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We present an extensive study of the optical and electronic properties of TIPS-pentacene thin
films utilizing in situ x-ray diffraction, polarized optical spectroscopy and abinitio density functional
theory. The influence of molecular packing on the properties are reported for thin films deposited
in the temperature range from 25°C to 140°C, and for films that are strain-stabilized at their

as-deposited lattice spacings after cooling to room temperature.

Anisotropic thermal expansion

causes relative displacement of neighboring molecules while maintaining a nearly constant stacking
distance. This leads to a large blueshift in the absorption spectrum as the temperature increases.
The blueshift largely reverses a redshift at room temperature compared to the solution absorption
spectrum. A reduction in the ratio of the first two vibronic peaks relative to the solution spectrum
is also observed. This combination of electronic and vibronic effects is a signature of charge transfer
excitonic coupling with a positive coupling constant Jcr, which depend sensitively on the alignment
of the nodes of the frontier molecular orbitals with those on neighboring molecules. These effects
are also correlated with the sign and magnitude of electron and hole charge transfer integrals t. and
tp calculated from density functional theory that provide additional evidence for charge transfer
mediated coupling, as well as insight into the origin of an experimentally observed enhancement of
the field-effect transistor mobility in strain-stabilized thin films. The results suggest approaches to
improve carrier mobility in strained thin films and for optical monitoring of electronic changes.

13 I. INTRODUCTION

1 Two of the most critical experimentally accessible
15 properties of small-molecule organic semiconductor ma-
16 terials are the charge carrier mobility, which probes
17 charge transport, and the optical absorption spectrum
18 which probes the energy levels of excited states. A deep
understanding of how the structure affects these prop-
erties is a key challenge[l, 2]. It is vital to understand
a1 the fundamental mechanisms of carrier transport in or-
» der to design new materials that will lead to improved
organic thin film transistors with faster operation and
2 lower power consumption in advanced liquid crystal and
organic light-emitting displays[3-5]. In the case of opti-
cal absorption, the spectrum gives important insight into
the types of excitations present.

s There have been great improvements in the charge
carrier mobility of mw-conjugated organic semiconduc-
tors over the last 30 years as new materials with im-
proved properties have been identified[6-10]. These
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molecular solids typically have small m — 7 stacking dis-
tances around 3.5 A, which promotes charge transfer and
delocalization[11, 12]. Charge transport has previously
been assumed to be through hopping of localized carriers
since the semiclassical mean-free-path of carriers is found
to be less than the intermolecular distance[13]. However,
recent experiments reveal carrier transport characterized
by band-like mobility, that is, increasing mobility as the
temperature decreases, implying that charge carriers are
delocalized[14, 15]. This ambiguous localized /delocalized
behavior has spurred the adoption of a new paradigm,
where dynamic disorder caused by molecular thermal vi-
brations is sufficient to break the translational symmetry
of the electronic Hamiltonian, producing transient local-
ization of the charge carriers while maintaining coher-
ence over a characteristic length scale L on the order of
the molecular spacing[16-19]. These new insights suggest
ways to increase L by (i) reducing the sensitivity of the
intermolecular electronic coupling to thermal vibrations,
and (ii) designing materials that have reduced dynamic
disorder[18, 19].

Excitons in organic semiconductors can be tightly
bound to a single molecule (Frenkel type) or they can
be composed of charges separated by one or a few molec-
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ular spacings (Charge Transfer type). In many previ-
ous studies, an energy shift in the optical absorption
spectra of certain organic semiconductors is found to
be highly sensitive to small changes of the molecular
packing[2, 20]. This effect, termed “crystallochromy”,
occurs when the energy difference between the Frenkel
exciton and charge transfer (CT) excited states is small,
so that neutral molecular excitations and charge trans-
o fer excitations mix via electron and hole transfer[12, 21—
s 23]. The interference between these states produces a
short-range coupling that results in a significant shift in
the absorption bands relative to the (highly localized)
Frenkel exciton [22-26]. The sensitivity to the crystal
packing arises since these effects depend on the overlap
of the nodal patterns of the highest occupied molecu-
lar orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) of neighboring molecules, which is sen-
sitive to sub-angstrom relative motion. The excitation
energy shift caused by CT/Frenkel exciton mixing can
s be characterized by the magnitude of the hole and elec-
7 tron charge transfer integrals ¢, and t..

7 The impact of molecular packing on the optical and
7 charge transport properties are often treated separately.
o However, these effects are actually linked at a fundamen-
tal level, and it is of interest to understand the interre-
a1 lationship between them, as well as how they respond to
& strain and thermal expansion. In this paper, we highlight
&3 the fundamental relationship between these two phenom-
ena in TTPS-pentacene.

s The structure of this paper is as follows: In Section
s 111 A, we address the basic structural and electronic prop-
erties of TIPS-pentacene thin films. These include the
s crystallographic orientation of twin grains[27, 28] and the
s directions of transition dipoles relative to the molecu-
o lar axis[29, 30]. Although there is existing literature on
a1 these effects, we examine them in detail in order to clarify
o the correct structure-property relationships. In Section
o3 ITI B, we show that the large thermal expansion of TIPS-
o pentacene leads to an enhancement of the hole transport
o5 in strain-stablized thin films, and that it modulates the
o charge transfer integrals and their sensitively to dynamic
or disorder. In Section III C, we show that the optical exci-
s tation energies can also be tuned by thermal expansion
o effects and we investigate how this is also related to the
10 change of the theoretically-determined charge transfer in-
101 tegrals.
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II. EXPERIMENTAL

102

s TIPS-pentacene (> 99%) was purchased from Sigma
104 Aldrich. All TTPS-pentacene thin films were prepared by
15 the hollow capillary pen-writer method[28, 31] except the
10s Samples B2 and B3 that were used for mobility charac-
w7 terization. Our hollow rectangular capillary has a size of
108 0.5 mm x 5.0 mm I.D. (Wale apparatus Co. 4905-100)
109 thus it can only be utilized to write narrow films with a
uo width around 5 mm. The glass substrates (fused silica
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corning 7980 of UV grade) we used for making transistors
were pre-diced to a standard substrate size of 15 mm X
20 mm and polished both sides with a roughness smaller
than 0.7 nm. For transistor arrays, a custom-designed
slot writer with a slot size of 0.5 mm x 20 mm was used
to deposit TIPS-pentacene films to make the film fully
cover the substrate and gold contacts, as described be-
low. Film thickness was measured for each sample by a
Dektak XT stylus profilometer. The experimental condi-
tions for all samples are summarized in Table I and they
are individually described below.

Sample Al was deposited at 90°C with a low writing
speed of 0.05 mm/s in order to obtain highly oriented
grains. In situ microbeam grazing incidence wide-angle
X-ray scattering (W GIWAXS) was carried out at the Cor-
nell High Energy Synchrotron Source (CHESS), beamline
D1. The X-ray incidence direction in each case was per-
pendicular to the film’s writing direction. This data was
used to study the molecular orientation of the grains. Po-
larized optical microscopy was performed using a Zeiss
microscope (Axioskop 40) after the sample was cooled to
room temperature.

