(@ - J(@
f@

We then compute the mean mean absolute error e,,4 over all
samples. g,y measures how much the obtained value of the
objective function for new samples deviates from our estimation
based on reconstruction. A high error implies that the sampling
subroutine is exploring the space rather than using knowledge
from S[m] to find better samples. Conversely, a small €4, Shows
that the adaptive sampler is exploiting previous good samples
to generate S;,;. Fig. 9 presents the task of pruning a VGG
network trained on CIFAR-10 with AdaNS-Gaussian. Below,
we summarize our observations:
1) The growth in the average score among good samples
f(Sq) shows that AdaNS adaptive sampler iteratively sam-
ple values closer to the function maximizer.

e(F) = F€Sin (14)

0.8

0.6

—e— Average f(5;)

0.4 —4— Proximity Parameter a.

02 —— Reconstruction Error ea.g

0.0

20 0 60 80 100
iteration

Fig. 9. Per-iteration analysis of AdaNS§ sampling.

2) The growth in the proximity parameter o together with
property 1 suggests that the probability of finding the near-
optimal solution is increasing as desired in Eq. (7).

3) The drop in average reconstruction error eqqq together
with property 1 demonstrates the ability of AdaNS in
reconstructing the objective function around its potential
maximizers. Specifically, the history of prior samples
across AdaNSs iterations are sufficient to estimate the value
of the objective function at the future (unseen) samples that
are closer to the function maximizers. _

Establishing f: We consider a GMM prior for f(-):

f@)= Y w Gauss(Z,, %) (15)

T8

where Gauss(Z, §, X)) denotes the value of a multi-dimensional
Gaussian kernel with mean ¢ and covariance matrix ¥ measured
at point Z. Here, w; are scalar weights, T; € S[m] are the centers
of the GMM model located at all previously evaluated samples,
and X; € R%*? are diagonal covariance matrices. For the i'"
component of the GMM centered at Z;, we find the closest
sample Z; with minimum Euclidean distance to Z;. We then
use the element-wise absolute difference, AT; = |Z; — I;| to
compute the covariance matrix ¥;:

{a;m = B(AZ;[m])2 Yme{1...d}

o, =0 VYm #n (16)

The scalar 5 = m normalizes the diagonal elements such
that the multivariate Gaussian component is diminished by a fac-
tor of 2 in the mid-point of Z;, Z;. Given the Gaussian means T;
and covariance matrices ¥;, the weights w; can be determined by
minimizing the error between real function evaluations f(Sy;.;)

and the estimates _)F‘H(S[ljt] ):

wi ... Wk = argmin Z |£(Z) — £(@)?

wy... W IES[l;‘_ll

(17

which is solved by Least-Square Optimization [46].

VII. EXPERIMENTS

We provide extensive evaluations on CIFAR-10 and ImageNet
benchmarks and compare with prior works in RL, Bayesian
Optimization, and several heuristics. The evaluated network
architectures include AlexNet, VGG, ResNet family, and Mo-
bileNets, implemented in PyTorch. We randomly select 1,000
images from the training data to use as validation set for score
computation. We optimize hyperparameters for non-structured
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Fig. 10. Comparison between AdaNS sampling subroutines for pruning a 2-
layer DNN. The total number of samples is the same in each experiment. AdaNS-
Gaussian achieves better exploration/exploitation tradeoff as it identifies the
global maximum and concentrates the sampling around it.

(P,) and structured (P%) pruning, SVD and Tucker decompo-
sition (D), and combination of multiple methods (D + Ps).
In our experiments, sample portions in AdaNS-Gaussian are
assigned to be 45% Local, 45% Cross, and 10% Uniform.
For AdaNS-Genetic, the crossover and mutation parameters are
Setto prutate = 0.2, Prwear = 0.05, peross = 0.8, Pswap = 0.2
following [39], [40]. Additional implementation details and our
experimental setup for training and fine-tuning of benchmarked
DNNs are included in Appendix B.

A. Effect of Sampling Strategy on Convergence

In this section, we investigate the impact of the sampling
strategy on convergence and optimization end result. We first
visualize the samples from our three subroutines for an example
2-layer network. Next, we move to pruning a real-world DNN
benchmark and compare the convergence behavior of AdaNS-
Zoom, AdaNS-Genetic, and AdaNS-Gaussian.

2-layer Example Network: The hyperparameter space for
this example is Z € [0,1]? where each element of ¥ repre-
sents the pruning rate for one layer. For this small example
network, we executed a brute-force grid search to extract the
heatmap of the pertinent objective function f(Z) as shown in
Fig. 10. Here, the blue and yellow colors denote minimum
and maximum score function values, respectively, and red dots
represent the samples. As seen, the AdaNS-Zoom subroutine
(left) becomes concentrated on two of the local maxima regions
(shown by black circles) but misses the global maximum located
at (0.4,0.3). AdaNS-Genetic (middle) achieves more diversity
than AdaNS-Zoom, and finds the neighborhood of the actual
maximum; however, it does not achieve concentrated sampling.
Finally, AdaNS-Gaussian (right) identifies the global maximum
and concentrates the sampling around it.

