Enhancement of charge transfer in thermally expanded and strain-stabilized TIPS-pentacene thin films

Yang Li and Jing Wan

Materials Science Program, University of Vermont, Burlington VT 05405, USA

Detlef-M. Smilgies

Cornell High Energy Synchrotron Source, Cornell University, Ithaca NY 14853, USA

Richards Miller

Department of Physics, University of Vermont, Burlington VT 05405, USA

Randall L. Headrick*

Department of Physics and Materials Science Program, University of Vermont, Burlington VT 05405, USA (Dated: May 8, 2021)

We present an extensive study of the optical and electronic properties of TIPS-pentacene thin films utilizing in situ x-ray diffraction, polarized optical spectroscopy and ab initio density functional theory. The influence of molecular packing on the properties are reported for thin films deposited in the temperature range from 25°C to 140°C, and for films that are strain-stabilized at their as-deposited lattice spacings after cooling to room temperature. Anisotropic thermal expansion causes relative displacement of neighboring molecules while maintaining a nearly constant stacking distance. This leads to a large blueshift in the absorption spectrum as the temperature increases. The blueshift largely reverses a redshift at room temperature compared to the solution absorption spectrum. A reduction in the ratio of the first two vibronic peaks relative to the solution spectrum is also observed. This combination of electronic and vibronic effects is a signature of charge transfer excitonic coupling with a positive coupling constant $J_{\rm CT}$, which depend sensitively on the alignment of the nodes of the frontier molecular orbitals with those on neighboring molecules. These effects are also correlated with the sign and magnitude of electron and hole charge transfer integrals t_e and t_h calculated from density functional theory that provide additional evidence for charge transfer mediated coupling, as well as insight into the origin of an experimentally observed enhancement of the field-effect transistor mobility in strain-stabilized thin films. The results suggest approaches to improve carrier mobility in strained thin films and for optical monitoring of electronic changes.

I. INTRODUCTION

Two of the most critical experimentally accessible properties of small-molecule organic semiconductor materials are the charge carrier mobility, which probes charge transport, and the optical absorption spectrum which probes the energy levels of excited states. A deep understanding of how the structure affects these properties is a key challenge[1, 2]. It is vital to understand the fundamental mechanisms of carrier transport in order to design new materials that will lead to improved organic thin film transistors with faster operation and lower power consumption in advanced liquid crystal and organic light-emitting displays[3–5]. In the case of optical absorption, the spectrum gives important insight into the types of excitations present.

There have been great improvements in the charge carrier mobility of π -conjugated organic semiconductors over the last 30 years as new materials with improved properties have been identified [6–10]. These

molecular solids typically have small $\pi - \pi$ stacking distances around 3.5 Å, which promotes charge transfer and 34 delocalization[11, 12]. Charge transport has previously 35 been assumed to be through hopping of localized carriers 36 since the semiclassical mean-free-path of carriers is found 37 to be less than the intermolecular distance [13]. However, 38 recent experiments reveal carrier transport characterized 39 by band-like mobility, that is, increasing mobility as the 40 temperature decreases, implying that charge carriers are 41 delocalized[14, 15]. This ambiguous localized/delocalized 42 behavior has spurred the adoption of a new paradigm, 43 where dynamic disorder caused by molecular thermal vi-44 brations is sufficient to break the translational symmetry of the electronic Hamiltonian, producing transient local-46 ization of the charge carriers while maintaining coher-47 ence over a characteristic length scale L on the order of 48 the molecular spacing[16–19]. These new insights suggest 49 ways to increase L by (i) reducing the sensitivity of the 50 intermolecular electronic coupling to thermal vibrations, 51 and (ii) designing materials that have reduced dynamic 52 disorder[18, 19].

Excitons in organic semiconductors can be tightly

2

10

11

12

⁵⁴ bound to a single molecule (Frenkel type) or they can

 $_{55}$ be composed of charges separated by one or a few molec-

^{*} rheadrick@uvm.edu

 $_{57}$ ous studies, an energy shift in the optical absorption $_{112}$ were pre-diced to a standard substrate size of 15 mm imes62 exciton and charge transfer (CT) excited states is small, 117 cover the substrate and gold contacts, as described be-63 so that neutral molecular excitations and charge trans- 118 low. Film thickness was measured for each sample by a 64 fer excitations mix via electron and hole transfer[12, 21-119 Dektak XT stylus profilometer. The experimental condishort-range coupling that results in a significant shift in 121 are individually described below. the absorption bands relative to the (highly localized) $_{122}$ orbital (LUMO) of neighboring molecules, which is sentron charge transfer integrals t_h and t_e .

The impact of molecular packing on the optical and 132 room temperature. 77 charge transport properties are often treated separately. However, these effects are actually linked at a fundamental level, and it is of interest to understand the interrelationship between them, as well as how they respond to strain and thermal expansion. In this paper, we highlight the fundamental relationship between these two phenomena in TIPS-pentacene.

86 III A, we address the basic structural and electronic properties of TIPS-pentacene thin films. These include the crystallographic orientation of twin grains[27, 28] and the directions of transition dipoles relative to the molecuthese effects, we examine them in detail in order to clarify IIIB, we show that the large thermal expansion of TIPSpentacene leads to an enhancement of the hole transport in strain-stablized thin films, and that it modulates the 96 charge transfer integrals and their sensitively to dynamic 97 disorder. In Section III C, we show that the optical exci-98 tation energies can also be tuned by thermal expansion 99 effects and we investigate how this is also related to the change of the theoretically-determined charge transfer in-101 tegrals.

EXPERIMENTAL

102

109 thus it can only be utilized to write narrow films with a 167 cleaned glass slides into a toluene solution of 3 wt% PTES 110 width around 5 mm. The glass substrates (fused silica 168 and heated to 110 °C for 15 h[32, 33]. After PTES treat-

56 ular spacings (Charge Transfer type). In many previ- 111 corning 7980 of UV grade) we used for making transistors spectra of certain organic semiconductors is found to 113 20 mm and polished both sides with a roughness smaller be highly sensitive to small changes of the molecular 114 than 0.7 nm. For transistor arrays, a custom-designed packing[2, 20]. This effect, termed "crystallochromy", 115 slot writer with a slot size of 0.5 mm × 20 mm was used occurs when the energy difference between the Frenkel 116 to deposit TIPS-pentacene films to make the film fully 23]. The interference between these states produces a 120 tions for all samples are summarized in Table I and they

Sample A1 was deposited at 90°C with a low writing Frenkel exciton [22-26]. The sensitivity to the crystal 123 speed of 0.05 mm/s in order to obtain highly oriented packing arises since these effects depend on the overlap 124 grains. In situ microbeam grazing incidence wide-angle of the nodal patterns of the highest occupied molecu- $_{125}$ X-ray scattering (μ GIWAXS) was carried out at the Corlar orbital (HOMO) and lowest unoccupied molecular 126 nell High Energy Synchrotron Source (CHESS), beamline 127 D1. The X-ray incidence direction in each case was persitive to sub-angstrom relative motion. The excitation 128 pendicular to the film's writing direction. This data was energy shift caused by CT/Frenkel exciton mixing can 129 used to study the molecular orientation of the grains. Pobe characterized by the magnitude of the hole and elec- 130 larized optical microscopy was performed using a Zeiss 131 microscope (Axioskop 40) after the sample was cooled to

Sample A2 was deposited on a glass slide to collect 134 polarized absorption spectra. The film was deposited at a low writing speed (0.08 mm/s) from a 44 mg/ml toluene solution to get large oriented grain size (>100 ₁₃₇ μ m). The film was relatively thick (620 nm) so that it 138 would have strong absorbance. A schematic setup of the 139 single-grain polarization spectroscopy is shown in Fig. The structure of this paper is as follows: In Section 140 1(a). Briefly, the setup is as follows: a thin film on a 141 glass substrate is placed in a temperature controlled mi-142 croscope stage (Linkam THMS600) which is mounted on ¹⁴³ a rotation stage, and a fixed polarizer is placed between 144 the light source and the sample. An optical microscope lar axis[29, 30]. Although there is existing literature on 145 (Olympus BXFM) with an integrated UV-Vis spectrom-146 eter (Angstrom Sun Technologies Inc.) is used to acquire the correct structure-property relationships. In Section 147 absorption spectra within a single grain (Figs. 1(b,c)). 148 Polarized absorption spectra were collected at each an-149 gle over the range -30° and 60° with respect to the grain 150 boundary in order to map out the polarization depen-151 dence of the absorption along both the short and long 152 axes of the TIPS-pentacene molecular core.

> μ GIWAXS was carried out in an in situ study at 154 CHESS to determine the thermal expansion induced 155 structure change of polycrystalline thin films. The Samples B1a and B1k were made at 25°C and 134°C respec-157 tively and their X-ray data were collected at the deposi-158 tion temperature of each sample in order to avoid mea-159 surable strain effects.

To study the charge transport properties, TIPS-160 TIPS-pentacene (≥ 99%) was purchased from Sigma 161 pentacene thin films deposited at 25°C and 130°C (Sam-Aldrich. All TIPS-pentacene thin films were prepared by 162 ples B2 and B3) were used as active layers for organic the hollow capillary pen-writer method [28, 31] except the 163 field-effect transistors. The glass slides were first ul-Samples B2 and B3 that were used for mobility charac- 164 trasonic cleaned in deionized water, acetone, and isoterization. Our hollow rectangular capillary has a size of 165 propanol for 10 min and then the Phenyltriethoxysilane 0.5 mm × 5.0 mm I.D. (Wale apparatus Co. 4905-100) 166 (PTES) treatment was accomplished by immersing the

TABLE I. Deposition	conditions of	f TIPS-pentacene	thin films	discussed in	n Section III.