Sample A2 was deposited on a glass slide to collect
polarized absorption spectra. The film was deposited
at a low writing speed (0.08 mm/s) from a 44 mg/ml
toluene solution to get large oriented grain size (>100
pm). The film was relatively thick (620 nm) so that it
would have strong absorbance. A schematic setup of the
single-grain polarization spectroscopy is shown in Fig.
1(a). Briefly, the setup is as follows: a thin film on a
glass substrate is placed in a temperature controlled mi-
croscope stage (Linkam THMS600) which is mounted on
a rotation stage, and a fixed polarizer is placed between
the light source and the sample. An optical microscope
(Olympus BXFM) with an integrated UV-Vis spectrom-
eter (Angstrom Sun Technologies Inc.) is used to acquire
absorption spectra within a single grain (Figs. 1(b,c)).
Polarized absorption spectra were collected at each an-
gle over the range -30° and 60° with respect to the grain
boundary in order to map out the polarization depen-
dence of the absorption along both the short and long
axes of the TIPS-pentacene molecular core.

uwGIWAXS was carried out in an insitu study at
CHESS to determine the thermal expansion induced
structure change of polycrystalline thin films. The Sam-
ples Bla and B1lk were made at 25°C and 134°C respec-
tively and their X-ray data were collected at the deposi-
tion temperature of each sample in order to avoid mea-
surable strain effects.

To study the charge transport properties, TIPS-
pentacene thin films deposited at 25°C and 130°C (Sam-
ples B2 and B3) were used as active layers for organic
field-effect transistors. The glass slides were first ul-
trasonic cleaned in deionized water, acetone, and iso-
propanol for 10 min and then the Phenyltriethoxysilane
(PTES) treatment was accomplished by immersing the
cleaned glass slides into a toluene solution of 3 wt% PTES
and heated to 110 °C for 15 h[32, 33]. After PTES treat-
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TABLE I. Deposition conditions of TIPS-pentacene thin films discussed in Section III.

Samples Figure Temp. Concentration Speed Substrate Solvent Thickness
(°C) (mg/ml)  (mm/s) (nm)

Al 2 90 1.5 0.05 Si/SiO2  Mesitylene 210

A2 1,3,4,5 25 44 0.08 glass Toluene 620

Bla 6 25 1.5 25 Si/SiO2  Toluene 85

Bik 6 134 1.5 25 Si/SiO2  Mesitylene 106

B2 7,8 25 20 0.05 glass Toluene 25

B3 7,8 130 10 0.6 glass Mixed solvent 30

C1 10, 11 25 25 0.02 glass Toluene 650

(@) (b) 12 thickness information can be found in Table I. The TIPS-

Data collection spot

Microspectrophotometer

H Fiber optic to spectrometer

Mirror with aperture
\
Video camera
(0
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~1] Microscope objective 1.0 — 0°
K —60°
Q
\ 208
Furnace and sample .§
c 0.6
38
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~<—— Polarizer
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Mirm\\—<—+ 00756500 600 700

Wavelength (nm)

FIG. 1. (a) Schematic of the set up for polarized transmission
spectrum collection. A polarizer is placed under a rotational
sample stage and the polarization is put along the writing di-
rection. A mirror with an aperture is inserted into the light
path to select a small area of interest. (b) The polarized opti-
cal image of a sample deposited at 0.08 mm/s at 25°C on glass
substrate (Sample A2). The large grain size enables us to put
the transmission data collection spot in a single grain since
the data collection spot is about 50 pm in diameter under
20 times magnification lens. The white arrow indicates the
writing direction of the film. The angle was set to be 0° when
the polarization was along the writing direction. (c)Typical
polarized absorption spectra. Red: the sample was rotate by
-30° to the writing direction. Green: the sample was placed
at 0°. Blue: the sample was rotated by 60°.

ment, the substrates were rinsed in toluene, acetone and
isopropanol for 1 min. Gold contacts (30 nm) were evap-
orated using a shadow mask to form arrays of source and
drain electrodes with a channel length of 30 pm and a
channel width of 1000 pm. These contacts were then
treated for 20 min using 30 mM solution of pentafluo-
robenzene thiol (PFBT) in isopropanol followed by a 2
min rinse in pure isopropanol and a 15 min annealing at
60 °C. The TIPS-pentacene Form I film (Sample B2) was
deposited from pure toluene solution and Form II film
(Sample B3) was prepared from a blend of dichloroben-
zene and mesitylene with a volume ratio of 4:1. The
deposition speed, concentration and TIPS-pentacene film
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pentacene film was annealed at 100°C for 10 min then a
CYTOP layer was prepared by slot writing from a 809M
CYTOP solution using CT-SOLV100E as solvent (AGC
Chemicals Co.). The volume ratio of 809M CYTOP to
its solvent is 1:1.5 and the deposition speed is 4 mm/s.
The sample was annealed at 100 °C for 20 min, result-
ing in a 1100 nm thick CYTOP layer with a capacitance
of 1.7 nF/cm?. The TIPS-pentacene and CYTOP film
deposition and annealing were carried out in a Nitrogen
atmosphere. Finally a 100 nm thick aluminum layer was
thermally evaporated using a shadow mask in a bell jar
to serve as the gate electrode. For each sample, 14-15
transistors were characterized.

The intermolecular electronic couplings between the
highest occupied and lowest unoccupied molecular or-
bitals (thome and tjumo) of TIPS-pentacene dimers are
calculated using the ADF (Amsterdam density func-
tional) package[34]. The PW91[35] exchange-correlation
function and the TZP basis set are used in the calcula-
tion for both dimer I ([100] direction) and dimer IT ([110]
direction). The sign of electronic coupling (thome and
tiumo) 1s determined by the translational symmetry of
the molecular orbitals of the dimer. The electron charge
transfer integral is obtained by t. = tjumo and the hole
charge transfer integral is obtained by t;, = —thomo-

X-ray diffraction data were collected at 23°C for a
TIPS-pentacene single crystal using a Bruker Apex II
CCD single-crystal diffractometer. This data was used
to obtain the full structure of the room temperature
phase. The unit cell parameters of the TIPS-pentacene
high temperature phase were obtained at 134°C from the
in situ pGIWAXS on the Blk thin film sample. We did
not obtain the full structure from the X-ray data in this
case since it was not possible to measure enough reflec-
tions from the thin film to obtain a reliable structure.
Instead a geometry optimization with the lattice con-
stants constrained to the experimentally measured values
was performed using the BAND program with PBE func-
tional and D3 dispersion correction with Becke-Johnson
dampling PBE-D3(BJ). The TZP basis set was used in
the geometry optimization.