VGG Benchmark: We use AdaNS for the task of structured
pruning to compress a VGG network on CIFAR-10 dataset. We
also provide the performance of a naive method that uniformly
samples the entire search-space. Fig. 11-(left) presents the evo-
lution of averageed good scores f (S, ) at each iteration, with Sy
denoting the set of good samples. As seen, the naive sampling
fails to find the maxima in the high-dimensional optimization
space at hand. This means unless carefully designed, a given
naive sampling strategy that arbitrarily changes the underlying
hyperparameters fails to sample from correct regions of the
space. However, our careful design of the sampling strategies can

—*— Naive Uniform  —=— AdaNS-Zoom  —— AdaNS-Genetic —#— AdaNS-Gaussian
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Fig.11. Convergence analysis of various sampling strategies across algorithm
iterations. (left): mean score achieved by good samples. (right): Proximity
parameter value.

TABLEI
ACCURACY AND FLOPS OF THE FINAL COMPRESSED MODEL USING VARIOUS
SAMPLING METHODOLOGIES. SAMPLE SIZE IS b = 50 AND WE LET EACH
SAMPLING ALGORITHM RUN FOR 100 ITERATIONS ON A VGG NETWORK
TRAINED ON CIFAR-10. A;p, 1S SET TO T0%

Sampling Strategy | Accuracy” (%) FLOPs (%)
Naive Uniform 73.5 40.1
AdaNS-Zoom 70.4 374
AdaNS-Genetic 70.6 35.3
AdaNS-Gaussian 73.5 34.3

* The reported accuracy is before fine-tuning.

significantly change the performance by successfully arriving
at the optima. AdaNS-Gaussian shows the largest growth in
score suggesting that it is more successful in generating more
competent samples based on prior observations. This is due to
the Gaussian kernels in AdaNS-Gaussian which enable maximal
exploration of sub-regions that potentially contain near-optimal
solutions. AdaNS-Zoom and AdaNS-Genetic perform a more
localized search and thus demonstrate slower convergence.

Fig. 11-(right) shows how the proximity parameter o; evolves
over time. Initially, o; is tuned to a small value to allow ex-
ploration of the entire search-space. As the search proceeds,
the value of «; is increased to direct the sampling towards the
identified good samples. As seen, o rises quickly to a0 = 0.9
for AdaNS-Gaussian and AdaNS-Genetic while it has a slower
growth in AdaNS-Zoom. This suggests that AdaNS-Gaussian
and AdaNS-Genetic can quickly learn to generate samples that
are equally good or better than previously seen samples.

We further dissect the maximal score function in terms of
accuracy and FLOPs in Table 1. The obtained accuracy and
execution cost from each method confirms the importance of
the sampling strategy on the final optimization result.

B. Quantitative Results on CIFAR-10

We apply AdaNS-Gaussian and AdaNS-Genetic to pre-trained
CIFAR-10 architectures and compare our results with prior art
in Table II. We set the number of samples to 100 for ResNet-56
and ResNet-50, 200 for ResNet-110, and 50 for VGG. Ay, is
set to 90% for ResNet-X and 65% for VGG. For all networks,
we let AdaNS§ sampling run for 50 iterations.

Non-structured Pruning (P, in Table II): We perform non-
structured pruning on ResNet-50 and report the ratio of non-zero
model parameters. Ay, is set to 93% and we do not perform
any fine-tuning on the compressed model. As shown, AdaN§-
Gaussian and AdaNS-Genetic achieve higher accuracy with
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TABLE I
COMPARISON WITH CONTEMPORARY COMPRESSION METHODS BASED ON THE
NON-ZERO PARAMETER RATIO/FLOPS

CIFAR-10 ImageNet
. Topl Cost . Topl Top5 Cost
Model Policy %) (%) Model Policy %) (%) (%)
Baseline 937 100 . Baseline 60.7 800 100
% AMC [12] 935 400 %mcm] 548 - 50
2 Rethinking [21] 934 200 5 Geneic (P,) 56.1 782 85
3 Genetic (P,,) 93.6 30.0 Gaussian (P,) 551 783 7.0
Gaussian (P,) 940 231 Baseline 751 930 100
Baseline 936 100 SFP [3] 621 846 582
Rethinking [21]  93.1 724 SSS [24] 718 908 570
CP [4] 918 500 Rethinking [21] 750 - 500
8 AMC [12] 919 500 g CP[4] - 908 500
& SFP[3] 933 474 & GDP[I] 719 907 487
% PocketFlow [)] 928 400 % ThiNet [7] 71.0 900 440
& Genetic (P.) 932 440 & Rethinking[21] 716 - 300
Gaussian (P,) 931 40.6 Genetic (P,) 732 914 419
Gaussian (D) 935 59.1 Gaussian (P,) 726 911 29.1
Gaussian (D+P,) 932 369 Gaussian (D) 743 921 45
Baseline 940 100 Gaussian (D+P,) 721 909 237
Rethinking [21] 936 614 Baseline 71.1 900 100
S Filter Pruning [5] 933 614 GDP (1] 675 8/9 245
% AMC[12) 938 592 RNP [9] - 863 200
Z Genetic (P,) 936 412 _ SPP[8] - 876 200
& Gaussian (P) 939 339 T AMC[12] - 882 200
Gaussian (D) ~ 939 553 3 Rethinking[21] 710 - 200
Gaussian (D+P,) 92.6 219 7 Genetic (P,) - 881 200
Baseline 936 100 Gaussian (P,) 688 883 19.6
Rethinking [21] 937 65.8 Gaussian (D) 706 90.1 310
ThiNet [7] 934 394 Gaussian (D+P,) 684 885 141
Q NRE [2] 934 324
= Genetic (Py) 933 328
Gaussian (P,) 932 296
Gaussian (D) 935 255
Gaussian (D+P.) 931 145

