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Active Learning for Classification With Abstention

Shubhanshu Shekhar

Abstract—We construct and analyze active learning algorithms
for the problem of binary classification with abstention, in which
the learner has an additional option to withhold its decision on
certain points in the input space. We consider this problem in
the fixed-cost setting, where the learner incurs a cost A € (0, 1/2)
every time the abstain option is invoked. Our proposed algorithm
can work with the three most commonly used active learn-
ing query models, namely, membership-query, pool-based, and
stream-based models. We obtain a high probability upper-bound
on the excess risk of our algorithm, and establish its minimax
near-optimality by deriving matching lower-bound (modulo poly-
logarithmic factors). Since our algorithm relies on the knowledge
of the smoothness parameters of the regression function, we also
describe a new strategy to adapt to these unknown parameters
in a data-driven manner under an additional quality assumption.
We show that using this strategy our algorithm achieves the same
performance in terms of excess risk as their counterparts with
the knowledge of the smoothness parameters. We end the paper
with a discussion about the extension of our results to the setting
of bounded rate of abstention.

Index Terms—Binary classification, minimax rates, abstention.

I. INTRODUCTION

E CONSIDER the problem of binary classification
Win which the learner has an additional provision of
abstaining from declaring a label. This problem models several
practical scenarios in which it is preferable to withhold a deci-
sion at the cost of some additional experimentation, instead of
making an incorrect decision and incurring much higher costs.
A canonical application of this problem is in automated med-
ical diagnostic systems [21], where classifiers that defer to a
human expert on uncertain inputs are more desirable than those
that always make a decision. Other key applications include
dialog systems and detecting harmful contents on the Web: it is
costly for many companies to incorrectly label harmful (harm-
less) content as harmless (harmful) on their platform, when
compared to the cost of gathering additional information.

Active learning is a learning paradigm in which the learner
can sequentially request labels at certain input points selected
based on the observed data. Existing results in the literature,
such as [6], [11], have demonstrated the benefits of active (over
passive) learning, in terms of improved sample complexity
or equivalently, lower excess risk, in standard classification.
However, in the case of classification with abstention, the
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design of active learning algorithms and their comparison with
their passive counterparts have largely been unexplored. In this
paper, we aim to fill this gap in the literature.

In this paper, we study the problem of classification with a
Jixed-cost of abstention, in which every usage of the abstain
option results in a known cost A € (0, 1/2). The fixed-cost
setting is suitable for problems where a precise cost can
be assigned to additional experimentation due to using the
abstain option. The analysis of this problem was initiated
by Chow [8], [9], who derived the Bayes optimal classi-
fier for this setting in [8], and then studied the trade-off
between the error rate and the rejection rate in [9]. More
recently, Herbei and Wegkamp [14] obtained convergence rates
for fixed-cost of abstention classifiers in a non-parametric
framework, similar to our paper. The authors in [2] and [33]
proposed calibrated convex surrogate loss functions for this
problem, and obtained bounds on the excess risk of the classi-
fiers constructed using these loss functions via empirical risk
minimization. An £;-regularized version of this problem was
studied in [31] and [32], while the authors in [10] introduced
a new framework that involved learning a pair of functions,
and proposed and analyzed convex surrogate loss functions.

An alternative to the fixed cost setting is the bounded-rate
setting, in which the learner is allowed to abstain for up-
to a given fraction § € (0,1) of the input samples at no
cost. This setting is more natural than fixed-cost in appli-
cations such as medical diagnostics, where the bottleneck is
the processing speed of the human expert [20]. Binary clas-
sification with a bounded-rate of abstention has been studied
less extensively than its fixed-cost counterpart. Pietraszek [20]
proposed a method to construct abstaining classifiers using
ROC analysis. The authors in [12] re-derived the Bayes
optimal classifier for the bounded rate setting under the same
assumptions as [8]. They further proposed a general plug-in
strategy for constructing abstaining classifiers in a semi-
supervised setting, and obtained an upper-bound on the excess
risk.

However, all the prior work mentioned above study this
problem in the passive setting, and thus a precise characteriza-
tion of the potential benefits of active learning in this problem
is not available. In this paper, we aim to address this issue.

Contributions: We now summarize the main contributions
of the paper.

1) We begin by proposing an active learning algorithm
for the fixed-cost setting with knowledge of the smooth-
ness of the regression function, and obtain bounds on its
excess risk. The proposed algorithm is general enough to
work for the three most commonly used active learning query
models: membership query, pool-based, and stream-based
(Section III-A).
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2) Under an additional quality assumption [5], [24], we
then propose an adaptive strategy that does not require the
knowledge of the smoothness of the regression function,
and achieves the same performance in terms of excess risk
(Section III-C).