To study the influence of the thermal expansion on
the optical properties, Sample C1 was deposited on a
glass slide at 0.02 mm/s in order to obtain large grain
size. The temperature dependence of single-grain polar-
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ized spectra were collected using the setup in Fig. 1. The
sample was 650 nm thick. Such large thickness films can
expand and contract freely without being significantly in-
fluenced by the substrate during annealing up to 140°C
and subsequent cooling. The heating and cooling rate
was 2°C/min for these temperature scans, and tempera-
ture steps of 10° were carried out. The temperature was
maintained at each step for about 10 mins and polarized
absorption spectra were collected at -30° and 60° with
respect to the grain boundary.

III. RESULTS AND DISCUSSION

A. DMolecular packing geometry and transition
dipole directions

In this section, we determine the crystalline orienta-
tion of aligned TIPS-pentacene films and the directions
of transition dipoles relative to the molecular axes. This
information is crucial for understanding the structure-
property relationships.

1.  Molecular packing geometry

In situ X-ray scattering data for Sample Al is shown
in Fig. 2(a) which was collected at the deposition tem-
perature. The X-ray beam direction is perpendicular to
the writing direction of our film and only (10L) and (20L)
are observed, indicating that the X-ray beam is incident
at a small angle to the (100) crystalline plane. A polar-
ized optical image of the sample is shown in Fig. 2(b).
The image was taken after the sample was cooled to room
temperature. Cracks that had formed during cooling are
visible in the image. This sample was intentionally fab-
ricated with a relatively large film thickness (210 nm) in
order to induce cracking during the cooling process, so
that we can determine the orientation of the dominant
cracks. In all of our aligned TTPS-pentacene thin films,
the grain boundaries of the film are parallel to the writing
direction.

The molecular orientation within the grains is illus-
trated in Fig. 2(c-d) based on a model that we have
proposed in previous work[28]. In this model, the grain
boundaries are twins oriented along the a-axis of the unit
cell. The molecular orientation within one grain can be
obtained by rotating the crystal structure of a neighbor-
ing twin by an angle of 180° about an axis perpendicular
to the boundary. In Fig. 2(c-d), the angle between the
a-axis and the long axis of the molecule is 28°(calculated
using the supplemental structure file of the room temper-
ature phase).[36] This is consistent with Fig. 2(a) that
the twin boundary is along the [100] direction. This con-
clusion is also supported by evidence from several other
groups[37, 38].

The cracking pattern is another important clue to
help determine the molecular orientation. The cracks
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FIG. 2. (a) A typical X-ray scattering image for an aligned
TIPS-pentacene film deposited at 90 °C (Sample A1l in Table
1). In situ X-ray scattering was carried out at the deposition
temperature and the X-ray beam was perpendicular to the
writing direction. (b) A polarized optical image of the sam-
ple taken after it was cooled to room temperature. V-shaped
cracks are formed and the angle between the cracks and twin
boundary is about 40°. (c) and (d) A model of twin grains
formed in TIPS pentacene thin films. The twin boundary is
along a-axis which also corresponds to the pen-writing direc-
tion.

are V-shaped and the angle between the cracks and
grain boundary in Fig. 2(b) is found to be 40°, which
is very close the orientation of (110) planes (see Fig.
2(c)). A similar orientation of cracks has previously been
observed[27, 29]. We find that the (110) d-spacing un-
dergoes the largest change during cooling, so the cracks
tend to occur along these planes. For very thick films
(not shown) cracks often occur along other directions in
addition to the (110) oriented cracks[27, 33, 39].

2. Direction of transition dipoles

We can also correlate the packing geometry with its
polarization-dependent optical absorbance. Here we use
single-crystalline-grain polarized absorption spectra to
determine the transition dipole directions. The data col-
lection spot is put within a single grain as shown in Fig.
1(b). When the polarization direction is along the twin
boundary we define the angle to be § = 0°. The sam-
ple is rotated in steps of 10° to collect the polarized ab-
sorption spectra. Thirty-six polarized absorption spectra
were collected in total, and ten of theman are plotted in
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FIG. 3. (a): Typical single grain polarized absorption spectra when the sample is rotated from -30° to 60° respect to the twin
boundary with a step of 10°. From the low energy to the high energy side, we labeled the absorption peaks as 1, 2, 3, 4, 5 and
6. (b) Schematic of TIPS-pentacene molecule structure plotted using the supplemental structure file for the room temperature
phase, top view.[36] At 0 °, the twin boundary is along the polarized direction. The red arrow indicates the direction of
transition dipole of peak 1. Note that its direction is in the plane of the molecule and it has a small component in the plane
of the film due to the tilt of the molecule along its long axis; (c) Angle dependence of absorbance of peak 1. This sample is

Sample A2 in Table 1.

Fig. 3(a). The peaks are labeled as 1, 2, 3, 4, 5 and 6
starting from the long wavelength side[30]. In order to
get the absorbance values of all six peaks, the data is fit-
ted with a Lorentz oscillator model[40]. Examples of the
fitting curves are given in Supplemental Information Fig.
S1 and all the fitting results are listed in Table S1.[36]
The absorbance data is fitted by the equation[41]:

330

331

332

333

33
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337

A(8) = —log, (10~ Amin sin?(0—Bp)+10~Amee cos? (B—0y)) =

(1)

The fitting parameters A4z, Amin and 0y are given in
Supplemental Information Table S1 for all six peaks.[306]
An example of the fitted data for peak 1 is shown in Fig.
3(c) and the complete series is shown in Fig. 4. The angle
o is the angle that gives the maximum absorbance. We
find that peak 1 becomes strongest when the rotation an-
gle is 60°, whereas peaks 3 and 5 become strongest when
the rotation angle is -30°. As we discussed in the last sec-
tion, the angle between the long axis of the molecule and
the crystallographic a-axis is -28° and the angle between
short axis of molecule and a-axis is 62°. These results
indicate that the transition dipole for peak 1, which cor-
responds to the singlet Sy — S transition, is along the
molecular short axis.

The observation that the transition dipole of peak 1
is along the short axis of the molecule can be justified
from selection rules based on the symmetry of the molec-
ular orbitals. Unsubstituted pentacene has Dsj symme-
try and its HOMO and LUMO states belong to the By,
and By, group representations respectively. The selec-
tion rules determine that the HOMO to LUMO transi-
tion is only allowed along the short-axis for the molecule.
The TIPS-pentacene molecule belongs to the lower sym-
metry C; point group due to the fact that it has two
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side groups. The side groups and the lower symmetry
of the crystalline environment break the selection rule
for pentacene, but this is a small perturbation that re-
sults in weak optical activity for polarization along other
directions[42, 43]. In Fig. 4, we can see that the tran-
sition dipole of peak 1 is the only one that is along the
short axis of the molecule and that the transition dipoles
of peak 3-6 are along the long axis of the molecule. These
peaks are enhanced relative to peak 1 since the long axis
of the molecule is parallel to the plane of the thin film,
while transition dipoles along the short axis have only a
small component in the plane of the film. Peak 2 doesn’t
show much polarization dependence as we discuss below.