1.7x and 1.3x lower parameters compared to state-of-the-art
Reinforcement Learning method, AMC [12]. Note that lower
FLOPs and comparable accuracy of [21] are due to training the
model from scratch whereas AdaNS and [12] do not fine-tune.

Structured Pruning (P in Table II): Comparisons are based
on the number of operations per inference, i.e., FLOPs, relative
to the uncompressed baseline. With similar accuracy, AdaNS-
Gaussian achieves 1.5x lower FLOPs than prior art (on aver-
age).

Decomposition and Pruning (D + P, in Table II): To unveil
the full optimization potential of our adaptive sampling method-
ology, we allow AdaNS to learn and combine multiple compres-
sion techniques, namely, structured pruning, SVD, and Tucker.
The D + P, experiments are conducted by first decomposing the
network and then applying pruning. As shown in Table II, AdaNS
pushes the limits of compression by 2.4 on average with less
than 1% drop in accuracy compared to state-of-the-art works.
We also report FLOPs reduction by the combination of SVD
and Tucker decomposition methods (shown by D in Table II).

C. Quantitative Results on ImageNet

Table II summarizes AdaNS results on ImageNet. Number
of samples is 20 for AlexNet, 100 for ResNet-50, and 50 for

VGG-16. We run AdaNS for 50 iterations with A, of 10% for
all models. The final accuracy is improved by fine-tuning.

Non-structured Pruning (P, in Table II1): We perform non-
structured pruning on AlexNet and report the ratio of non-zero
model parameters. As seen, AdaNS-Gaussian achieves higher
accuracy with 2% higher parameter size compared to a Bayesian
Optimization approach, i.e., CAC [17].

Structured Pruning (P, in Table II): On ResNet-50, AdaNS-
Genetic and AdaNS-Gaussian compress the models to 1.2x
and 1.6x less FLOPs on average while achieving higher top-5
accuracy compared to prior works. On VGG-16, AdaNS out-
performs all heuristic methods and gives competing results
with [21] and [12]. Note that [21] does not propose a hyper-
parameter optimization algorithm and merely focuses on the
training already-compressed DNNs. As Such, their approach is
orthogonal to AdaNS and can be combined with our method to
further improve final accuracy.

Decomposition and Pruning (D + P; in Tab. II): Using a
combination of decomposition and structured pruning, AdaNS
achieves 2.0 lower FLOPs than related work (on average) with
slightly higher accuracy on ResNet-50. On VGG-16, AdaNS
pushes the state-of-the-art FLOPs reduction from 5.0 to 7.1x
with higher accuracy.

D. Compressing Compact Networks

To further demonstrate the effectiveness of AdaNS opti-
mization, we apply compression to MobileNet architectures
trained on ImageNet dataset. These networks are specifically
designed for embedded applications with strict efficiency con-
straints. As such, MobileNets inherently have very low com-
plexity/redundancy which renders their compression quite chal-
lenging. We apply pruning to MobileNetV1 and MobileNetV2
with a sample size of b = 50, and let the adaptive sampling run
for 100 iterations.

We compare the compression rate and accuracy achieved by
AdaNS with the FLOPs-accuracy Pareto curve of the original
MobileNet architectures [18], [19]. We further compare AdaNS
with the state-of-the-art AutoML approaches [12], [16] and a
compression-aware training methodology, US-Nets [20], [47].
Table III encloses the results of applying structured pruning to
MobileNetV1 and MobileNetV2. We benchmark several target
FLOPs and compare them with prior work with similar compu-
tational complexities. On average, AdaNS achieves 1.2% better
accuracy than the MobileNetV1 Pareto curve. Compared to
US-Nets, AdaNS achieves an average of 1.0% higher accuracy.
Under ~ 50% FLOPs, AdaNS$ achieves 1.3% higher accuracy
than NetAdapt. Compared to AMC, AdaNS achieves lower
FLOPs with comparable accuracy (—0.1%). On MobileNetV2,
for a 30% FLOPs reduction, AdaNS achieves lower FLOPs and
higher accuracy than US-Nets and higher accuracy with the same
FLOPs compared to AMC and the MobileNetV2 Pareto curve.