	-			-			
Samples	Figure	Temp.	Concentration	Speed	Substrate	Solvent	Thickness
		(°C)	(mg/ml)	(mm/s)			(nm)
A1	2	90	1.5	0.05	Si/SiO_2	Mesitylene	210
A2	1,3, 4, 5	25	44	0.08	glass	Toluene	620
B1a	6	25	1.5	25	Si/SiO_2	Toluene	85
B1k	6	134	1.5	25	Si/SiO_2	Mesitylene	106
B2	7,8	25	20	0.05	glass	Toluene	25
В3	7,8	130	10	0.6	glass	Mixed solvent	30
C1	10, 11	25	25	0.02	glass	Toluene	650

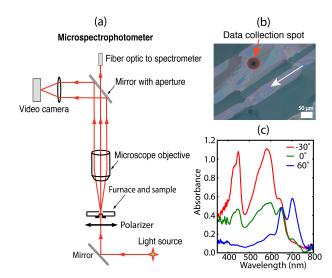


FIG. 1. (a) Schematic of the set up for polarized transmission spectrum collection. A polarizer is placed under a rotational sample stage and the polarization is put along the writing direction. A mirror with an aperture is inserted into the light path to select a small area of interest. (b) The polarized optical image of a sample deposited at 0.08 mm/s at 25°C on glass substrate (Sample A2). The large grain size enables us to put the transmission data collection spot in a single grain since the data collection spot is about 50 μ m in diameter under 20 times magnification lens. The white arrow indicates the writing direction of the film. The angle was set to be 0° when the polarization was along the writing direction. (c) Typical polarized absorption spectra. Red: the sample was rotate by -30° to the writing direction. Green: the sample was placed at 0° . Blue: the sample was rotated by 60° .

ment, the substrates were rinsed in toluene, acetone and 170 isopropanol for 1 min. Gold contacts (30 nm) were evaporated using a shadow mask to form arrays of source and treated for 20 min using 30 mM solution of pentafluorobenzene thiol (PFBT) in isopropanol followed by a 2 60 °C. The TIPS-pentacene Form I film (Sample B2) was 223 the geometry optimization. deposited from pure toluene solution and Form II film 224 180 zene and mesitylene with a volume ratio of 4:1. The 226 glass slide at 0.02 mm/s in order to obtain large grain 181 deposition speed, concentration and TIPS-pentacene film 227 size. The temperature dependence of single-grain polar-

thickness information can be found in Table I. The TIPSpentacene film was annealed at 100°C for 10 min then a CYTOP layer was prepared by slot writing from a 809M CYTOP solution using CT-SOLV100E as solvent (AGC Chemicals Co.). The volume ratio of 809M CYTOP to its solvent is 1:1.5 and the deposition speed is 4 mm/s. The sample was annealed at 100 °C for 20 min, resulting in a 1100 nm thick CYTOP layer with a capacitance 190 of 1.7 nF/cm². The TIPS-pentacene and CYTOP film 191 deposition and annealing were carried out in a Nitrogen 192 atmosphere. Finally a 100 nm thick aluminum layer was thermally evaporated using a shadow mask in a bell jar to serve as the gate electrode. For each sample, 14-15 transistors were characterized.

The intermolecular electronic couplings between the highest occupied and lowest unoccupied molecular orbitals $(t_{homo} \text{ and } t_{lumo})$ of TIPS-pentacene dimers are calculated using the ADF (Amsterdam density functional) package[34]. The PW91[35] exchange-correlation function and the TZP basis set are used in the calculation for both dimer I ([100] direction) and dimer II ([110] 203 direction). The sign of electronic coupling (t_{homo}) and $z_{04} t_{lumo}$) is determined by the translational symmetry of 205 the molecular orbitals of the dimer. The electron charge $_{206}$ transfer integral is obtained by $t_e = t_{lumo}$ and the hole 207 charge transfer integral is obtained by $t_h = -t_{homo}$.

X-ray diffraction data were collected at 23°C for a TIPS-pentacene single crystal using a Bruker Apex II 209 210 CCD single-crystal diffractometer. This data was used 211 to obtain the full structure of the room temperature 212 phase. The unit cell parameters of the TIPS-pentacene 213 high temperature phase were obtained at 134°C from the $_{214}$ in situ μ GIWAXS on the B1k thin film sample. We did 215 not obtain the full structure from the X-ray data in this 216 case since it was not possible to measure enough reflec-217 tions from the thin film to obtain a reliable structure. drain electrodes with a channel length of 30 μm and a 218 Instead a geometry optimization with the lattice conchannel width of 1000 μ m. These contacts were then 219 stants constrained to the experimentally measured values 220 was performed using the BAND program with PBE func-221 tional and D3 dispersion correction with Becke-Johnson min rinse in pure isopropanol and a 15 min annealing at 222 dampling PBE-D3(BJ). The TZP basis set was used in

To study the influence of the thermal expansion on (Sample B3) was prepared from a blend of dichloroben- 225 the optical properties, Sample C1 was deposited on a 228 ized spectra were collected using the setup in Fig. 1. The 229 sample was 650 nm thick. Such large thickness films can 230 expand and contract freely without being significantly influenced by the substrate during annealing up to 140°C 232 and subsequent cooling. The heating and cooling rate was 2°C/min for these temperature scans, and tempera- $_{234}$ ture steps of 10° were carried out. The temperature was 235 maintained at each step for about 10 mins and polarized 236 absorption spectra were collected at -30° and 60° with 237 respect to the grain boundary.

III. RESULTS AND DISCUSSION

238

239

240

246

Molecular packing geometry and transition dipole directions

In this section, we determine the crystalline orientation of aligned TIPS-pentacene films and the directions of transition dipoles relative to the molecular axes. This information is crucial for understanding the structure-245 property relationships.

1. Molecular packing geometry

In situ X-ray scattering data for Sample A1 is shown 248 in Fig. 2(a) which was collected at the deposition temperature. The X-ray beam direction is perpendicular to the writing direction of our film and only (10L) and (20L) are observed, indicating that the X-ray beam is incident at a small angle to the (100) crystalline plane. A polarized optical image of the sample is shown in Fig. 2(b). The image was taken after the sample was cooled to room temperature. Cracks that had formed during cooling are visible in the image. This sample was intentionally fab- 279 are V-shaped and the angle between the cracks and 261 262 direction.

trated in Fig. 2(c-d) based on a model that we have 287 addition to the (110) oriented cracks[27, 33, 39]. proposed in previous work[28]. In this model, the grain boundaries are twins oriented along the a-axis of the unit cell. The molecular orientation within one grain can be obtained by rotating the crystal structure of a neighboring twin by an angle of 180° about an axis perpendicular 289 groups[37, 38].

278 help determine the molecular orientation. The cracks 298 were collected in total, and ten of theman are plotted in

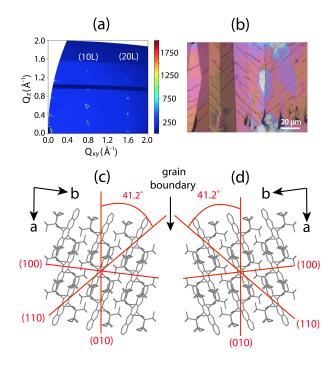


FIG. 2. (a) A typical X-ray scattering image for an aligned TIPS-pentacene film deposited at 90 °C (Sample A1 in Table 1). In situ X-ray scattering was carried out at the deposition temperature and the X-ray beam was perpendicular to the writing direction. (b) A polarized optical image of the sample taken after it was cooled to room temperature. V-shaped cracks are formed and the angle between the cracks and twin boundary is about 40°. (c) and (d) A model of twin grains formed in TIPS pentacene thin films. The twin boundary is along a-axis which also corresponds to the pen-writing direc-

ricated with a relatively large film thickness (210 nm) in 280 grain boundary in Fig. 2(b) is found to be 40°, which order to induce cracking during the cooling process, so 281 is very close the orientation of (110) planes (see Fig. that we can determine the orientation of the dominant 282 2(c)). A similar orientation of cracks has previously been cracks. In all of our aligned TIPS-pentacene thin films, 283 observed[27, 29]. We find that the (110) d-spacing unthe grain boundaries of the film are parallel to the writing 284 dergoes the largest change during cooling, so the cracks 285 tend to occur along these planes. For very thick films The molecular orientation within the grains is illus- 286 (not shown) cracks often occur along other directions in

Direction of transition dipoles

We can also correlate the packing geometry with its to the boundary. In Fig. 2(c-d), the angle between the 290 polarization-dependent optical absorbance. Here we use a-axis and the long axis of the molecule is 28° (calculated 291 single-crystalline-grain polarized absorption spectra to using the supplemental structure file of the room temper- 292 determine the transition dipole directions. The data colature phase).[36] This is consistent with Fig. 2(a) that 293 lection spot is put within a single grain as shown in Fig. the twin boundary is along the [100] direction. This con- 294 1(b). When the polarization direction is along the twin clusion is also supported by evidence from several other 295 boundary we define the angle to be $\theta = 0^{\circ}$. The sam-²⁹⁶ ple is rotated in steps of 10° to collect the polarized ab-The cracking pattern is another important clue to 297 sorption spectra. Thirty-six polarized absorption spectra

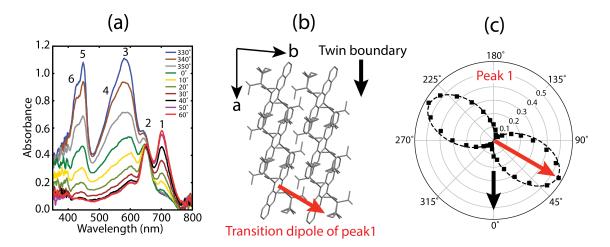


FIG. 3. (a): Typical single grain polarized absorption spectra when the sample is rotated from -30° to 60° respect to the twin boundary with a step of 10°. From the low energy to the high energy side, we labeled the absorption peaks as 1, 2, 3, 4, 5 and 6. (b) Schematic of TIPS-pentacene molecule structure plotted using the supplemental structure file for the room temperature phase, top view. [36] At 0°, the twin boundary is along the polarized direction. The red arrow indicates the direction of transition dipole of peak 1. Note that its direction is in the plane of the molecule and it has a small component in the plane of the film due to the tilt of the molecule along its long axis; (c) Angle dependence of absorbance of peak 1. This sample is Sample A2 in Table 1.

300 starting from the long wavelength side [30]. In order to 331 of the crystalline environment break the selection rule 301 get the absorbance values of all six peaks, the data is fit-322 for pentacene, but this is a small perturbation that re-302 ted with a Lorentz oscillator model [40]. Examples of the 333 sults in weak optical activity for polarization along other 303 fitting curves are given in Supplemental Information Fig. 334 directions [42, 43]. In Fig. 4, we can see that the tran-304 S1 and all the fitting results are listed in Table S1. [36] 335 sition dipole of peak 1 is the only one that is along the 305 The absorbance data is fitted by the equation[41]:

$$A(\theta) = -\log_{10}(10^{-A_{min}}\sin^2(\theta - \theta_0) + 10^{-A_{max}}\cos^2(\theta - \theta_0))$$
(1)

Supplemental Information Table S1 for all six peaks.[36] An example of the fitted data for peak 1 is shown in Fig. 309 3(c) and the complete series is shown in Fig. 4. The angle θ_0 is the angle that gives the maximum absorbance. We find that peak 1 becomes strongest when the rotation angle is 60°, whereas peaks 3 and 5 become strongest when the rotation angle is -30°. As we discussed in the last sec- $_{344}$ molecular short axis.