3. Origin of the aggregation-induced spectral shift

Polarized absorption spectra along the short axis and
along the long axis of molecules within a single grain
are shown in Fig. 5. Three peaks can be observed in
Fig. 5(a) which are labeled as peak 1, 2(S), 3(S). In Fig.
5(b), five peaks can be observed and are labeled as Peak
2(L), 3(L), 4, 5, 6. The absorption spectrum of a TIPS
pentacene solution (0.9 mg/ml in toluene) is plotted as
a dash line in Fig. 5. It has five absorption peaks at
643 nm, 593 nm, 550 nm, 438 nm and 415 nm. The
first three peaks are the Frank-Condon series of the first
excited singlet state (Sp — S7 excitation). xfresutls

Returning to the description of the thin film spectra,
the transition dipole of peak 1 is the only one that is
found to be along the short axis of the molecule. Fig.
5(a) also shows that it has a large redshift relative to the
solution state. Peaks 2(S) and 2(L) are very close in po-
sition and have similar absorbance magnitudes. We note
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FIG. 4. (a-f) Polar plots of absorbance as a function of polarization angle from peak 1 to peak 6. The dashed lines are the fitting
curves and the fitting results are given in Table S1. The fitted peak positions were given. A peak shift have been observed for
peak 2 and 3 as the polarization is changed from along the short axis of the molecule to the long axis of the molecule.
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FIG. 5. (a, b) Polarized absorption spectra along short axis
and along the long axis of a sample made at 25°C. The Sam-
ple A2 thickness is 620 nm and data is collected at 25°C.
The dashed line is the absorption spectrum of a dilute TIPS
pentacene solution (0.9 mg/ml, toluene is the solvent).

that the polar plot of peak 2 shown in Fig. 4 is a mix-
ture of these two, so it doesn’t exhibit much polarization
dependence. Peak 3 is also a mixture of Peak 3(S) and
Peak 3(L). However, since peak 3(S) has a much smaller
absorbance compared to 3(L), the polar plot of peak 3
still exhibit fairly strong polarization dependence. Peaks
5 and 6 of the solid film have absorption peaks around
440 nm, very close to two corresponding peaks in solu-
tion, indicating that they probably have the same origin.
Absorbance in the short-axis polarized spectrum is signif-
icantly reduced relative to the long axis spectrum. For
example, the The Peak 1/ Peak 5 intensity ratio is weak
in the solid-film spectrum relative to the solution spec-
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trum. This is because the tilt angle of TIPS-pentacene
molecule in the thin film is about 10°, thus the transi-
tion dipole along the short axis of the molecule only has
a small component (sin 10°) in the plane of the thin film,
causing the peak intensity to be attenuated to only 0.03
(sin? 10°) of it’s full value.

Our experimental results are in substantial agreement
with a first-principles many-body perturbation study of
quasiparticle excitations based on the GW approxima-
tion by Sharifzadeh et al.[30]. They show that peak
1 (originating from state S; in their notation) couples
strongly to light polarized along the molecule’s short
axis and the rest of the peaks come from a combina-
tion of multiple excited states. They consider peak 2 to
be caused by three nearly-degenerate states (Ss, S5, and
S4), which result from the long-range order and 7 orbital
overlap in the organic crystal. Optical transitions to So
and S3 have the same polarization dependence as Si,
while Sy is exactly out of phase (this is consistent with
the weak angular dependence for peak 2 in Fig. 4). Based
on their calculations, peaks 3 and 4 in our notation come
from a mixture of numerous states. This can explain
why the widths of both peaks 3 and 4 are larger than the
widths of peaks 1 and 2 (Supplemental Information Table
S1).[36] For peaks 3 and 4 in our data, the net transition
dipole moment is mainly aligned with the molecular back-
bone, so they both exhibit strong angular dependence
and reach maximum absorbance when light is polarized
along the long axis of the molecule. This detail doesn’t
agree with Sharifzadeh’s calculation, which predicts that
peaks 3 and 4 should be maximized when light is polar-
ized along the short axis of the molecule[30]. Peaks 5
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and 6 also have large A;uaz/Amin ratios, which suggests
that the transitions contributing to these two peaks are
also mainly allowed along the long axis of the molecule,
which is in agreement with Sharifzadeh’s results.[30].

In contrast to the good agreement with ab-initio cal-
culations discussed above, we note that the prediction
of the optical peak shift in solid films based on simple
Coulomb coupling does not explain our experimental re-
sults for the lowest energy transition (peak 1). According
to Kasha[44], the Coulomb coupling Jeoy, comes from
the dipole interactions between the transition dipoles
which can be estimated by a point-dipole approximation:

p2(1 — 3cos?0)

2
4meR3 (2)

JCoulx

where g is the transition dipole moment, R is the in-
termolecular distance, 6 is the angle between p and R
and ¢ is the optical dielectric constant of the medium.
Eq. 2 predicts Joou > 0 for 6 > 54.7°. We note that
more accurate treatments of the Coulomb coupling based
on atomic transition charge densities give a qualitatively
similar picture.[45-47] In the TIPS-pentacene crystal, the
transition dipoles along the short axis of the molecular
backbone are “side-by-side” oriented (¢ is about 80° for
both dimer I and dimer IT). Therefore, Peak 1 is expected
to be blueshifted since Jgou is positive, i.e. our results
show that Coulomb coupling predicts the wrong direction
for the shift of peak 1 in Fig. 5(a).

It has been pointed out by Spano and co-workers that
the intensity ratio of the lowest energy absorption peak
to its first vibronic replica (0-0/0-1) is a more reliable
signature of the sign and magnitude of the excitonic cou-
pling than the peak shift since other phenomena may
dominate the peak shift. Taking the 1(s)/2(s) ratio in
Fig. 5 of ~1.25 as the 0-0/0-1 ratio we see that it is
significantly diminished compared to the corresponding
ratio in the solution spectrum (a2.2). A reduced ratio
indicates H-type coupling (J > 0) in agreement with our
expectation from the packing geometry. However, the
magnitude of the redshift is quite large (54 nm, or in
energy units 146 meV), while as we noted above there
should be a blueshift for pure H-type Coulomb coupling.
This contradiction can be resolved since H-type behavior
in combination with a large solution to crystal redshift
is a characteristic of mixing between Frenkel and charge
transfer (CT) excitons in the absence of strong Coulomb
coupling.[22] Although this situation may seem unnatu-
ral, such behavior has been found to be a fairly accurate
description for several acenes, including tetracene and
pentacene.[48] In this case, the strength of the coupling
is characterized by the charge transfer coupling Jor, with
Jor > 0 for H-type and |Jor| > |Jcoul]-

In Section IIT C we discuss how charge transfer plays a
dominant role in determining the spectral shift of peak
1. First, in Section IIIB we discuss enhancement in the
hole transport.
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FIG. 6. (a, b) X-ray scattering images for TIPS-pentacene
films deposited at 25°C (Sample Bla) and 134°C (Sample
B1k) respectively. (c, d) the polarized optical images of Sam-
ples Bla and B1lk showing that they have a spherulitic grain
structure. The optical images were taken after the samples
cooled to room temperature.