Measured Speedup: We present measured speedups of
AdaNS compressed MobileNets on an embedded CPU (ARM
Cortex-A57) and GPU (NVIDIA Pascal) in Table IV. Measure-
ments are averaged on 100 runs using a batch size of 32. AdaNS
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TABLE III
PRUNING OF MOBILENETV1&V2 ON IMAGENET

Topl Top5

Policy % (o FLOPs

Baseline (1x) 706 895 560M
MobileNetV1 (0.75%) [18] 684 882 325M
US-Nets [47] 695 - 325M
AdaNS-Gaussian 705 83 323M

< US-Nefs [47] 688 - 287M
% AMC[12] 705 8.1 285M
% NetAdapt [16] 691 - 284M
B AdaNS-Gaussian 704 8.1 283M
= US-Nets [47] 66.8 - 2ITM
AdaNS-Gaussian 679 81 210M
MobileNetV1 (0.5%) (18] 637 -  149M
US-Nets [47] 635 - 136M
AdaNS-Gaussian 641 854 136M

o _Baseline (1x) 716 903 313M
% MobileNetV2 (0.75%) [19] 698 883 220M
% US-Nets [47] 700 - 22M
E  AMC[12] - 893 220M
S AdaNS-Gaussian 701 895 220M

TABLE IV

AdaN S COMPRESSED MOBILENETS SPEEDUP ON EMBEDDED CPU AND GPU
FOR STRUCTURED PRUNING ON IMAGENET

Model Theoretical Real Speedup
Speedup  Cortex-A57 (CPU)  Pascal (GPU)
1.7x 1.6x 1.3x
. 2% 1.7x 1.4x
MobileNetV1 27x 2 5% 1 7x
4x 3.4x 1.9%
MobileNetV2 1.4x 1.4x 1.4x

successfully models the hardware cost to achieve real speedups
on par with theory.

E. Search Overhead and Scalability

The core computational load in AdaNS algorithm corresponds
to the evaluation of a batch of b samples. For each sample T;
in the batch, the evaluation phase comprises transforming the
sample to its corresponding compressed DNN }\:ff‘., measuring
the inference accuracy on the validation data, and emulating the
execution cost. Since samples in a batch are independent, the
evaluation step can be well-parallelized on multiple GPU de-
vices to achieve faster search convergence. Aside from evalua-
tion, each iteration includes updating the sampling strategy and
generating a new batch of samples. These steps, however, incur
negligible runtime compared to the evaluation stage.

Table V summarizes the runtime of AdaNS algorithm for
several benchmarks and datasets. Runtimes are measured on
a machine with an Intel Xeon E5 CPU and four NVIDIA Titan
Xp GPUs. The results show high scalability: runtime drops
almost linearly with the number of GPUs. The state-of-the-art
RL algorithm reports ~1 hour to compress CIFAR-10 architec-
tures [12]. For their most complex benchmark, i.e., ResNet-56,
AdaNS achieves a search time of only ~12 minutes on a single
GPU and ~3 minutes on four GPUs.

TABLE V
SEARCH RUNTIME OF ADANS-GAUSSIAN FOR PRUNING ON VARIOUS
BENCHMARKS. HERE, b DENOTES THE NUMBER OF SAMPLES PER ITERATION
AND Njj;eps 1S THE NUMBER OF SEARCH ITERATIONS

Search Time (minutes)
Dataset  Arch. b Nies TGPU 2GPU _3GPU_4GPU

AlexNet 50 50 10 5 3 3
% VGG-16 50 50 112 57 38 28
% ResNet-50 100 50 145 73 49 36
E  MobileNetVl 50 100 97 48 32 24
MobileNetV2 50 100 116 57 38 25
S VGG 50 50 3 2 1 1
%' ResNet-50 100 50 35 19 13 11
£ ResNet-56 100 50 12 7 5 3
O ResNet-110 200 50 55 30 2 16
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Fig.12. (a) Set of randomly initialized samples at the first iteration. (b) Set of
good samples S, upon convergence.
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Fig. 13.  Original per-layer FLOPs versus AdaNS pruning pattern.

F. Analysis and Discussion

In this section, we look into AdaNS generated samples and
provide discussions. For brevity, we only focus on AdaNS§-
Gaussian subroutine that achieves superior results compared to
AdaNS-Zoom and AdaNS-Genetic. We consider the VGG archi-
tecture trained on CIFAR-10 and compress it with structured
pruning for A;p, = 60%. The initial samples obtained from our
directed initialization method are shown in Fig. 12(a), where
each column corresponds to a hyperparameter vector and each
row represents a certain DNN layer. After applying AdaNS-
Gaussian for 50 iterations, the set of good samples in Fig. 12(b)
are learned; the columns (members of S;) strongly resemble
one another and have similarly high scores upon convergence.
AdaNS successfully learns expert-designed rules: first and last
layers of the network (first and last rows in Fig. 12(b)) are
given high densities to maintain the inference accuracy. AdaNS
performs whole-network compression by encoding all DNN
layers’ hyperparameters in each sample. As such, our algorithm
can learn which configuration of hyperparameters least affects
model accuracy and most reduces the overall FLOPs. To show
this capability, we present the per-layer FLOPs from one of the
obtained good samples of Fig. 12(b) in Fig. 13. For each layer,
the bars show the percentage of total FLOPs in the original
model; the curve shows the percentage of pruned FLOPs in the
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Ablation studies for VGG on CIFAR-10:(a) Effect of initialization method. (b) Effect of sample count. We show the trend lines as well as a fraction