321 is along the short axis of the molecule can be justified 352 643 nm, 593 nm, 550 nm, 438 nm and 415 nm. The ular orbitals. Unsubstituted pentacene has D_{2h} symme- 358 excited singlet state ($S_0 - S_1$ excitation). xfresutls try and its HOMO and LUMO states belong to the B_{1g} 356 Returning to the description of the thin film spectra, B_{2u} group representations respectively. The selec- B_{2u} group representations respectively. The selec-326 tion rules determine that the HOMO to LUMO transi- 358 found to be along the short axis of the molecule. Fig. 327 tion is only allowed along the short-axis for the molecule. 359 5(a) also shows that it has a large redshift relative to the ₃₂₈ The TIPS-pentacene molecule belongs to the lower sym-₃₆₀ solution state. Peaks 2(S) and 2(L) are very close in po-

299 Fig. 3(a). The peaks are labeled as 1, 2, 3, 4, 5 and 6 330 side groups. The side groups and the lower symmetry 336 short axis of the molecule and that the transition dipoles 337 of peak 3-6 are along the long axis of the molecule. These $A(\theta) = -\log_{10}(10^{-A_{min}}\sin^2(\theta - \theta_0) + 10^{-A_{max}}\cos^2(\theta - \theta_0))$ 338 peaks are enhanced relative to peak 1 since the long axis (1) 339 of the molecule is parallel to the plane of the thin film, The fitting parameters A_{max} , A_{min} and θ_0 are given in 340 while transition dipoles along the short axis have only a 341 small component in the plane of the film. Peak 2 doesn't 342 show much polarization dependence as we discuss below.

Origin of the aggregation-induced spectral shift

Polarized absorption spectra along the short axis and tion, the angle between the long axis of the molecule and $_{345}$ along the long axis of molecules within a single grain the crystallographic a-axis is -28° and the angle between 346 are shown in Fig. 5. Three peaks can be observed in short axis of molecule and a-axis is 62°. These results 347 Fig. 5(a) which are labeled as peak 1, 2(S), 3(S). In Fig. indicate that the transition dipole for peak 1, which cor- 348 5(b), five peaks can be observed and are labeled as Peak responds to the singlet $S_0 - S_1$ transition, is along the 349 2(L), 3(L), 4, 5, 6. The absorption spectrum of a TIPS 350 pentacene solution (0.9 mg/ml in toluene) is plotted as The observation that the transition dipole of peak 1 351 a dash line in Fig. 5. It has five absorption peaks at from selection rules based on the symmetry of the molec- 353 first three peaks are the Frank-Condon series of the first

 c_{ij} metry c_{ij} point group due to the fact that it has two c_{ij} sition and have similar absorbance magnitudes. We note

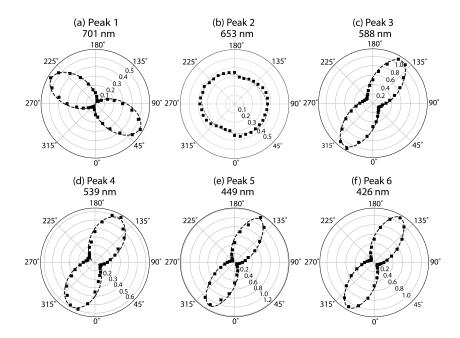


FIG. 4. (a-f) Polar plots of absorbance as a function of polarization angle from peak 1 to peak 6. The dashed lines are the fitting curves and the fitting results are given in Table S1. The fitted peak positions were given. A peak shift have been observed for peak 2 and 3 as the polarization is changed from along the short axis of the molecule to the long axis of the molecule.

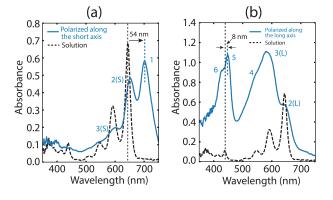


FIG. 5. (a, b) Polarized absorption spectra along short axis and along the long axis of a sample made at 25°C. The Sample A2 thickness is 620 nm and data is collected at 25°C. The dashed line is the absorption spectrum of a dilute TIPS pentacene solution (0.9 mg/ml, toluene is the solvent).

₃₇₃ example, the The Peak 1/Peak 5 intensity ratio is weak ₄₀₅ peaks 3 and 4 should be maximized when light is polar-₃₇₄ in the solid-film spectrum relative to the solution spec-₄₀₆ ized along the short axis of the molecule [30]. Peaks 5

375 trum. This is because the tilt angle of TIPS-pentacene molecule in the thin film is about 10°, thus the transition dipole along the short axis of the molecule only has a small component (sin 10°) in the plane of the thin film, causing the peak intensity to be attenuated to only 0.03 $(\sin^2 10^\circ)$ of it's full value.

Our experimental results are in substantial agreement with a first-principles many-body perturbation study of quasiparticle excitations based on the GW approximation by Sharifzadeh et al. [30]. They show that peak 1 (originating from state S_1 in their notation) couples 386 strongly to light polarized along the molecule's short axis and the rest of the peaks come from a combination of multiple excited states. They consider peak 2 to be caused by three nearly-degenerate states $(S_2, S_3, \text{ and })$ S_4), which result from the long-range order and π orbital $_{391}$ overlap in the organic crystal. Optical transitions to S_2 $_{392}$ and S_3 have the same polarization dependence as S_1 , while S_4 is exactly out of phase (this is consistent with that the polar plot of peak 2 shown in Fig. 4 is a mix- 394 the weak angular dependence for peak 2 in Fig. 4). Based ture of these two, so it doesn't exhibit much polarization 395 on their calculations, peaks 3 and 4 in our notation come dependence. Peak 3 is also a mixture of Peak 3(S) and 396 from a mixture of numerous states. This can explain Peak 3(L). However, since peak 3(S) has a much smaller 397 why the widths of both peaks 3 and 4 are larger than the absorbance compared to 3(L), the polar plot of peak 3 398 widths of peaks 1 and 2 (Supplemental Information Table still exhibit fairly strong polarization dependence. Peaks 399 S1). [36] For peaks 3 and 4 in our data, the net transition and 6 of the solid film have absorption peaks around 400 dipole moment is mainly aligned with the molecular back-440 nm, very close to two corresponding peaks in solu- 401 bone, so they both exhibit strong angular dependence tion, indicating that they probably have the same origin. 402 and reach maximum absorbance when light is polarized Absorbance in the short-axis polarized spectrum is signif- 403 along the long axis of the molecule. This detail doesn't icantly reduced relative to the long axis spectrum. For 404 agree with Sharifzadeh's calculation, which predicts that

407 and 6 also have large A_{max}/A_{min} ratios, which suggests 408 that the transitions contributing to these two peaks are 409 also mainly allowed along the long axis of the molecule, which is in agreement with Sharifzadeh's results.[30].

In contrast to the good agreement with ab-initio cal-412 culations discussed above, we note that the prediction of the optical peak shift in solid films based on simple Coulomb coupling does not explain our experimental results for the lowest energy transition (peak 1). According to Kasha[44], the Coulomb coupling J_{Coul} comes from 417 the dipole interactions between the transition dipoles 418 which can be estimated by a point-dipole approximation:

$$J_{\text{Coul}} \approx \frac{\mu^2 (1 - 3\cos^2 \theta)}{4\pi\varepsilon R^3} \tag{2}$$

where μ is the transition dipole moment, R is the in-420 termolecular distance, θ is the angle between μ and R ₄₂₁ and ε is the optical dielectric constant of the medium. 422 Eq. 2 predicts $J_{\text{Coul}} > 0$ for $\theta > 54.7^{\circ}$. We note that 423 more accurate treatments of the Coulomb coupling based 424 on atomic transition charge densities give a qualitatively 425 similar picture. [45–47] In the TIPS-pentacene crystal, the transition dipoles along the short axis of the molecular backbone are "side-by-side" oriented (θ is about 80° for both dimer I and dimer II). Therefore, Peak 1 is expected J_{Coul} to be blueshifted since J_{Coul} is positive, i.e. our results show that Coulomb coupling predicts the wrong direction for the shift of peak 1 in Fig. 5(a).

It has been pointed out by Spano and co-workers that 432 the intensity ratio of the lowest energy absorption peak to its first vibronic replica (0-0/0-1) is a more reliable signature of the sign and magnitude of the excitonic cou-436 pling than the peak shift since other phenomena may 437 dominate the peak shift. Taking the 1(s)/2(s) ratio in 438 Fig. 5 of ≈ 1.25 as the 0-0/0-1 ratio we see that it is 439 significantly diminished compared to the corresponding 440 ratio in the solution spectrum (≈ 2.2). A reduced ratio 441 indicates H-type coupling (J>0) in agreement with our 442 expectation from the packing geometry. However, the magnitude of the redshift is quite large (54 nm, or in energy units 146 meV), while as we noted above there should be a blueshift for pure H-type Coulomb coupling. This contradiction can be resolved since H-type behavior in combination with a large solution to crystal redshift is a characteristic of mixing between Frenkel and charge transfer (CT) excitons in the absence of strong Coulomb 450 coupling. [22] Although this situation may seem unnatu-451 ral, such behavior has been found to be a fairly accurate 452 description for several acenes, including tetracene and 453 pentacene. [48] In this case, the strength of the coupling 454 is characterized by the charge transfer coupling $J_{\rm CT}$, with 484 Q_z of $(\bar{1}01)$ and (102) for Form I are 0.56 and 0.59 Å 455 $J_{\rm CT} > 0$ for H-type and $|J_{\rm CT}| \gg |J_{\rm Coul}|$.

457 dominant role in determining the spectral shift of peak 487 0.53 and 0.61 Å, so that they are clearly separated. 458 1. First, in Section IIIB we discuss enhancement in the 488 459 hole transport.

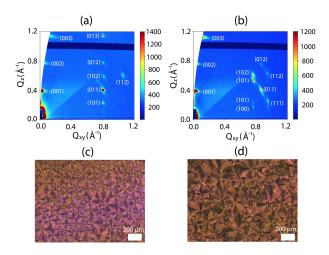


FIG. 6. (a, b) X-ray scattering images for TIPS-pentacene films deposited at 25°C (Sample B1a) and 134°C (Sample B1k) respectively. (c, d) the polarized optical images of Samples B1a and B1k showing that they have a spherulitic grain structure. The optical images were taken after the samples cooled to room temperature.

Tuning the charge carrier transport

In the previous section, we determined the molecular 462 packing geometry in the twin grains and the directions of 463 transition dipoles of optical excitations. In this section, we show that the large anisotropic thermal expansion of TIPS-pentacene greatly affects the film's charge transport properties.

Anisotropic thermal expansion in TIPS-Pentacene

Strain-free polycrystalline TIPS-pentacene thin films 469 (Sample B1a and B1k) were made at 25°C and 134°C 470 to study the thermally-driven evolution of the structure. 471 The films were deposited at high writing speed to ob-472 tain polycrystalline films, ensuring that there are enough 473 diffraction peaks to solve for the unit cell parameters. 474 X-ray scattering images for these two samples are shown 475 in Fig. 6(a-b). The unit cell parameters of Samples B1a and B1k were calculated from the (11L), (10L) and (01L) 477 peak positions and the results are listed in Table II. We 478 refer to the phase made at room temperature as Form 479 I and the phase obtained above the phase transition as 480 Form II. From Form I to Form II, the (10L) and (11L) 481 peaks are shifted to lower Q_{xy} values whereas the (01L) 482 peaks shifted to higher Q_{xy} values. We noticed the (102) 483 reflection splits into two for Form II. This is because the 485 respectively, which makes them difficult to distinguish, In Section III C we discuss how charge transfer plays a 486 while for Form II the Q_z of ($\bar{1}01$) and (102) change to

> From 25°C to 134°C, the unit cell a-axis is expanded 489 by more than 10% and the product $b \sin \gamma$ is reduced by

TABLE II. Lattice constants of single TIPS-pentacene crystal at 23° C and thin films deposited at 25° C (Sample B1a) and at 134° C (Sample B1k) .