B. Tuning the charge carrier transport

In the previous section, we determined the molecular
packing geometry in the twin grains and the directions of
transition dipoles of optical excitations. In this section,
we show that the large anisotropic thermal expansion of
TIPS-pentacene greatly affects the film’s charge trans-
port properties.

1. Anisotropic thermal expansion in TIPS-Pentacene

Strain-free polycrystalline TIPS-pentacene thin films
(Sample Bla and Blk) were made at 25°C and 134°C
to study the thermally-driven evolution of the structure.
The films were deposited at high writing speed to ob-
tain polycrystalline films, ensuring that there are enough
diffraction peaks to solve for the unit cell parameters.
X-ray scattering images for these two samples are shown
in Fig. 6(a-b). The unit cell parameters of Samples Bla
and B1k were calculated from the (11L), (10L) and (01L)
peak positions and the results are listed in Table II. We
refer to the phase made at room temperature as Form
I and the phase obtained above the phase transition as
Form II. From Form I to Form II, the (10L) and (11L)
peaks are shifted to lower @, values whereas the (01L)
peaks shifted to higher @, values. We noticed the (102)
reflection splits into two for Form II. This is because the
Q. of (101) and (102) for Form T are 0.56 and 0.59 A
respectively, which makes them difficult to distinguish,
while for Form II the @, of (101) and (102) change to
0.53 and 0.61 A, so that they are clearly separated.

From 25°C to 134°C, the unit cell a-axis is expanded
by more than 10% and the product bsin+y is reduced by



TABLE II. Lattice constants of single TIPS-pentacene crystal
134°C (Sample B1k) .

at 23°C and thin films deposited at 25°C (Sample Bla) and at

Phase (Temp.°C) a (A) b (A) c (A)

a (deg.) B (deg.) v (deg.) bsinvy (A)

Bulk (23) 7.7325 7.7656 16.9395 88.544 77.922 82.264 7.6949
Thin film I (25) 7.78 7.75 16.70 894 77.9 81.1 7.66
Thin film IT (134) 8.69  7.66 16.83 87.8 78.9 71.0 7.24
% Difference® +11.7 -0.1 -5.5

¢ Difference between thin films made and measured at 134°C, and 25°C.

more than 5%. This result agrees well with our previ-
ous study of Form I and strain-stabilized Form II thin
films with smaller thickness (30 nm)[33], indicating the
structure in that study is determined by the deposition
temperature and the films are strain-stabilized at their
high temperature lattice constants as they are cooled to
room temperature due to the constraint of the substrate.
In the present cases, the lattice constants are measured
in situ at the deposition temperature so that strain ef-
fects are negligible. The crystallographic d-spacings for
films made at 25°C and 134°C were calculated from the
unit cell parameters in Table II and are shown in Supple-
mental Information Table S2.[36] As we have mentioned,
the (110) d-spacing has the biggest change which explains
why cracks tends to occur along (110) plane when cooling
a thick high-temperature made sample to room temper-
ature (Fig.2).

Table II also includes the bulk structure from single
crystal X-ray diffraction performed at 23°. It is not sur-
prising that unit cell parameters of the film deposited at
25° are very similar to those of the bulk phase at 23°.
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511 Impact of structure changes on hole transport

In order to study the charge transport properties of
Form II, we deposited thin TIPS-pentacene film (Sam-
ple B3) at high temperature and stabilized the high
temperature structure to room temperature by strain-
stabilization[32, 33]. The film deposited at high substrate
temperature become strained during cooling due to the
mismatch between the thermal expansion coefficients of
the TIPS-pentacene film and the wafer substrate. Since
strain energy is proportional to film thickness, thicker
films crack during cooling and release strain; this allows
the lattice constants to relax to nearly strain-free values
during cooling to room temperature. On the other hand,
thinner films can accommodate a higher strain. Thus, the
cracking temperature is depressed further and further as
the film thickness is reduced. By making the Form II
film thin enough, no cracks occur and the high temper-
ature unit cell constants can be fully strain-stabilized to
ambient temperature[33].
s0 The hole mobility of TIPS-pentacene Form I (Sam-
su ple B2) and strain stabilized Form II (Sample B3) have
s been measured at room temperature by making top gate
s13 bottom contact thin film transistors using either TIPS-
su pentacene Form I or strain stabilized Form II films as
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FIG. 7. (a) Output curve of a typical TIPS-pentacene based
transistor using Form I film as active layer(Sample B2). The
inset is exploded view of top gate bottom contact transis-
tor using a TIPS-pentacene film as the active layer and CY-
TOP film as dielectric layer; (b) Output curve of a typical
TIPS-pentacene based transistor using Form II film as active
layer(Sample B3); (c) polarized optical image of the Form
I based transistor that goes with (a); (d) polarized optical
image of the Form II based transistor that goes with (b).

s35 active layers. The transistor geometry is shown in the
s inset of Fig. 7(a). The output curves of a Form I based
sy transistor and Form II based transistor are shown in Figs.
s3 7(a) and (b). The Form I film and strain-stabilized Form
s II morphology are shown in Fig. 7(c) and Fig. 7(d).
ss0 Crystalline grains are observed to be much longer along
sa the writing direction than the transistor channel length
s22 (30 pm). Figs. 7(a,b) show that the drain current I in-
si3 creases linearly as increasing the drain voltage Vy in the
sa linear region (Vy; < V;), indicating the contact resistance
sis between the Form I or Form II film and PFBT treated
si6 gold pattern is small. The Form II based transistors have
se7 higher I'p under the same gate voltage compared to Form
ss | based transistor, indicating the Form II film has higher
se0 hole mobility.

sso The field effect hole mobilities are calculated from
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transfer curves in both saturation and linear region and
the results are summarized in Fig. 8. Typical satura-
tion transfer curves for TIPS-pentacene Form I and Form
II films are shown in Figs. 8(a) and (b). The satura-
tion mobility for the Form I transistor is 1.0 cm?V~1s~!
and the saturation mobility for TIPS-pentancene Form
IT is 3.5 cm?V~1s71. The gate voltage dependence of
the saturation mobility (Fig. 8(c)) does not have a pro-
nounced mobility-overestimation peak due to non-linear
charge injection, which is an experimental artifact fre-
quently found in the literature[49]. The linear transfer
curves for the same transistors are given in Fig. 8(d)
and the gate voltage dependence of the linear mobility is
shown in Fig. 8(e). For the Form I based transistor, its
linear mobility is 0.9 cm?V~'s~! which is almost equal to
its saturation mobility. The linear mobility for the Form
IT based transistor is about 2.9 cm?V ~!s~! which is also
close to its saturation mobility.