3) We then demonstrate the minimax near-optimality of our
proposed algorithms by deriving matching (modulo logarith-
mic terms) lower-bound on the excess risk. The lower-bound
proof relies on a new comparison inequality for classification
with abstention, and a novel construction of a class of hard
problems (Section III-D).

II. PRELIMINARIES

Let X denote the input space and V = {0, 1} denote the
set of labels to be assigned to points in A'. We assume that
X = [0,1]° and d is the Euclidean metric on X, i.e., for
all x,x' e &, d(x,x) = ,foll(x,- —1‘;)2. A binary classifi-
cation problem is completely specified by Pyy, i.e., the joint
distribution of the input-label random variables. Equivalently,
it can also be represented in terms of the marginal over
the input space, Px, and the regression function n(x) =
Pyix(Y =1 | X =x). A (randomized) abstaining classifier is
defined as a mapping g : & — P (1), where Vi = VU (A},
the symbol A represents the option of the classifier to abstain
from declaring a label, and P(};) represents the set of prob-
ability distributions on ;. Such a classifier g comprises of
three functions g; : & — [0,1], for i € )}, satisfying
Zie}h gi(x) = 1, for each x € A. A classifier g is called
deterministic if the functions g; take values in {0, 1}. Every
deterministic classifier g partitions A" into three disjoint sets
(Go, Gy, Gp)-

In this paper, we focus primarily on the fixed-cost model
of classification with abstention, in which the abstain option
can be employed with a fixed cost A € (0, 1/2). In this
setting, the classification risk is defined as Li(g,x,y) =
Ligx)#£A} Lg(x)£y} + Al{gx)=A), and the classification problem
is stated as

rr}ginR,x(g) =E[L@gX. V)] =Pxr(gX) £Y,8(X) £ A)
+ APx(g(X) = A). (1)

The Bayes optimal classifier which achieves the minimum
risk in (1) is defined as gi(x) = 1, 0, or A, depending on
whether 1 — n(x), n(x), or A is the smallest.

Active Learning Models: For the problem of classification
with a fixed cost of abstention, we propose active classifi-
cation algorithms for three commonly used active learning
models [22, Sec. 2]: (i) membership query (MQ), (ii) pool-
based (PB), and (iii) stream-based (SB). MQ is the strongest
query model, in which, given a total query budget n, the learner
can sequentially request labels at arbitrary points of the input
space. We use a slightly weaker version of MQ in this paper
that only requires labels sampled from Py restricted to certain
partitions of A, which we introduce in Definition 1. In the PB
model, the learner is provided with a large pool of unlabelled
samples and must request labels of a subset of size n of the
pool. Finally, in the SB model, the learner receives a stream of

samples and must decide whether to request a label or discard
the sample until the total querying budget is exhausted.

A. Definitions

To construct our active classifier, we will require a hierar-
chical sequence of partitions of the input space, called the free
of partitions [4], [18]. Informally, the tree of partitions con-
sists of a sequence of nested partitions of the input space, such
that the diameter of any set in the At partition is of the order
p" for some p < 1 (ie., geometrically decaying diameters).

Definition 1: A sequence of subsets {&}}p=0 of A is said
to form a tree of partitions of X, if they satisfy the following
properties: (i) |A%x| = 2h and we denote the elements of X}
by xp;, for 1 <i < 2k (ii) for every x;; € X, we denote by
Ah,i, the cell associated with xj ;, which is defined as A&}, ; :=
{xe X | dix,xp;) < d(x,x4j), Vj# i}, where ties are broken
in an arbitrary but deterministic manner, and (iii) there exist
constants 0 < v2 <1 < vy and p € (0, 1), such that for all
h and i, we have B(xy;, vg,oh) C A C B(xp,i, vlp"), where
B(x,a) = {¥ ¢ X | d(x,x¥) < a} is the open ball in X
centered at x with radius a.

Remark 1: For the metric space (X, d) considered in our
paper, ie., X = [0, 112 and d being the Euclidean metric,
we can construct a tree whose cells A} ; are D-dimensional
rectangles as follows.

« set Ap = {xp,1} = {(0.5,...,0.5)} and Ap; = X.

« For h = 1, the set A consists of the center points of
the cells obtained by slicing the cells of A}_; into half
along the longest side (breaking ties in a fixed manner).
We will refer to this operation that takes a cell &) ; and
partitions it along it longest side to obtain two new cells,
Xh,2i—1 and A}, 2;, as the cell-refinement operation.

For the tree of partitions so constructed, a suitable choice of
parameter values for our algorithms are p = 2~1/0, v, =
2D, and v, = 1/2.