Phase (Temp.°C)	a (Å)	b (Å)	c (Å)	α (deg.)	β (deg.)	γ (deg.)	$b\sin\gamma$ (Å)
Bulk (23)	7.7325	7.7656	16.9395	88.544	77.922	82.264	7.6949
Thin film I (25)	7.78	7.75	16.70	89.4	77.9	81.1	7.66
Thin film II (134)	8.69	7.66	16.83	87.8	78.9	71.0	7.24
% Difference ^a	+11.7	-0.1					-5.5

^a Difference between thin films made and measured at 134°C, and 25°C.

490 more than 5%. This result agrees well with our previ-491 ous study of Form I and strain-stabilized Form II thin 492 films with smaller thickness (30 nm)[33], indicating the structure in that study is determined by the deposition temperature and the films are strain-stabilized at their 495 high temperature lattice constants as they are cooled to 496 room temperature due to the constraint of the substrate. ⁴⁹⁷ In the present cases, the lattice constants are measured 498 in situ at the deposition temperature so that strain ef-499 fects are negligible. The crystallographic d-spacings for films made at 25°C and 134°C were calculated from the unit cell parameters in Table II and are shown in Supplemental Information Table S2.[36] As we have mentioned, the (110) d-spacing has the biggest change which explains why cracks tends to occur along (110) plane when cooling a thick high-temperature made sample to room temperature (Fig.2).

Table II also includes the bulk structure from single crystal X-ray diffraction performed at 23° . It is not sursopposition performed at 23° . It is not sursopposited at 25° are very similar to those of the bulk phase at 23° .

2. Impact of structure changes on hole transport

511

In order to study the charge transport properties of 513 Form II, we deposited thin TIPS-pentacene film (Sam-514 ple B3) at high temperature and stabilized the high temperature structure to room temperature by strainstabilization[32, 33]. The film deposited at high substrate temperature become strained during cooling due to the mismatch between the thermal expansion coefficients of the TIPS-pentacene film and the wafer substrate. Since strain energy is proportional to film thickness, thicker films crack during cooling and release strain; this allows the lattice constants to relax to nearly strain-free values 523 during cooling to room temperature. On the other hand, thinner films can accommodate a higher strain. Thus, the 525 cracking temperature is depressed further and further as the film thickness is reduced. By making the Form II film thin enough, no cracks occur and the high temperature unit cell constants can be fully strain-stabilized to ambient temperature[33].

The hole mobility of TIPS-pentacene Form I (Sam⁵⁴⁶
⁵³¹ ple B2) and strain stabilized Form II (Sample B3) have
⁵⁴⁸
⁵³² been measured at room temperature by making top gate
⁵⁴⁸
⁵³³ bottom contact thin film transistors using either TIPS⁵⁴⁹
⁵⁴⁹ pentacene Form I or strain stabilized Form II films as
⁵⁵⁰

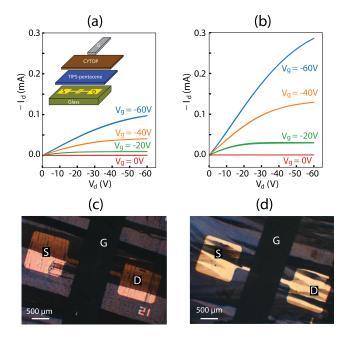


FIG. 7. (a) Output curve of a typical TIPS-pentacene based transistor using Form I film as active layer(Sample B2). The inset is exploded view of top gate bottom contact transistor using a TIPS-pentacene film as the active layer and CY-TOP film as dielectric layer; (b) Output curve of a typical TIPS-pentacene based transistor using Form II film as active layer(Sample B3); (c) polarized optical image of the Form I based transistor that goes with (a); (d) polarized optical image of the Form II based transistor that goes with (b).

 $_{535}$ active layers. The transistor geometry is shown in the $_{536}$ inset of Fig. 7(a). The output curves of a Form I based $_{537}$ transistor and Form II based transistor are shown in Figs. 7(a) and (b). The Form I film and strain-stabilized Form II morphology are shown in Fig. 7(c) and Fig. 7(d). Crystalline grains are observed to be much longer along the writing direction than the transistor channel length (30 μ m). Figs. 7(a,b) show that the drain current I_d increases linearly as increasing the drain voltage V_d in the linear region ($V_d \ll V_g$), indicating the contact resistance between the Form I or Form II film and PFBT treated gold pattern is small. The Form II based transistors have higher I_D under the same gate voltage compared to Form I based transistor, indicating the Form II film has higher hole mobility.

The field effect hole mobilities are calculated from

551 transfer curves in both saturation and linear region and 606 highly sensitive to the relative positions of the molecules ₅₅₂ the results are summarized in Fig. 8. Typical satura- ₆₀₇ in the dimer [50]. The t_h and t_e are calculated using the 556 and the saturation mobility for TIPS-pentancene Form 611 pentacene [50, 51] are usually calculated using a low tem-₅₅₇ II is 3.5 cm²V⁻¹s⁻¹. The gate voltage dependence of ₆₁₂ perature structure obtained at -100°C[52]. This low tem-₅₅₈ the saturation mobility (Fig. 8(c)) does not have a pro- $_{613}$ perature phase has its a lattice constant equal to 7.5650 559 nounced mobility-overestimation peak due to non-linear 614 Å. This parameter is different than our room tempera-560 charge injection, which is an experimental artifact fre- 615 ture bulk Form I structure, which has a = 7.7325 Å. The ₅₆₁ quently found in the literature [49]. The linear transfer ₆₁₆ Δx and Δy for the dimer I of the -100°C structure are $_{563}$ and the gate voltage dependence of the linear mobility is $_{618}$ than our Form I phase whose Δx and Δy are 6.86 Å close to its saturation mobility.

The average linear mobility of TIPS-pentacene Form I 624 -23.5 meV for the low temperature structure. ₅₇₀ is $0.8 (\pm 0.1) \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$. It is close to its average saturation mobility which is $0.9 (\pm 0.1) \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$. The average threshold voltage is -2 V and on/off ratio is about 10⁴. For stain-stabilized Form II, the average linear and saturation mobility are 2.6 (\pm 0.3) cm²V⁻¹s⁻¹ and 2.9 (± 0.5) cm²V⁻¹s⁻¹ respectively. The average threshold voltage is -3 V and on/off ratio is also about 10⁴. Therefore the mobility is increased by about a factor of three using a strained film as the active layer.

Sensitivity of charge transfer integrals to the dynamic disorder

579

580

TIPS-pentacene has two distinct dimers with a rela-581 tively large molecular orbital overlap. Dimer I is along the [100] direction and dimer II is along the $[\bar{1}10]$ direction. The structure files of TIPS-pentacene Form I and 642 590 lar orbitals and the relative displacement of neighboring 648 long axis of the molecule [55, 56]. The dynamic disorder 594 sider a dimer made of two TIPS-pentacene molecules and 652 the dynamic disorder or suppressing the dynamic disor-595 study the variation of the charge transfer integral when 653 der are more effective ways to improve the charge mobil-⁵⁹⁸ a good approximation of the structure change at various ⁶⁵⁶ of Form I is highly sensitive to the molecular vibration 604 integrals respectively.

tion transfer curves for TIPS-pentacene Form I and Form 608 Δx , Δy and $\pi - \pi$ stacking distance obtained from the II films are shown in Figs. 8(a) and (b). The satura- 609 structure files of the Form I and Form II which are given tion mobility for the Form I transistor is 1.0 cm²V⁻¹s⁻¹ 610 in Table III. In references, the transfer integrals in TIPScurves for the same transistors are given in Fig. 8(d) 617 6.70 Å and 0.89 Å respectively which are slightly smaller shown in Fig. 8(e). For the Form I based transistor, its 619 and 1.03 Å respectively. Even though this low temperalinear mobility is 0.9 cm²V⁻¹s⁻¹ which is almost equal to 620 ture structure is similar to our room temperature phase, its saturation mobility. The linear mobility for the Form 621 it still leads to noticeably different charge transfer inte-II based transistor is about 2.9 cm²V⁻¹s⁻¹ which is also 622 grals. For example, the calculated t_h for dimer I using 623 our room temperature Form I phase is 2.6 meV but it is

> The unit cell of Form II is obtained by X-ray diffraction 626 from Sample B1k and the molecular packing geometry is 627 obtained by DFT energy minimization with constrained 628 lattice constants (results in Table II). From Form I to ₆₂₉ Form II, the Δx and Δy displacements increased for 630 dimer I. For dimer II, the Δx decreased while the Δy 631 increased. We noticed that for our geometry optimized $_{\rm 632}$ Form II, the $\pi-\pi$ stacking distances for both dimers are 633 still around 3.4-3.5 A. This is different from X-ray diffrac-634 tion results in the literature, which suggest that Form II 635 dimer I has a much smaller $\pi - \pi$ stacking distance (3.23) ₆₃₆ Å) compared to the $\pi - \pi$ stacking distance of Form II 637 dimer II (3.65 Å)[53]. We note that the results in the 638 literature were based on a small number of X-ray reflections (N = 30), which leads to larger uncertainties in the 640 structural parameters compared to typical single-crystal 641 X-ray results. [27, 52, 54]

The large hole mobility of Form II strain stabilized Form II are given in the Supplemental Information. [36] 643 thin films can be attributed to the increased hole charge A schematic of dimer I and dimer II for TIPS-pentacene 644 transfer integral along dimer I and the reduced sensitiv-Form I and Form II are shown in Fig. 9(a). The charge 645 ity of the charge transfer integral to dynamic disorder. transfer integrals in a dimer depend on the nodal struc- 646 It was reported that TIPS-pentacene has large thermal ture of highest occupied and lowest unoccupied molecu- 647 dynamic disorder due to molecular vibrations along the molecules. Varying the temperature causes neighboring 649 localizes the charge carriers and is detrimental to charge molecules to move relative to each other, leading to a 650 transport. Based on the transient localization model, relarge modulation of charge transport properties. We con- 651 ducing the sensitivity of the charge transfer integral to one molecule "slides" with respect to the other on paral- 654 ity than by just increasing the absolute value of charge lel planes with a constant separation of 3.4 Å, which is $_{655}$ transfer integral[4]. In Fig. 9(c), we can see that the t_h temperatures from experimental results. The direction 657 along the long axis of the molecule since the gradient of along the long axis of the molecule is defined as the x-658 the hole mobility along the x-direction at the magenta axis and the direction along the short axis is defined as 659 dot in Fig. 9(c) is relatively large. On the other hand, the y-axis. The map of t_h and t_e are shown in Fig. 9(c) 660 the t_h of Form II is less sensitive to thermal motion since and (d) where t_h and t_e are the hole and electron transfer $_{661}$ it sits near a saddle point (green dot). Thus the increased 662 mobility along Form II dimer I can be partially attributed The sign and magnitude of t_h and t_e are found to be $_{663}$ to the reduced sensitivity of charge transport to dynamic