The average linear mobility of TIPS-pentacene Form I
is 0.8 (£ 0.1) em?V~1s~1. Tt is close to its average sat-
uration mobility which is 0.9 (£ 0.1) cm?V~!s~!. The
average threshold voltage is -2 V and on/off ratio is about
10%. For stain-stabilized Form II, the average linear and
saturation mobility are 2.6 (£ 0.3) cm?>V~!s7! and 2.9
(£ 0.5) ecm?V =151 respectively. The average threshold
voltage is -3 V and on/off ratio is also about 10*. There-
fore the mobility is increased by about a factor of three
using a strained film as the active layer.

8. Sensitivity of charge transfer integrals to the dynamic
disorder

TTPS-pentacene has two distinct dimers with a rela-
tively large molecular orbital overlap. Dimer I is along
the [100] direction and dimer II is along the [110] direc-
tion. The structure files of TIPS-pentacene Form I and
Form II are given in the Supplemental Information.|36]
A schematic of dimer I and dimer II for TTPS-pentacene
Form I and Form IT are shown in Fig. 9(a). The charge
transfer integrals in a dimer depend on the nodal struc-
ture of highest occupied and lowest unoccupied molecu-
lar orbitals and the relative displacement of neighboring
molecules. Varying the temperature causes neighboring
molecules to move relative to each other, leading to a
large modulation of charge transport properties. We con-
sider a dimer made of two TIPS-pentacene molecules and
study the variation of the charge transfer integral when
one molecule “slides” with respect to the other on paral-
lel planes with a constant separation of 3.4 A, which is
a good approximation of the structure change at various
temperatures from experimental results. The direction
along the long axis of the molecule is defined as the z-
axis and the direction along the short axis is defined as
the y-axis. The map of ¢, and t. are shown in Fig. 9(c)
and (d) where t;, and ¢, are the hole and electron transfer
integrals respectively.

The sign and magnitude of ¢; and t. are found to be
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highly sensitive to the relative positions of the molecules
in the dimer[50]. The ¢;, and ¢, are calculated using the
Ax, Ay and 7 — 7 stacking distance obtained from the
structure files of the Form I and Form IT which are given
in Table III. In references, the transfer integrals in TIPS-
pentacene[50, 51] are usually calculated using a low tem-
perature structure obtained at -100°C[52]. This low tem-
perature phase has its a lattice constant equal to 7.5650
A. This parameter is different than our room tempera-
ture bulk Form I structure, which has a = 7.7325 A. The
Ax and Ay for the dimer I of the -100°C structure are
6.70 A and 0.89 A respectively which are slightly smaller
than our Form I phase whose Ax and Ay are 6.86 A
and 1.03 A respectively. Even though this low tempera-
ture structure is similar to our room temperature phase,
it still leads to noticeably different charge transfer inte-
grals. For example, the calculated t; for dimer I using
our room temperature Form I phase is 2.6 meV but it is
-23.5 meV for the low temperature structure.

The unit cell of Form II is obtained by X-ray diffraction
from Sample Blk and the molecular packing geometry is
obtained by DFT energy minimization with constrained
lattice constants (results in Table II). From Form I to
Form II, the Ax and Ay displacements increased for
dimer I. For dimer II, the Ax decreased while the Ay
increased. We noticed that for our geometry optimized
Form II, the m — 7 stacking distances for both dimers are
still around 3.4-3.5 A. This is different from X-ray diffrac-
tion results in the literature, which suggest that Form II
dimer I has a much smaller 7 — 7 stacking distance (3.23
A) compared to the m — 7 stacking distance of Form II
dimer IT (3.65 A)[53]. We note that the results in the
literature were based on a small number of X-ray reflec-
tions (N = 30), which leads to larger uncertainties in the
structural parameters compared to typical single-crystal
X-ray results.[27, 52, 54]

The large hole mobility of Form II strain stabilized
thin films can be attributed to the increased hole charge
transfer integral along dimer I and the reduced sensitiv-
ity of the charge transfer integral to dynamic disorder.
It was reported that TIPS-pentacene has large thermal
dynamic disorder due to molecular vibrations along the
long axis of the molecule[55, 56]. The dynamic disorder
localizes the charge carriers and is detrimental to charge
transport. Based on the transient localization model, re-
ducing the sensitivity of the charge transfer integral to
the dynamic disorder or suppressing the dynamic disor-
der are more effective ways to improve the charge mobil-
ity than by just increasing the absolute value of charge
transfer integral[4]. In Fig. 9(c), we can see that the ¢,
of Form I is highly sensitive to the molecular vibration
along the long axis of the molecule since the gradient of
the hole mobility along the x-direction at the magenta
dot in Fig. 9(c) is relatively large. On the other hand,
the t;, of Form II is less sensitive to thermal motion since
it sits near a saddle point (green dot). Thus the increased
mobility along Form IT dimer I can be partially attributed
to the reduced sensitivity of charge transport to dynamic
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FIG. 8. (a) Saturation transfer curve for Form I film made at 25°C (Sample B2); (b) saturation transfer curve for Form II film
made at 130°C and then strain stabilized to 25°C (Sample B3); (c) gate dependent saturation mobilities for Form I film and
Form II film; (d) linear transfer curves for Form I and II film; (e) gate dependent linear mobilities for Form I and Form II film.
The saturation and linear transfer curves were measured for the same transistor and the output curves are given in Fig.7.

TABLE III. Calculated hole and electron transfer integrals.

Temp.°C Dimer

Ax (A) Ay (A) 7 — 7 (&) t5 (meV) t. (meV) tp +t. (meV)

23 Dimer I 6.86 1.03 3.41
134 Dimer I 7.87 1.49 3.36
23 Dimer II 9.47 1.65 3.39
134 Dimer II 8.68 1.77 3.52

2.6 -121.2 -118.6
33.4 -0.3 33.1
4.0 56.8 60.8
5.7 56.4 62.1

ess lattice disorder.

To carry this discussion further, we can estimate the
s transient localization length of hole carriers from our ex-
67 perimentally measured hole mobility and compare the
s difference between TIPS-pentacene Form I and Form II.
ss0 Based on the transient localization model, the analytical
o0 formula for the charge mobility[4]:

e L(7)?
B 5T 27 (3)

en where kp is the Boltzmann constant, T' is the temper-
o2 ature, e is the electric charge, 7 is the fluctuation time
o3 given by the inverse of typical intermolecular oscillation
ere frequency, and L(7) is the transient localization length
ers that depends on charge transfer integral and its sensi-
e tivity to thermal vibration. The fluctuation time 7 is
7 given to be 0.15 ps for TIPS-pentacene[4]. Utilizing our
o8 experimentally measured average saturation mobility of
e Form I which is 0.85 cm?V~!s™! one can estimate the
e corresponding transient localization length for Form I.
s The results is L = 8.1 A, which is only slightly larger
s than the lattice constant of Form I whose a = 7.78 A.
63 Similarly the transient localization length for Form II is
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estimated as 15.0 A for its average saturation mobility
of 2.9 em?V~!s~!. The suppressed transient localization
length of Form I relative to Form II is attributed to both
a small charge transfer integral and large sensitivity to
dynamic disorder as illustrated in Fig. 9(c) and reported
in several theoretical calculations[4, 57].