of samples (black dots) across AdaNS iterations. (c) Effect of mutation and cross-over probabilities for AdaNS-Genetic. Here, samples shown in grey have lower
accuracy than A;p,. = 60% while samples shown in black meet the threshold. Red dots correspond to the highest-quality sample in that iteration.

compressed network. As seen, the optimal pruning rates (red
curve) show arbitrary patterns that are very hard to identify for
human experts. AdaNS automatically extracts such patterns by
an adaptive search.

G. Ablation Study

This section studies the effect of various AdaNS$ parameters
on algorithm convergence and end result. For brevity, we only
focus on structured pruning for VGG on CIFAR-10.

Effect of Initialization: Fig. 14(a) shows the evolution of
FLOPs ratio when running AdaNS-Genetic algorithm with two
initialization policies: one with uniformly random samples and
one with our proposed initialization scheme discussed in Sec-
tion IV-C. As seen, naive initialization harms the convergence
rate and final FLOPs.

Effect of Sample Count: Fig. 14(b) presents the effect of
number of evaluated samples per iteration of AdaNS-Genetic on
convergence. A higher number of samples results in a smoother
convergence and lower final FLOPs, due to the higher capacity
for exploration/exploitation. This effect saturates for a large
enough sample set. We further observed that the per-iteration
sample count should be proportional to the individual length.

Effect of Accuracy Threshold: The accuracy threshold A,
in Eq. (4) determines model accuracy after compression. In
our experiments, we observed a monotonic correlation between
A¢nr and final accuracy after fine-tuning. This property elim-
inates the need for fine-tuning each compressed DNN con-
figuration in between algorithm iterations which significantly
improves AdaNS search efficiency and timing overhead. Note
that a smaller Ay, generally results in a lower hardware cost.

Mutation and Crossover Parameters: These parameters af-
fect AdaNS-Genetic sampling convergence. We conduct two
experiments, one with (Pputate, Peross) = (0.8,0.2) and the
other with ( Pryutate, Peross) = (0.4,0.1) and compare the con-
vergence in Fig. 14(c). Higher (Pnutate, Peross) allows more
exploring, leading to faster convergence while smaller proba-
bilities result in a more stable evolution. As seen, both settings
converge to similar final FLOPs.

Effect of Pair Selection for Cross Samples: Fig. 15 compares
the convergence behavior of the four proposed pair selection
strategies for Cross samples (Section V-C). As seen, strategy @
achieves the highest final score with lowest variations (shown

Random Pairs Top Average Score Pairs
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Fig. 15. Convergence curves for Cross samples pair selection (Section V-C).

Graphs are generated over 10 runs.

with the error bars). Strategy @ has a fast but premature conver-
gence due to lack of exploration. In addition, strategy @ has a
high variation. This is due to the high dependency of strategy @
on the configuration of good samples, which differs across runs.
Strategy @ and ® offer a smooth convergence with low variance
but their final score is lower than strategy @.

VIII. CONCLUSION

This paper proposes AdaNS§, and adaptive sampling method-
ology that can automatically tune hyperparameters for DNN
compression. We first formulate DNN compression as searching
a vector space that spans possible hyperparameters. Next, we
define a generic score function to quantify the “goodness”
of each hyperparameter vector by combining inference accu-
racy and execution cost. This approach allows us to address
DNN compression as optimizing the unknown score function
by sampling from its input space. To find the maximizer of
the score function, we develop an iterative sampling strategy,
along with three adaptive sampling subroutines: AdaNS-Zoom,
AdaNS-Genetic, and AdaNS-Gaussian. We evaluate these sam-
pling strategies and show that AdaNS-Gaussian can achieve
superior search convergence. We examine AdaNS on structured
and non-structured pruning of deep neural networks and show
that outperforms the majority of human-designed stat-of-the-art
network pruning algorithms.
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Fig. 16.  Structured pruning. Top: pruning is implemented using masks (white
plains show pruned feature-maps). Bottom: masks and pruned channels are
removed after optimization.

APPENDIX A

This section serves as a supplement for Section IV-A. Recall
the global encoding scheme 7 (M, I) that translates a vector
of compression hyperparameters ¥ to its corresponding com-
pressed architecture M'f. For each compression method studied
in the paper, we provide details on composing the vector of
compression hyperparameters . We further introduce the trans-
formation 7 (M, Z) that uniquely determines the compressed
model based on the provided hyperparameters Z.