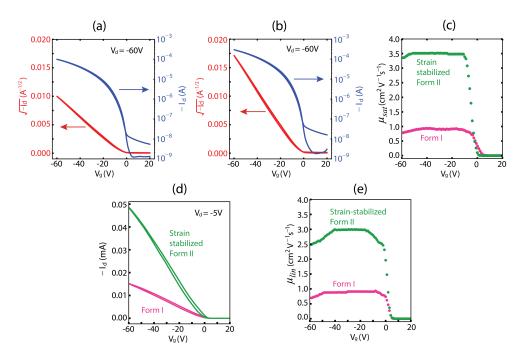


FIG. 8. (a) Saturation transfer curve for Form I film made at 25°C (Sample B2); (b) saturation transfer curve for Form II film made at 130°C and then strain stabilized to 25°C (Sample B3); (c) gate dependent saturation mobilities for Form I film and Form II film; (d) linear transfer curves for Form I and II film; (e) gate dependent linear mobilities for Form I and Form II film. The saturation and linear transfer curves were measured for the same transistor and the output curves are given in Fig.7.

TABLE III. Calculated hole and electron transfer integrals.

Temp.°C	Dimer	Δx (Å)	Δy (Å)	$\pi - \pi$ (Å)	$t_h \; (\mathrm{meV})$	$t_e \; (\text{meV})$	$t_h + t_e \; (\text{meV})$
23	Dimer I	6.86	1.03	3.41	2.6	-121.2	-118.6
134	Dimer I	7.87	1.49	3.36	33.4	-0.3	33.1
23	Dimer II	9.47	1.65	3.39	4.0	56.8	60.8
134	Dimer II	8.68	1.77	3.52	5.7	56.4	62.1

lattice disorder.

666 transient localization length of hole carriers from our ex-686 length of Form I relative to Form II is attributed to both Based on the transient localization model, the analytical 689 in several theoretical calculations [4, 57]. 670 formula for the charge mobility[4]:

 $\mu = \frac{e}{k_B T} \frac{L(\tau)^2}{2\tau}$

where k_B is the Boltzmann constant, T is the temper-₆₇₂ ature, e is the electric charge, τ is the fluctuation time 673 given by the inverse of typical intermolecular oscillation frequency, and $L(\tau)$ is the transient localization length 692

684 estimated as 15.0 Å for its average saturation mobility To carry this discussion further, we can estimate the 685 of 2.9 cm²V⁻¹s⁻¹. The suppressed transient localization perimentally measured hole mobility and compare the 687 a small charge transfer integral and large sensitivity to difference between TIPS-pentacene Form I and Form II. 688 dynamic disorder as illustrated in Fig. 9(c) and reported

Tuning the optical excitation energies

1. Impact of structural changes on the optical absorbance

Results of a study of the temperature dependence of that depends on charge transfer integral and its sensi- 693 absorption are shown in Fig. 10. The polarized abtivity to thermal vibration. The fluctuation time τ is 694 sorption spectra along both the long and short axes given to be 0.15 ps for TIPS-pentacene[4]. Utilizing our 695 were collected by heating a thick TIPS-pentacene film experimentally measured average saturation mobility of 696 (Sample C1). The absorption peak shift caused by the Form I which is 0.85 cm²V⁻¹s⁻¹ one can estimate the 697 reversible temperature-dependent structure evolution is 680 corresponding transient localization length for Form I. 698 gradual and continuous. Due to the large thickness (650 The results is L=8.1 Å, which is only slightly larger 699 nm), the film has cracks that allow it to keep adjusting ₆₈₂ than the lattice constant of Form I whose a = 7.78 Å. ₇₀₀ to it's equilibrium lattice constants as the temperature 683 Similarly the transient localization length for Form II is 701 changes. We observe that peak 1 in Fig. 10(a) exhibits

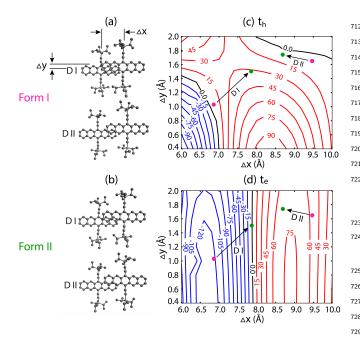


FIG. 9. (a): Schematic of dimer I and II for Form I; (b) Schematic of dimer I and II for Form II; (c) the map of hole charge transfer integral t_h ; (d) the map of electron transfer integral t_e . Magenta circles are the dimer I and II positions for the Form I and green circles are the positions for the Form

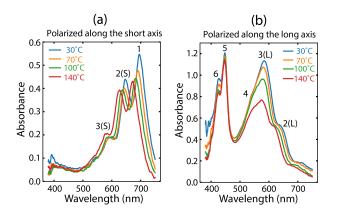


FIG. 10. The temperature dependence of polarized absorption spectra collected when a 650 nm thick TIPS-pentacene film was annealed from 30°C to 140°C: (a) the polarization direction is along the short axis of the molecules; (b) the polarization direction is along the long axis of the molecules

 $_{702}$ a total blueshift of about 25 nm between 30° and 140° (from 695 nm to 670 nm).

₇₀₉ in crystalline TIPS-pentacene has been carried out by ₇₆₀ temperature increases so we can calculate the temper-Sharifzadeh et al. [30] In that study, the electron-hole cor- τ_{01} ature dependence of $t_h + t_e$. The E_- is calculated us-₇₁₁ relation for the low energy excitation corresponding to ₇₆₂ ing Eq. 4 with estimated $E_{CT}=2.10$ eV and $E_{F}=$

712 peak 1 is found to be mainly along the direction that 713 corresponds to dimer I. This result helps to tie together our experimental observations, since we found in Section III A that there is a large change in Δx and Δy in dimer I as the temperature is changed, while in Section 717 IIIB we found that these shifts produce a large modula-718 tion of the charge transfer integrals t_e and t_h for dimer 719 I. In the next subsection, we discuss a semiquantitative one-dimensional (1D) chain model, which gives insight on 121 how the excitation energies depend on the charge transfer 722 integrals.

Charge transfer effect on the lowest optical excitation

In this section we discuss the structure sensitivity of the lowest energy optical excitation energy (peak 1). In the solid state, there are several factors that can affect 728 the optical excitation energy including: (i) Coulombic 729 coupling and (ii) Frenkel/CT exciton mixing. [22, 44] As we have discussed above, Coulombic coupling does not explain the shift from solution to solid film. We find that it also fails to explain the temperature dependence since from Form I to Form II the Coulombic coupling is expected to be weakened as the molecular centers move ₇₃₅ further apart. This should cause peak 1 to redshift, which 736 is inconsistent with our experimental results for the temperature dependence shown in Fig. 10(a).

The Frenkel/CT exciton mixing can change the lowest optical excitation energy in high mobility materials 740 since their frontier orbitals have significant orbital overlap. This effect provides the most plausible explanation for the temperature-dependent peak shift. A simple 1D model can be used to semiquantitatively illustrate how Frenkel/CT exciton mixing affects the excitation energy. The Frenkel and CT excitons are coupled via the elec-746 tron and hole transfer integrals t_e and t_h [12, 58]. Since 747 the CT exciton energy is typically higher than the energy 748 of the Frenkel exciton, E_{CT} will be repelled upward and $_{749}$ E_F with be repelled downward by an amount governed ₇₅₀ by $|t_h + t_e|[22, 25]$. The energies of the resultant coupled Frenkel state (E_{-}) and the CT exciton state (E_{+}) can 752 be expressed as[22]:

$$E_{\pm} = \frac{E_{CT} + E_F}{2} \pm \sqrt{\left(\frac{E_{CT} - E_F}{2}\right)^2 + 2(t_e + t_h)^2}$$
 (4)

As only the Frenkel-like energy level E_{-} contains sig-754 nificant oscillator strength, Frenkel/CT mixing causes a The large sensitivity of the peak positions to tempera- 755 redshift of the excitation energy. [22, 58] Table 3 shows ture is consistent with the modulation of charge transfer 756 that from Form I to Form II, $t_h + t_e$ changes significantly effects as the structure changes due to thermal expan- 757 from -118 meV to 33 meV for dimer I, but is almost unsion. We note that a theoretical study of the electron- 758 changed for dimer II, as is plotted in Fig. 11(a). We hole correlation function for the first four excited states 759 assume that changes in Δx and Δy are linear as the

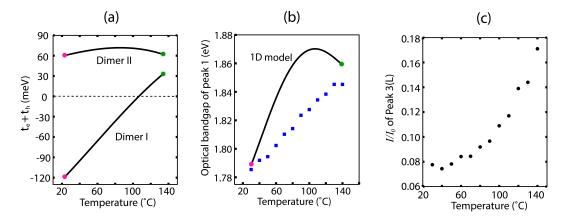


FIG. 11. (a) The change of $t_h + t_e$ for TIPS-pentacene Dimer I and Dimer II as the structure changes from Form I to Form II. (b) the optical bandgap shift of peak 1 vs. thermally-driven structure evolution. The blue squares are the experimental data (Sample C1 in Table 1) and the black curve is based on the 1D Frenkel/CT exciton mixing model using $t_h + t_e$ for dimer I only. (c) The temperature dependence of peak 3 (L) intensity on linear scale I/I_0 .

₇₆₃ 1.87 eV and compared with our experimental data, as ₈₀₁ We note that this approach suggest that the maximum 764 shown in Fig. 11(b). We see that the model significantly 802 dispersion switches from the direction of dimer I for Form 765 overshoots, particularly in the temperature range where 803 I, to the direction of dimer II for Form II and that it be-₇₆₆ $t_e + t_h$ for dimer I is close to zero $(E_- = E_F \text{ when } t_e + t_h \text{ so4 comes J-like } (J_{\text{CT}} < 0).$ = 0). Therefore, the data suggests that charge transfer 768 along dimer II cannot be neglected. For simplicity, in the model shown in Fig. 11(b) we have also neglected polarization energy changes resulting from the temperature dependence of the molecular separation. However, the modulation of E_{-} through this mechanism is modest compared to that produced by the variation of $|t_e + t_h|$.