Next, we define the dimensionality of the region of the
input space at which the regression function n(-) is close to
some threshold value y. This definition is motivated by similar
notions used in bandit literature, such as the near-optimality
dimension [4] and the zooming dimension [15].

Definition 2: For a function ¢ : [0,00) +— [0,00) and
a threshold ¥y € (0,1), we define the near-y dimension
associated with (X', d) and the regression function 7(-) as

Dy (¢) :=inf{a> 0] 3C > 0 : M(X, (£(r), )
< Cr %, Vr> 0},

where X, (£(r)) == {x € X : [n(x) — y| < ¢{(r)} and M(S,r)
is the r packing number of S C (X, d).

To parse the above definition, consider an example with
X =10,117,x0 = (05,...,05) € X, n(x) = y + Llx—xo°
for some L,c > 0 and £(r) = r? for some b > 0. Then for any
r > 0, we have Xy = {x:]lx —xo|| < Plep=1/¢). As a result,
the r packing number of the set X;(,) can be upper bounded by
Crmax{0.D0=b/)} for some C < oo by using standard volume
arguments [30, Lemma 5.13]. As a result we observe that in
this case Dy, (¢) = max{0, D(1 — b/c)}. In general, for X' =
[0, 11° considered in this paper, the term D, ({) must be no
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greater than D, i.e., D, ({) < D for any choice of £(-). This
is because X, ({(r)) C X, for all r > 0, and there exists a
constant Cp < oo, such that M(X,r) < CDr_D, forall r = 0.

Remark 2: We will use an instance of near-y dimension for
stating our results defined as D = maxj_; 2{D;}, where D; :=
Dy, (51) with ¢1(r) = 12(82)PrP and y; = § + (~1) (5 — 1)
in the fixed-cost setting.

This particular choice of D is motivated by the fact the
fact that Algorithm 1, described in Section III, refines cells of
radius r only in those regions where |p(x) —y| < 12(%)%‘3.
Thus this instance of near—y dimension can be used to char-
acterize the maximum number of cells of radius r refined (and
hence the number of oracle queries) by the algorithm.

III. FIXED-COST SETTING

In this section, we design active learning strategies for the
problem of classification with a fixed and known cost, L €
(0, 1/2), of abstention. We begin by describing an algorithm
that requires the knowledge of the smoothness parameters of
the regression function in Section III-A. Next, we describe an
adaptive strategy that achieves similar performance without
the knowledge of the smoothness parameters under an addi-
tional assumption in Section III-C. In Section III-D, we derive
lower-bounds to demonstrate the minimax near-optimality of
our algorithms. Finally, we conclude the section with some
numerical experiments in Section III-E.

A. Algorithm With Known Smoothness Parameters

In this section, we propose an active learning algorithm,
whose pseudo-code is shown in Algorithm 1, for the problem
of binary classification with a fixed cost, A, of abstention, and
obtain theoretical bounds on its excess risk under the following
two standard assumptions:

(MA): The joint distribution Pyy of the input-label pair sat-
isfies the margin assumption with parameters Cy > 0 and
ag = 0, for y € {A, 1—A1}, which means that forany 0 <t < 1,
we have Px(|n(X) — y| < 1) < Cot*.

(HO): The regression function 7 is Holder continuous with
parameters L > 0 and 0 < B8 < 1, i.e., for all x1,x2 € (X, d),
we have [5(x1) — n(x)| < L x d(x1, x2)”.

The Hélder continuity assumption (HO) ensures that points
which are close to each other have similar distribution on
the label set. It is a standard assumption employed in a
large number of existing works in the nonparametric learn-
ing and estimation literature. Some examples of prior work
using Holder continuity assumption are [1], [6], [16], [17].
For simplicity, we restrict our attention to the case of 8 <1
so that it suffices to consider piecewise constant estimators to
achieve the minimax optimal rate. For Holder functions with
B = 1, our algorithms can be suitably modified by replac-
ing the piece-wise constant estimators with local polynomial
estimators as described in [19, Sec. 1.3].

The margin assumption (MA) controls the amount of
Py measure assigned to the regions of the input space
with #n(-) values in the vicinity of the threshold bound-
aries. The assumption (MA) as employed in this paper is
a modification of Tsybakov’s margin condition for binary
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Algorithm 1: An Active Learning Algorithm for Binary
Classification With the Fixed-Cost A e (0,1/2) of
Abstention, When the Smoothness Parameters, (L, ), Are
Known
Input: n, A, L, B, v, p, hmax = logn, Mode € {MQ, PB, SB}
1 Initialize 1= 1, n, = 0, X = {xg 1), X = 2, 49 =0, XD =g,
up(xp,1) = 1, lo(xo,1) =0, ep(xp,1) =+o0, T =0