Pruning: Pruning reduces the model size by setting a per-
centage of low priority parameters/channels to zero [4], [5],
[33]. We allocate one continuous value p € [0,1], per layer,
to represent the ratio of non-zero values. We consider two
contemporary DNN pruning methods, namely, structured and
non-structured pruning. Structured pruning aims at removing a
portion of feature-map channels while non-structured pruning
removes a subset of DNN layer weights.

Having defined the vector of hyperparameters Z for pruning,
we implement the transformation 7 (M, ) following common
practice in prior art. For structured pruning, we use the sum of
absolute gradients of model loss with respect to ReLU feature-
map channels for pruning priority [22]. For a ReLU layer with ¢
feature-map channels and a pruning rate p, the [p x ¢| channels
with lowest priorities (lower absolute gradients) are removed.
For non-structured pruning, we use the absolute value of weights
to prioritize them [33]. For a weight tensor W € R¥*k>exf and
pruning rate p, the |p x k x k x ¢ x f]| elements with lowest
absolute values are pruned.

Fig. 16 illustrates our implementation of structured pruning
for convolutional layers; feature-map channels are multiplied
by binary masks to implement pruning. Pruning rate can be
altered at each layer by setting proper values (0 or 1) at the
corresponding masks. Non-structured pruning is different than
structured pruning in that the binary masks are applied on
weights rather than output feature-maps. Usage of masks enables
simulating the functional behavior of the pruned network at
search time, without need for re-compiling the DNN graph per
hyperparameter configuration. The graph is only modified once
at test time where the channels with 0-valued masks are removed.

SVD: We apply SVD on weight parameters of fully-
connected layers (W € R°*f) and point-wise convolutions
(W € R1x1xexf) For SVD, the compression parameter is the
decomposition rank which takes an integer value in {1, ..., R}
where R = min(e, f). We allocate one continuous-valued
rank € [%,1] per layer to form the hyperparameter vector

T. Each element Z[i] is interpreted as a decomposition rank
equal to |Z[i] x R;|. For SVD, the transformation 7T (M, T)
decomposes the weight kernels in different DNN layers with
their corresponding ranks in Z as shown in Fig. 17.

Tucker-2: Tucker decomposition is a generalized Higher Or-
der SVD (HOSVD) for arbitrary-shaped tensors. We apply this
method on 4-way weight tensors in convolutional layers, W &
RExkxexf We focus on Tucker-2 which only decomposes the
tensor along c and f directions, i.e., output and input channels.
For Tucker-2 decomposition, the compression parameter for
each convolution layer is a tuple of integer-valued approxima-
tion ranks (ry,72), wherey € {1,...,c}andry € {1,..., f}.
To implement Tucker-2, we allocate two normalized and real-
valued hyperparameters rank; € [1,1] and rank; € [%, 1] per
layer. We map these continuous values to valid integer ranks
by using a similar approach as in SVD. The transformation
T (M, T) then decomposes DNN layer weight kernels with their
corresponding ranks in 7 following the practice shown in Fig. 17.

APPENDIX B

This section serves as a supplement for Section VII which
provides implementation details and our experimental setup for
training and fine-tuning of benchmarked DNNs.

Data Augmentation: For the CIFAR-10 dataset, we use stan-
dard data augmentation routines popular in prior work [48], [49].
The samples are normalized using per-channel mean and stan-
dard deviation. At training time, random horizontal mirroring,
shifting, and slight rotation are also applied. For ImageNet,
we use the augmentation scheme proposed in [50], [51] to
pre-process input samples. During training, we resize the shorted
edge of the image to 256 pixels. A 224 x 224 crop is then
randomly sampled from the image. We also perform per-channel
normalization as well as horizontal mirroring [52].

Training and Fine-funing: We train the networks from
scratch following the parameter setup and training schedule
adopted by the original papers: [48] for ResNet-X on CIFAR-
10 and ResNet-50 on ImageNet, [50] for VGG-16 on Ima-
geNet, [52] for AlexNet on ImageNet, and [18], [19] for Mo-
bileNets on ImageNet. For CIFAR-10, we use a VGG-variant
as implemented in [2]. We compress the models using AdaNS
and fine-tune them for 20 and 60 epochs with batch sizes 64
and 128 on CIFAR-10 and ImageNet, respectively. SGD with
momentum of 0.9 and Adam optimizer are used for fine-tuning
CIFAR-10 and ImageNet, respectively. The fine-tuning learning
rate is initialized to 1le — 3 and reduced by a factor of 10, 20
after 5, 15 epochs on ImageNet and after 20, 40 epochs on
CIFAR-10. For MobileNet benchmarks the fine-tuning learning
rate is initialized to 1le — 4 and reduced by a factor of 10 after
5,10, and 15 epochs. Experiments are run on a machine with an
Intel Xeon-E5 CPU and 4 Nvidia Titan Xp GPUs.

Implementation Details: Among the compression techniques
studied in this paper, structured pruning needs especial atten-
tion. The pruned network’s functionality is simulated using
mask layers as discussed in Appendix A. For regular network
architectures such as VGG and AlexNet, the mask layers uti-
lized for structured pruning are placed after ReLU activations.
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Fig. 18. Mask layers in ResNet residual blocks.