774 or negative depending on the signs of $t_e t_h$ and $E_{\rm CT} - E_F$. 810 creases by a factor of 2.2, as shown in Fig.11(c) and form $J_{\text{CT}} = -2t_e t_h/(E_{\text{CT}} - E_F)$. [22, 26, 58, 59] Assuming 812 to 2.153 eV (see Supplemental Information Fig. S2). [36] $E_{\rm CT} > E_F$, the coupling is H-like when $t_e t_h$ is negative, 813 The results shown in Fig. 5 show that the Peak $3({\rm L})$ 779 i.e. $J_{\rm CT}$ is positive. We can see in Table III that t_e and 814 does not occur for TIPS-pentacene monomers in solu-780 th have opposite signs for dimer I, which reinforces our 815 tion, rather it is related to crystallization. Both its peak 781 experimental results that are consistent with $J_{\rm CT} > 0$.

The 1(s)/2(s) peak ratio changes significantly as a 782 function of temperature in Fig. 10(a). Since the ratio is reduced as the temperature increases, the theory of Spano and co-workers predicts that the exciton bandwidth increases. [59] However, this intensity ratio change should be interpreted with caution since Sharifzadeh et al. find that peak 2(s) is unlikely to be solely the results of a vibronic progression.[30] Rather, there may be two 822 798 our model and a generalized wavevector-dependent form 831 chanically responds to changes in temperature or to me-799 of Eq. 4.[22, 59] The result is that the exciton bandwidth 832 chanical strain.

3. Temperature dependence of higher energy excitations

In addition to the large wavelength shift of peak 1, Fig. 807 11(c) shows a dramatic change in the intensity I of Peak 808 3(L) normalized to the incident light intensity I_0 as the A consequence of this model is that J_{CT} can be positive ∞ temperature increases. The peak intensity ratio I/I_0 in-In the limit $|E_{\rm CT} - E_F| \gg |t_e|, |t_h|$, it takes the simple 811 the absorption maximum is blueshifted from 2.120 eV 816 energy and peak intensity are determined by intermolec-817 ular interactions that are sensitive to thermal expansion 818 effects. Peak 2(L) also exhibits significant temperature 819 dependence, although it is not clear whether it is pre-820 dominantly a change of intensity or wavelength.

IV. DISCUSSION

The π - π stacking distance in molecular crystals is deother electronic excitations with the same polarization 823 termined by attractive van der Waals binding in the and at nearly the same wavelength. Thus, a bandwidth 824 dimer, balanced with electrostatics and exchange repulextracted from the 1(s)/2(s) ratio may be highly overes- 825 sion interactions. Since these forces are hypersensitive to timated. We have argued in Sec. III A 3 that the reduced 826 the molecular separation distance, the π - π stacking dis-0-0/0-1 ratio of ≈ 1.25 is qualitatively consistent with 827 tance in π conjugated materials tend to maintain at a H-type coupling. However, here we use an alternative 828 constant value 3.4-3.5 Å, consistent with our combined method to obtain a quantitative estimate of the exciton 829 experimental/theoretical results. This places us in a pobandwidth using the values of $E_{\rm CT}$, E_F , t_e and t_h from 830 sition to discuss how the TIPS-pentacene crystals me-

800 is on the order of 10 meV for both Form I and Form II. 833 In the literature, it is reported that compressive strain

842 in a bricklayer stacking, molecules in a dimer can rotate 900 sults follow recommended best practices in the literature. towards larger charge transfer integrals or towards re- 906 cm²V⁻¹s⁻¹. duced sensitivity to dynamic disorder (or both, as we have observed in Fig. 9).

For Form I, the transient localization length is esti-851 mated to be only slightly larger than the molecular spacing in the dimer, indicating that the field effect mobility is consistent with localized charge carriers. The Hall effect mobility has been found to be much smaller than its field effect mobility for Form I, which was attributed to charge carriers being too strongly localized to contribute to a Hall voltage[15]. On the other hand for Form II the transient localization length is nearly doubled, thus the 860 charge carriers are more delocalized. These results suggest that the Hall effect mobility for Form II should be close to its field effect mobility since delocalized charge carriers can couple to the magnetic field through the Lorentz force.

877 others[37, 38] have found that the boundary is along the 927 mechanical strain. We have also determined that the 890 Form I and Form II. The "record" highest average mobil- 940 of strain-engineered materials with improved carrier mo-891 ity reported for TIPS-pentance Form I is 6.9 cm²V⁻¹s⁻¹, 941 bility or desirable optical properties.

₈₃₄ along the π - π stacking distance reduces the molecu-₈₉₂ while for Form II it is 8.1 cm²V⁻¹s⁻¹[62, 63]. However, lar center-to-center distance, thus enhancing the charge 893 reproducible values from different groups [6, 14, 64] sugtransport in TIPS-pentacene and PTCDI-C8[60]. How- 894 gest that the TIPS-pentacene Form I has a field effect ever, our results for TIPS-pentacene indicates that the 895 mobility that is actually somewhat lower, in the range of π - π stacking distance is nearly independent on the molec- 896 0.4-1.2 cm²V⁻¹s⁻¹, which is consistent with the transient ular center-to-center distance. It is likely that this same 897 localization model[4]. It has been cautioned that overesbehavior can also take place when compressive or ten- 898 timation of mobility could result from voltage-dependent sile strain is applied to a crystal. For molecules packed seg contact resistance effects [10, 49]. In contrast, our reunder strain to keep a constant π - π stacking distance as $_{901}$ such as reporting the linear mobility as the mobility of the crystal is either stretched or compressed along a par- 902 record, and ruling out gate-voltage dependence of the ticular crystallographic direction. Thus, we predict that 903 estimated mobility [65]. The average linear mobility for counterintuitively, tensile strain can increase charge mo- $_{904}$ TIPS-pentacene Form I is $0.8 (\pm 0.1) \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ and for bility as long as the relative molecular positions move $_{905}$ strain-stabilized TIPS-pentacene Form II is 2.6 (\pm 0.3)

CONCLUSIONS

In this paper, we have clarified several questions re-909 lated to the TIPS-pentacene molecular packing and tran-910 sition dipole directions and we have described how the 911 structure sensitivity of charge carrier mobility and low 912 energy optical excitations are both essentially determined 913 by the change of the magnitude of charge transfer inte-914 grals and their gradient with respect to molecular dis-In this paper, our main achievement is that we have 915 placement in the crystal. The hole mobility of strainestablished a reliable structure-property relationships for 916 stabilized Form II TIPS-pentacene is about three times TIPS-pentacene thin films based on our results on TIPS- 917 higher than Form I due to the increased magnitude of pentacene molecular orientation, transition dipoles di- 918 the hole transfer integral and reduced sensitivity to dyrection and the field effect mobility characterization. 919 namic disorder. Strain engineering is a general approach Establishing clear structure-property relationships for 920 to improve mobility by tuning the molecular positions in TIPS-pentancene is challenging, and we have noticed 921 the solid towards positions where charge transfer intethat there are discrepancies and even contradictory re- 922 grals are large and insensitive to the molecular thermal sults reported in the literature. Several of these is- 923 vibrations. We anticipate that this approach can be apsues include: 1) Multiple groups have reported that the 924 plied to many other organic semiconductors to improve twin boundary of TIPS-pentancene twin grains are along 925 their charge carrier mobility since their structures can [210] directions[27, 61], but our previous report[28] and 926 be tuned by a combination of thermal expansion and [100] direction. Its not yet clear whether these differences 928 thermal expansion effect in TIPS-pentacene causes the are a result of different thin film deposition conditions, 929 molecules in the dimers to "slide" with respect to each or due to spurious experimental results. 2) Experimental 930 other while maintaining an almost constant $\pi - \pi$ stackreports in the literature find that the lowest energy ab- 931 ing distance. As a result, hole transfer is enhanced even sorption peak of TIPS-pentacene has its transition dipole 932 though the molecular centers move further apart duralong the long axis of the molecule [29], while a theoretical 933 ing thermal expansion, and the lowest energy absorption study finds that the transition dipole of lowest energy ab- 934 peak of TIPS-pentacene is blueshifted in Form II due to sorption peak is along the short axis of the molecule [30]. 935 Frenkel/CT exciton mixing. The links between optical Our results clearly favor the latter finding. 3) A large 936 excitation and carrier transport via charge transfer intespread of mobility values have been reported in the lit- 937 grals highlight the combination of structural, electronic erature for TIPS-pentacene. For example, surprisingly 938 and optical measurements with first principles theory as high mobility has been reported for both TIPS-pentacene 939 a powerful toolset to monitor and predict the properties

ACKNOWLEDGMENTS

943 944 on collecting single-crystal X-ray diffraction data and 945 thank Prof. Mathew White for his assistance on film 952 National Science Foundation under NSF award DMRthickness measurement and and thank Prof. Michael 947 Ruggiero for helpful discussions. This work is supported

948 by National Science Foundation under Grant No. DMR-949 1307017 and DMR-1701774. The X-ray scattering mea-The authors thank Prof. John M. Hughes for his help 950 surements were conducted at the Cornell High Energy 951 Synchrotron Source (CHESS) which is supported by the 953 1332208.

[1] Loah A. Stevens, Katelyn P. Goetz, Alexandr Fonari, 1005 Ying Shu, Rachel M. Williamson, Jean-Luc Brédas, 1006 Veaceslav Coropceanu, Oana D. Jurchescu, and Gavin E. 1007 Collis, "Temperature-mediated polymorphism in molec- 1008 ular crystals: The impact on crystal packing and charge 1009 transport," Chemistry of Materials 27, 112-118 (2015), 1010 http://dx.doi.org/10.1021/cm503439r.