C. Tuning the optical excitation energies
1. Impact of structural changes on the optical absorbance

Results of a study of the temperature dependence of
absorption are shown in Fig. 10. The polarized ab-
sorption spectra along both the long and short axes
were collected by heating a thick TIPS-pentacene film
(Sample C1). The absorption peak shift caused by the
reversible temperature-dependent structure evolution is
gradual and continuous. Due to the large thickness (650
nm), the film has cracks that allow it to keep adjusting
to it’s equilibrium lattice constants as the temperature
changes. We observe that peak 1 in Fig. 10(a) exhibits
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FIG. 9. (a): Schematic of dimer I and II for Form I; (b)
Schematic of dimer I and II for Form II; (c) the map of hole
charge transfer integral tp; (d) the map of electron transfer
integral t.. Magenta circles are the dimer I and II positions

for the Form I and green circles are the positions for the Form
II.
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FIG. 10. The temperature dependence of polarized absorp-
tion spectra collected when a 650 nm thick TIPS-pentacene
film was annealed from 30°C to 140°C: (a) the polarization
direction is along the short axis of the molecules; (b) the po-
larization direction is along the long axis of the molecules

a total blueshift of about 25 nm between 30° and 140°
(from 695 nm to 670 nm).

The large sensitivity of the peak positions to tempera-
ture is consistent with the modulation of charge transfer
effects as the structure changes due to thermal expan-
sion. We note that a theoretical study of the electron-
hole correlation function for the first four excited states
in crystalline TIPS-pentacene has been carried out by
Sharifzadeh et al.[30] In that study, the electron-hole cor-
relation for the low energy excitation corresponding to
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peak 1 is found to be mainly along the direction that
corresponds to dimer I. This result helps to tie together
our experimental observations, since we found in Sec-
tion IIT A that there is a large change in Ax and Ay in
dimer I as the temperature is changed, while in Section
III B we found that these shifts produce a large modula-
tion of the charge transfer integrals t. and ¢, for dimer
I. In the next subsection, we discuss a semiquantitative
one-dimensional (1D) chain model, which gives insight on
how the excitation energies depend on the charge transfer
integrals.

2. Charge transfer effect on the lowest optical excitation
energy

In this section we discuss the structure sensitivity of
the lowest energy optical excitation energy (peak 1). In
the solid state, there are several factors that can affect
the optical excitation energy including: (i) Coulombic
coupling and (ii) Frenkel/CT exciton mixing.[22, 44] As
we have discussed above, Coulombic coupling does not
explain the shift from solution to solid film. We find
that it also fails to explain the temperature dependence
since from Form I to Form II the Coulombic coupling is
expected to be weakened as the molecular centers move
further apart. This should cause peak 1 to redshift, which
is inconsistent with our experimental results for the tem-
perature dependence shown in Fig. 10(a).

The Frenkel/CT exciton mixing can change the low-
est optical excitation energy in high mobility materials
since their frontier orbitals have significant orbital over-
lap. This effect provides the most plausible explanation
for the temperature-dependent peak shift. A simple 1D
model can be used to semiquantitatively illustrate how
Frenkel /CT exciton mixing affects the excitation energy.
The Frenkel and CT excitons are coupled via the elec-
tron and hole transfer integrals ¢, and t,[12, 58]. Since
the CT exciton energy is typically higher than the energy
of the Frenkel exciton, Ecr will be repelled upward and
Er with be repelled downward by an amount governed
by |t +te|[22, 25]. The energies of the resultant coupled
Frenkel state (F_) and the CT exciton state (F;) can
be expressed as[22]:

Ecr+E Eor — Ep\?
cr Fi\/< cr F) o s ()

As only the Frenkel-like energy level E_ contains sig-
nificant oscillator strength, Frenkel /CT mixing causes a
redshift of the excitation energy.[22, 58] Table 3 shows
that from Form I to Form II, ¢;, +t. changes significantly
from -118 meV to 33 meV for dimer I, but is almost un-
changed for dimer II, as is plotted in Fig. 11(a). We
assume that changes in Ax and Ay are linear as the
temperature increases so we can calculate the temper-
ature dependence of t;, + t.. The E_ is calculated us-
ing Eq. 4 with estimated Ecr = 2.10 eV and Ep =

Ey =
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FIG. 11. (a) The change of ¢, + t. for TIPS-pentacene Dimer I and Dimer II as the structure changes from Form I to Form II.
(b) the optical bandgap shift of peak 1 vs. thermally-driven structure evolution. The blue squares are the experimental data
(Sample C1 in Table 1) and the black curve is based on the 1D Frenkel/CT exciton mixing model using tp + te for dimer I
only. (c) The temperature dependence of peak 3 (L) intensity on linear scale I/Io.

1.87 eV and compared with our experimental data, as
shown in Fig. 11(b). We see that the model significantly
overshoots, particularly in the temperature range where
t. +tp, for dimer I is close to zero (E_ = Er when t. +tj
= 0). Therefore, the data suggests that charge transfer
along dimer II cannot be neglected. For simplicity, in
the model shown in Fig. 11(b) we have also neglected
polarization energy changes resulting from the tempera-
ture dependence of the molecular separation. However,
the modulation of F_ through this mechanism is modest
compared to that produced by the variation of |t. + tp].

A consequence of this model is that Jor can be positive
or negative depending on the signs of t.t;, and Fcr — Fp.
In the limit |[Ect — Ep| > [te|, |tn], it takes the simple
form Jor = =2t .ty /(Ecr—EF).[22, 26, 58, 59] Assuming
Ect > Ep, the coupling is H-like when ¢t} is negative,
i.e. Jor is positive. We can see in Table III that ¢, and
tn have opposite signs for dimer I, which reinforces our
experimental results that are consistent with Jop >0.

The 1(s)/2(s) peak ratio changes significantly as a
function of temperature in Fig. 10(a). Since the ratio
is reduced as the temperature increases, the theory of
Spano and co-workers predicts that the exciton band-
width increases.[59] However, this intensity ratio change
should be interpreted with caution since Sharifzadeh et
al. find that peak 2(s) is unlikely to be solely the results
of a vibronic progression.[30] Rather, there may be two
other electronic excitations with the same polarization
and at nearly the same wavelength. Thus, a bandwidth
extracted from the 1(s)/2(s) ratio may be highly overes-
timated. We have argued in Sec. IIT A 3 that the reduced
0-0/0-1 ratio of ~1.25 is qualitatively consistent with
H-type coupling. However, here we use an alternative
method to obtain a quantitative estimate of the exciton
bandwidth using the values of Ecr, Ep, t. and t;, from
our model and a generalized wavevector-dependent form
of Eq. 4.[22, 59] The result is that the exciton bandwidth
is on the order of 10 meV for both Form I and Form II.
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We note that this approach suggest that the maximum
dispersion switches from the direction of dimer I for Form
I, to the direction of dimer IT for Form IT and that it be-
comes J-like (Jor < 0).