For residual blocks in ResNet architectures, we put the cor-
responding mask layer after adding the residual connection,
as shown in Fig. 18. This approach accommodates different
residual connections; in the case where the residual connec-
tion is performed using a convolution layer,’ the succeeding
mask also applies compression to the convolution inside the
residual connection. For MobileNets, we place the masks after
depth-wise separable convolutions, with no mask applied after
the preceding point-wise convolution layer. Since there is a one
to one mapping of channels in the depth-wise layer, pruning
the output feature-maps of the depth-wise layer is equivalent to
pruning the preceding point-wise convolution as well.

REFERENCES

[1] S.Lin et al., “Accelerating convolutional networks via global & dynamic
filter pruning,” in Proc. 27th Int. Joint Conf. Artif. Intell., 2018, pp. 2425—
2432,

[2] C. Jiang et al., “Efficient DNN neuron pruning by minimizing layer-wise
nonlinear reconstruction error,” in Proc. Int. 27th Joint Conf. Artif. Intell.,
2018, pp. 2298-2304.

[3] Y.He etal., “Soft filter pruning for accelerating deep convolutional neural
networks,” in Proc. 27th Int. Joint Conf. Artificial Intell., 2018, pp. 2234
2240.

[4] Y.He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep
neural networks,” in Proc. IEEE Int. Conf. Comput. Vision, 2017, pp. 1389—
1397.

[5] H. Li et al., “Pruning filters for efficient convnets,” in Proc. Int. Conf.
Learn. Represent., 2017.

[6] J. Wu et al., “PocketFlow: An automated framework for compressing and
accelerating deep neural networks,” NIPS Workshop CDNNRIA, 2018.

[7] J.Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for deep
neural network compression,” in Proc. IEEE Int. Conf. Comput. Vision,
2017, pp. 5058-5066.

[8] H. Wang et al., “Structured probabilistic pruning for convolutional neural
network acceleration,” 2017, arXiv: 1709.06994.

[9] I Lin et al, “Runtime neural pruning,” in Proc. Advances Neural Inf.

Process. Syst, 2017, pp. 2181-2191.

M. Samragh et al., “CodeX: Bit-flexible encoding for streaming-based

FPGA acceleration of DNNs,” 2019, arXiv:1901.05582.

[10]

3This is sometimes necessary to adjust the number of channels.

=

Ilustration of weight decomposition for common neural network layers. (a) Applying SVD to a point-wise convolution layer. (b) Applying SVD to a

[11]
[12]

[13]

[14]

[15]

[16]

(17
[18]

[19]

[20]
[21]

[22]

[23]
[24]
[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

763

g WlXIXc‘xf

Feature-maps Feature-maps

Tucker 2

—PI@DI—P

Wix Ixcxr; k><icxr| xr; Wixi XraXf

(c)

K. Wang et al., “HAQ: Hardware-aware automated quantization,” in Proc.
IEEE Conf. Comput. Vision Pattern Recognition, 2019, pp. 8612-8620.
Y. He et al., “AMC: AutoML for model compression and acceleration on
mobile devices,” in Proc. Eur. Conf. Comput. Vision, 2018, pp. 784-800.
A.Elthakeb et al., “ReLeQ: An automatic reinforcement learning approach
for deep quantization of neural networks,” in Proc. NeurIPS ML Syst.
Workshop, 2018.

M. Samragh et al., “AutoRank: Automated rank selection for effective
neural network customization,” in Proc. ML-for-Syst. Workshop 46th Int.
Symp. Comput. Architecture, 2019.

M. Javaheripi ef al., “Peeking into the black box: A tutorial on automated
design optimization and parameter search,” IEEE Solid-State Circuits
Mag., vol. 11, no. 4, pp. 23-28, Fall 2019.

T.-J. Yang et al., “NetAdapt: Platform-aware neural network adaptation for
mobile applications,” in Proc. Eur. Conf. Comput. Vision, 2018, pp. 285—
300.

C. Chen et al., “Constraint-aware deep neural network compression,” in
Proc. Eur. Conf. Comput. Vision, 2018, pp. 400-415.

A. G.Howard ef al., “MobileNets: Efficient convolutional neural networks
for mobile vision applications,” 2017, arXiv:1704.04861.

M. Sandler et al., “MobileNetV2: Inverted residuals and linear bottle-
necks,” in Proc. Conf. Comput. Vision Pattern Recognit., 2018, pp. 4510—
4520.

J. Yu, “Slimmable neural networks,” in Proc. Int. Conf. Learn. Represen-
tations, 2019.

Z.Liu et al., “Rethinking the value of network pruning.” in Proc. Int. Conf.
Learn. Representations, 2018.

P. Molchanov ef al., “Pruning convolutional neural networks for re-
source efficient transfer learning,” in Proc. Int. Conf. Learn. Represent.,
2017.

T. Salimans ef al., “Evolution strategies as a scalable alternative to rein-
forcement learning,” 2017, arXiv: 1703.03864.