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

986

987

988

989

990

991

992

993

994

996

997

998

999

- J. Mizuguchi and K. Tojo, "Electronic structure 1012 perylene pigments as viewed from the crys- 1013 [12] tal structure and excitonic interactions," The Jour- 1014 nal of Physical Chemistry B 106, 767-772 (2002), 1015 https://doi.org/10.1021/jp012909p. 1016
- Guillaume Schweicher, Yoann Olivier, Vincent Lemaur, 1017 [13] and Yves Henri Geerts, "What currently limits charge 1018 carrier mobility in crystals of molecular semiconduc- 1019 tors?" Israel Journal of Chemistry 54, 595-620 (2014), 1020 https://doi.org/10.1002/ijch.201400047. 1021
- S. Fratini, S. Ciuchi, D. Mayou, G. Trambly de Lais- 1022 sardiére, and A. Troisi, "A map of high-mobility molec- 1023 ular semiconductors," Nature Materials 16, 998-1002 1024 (2017), https://doi.org/10.1038/nmat4970.
- Veaceslav Coropceanu, Jórôme Cornil, Demetrio A. 1026 da Silva Filho, Yoann Olivier, Robert Silbey, Jean-Luc Brédas, "Charge transport in organic semi- 1028 conductors," Chemical Reviews 107, 926–952 (2007), 1029 http://dx.doi.org/10.1021/cr050140x.
- Sung Kyu Park, Thomas N. Jackson, John E. Anthony, 1031 and Devin A. Mourey, "High mobility solution processed 1032 6,13-bis(triisopropyl-silylethynyl) pentacene organic thin 1033 [16] film transistors," Applied Physics Letters 91, 063514 1034 (2007), https://doi.org/10.1063/1.2768934.
- Daniel Orrin Hutchins, Tobias Weidner, Joe Baio, Brent 1036 Polishak, Orb Acton, Nathan Cernetic, Hong Ma, and 1037 Alex K.-Y. Jen, "Effects of self-assembled monolayer 1038 [17] structural order, surface homogeneity and surface energy 1039 on pentacene morphology and thin film transistor device 1040 performance," J. Mater. Chem. C 1, 101–113 (2013).
- Jing Wan, Yang Li, Jeffrey G. Ulbrandt, Detlef-M. Smil- 1042 gies, Jonathan Hollin, Adam C. Whalley, and Randall L. 1043 [18] Headrick, "Transient phases during fast crystallization 1044 of organic thin films from solution," APL Materials 4, 1045 016103 (2016), http://dx.doi.org/10.1063/1.4939464.
- Kazuo Takimiya, Itaru Osaka, Takamichi Mori, and 1047 [19] Masahiro Nakano, "Organic semiconductors based on 1048 [1]benzothieno[3,2-b][1]benzothiophene substructure," 1049 Accounts of Chemical Research 47, 1493–1502 (2014), 1050 https://doi.org/10.1021/ar400282g.
- Alexandra F. Paterson, Saumya Singh, Kealan J. 1052 [20] 1001 Thomas Hodsden, Yang Han, Bob C. 1053 1002 Schroeder, Hugo Bronstein, Martin Heeney, Iain 1054 1003 McCulloch, and Thomas D. Anthopoulos, "Recent 1055 1004

- progress in high-mobility organic transistors: A reality check," Advanced Materials 30, 1801079 (2018), https://doi.org/10.1002/adma.201801079.
- Sahar Sharifzadeh, Pierre Darancet, Leeor Kronik, and Jeffrey B. Neaton, "Low-energy charge-transfer excitons in organic solids from first-principles: The case of pentacene," The Journal of Physical Chemistry Letters 4, 2197-2201 (2013), https://doi.org/10.1021/jz401069f.
- Pierluigi Cudazzo, Francesco Sottile, Angel Rubio, and Matteo Gatti, "Exciton dispersion in molecular solids," Journal of Physics: Condensed Matter 27, 113204 (2015), http://dx.doi.org/10.1088/0953-8984/27/11/113204.
- Rudolph A. Marcus. "Electron transfer reactions inchemistry: Theory and experiment." Rev. Mod. Phys. **65**. 599–610 (1993).http://dx.doi.org/10.1103/RevModPhys.65.599.
- Tomo Sakanoue and Henning Sirringhaus, "Band-like temperature dependence of mobility in a solutionprocessed organic semiconductor," Nature Materials 9, 736-740 (2010), http://dx.doi.org/10.1038/nmat2825.
- Jui-Fen Chang, Tomo Sakanoue, Yoann Olivier, Takafumi Uemura, Marie-Beatrice Dufourg-Madec, Stephen G. Yeates, Jérôme Cornil, Jun Takeya, Alessandro Troisi, and Henning Sirringhaus, "Hall-effect measurements probing the degree of charge-carrier delocalization in solution-processed crystalline molecular semiconductors," Phys. Rev. Lett. 107, 066601 (2011), http://dx.doi.org/10.1103/PhysRevLett.107.066601.
- Alessandro Troisi and Giorgio Orlandi, "Chargetransport regime of crystalline organic semiconductors: Diffusion limited by thermal off-diagonal electronic disorder," Phys. Rev. Lett. 96, 086601 (2006), http://dx.doi.org/10.1103/PhysRevLett.96.086601.
- Alessandro Troisi and Giorgio Orlandi, "Dynamics of the intermolecular transfer integral in crystalline organic semiconductors," The Journal of Physical Chemistry A **110**, 4065–4070 (2006).https://doi.org/10.1021/jp055432g.
- Alessandro Troisi, "Charge transport in high mobility molecular semiconductors: classical models and new theories," Chemical Society Reviews 40, 2347–2358 (2011), http://dx.doi.org/10.1039/C0CS00198H.
- Simone Fratini, Didier Mayou, and Sergio Ciuchi, "The transient localization scenario for transport in crystalline organic materials," vanced Functional Materials 26, 2292–2315 (2016), http://dx.doi.org/10.1002/adfm.201502386.
- Peter M. Kazmaier and Roald Hoffmann, "A theoretical study of crystallochromy: Quantum interference effects in the spectra of perylene pigments," Journal of the American Chemical Society **116**, 9684–9691 (1994),

https://doi.org/10.1021/ja00100a038.

1056

1069

1081

1082

1083

1085

1086

1087

1089

1090

1091

1092

1093

1095

1096

1097

1098

1099

1101

1104

- M. Hoffmann, K. Schmidt, T. Fritz, T. Hasche, V.M. 1121 1057 [21] Agranovich, and K. Leo, "The lowest energy frenkel 1122 1058 and charge-transfer excitons in quasi-one-dimensional 1123 [33] 1059 structures: application to MePTCDI and PTCDA 1124 1060 crystals," Chemical Physics 258, 73 - 96 (2000), 1125 1061 https://doi.org/10.1016/S0301-0104(00)00157-9.1062
- Nicholas J. Hestand and Frank C. Spano, "Molecu- 1127 1063 lar aggregate photophysics beyond the Kasha model: 1128 [34] 1064 Novel design principles for organic materials," Ac- 1129 1065 counts of Chemical Research 50, 341-350 (2017), 1130 1066 http://dx.doi.org/10.1021/acs.accounts.6b00576. 1067
- Linus Gisslén and Reinhard Scholz, "Crystallochromy of 1132 1068 pervlene pigments: Interference between Frenkel exci- 1133 tons and charge-transfer states," Phys. Rev. B 80, 115309 1134 1070 (2009), http://dx.doi.org/10.1103/PhysRevB.80.115309. 1135 1071
- R. W. Munn, Barbara Pac, and Piotr Petelenz, 1136 1072 "Charge-transfer-induced Frenkel exciton splitting in 1137 1073 crystalline fullerene," Phys. Rev. B 57, 1328-1331 (1998), 1138 1074 https://dx.doi.org/10.1103/PhysRevB.57.1328. 1075
- M.H. Hennessy, Z.G. Soos, R.A. Pascal, and A. Girlando, 1140 1076 "Vibronic structure of PTCDA stacks: the exciton- 1141 1077 phonon-charge-transfer dimer," Chemical Physics 245, 1142 1078 199 - 212 (1999), https://doi.org/10.1016/S0301-1143 1079 0104(99)00082-8. 1080
 - H. Yamagata, D. S. Maxwell, J. Fan, K. R. Kit- 1145 [37] [26] tilstved, A. L. Briseno, M. D. Barnes, and 1146 F. C. Spano, "H,J-aggregate behavior of crystalline 1147 7,8,15,16-tetraazaterrylene: Introducing a new de- 1148 sign paradigm for organic materials," The Journal 1149 of Physical Chemistry C 118, 28842–28854 (2014), 1150 http://dx.doi.org/10.1021/jp509011u.
- [27] Jihua Chen, Chee Keong Tee, Max Shtein, David C. Mar- 1152 1088 tin, and John Anthony, "Controlled solution deposition 1153 and systematic study of charge-transport anisotropy in 1154 single crystal and single-crystal textured TIPS pentacene 1155 thin films," Organic Electronics 10, 696 – 703 (2009), 1156 http://dx.doi.org/10.1016/j.orgel.2009.03.007. 1157
- Songtao Wo, Randall L. Headrick, and John E. 1158 [39] 1094 "Fabrication and Anthony, characterization controllable grain boundary arrays solution- 1160 processed small molecule organic semiconductor 1161 films," Journal of Applied Physics 111, 073716 (2012), 1162 http://dx.doi.org/10.1063/1.3698203.
- [29]David T. James, Jarvist M.and Wade Jessica Frost, 1164 1100 Nelson Jenny, and Kim Ji-Seon, "Controlling mi- 1165 crostructure of pentacene derivatives by solution pro- 1166 1102 cessing: Impact of structural anisotropy on optoelec- 1167 1103 tronic properties," ACS Nano 7, 7983-7991 (2013), 1168 [41] Malcolm Sambridge, John Fitz Gerald, István Kovács, http://dx.doi.org/10.1021/nn403073d.
- [30] Sahar Sharifzadeh, Cathy Y. Wong, Hao Wu, Ben- 1170 1106 jamin L. Cotts, Leeor Kronik, Naomi S. Ginsberg, and 1171 1107 Jeffrey B. Neaton, "Relating the physical structure and 1172 1108 optoelectronic function of crystalline TIPS-pentacene," 1173 1109 Advanced Functional Materials 25, 2038–2046 (2015), 1174 [42] 1110 https://doi.org/10.1002/adfm.201403005. 1111 1175
- R. L. Headrick, S. Wo, F. Sansoz, and J. E. An- 1176 [31]1112 thony, "Anisotropic mobility in large grain size 1177 1113 solution processed organic semiconductor thin 1178 1114 films," Applied Physics Letters 92, 063302 (2008), 1179 1115 http://dx.doi.org/10.1063/1.2839394. 1116
- Ishviene Cour, Priva V. Chinta, Christian M. Schlepütz, 1181 1117 Yongsoo Yang, Roy Clarke, Ron Pindak, and Ran- 1182 1118 dall L. Headrick, "Origin of stress and enhanced car- 1183 1119