3. Temperature dependence of higher energy excitations

In addition to the large wavelength shift of peak 1,Fig.
11(c) shows a dramatic change in the intensity I of Peak
3(L) normalized to the incident light intensity I as the
temperature increases. The peak intensity ratio I/l in-
creases by a factor of 2.2, as shown in Fig.11(c) and
the absorption maximum is blueshifted from 2.120 eV
to 2.153 eV (see Supplemental Information Fig. S2).[36]
The results shown in Fig. 5 show that the Peak 3(L)
does not occur for TIPS-pentacene monomers in solu-
tion, rather it is related to crystallization. Both its peak
energy and peak intensity are determined by intermolec-
ular interactions that are sensitive to thermal expansion
effects. Peak 2(L) also exhibits significant temperature
dependence, although it is not clear whether it is pre-
dominantly a change of intensity or wavelength.

IV. DISCUSSION

The 7-7 stacking distance in molecular crystals is de-
termined by attractive van der Waals binding in the
dimer, balanced with electrostatics and exchange repul-
sion interactions. Since these forces are hypersensitive to
the molecular separation distance, the m-7 stacking dis-
tance in m conjugated materials tend to maintain at a
constant value 3.4-3.5 A, consistent with our combined
experimental /theoretical results. This places us in a po-
sition to discuss how the TIPS-pentacene crystals me-
chanically responds to changes in temperature or to me-
chanical strain.

In the literature, it is reported that compressive strain
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along the w-m stacking distance reduces the molecu-
lar center-to-center distance, thus enhancing the charge
transport in TIPS-pentacene and PTCDI-C8[60]. How-
ever, our results for TIPS-pentacene indicates that the
-7 stacking distance is nearly independent on the molec-
ular center-to-center distance. It is likely that this same
behavior can also take place when compressive or ten-
sile strain is applied to a crystal. For molecules packed
in a bricklayer stacking, molecules in a dimer can rotate
under strain to keep a constant m-7 stacking distance as
the crystal is either stretched or compressed along a par-
ticular crystallographic direction. Thus, we predict that
counterintuitively, tensile strain can increase charge mo-
bility as long as the relative molecular positions move
towards larger charge transfer integrals or towards re-
duced sensitivity to dynamic disorder (or both, as we
have observed in Fig. 9).

For Form I, the transient localization length is esti-
mated to be only slightly larger than the molecular spac-
ing in the dimer, indicating that the field effect mobility
is consistent with localized charge carriers. The Hall ef-
fect mobility has been found to be much smaller than its
field effect mobility for Form I, which was attributed to
charge carriers being too strongly localized to contribute
to a Hall voltage[15]. On the other hand for Form II the
transient localization length is nearly doubled, thus the
charge carriers are more delocalized. These results sug-
gest that the Hall effect mobility for Form IT should be
close to its field effect mobility since delocalized charge
carriers can couple to the magnetic field through the
Lorentz force.

In this paper, our main achievement is that we have
established a reliable structure-property relationships for
TIPS-pentacene thin films based on our results on TIPS-
pentacene molecular orientation, transition dipoles di-
rection and the field effect mobility characterization.
Establishing clear structure-property relationships for
TIPS-pentancene is challenging, and we have noticed
that there are discrepancies and even contradictory re-
sults reported in the literature. Several of these is-
sues include: 1) Multiple groups have reported that the
twin boundary of TIPS-pentancene twin grains are along
[210] directions[27, 61], but our previous report[28] and
others[37, 38] have found that the boundary is along the
[100] direction. Its not yet clear whether these differences
are a result of different thin film deposition conditions,
or due to spurious experimental results. 2) Experimental
reports in the literature find that the lowest energy ab-
sorption peak of TIPS-pentacene has its transition dipole
along the long axis of the molecule[29], while a theoretical
study finds that the transition dipole of lowest energy ab-
sorption peak is along the short axis of the molecule[30].
Our results clearly favor the latter finding. 3) A large
spread of mobility values have been reported in the lit-
erature for TIPS-pentacene. For example, surprisingly
high mobility has been reported for both TIPS-pentacene
Form I and Form II. The “record” highest average mobil-

ity reported for TIPS-pentance Form I is 6.9 cm?V~1s™!,
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while for Form II it is 8.1 em?V~1s71[62, 63]. However,
reproducible values from different groups|[6, 14, 64] sug-
gest that the TIPS-pentacene Form I has a field effect
mobility that is actually somewhat lower, in the range of
0.4-1.2 cm?V~1s™!, which is consistent with the transient
localization model[4]. It has been cautioned that overes-
timation of mobility could result from voltage-dependent
contact resistance effects[10, 49]. In contrast, our re-
sults follow recommended best practices in the literature,
such as reporting the linear mobility as the mobility of
record, and ruling out gate-voltage dependence of the
estimated mobility[65]. The average linear mobility for
TIPS-pentacene Form I'is 0.8 (£ 0.1) em?V~1s~! and for
strain-stabilized TIPS-pentacene Form II is 2.6 (£ 0.3)
em?V—ls~h

V. CONCLUSIONS

In this paper, we have clarified several questions re-
lated to the TIPS-pentacene molecular packing and tran-
sition dipole directions and we have described how the
structure sensitivity of charge carrier mobility and low
energy optical excitations are both essentially determined
by the change of the magnitude of charge transfer inte-
grals and their gradient with respect to molecular dis-
placement in the crystal. The hole mobility of strain-
stabilized Form II TIPS-pentacene is about three times
higher than Form I due to the increased magnitude of
the hole transfer integral and reduced sensitivity to dy-
namic disorder. Strain engineering is a general approach
to improve mobility by tuning the molecular positions in
the solid towards positions where charge transfer inte-
grals are large and insensitive to the molecular thermal
vibrations. We anticipate that this approach can be ap-
plied to many other organic semiconductors to improve
their charge carrier mobility since their structures can
be tuned by a combination of thermal expansion and
mechanical strain. We have also determined that the
thermal expansion effect in TIPS-pentacene causes the
molecules in the dimers to “slide” with respect to each
other while maintaining an almost constant m — 7 stack-
ing distance. As a result, hole transfer is enhanced even
though the molecular centers move further apart dur-
ing thermal expansion, and the lowest energy absorption
peak of TIPS-pentacene is blueshifted in Form II due to
Frenkel/CT exciton mixing. The links between optical
excitation and carrier transport via charge transfer inte-
grals highlight the combination of structural, electronic
and optical measurements with first principles theory as
a powerful toolset to monitor and predict the properties
of strain-engineered materials with improved carrier mo-
bility or desirable optical properties.
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