Z. Huang and N. Wang, “Data-driven sparse structure selection for deep
neural networks,” in Proc. Eur. Conf. Comput. Vision, 2018, pp. 304-320.
M. Javaheripi et al., “SWNet: Small-world neural networks and rapid
convergence,” 2019, arXiv:1904.04862.

S. Hussain, M. Javaheripi, P. Neekhara, R. Kastner, and F. Koushanfar,
“FastWave: Accelerating autoregressive convolutional neural networks on
FPGA,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., 2019, pp. 1-8.
Y. Hu ef al., “A novel channel pruning method for deep neural network
compression,” 2018, arXiv:1805.11394.

L. F. Yang and M. Wang, “Reinforcement leaning in feature space: Matrix
bandit, kernels, and regret bound,” 2019, arXiv:1905.10389.

N. Srinivas ef al., “Information-theoretic regret bounds for gaussian pro-
cess optimization in the bandit setting,” IEEE Trans. Inf. Theory, vol. 58,
no. 5, pp. 3250-3265, May 2012.

S. Shekhar er al., “Gaussian process bandits with adaptive discretization,”
Electron. J. Statist., vol. 12, no. 2, pp. 3829-3874, 2018.

E. Hazan ef al., “Hyperparameter optimization: A spectral approach,” in
Proc. Int. Conf. Learn. Represent., 2018.

J. Haupt et al., “Distilled sensing: Adaptive sampling for sparse detection
and estimation,” IEEE Trans. Inf. Theory, vol. 57, no. 9, pp. 6222-6235,
Sep. 2011.

S. Han ef al., “Learning both weights and connections for efficient neural
network,” in Proc. Conf. Neural Inf. Process. Syst., 2015, pp. 1135-1143.
H. Zhou et al., “Less is more: Towards compact CNNs,” in Proc. Eur.
Conf. Comput. Vision, 2016, pp. 662—-677.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 09,2021 at 00:03:54 UTC from IEEE Xplore. Restrctions apply.



764

[35]
[36]
[37]
[38]
[39]

[40

=

[41]

[42]

[43]

IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 14, NO. 4, MAY 2020

Y.-D. Kim et al., “Compression of deep convolutional neural networks for
fast and low power mobile applications,” 2015, arXiv:1511.06530.

T. Bick, D. B. Fogel, and Z. Michalewicz, Handbook of Evolutionary
Computation. Boca Raton, FL, USA: CRC Press, 1997.

E. K. Chong and S. H. Zak, An Introduction to Optimization, vol. 76.
Hoboken, NJ, USA: Wiley, 2013.

E. Real ef al., “Large-scale evolution of image classifiers,” in Proc. 34th
Int. Conf. Mach. Learn., 2017, pp. 2902-2911.

L. Xie and A. Yuille, “Genetic CNN.” in IEEE Int. Conf. Comput. Vision,
2017, pp. 1379-1388.

M. Javaheripi et al., “GeneCALI: Genetic evolution for acquiring compact
AL” 2020, arXiv:2004.04249.

T. Hangelbroek and A. Ron, “Nonlinear approximation using Gaus-
sian kernels,” J. Functional Anal., vol. 259, no. 1, pp. 203-219,
2010.

K. Hamm, “Nonuniform sampling and recovery of bandlimited functions
in higher dimensions,” J. Math. Anal. Appl., vol. 450, no. 2, pp. 1459-1478,
2017.

Y. Ying and D.-X. Zhou, “Learnability of Gaussians with flexible vari-
ances,” J. Mach. Learn. Res., vol. 8, pp. 249-276, 2007.

[44]
[45]
[46]

[47]

[48]
[49]
[50]
[51]

[52]

Z. Zivkovic, “Improved adaptive Gaussian mixture model for background
subtraction,” in Proc. 7th Int. Conf. Pattern Recognit., 2004, pp. 28-31.
E. Lukacs, “A characterization of the normal distribution,” Ann. Math..
Statist., vol. 13, no. 1, pp. 91-93, 1942.

R. T. Birge, “The calculation of errors by the method of least squares,”
Phys. Rev., vol. 40, no. 2, p. 207, 1932.

J. Yu and T. S. Huang, “Universally slimmable networks and improved
training techniques,” in Proc. Int. Conf. Comput. Vision, Oct. 2019,
pp. 1803-1811.

K. He et al., “Deep residual learning for image recognition,” in Proc. Conf.
Comput. Vision Pattern Recognit., 2016, pp. 770-778.

G. Huang et al., “Deep networks with stochastic depth,” in Proc. Eur. Conf.
Comput. Vision, 2016, pp. 646-661.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,2015.
K. He et al., “Identity mappings in deep residual networks,” in Proc. Eur.
Conf. Comput. Vision, 2016, pp. 630-645.

A. Krizhevsky et al.,“Imagenet classification with deep convolutional
neural networks,” in Proc. Advances Neural Inf. Process. Syst., 2012,
pp. 1097-1105.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on July 09,2021 at 00:03:54 UTC from IEEE Xplore. Restrctions apply.