- rier transport in solution-cast organic semiconductor films," Journal of Applied Physics 114, 093501 (2013), http://dx.doi.org/10.1063/1.4820384.
- Yang Li, Jing Wan, Detlef-M. Smilgies, Nicole Bouffard, Richard Sun, and Randall L. Headrick, "Nucleation and strain-stabilization during organic semiconductor thin film deposition," Scientific Reports 6, 32620 (2016), http://dx.doi.org/10.1038/srep32620.
- G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Sniand T. Ziegler, "Chemistry with adf," Journal of Computational Chemistry 22, 931–967 (2001), http://dx.doi.org/10.1002/jcc.1056.
- John P. Perdew, J. A. Chevary, S. H. Vosko, Koblar A. Jackson, Mark R. Pederson, D. J. Singh, and Carlos Fiolhais, "Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation," Phys. Rev. B 46, 6671-6687 (1992), http://dx.doi.org/10.1103/PhysRevB.46.6671.
- [36] "See supplemental material at [url will be inserted by publisher for (i) two structure files corresponding to TIPS-pentacene Form I and Form II, and (ii) a supplemental document containing a description of the polarized absorbance fitting method, as well as two figures and three tables of additional results.".
- Kenji Sakamoto, Junichi Ueno, Kirill Bulgarevich, and Kazushi Miki, "Anisotropic charge transport and contact resistance of 6,13-bis(triisopropylsilylethynyl) pentacene field-effect transistors fabricated by a modified flowcoating method," Applied Physics Letters 100, 123301 (2012), http://dx.doi.org/10.1063/1.3695169.
- 1151 [38] Kuan-Yi Wu, Chou-Ting Hsieh, Liang-Hsun Wang, Chih-Hao Hsu, Shu-Ting Chang, Shih-Ting Lan, Yi-Fan Huang, Yu-Ming Chen, and Chien-Lung Wang. "Influences of out-of-plane lattice alignment on the OFET performance of TIPS-PEN crystal arrays," Crystal Growth & Design 16, 6160-6166 (2016), http://dx.doi.org/10.1021/acs.cgd.6b01391.
 - and David C. Mar-Jihua Chen, John Anthony, tin, "Thermally induced solid-state phase transition of bis(triisopropylsilylethynyl) pentacene crystals," The Journal of Physical Chemistry B 110, 16397–16403 (2006), http://dx.doi.org/10.1021/jp0627877.
 - Aleksandra B Djurišić, Fritz Torsten, and Karl Leo, "Modeling the optical constants of organic thin films: application to 3,4,9,10-pervlenetetracarboxylic dianhydride (PTCDA)," Optics Communications 183, 123 – 132 (2000), https://doi.org/10.1016/S0030-4018(00)00895-6.
 - Hugh St.C. O'Neill, and Jörg Hermann, "Quantitative absorbance spectroscopy with unpolarized Part I. physical and mathematical devellight: opment," American Mineralogist 93, 751 (2008), http://dx.doi.org/10.2138/am.2008.2657.
 - Murilo L. Tiago, John E. Northrup, and "Ab initio calculation of the Steven G. Louie, electronic and optical properties of solid pentacene," Phys. Rev. В **67**. 115212 (2003).https://link.aps.org/doi/10.1103/PhysRevB.67.115212.
 - [43]Cathy Y. Wong, Brendan D. Folie, Benjamin L. and Naomi S. Ginsberg, "Discerning variable extents of interdomain orientational and structural heterogeneity in solution-cast polycrystalline organic semiconducting thin films," The Journal of

- Physical Chemistry Letters 6, 3155–3162 (2015), 1248 http://dx.doi.org/10.1021/acs.jpclett.5b01416.
- and M. Ashraf El- 1250 M. Kasha, H. R. Rawls, 1186 Bayoumi, "The exciton model in molecular spec- 1251 1187 troscopy," Pure and Applied Chemistry 11, 371–392 1252 1188 (1965), http://dx.doi.org/10.1351/pac196511030371. 1189

1184

1185

1196

1232

1233

1234

1235

1236

1237

- D Beljonne, J Cornil, R Silbey, P Millié, and JL Brédas, 1254 1190 "Interchain interactions in conjugated materials: The 1255 1191 exciton model versus the supermolecular approach," 1256 1192 The Journal of Chemical Physics 112, 4749 (2000), 1257 1193 https://doi.org/10.1063/1.481031. 1194
- Johannes Gierschner and Soo Young Park, "Luminescent 1259 [57] S. 1195 distyrylbenzenes: tailoring molecular structure and crys- 1260 talline morphology," Journal of Materials Chemistry C 1261 1197 1, 5818 (2013), https://doi.org/10.1039/C3TC31062K. 1262 1198
- David Bialas, André Zitzler-Kunkel, Eva Kirch- 1263 [58] 1199 ner, David Schmidt, and Frank Würthner, "Struc- 1264 1200 tural and quantum chemical analysis of exciton cou- 1265 1201 pling in homo-and heteroaggregate stacks of me- 1266 1202 rocyanines," Nature communications 7, 1 (2016), 1267 1203 https://doi.org/10.1038/ncomms12949. 1204
- H Yamagata, J Norton, E Hontz, Y Olivier, David 1269 [59] 1205 Beljonne, Jean-Luc Brédas, RJ Silbey, and FC Spano, 1270 1206 "The nature of singlet excitons in oligoacene molecular 1271 1207 crystals," The Journal of chemical physics ${\bf 134},\ 204703$ 1272 1208 (2011), https://doi.org/10.1063/1.3590871. 1209
- Emily G. Bittle, James I. Basham, Thomas N. Jackson, 1274 1210 Oana D. Jurchescu, and David J. Gundlach, "Mobil- 1275 1211 ity overestimation due to gated contacts in organic field- 1276 1212 effect transistors," Nature Communications 93, 10908 1277 1213 (2016), http://dx.doi.org/10.1038/ncomms10908. 1214
- and John E. 1279 [50] Alessandro Troisi, Giorgio Orlandi, 1215 Anthony, "Electronic interactions and thermal disor- 1280 1216 der in molecular crystals containing cofacial pentacene 1281 [61] Pavlo 1217 units," Chemistry of Materials 17, 5024–5031 (2005), 1282 1218 http://dx.doi.org/10.1021/cm051150h. 1219
- Jian-Xun Fan, Xian-Kai Chen, Shou-Feng Zhang, 1284 1220 "Theoretical study on charge 1285 and Ai-Min Ren, 1221 transport properties of intra- and extra-ring sub- 1286 1222 stituted pentacene derivatives," The Journal of 1287 [62] 1223 Physical Chemistry Α **120**, 2390-2400 1224 http://dx.doi.org/10.1021/acs.jpca.5b12641. 1289 1225
- John E. Anthony, James S. Brooks, David L. Eaton, and 1290 1226 Sean R. Parkin, "Functionalized pentacene: Improved 1291 1227 electronic properties from control of solid-state order," 1292 1228 Journal of the American Chemical Society 123, 9482–1293 1229 9483 (2001), http://dx.doi.org/10.1021/ja0162459. 1230
- Ying Diao, Kristina M. Lenn, Wen-Ya Lee, Martin A. 1295 1231 Blood-Forsythe, Jie Xu, Yisha Mao, Yeongin Kim, 1296 Julia A. Reinspach, Steve Park, Alán Aspuru-Guzik, 1297 Gi Xue, Paulette Clancy, Zhenan Bao, and Stefan 1298 C. B. Mannsfeld, "Understanding polymorphism in or- 1299 ganic semiconductor thin films through nanoconfine- 1300 ment," Journal of the American Chemical Society 136, 1301 [64] 17046–17057 (2014), https://doi.org/10.1021/ja507179d. 1302
- Hyunjoong Chung, Dmytro Dudenko, Fengjiao Zhang, 1303 1239 Gabriele D'avino, Christian Ruzié, Audrey Richard, 1304 1240 Guillaume Schweicher, Jérôme Cornil, David Beljonne, 1305 1241 Yves Geerts, et al., "Rotator side chains trigger coop- 1306 1242 erative transition for shape and function memory effect 1307 1243 in organic semiconductors," Nature communications $\mathbf{9},\,1$ $_{1308}$ 1244 (2018), https://doi.org/10.1038/s41467-017-02607-9. 1245
- Alexander S. Eggeman, Steffen Illig, Alessandro Troisi, 1310 1246 Henning Sirringhaus, and Paul A. Midgley, "Measure- 1311 1247

- ment of molecular motion in organic semiconductors by thermal diffuse electron scattering," Nature Materials 12, 1045 (2013), http://dx.doi.org/10.1038/nmat3710.
- Steffen Illig, Alexander S. Eggeman, Alessandro Troisi, Lang Jiang, Chris Warwick, Mark Nikolka, Guillaume Schweicher, Stephen G. Yeates, Yves Henri Geers, John E. Anthony, and Henning Sirringhaus, "Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-amplitude thermal motions," Nature Communications 7, 10736 (2016), http://dx.doi.org/10.1038/ncomms10736.
- Fratini and S. Ciuchi, "Dynamical calization corrections band transport," toPhys. Research 2. 013001 (2020),Rev. https://doi.org/10.1103/PhysRevResearch.2.013001.
- Hajime Yamagata, Chris M. Pochas, and Frank C. "Designing J- and H-aggregates through Spano. function overlap engineering: Applicawave tions to poly(3-hexylthiophene)," The Journal of Physical Chemistry B **116**, 14494–14503 (2012), http://dx.doi.org/10.1021/jp309407r.
- Nicholas J Hestand and Frank C Spano, "Interference between coulombic and CT-mediated cou-H-to J-aggregate plings in molecular aggregates: transformation in perylene-based π -stacks," Journal of Chemical Physics 143, 244707 (2015), https://doi.org/10.1063/1.4938012.
- Yoonkyung Park, Kyung Sun Park, Byeongsun Jun, Yong-Eun Koo Lee, Sang Uck Lee, and Myung Mo Sung, "Quantitative correlation between carrier mobility and intermolecular center-to-center distance in organic single crystals." Chemistry of Materials **29**, 4072–4079 (2017). https://doi.org/10.1021/acs.chemmater.7b00827.
- Fesenko. Cédric Rolin. Robby Janneck. Bommanabovena. Satva Prakash Heiko Gaethie. Paul Heremans, and Jan Genoe, "Determination of crystal orientation in organic thin films using optical microscopy," Organic Electronics 37, 100 – 107 (2016), https://doi.org/10.1016/j.orgel.2016.06.011.
- Kyunghun Kim, Yecheol Rho, Yebyeol Kim, Se Hyun Kim, Suk Gyu Hahm, and Chan Eon Park, "A latticestrained organic single-crystal nanowire array fabricated via solution-phase nanograting-assisted pattern transfer for use in high-mobility organic field-effect transistors," Advanced Materials 28, 3209–3215 (2016), https://doi.org/10.1002/adma.201506062.
- Ying Diao, Benjamin C-K. Tee, Gaurav Giri, Jie Xu, Do Hwan Kim, Hector A. Becerril, Randall M. Stoltenberg, Tae Hoon Lee, Gi Xue, Stefan C. B. Mannsfeld, and Zhenan Bao, "Solution coating of large-area organic semiconductor thin films with aligned singlecrystalline domains," Nature Materials 12, 665 (2013), http://dx.doi.org/10.1038/nmat3650.
- Muhammad R. Niazi, Ruipeng Li, Maged Abdelsamie, Kui Zhao, Dalaver H. Anjum, Marcia M. Payne, John Anthony, Detlef-M. Smilgies, and Aram Amassian, "Contact-induced nucleation in high-performance bottom-contact organic thin film transistors manufactured by large-area compatible solution processing, Advanced Functional Materials 26, 2371–2378 (2016), http://dx.doi.org/10.1002/adfm.201502428.
- Hyun Ho Choi, Kilwon Cho, C. Daniel Frisbie, Henning Sirringhaus, and Vitaly Podzorov, "Critical assessment of charge mobility extraction in FETs," Nature Materials

17, 2 (2018), http://dx.doi.org/10.1038/nmat5035.