2 while ne < n do
3 for xj; € X,(“) do
4 Define Jy(xp, ;) < [ (xp, i), tr(xp, ;)]
5 if Jp(xpi) VA, 1—A} =@ or Ji(xpi) C[A, 1—A] then
6 | X9 < x90 i Y <"\ o)
7 end
8 end
1

’ Xhy.ip € AZMAX_ () f;( )(xh,x') = up(xp,i) — lrOep i)

T

h,i€

10 if (e; (np,.i, (D) < L(vi pft ),B) and (ht < hmax) then

1 Xr(u) - er \ xhg, i b Y {xR+1, 26— 15 X120, }

12 ut(xp,q,0) < urpe i), @ q1,i0) < It (opy i) for
i € (2§ — 1, 2if)

13 else

14 Xt(u), z‘(}(d), Xy, iy» Vt- Increment =
REQUEST_LABEL(Mode, ¥, ;. 4, %)

15 end

16 if Increment then

17 ne < ng+ 1

18 T «—TuUlt},
Thei =15 € TIngis € X Ay iy (O = 1Thy,if|

19 it (xhy.ip) = My iy @ Zse']’]ﬂ;‘,-r Liap i€ i) Vs

2 et i (0) </ (210g(27230/3)) /s, i (), Vi, =
L(vl phf ?

n I ey i) < max e (ny i) Aoy i) — € (i, (D) — Vi |

2 g1 (hy i) < min{ur(xp, i), Aty i) + €0(ny iy (0) + Vi }

23 end

24 t<—t+1

25 end

Output: ¢ defined by Eq. (2)

classification [3, Definition 7] [27]. The original margin
assumption for binary classification requires the condition
Px(InX) —y| <1t < Cot*™ to hold only for y = 1/2. In
contrast, for the classification with abstention problem, the
margin condition is required to hold at the threshold values
A and 1 — A for the fixed-cost setting. As the abstention cost
A is changed, the threshold values at which the margin con-
dition is required to hold also changes. Thus it is implicit in
the definition that the parameters Cp and o are functions of
A in the fixed-cost setting. This modified margin condition
is a natural generalization of the original margin assumption
for the problem of classification with abstention, and it has
been employed in several existing works in classification with
abstention literature such as [2], [14], [33]. A similar modified
margin condition was also employed in a related problem of
Neyman-Pearson classification [25], [26].

Outline of Algorithm 1: At any time t, the algorithm main-
tains a set of active points &X; C Up>0d%, such that the
cells associated with the points in A&} partition the whole X',
ie., kalie,yrz’(},,,- = X. The set X; is further divided into
classified active points, X, unclassified active points, X,
and discarded points, .?(',( ). The classified points are those at
which the value of n has been estimated sufficiently well so
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(Left) The top left panel shows a synthetic regression function  with & = [0, 1] and the dotted horizontal lines represent the thresholds A = 0.4

and 1 — A = 0.6. The figure on bottom left shows the histogram of the points queried by the Algorithm 1 (the bins of the histogram correspond to the
final discretization of the input space constructed by the algorithm). As we can see, the active algorithm focuses sampling in the regions near the threshold
boundaries that leads to a finer discretization, and hence more accurate estimates of 1, in those regions. (Right) The figure on the right denotes the confidence

intervals constructed for two cells, £y and E in the unclassified set z‘(}(“)A The green horizontal line is the empirical estimate of 7 in these cells, while the

red and blue shaded regions represent the terms e; and Vj, respectively.

that we do not need to evaluate them further. The unclassi-
fied points require further evaluation, and perhaps refinement
before making a decision. The discarded points are those for
which we do not have sufficiently many unlabelled samples
in their cells (in the stream-based and pool-based settings).
For every active point, the algorithm computes high probabil-
ity upper and lower bounds on the maximum and minimum #
values in the cell associated with the point. The difference of
these upper and lower bounds can be considered as a surrogate
for the uncertainty in the n value in a cell. In every round, the
algorithm selects a candidate point from the unclassified set
that has the largest value of this uncertainty. Having chosen
the candidate point, the algorithm either refines the cell or asks
for a label at that point.

At a high level, Algorithm 1 involves repeating the follow-
ing two steps: 1) Maintaining a partition of the input space,
and for each set in the partition, constructing upper and lower
confidence bounds for the maximum and minimum (respec-
tively) n values in the cell, and 2) Based on these confidence
bounds, either refine the partition or request a label. Finally,
when the sampling budget is exhausted, 3) Aggregate the
information gathered by the sampling strategy to define an
abstaining classifier. We now describe these three steps in more
details.

a) Confidence Interval Construction: At t > 1, for any cell
Ah,i associated with a point x;; € Ay, we compute an upper-
bound on the maximum # value in the cell as u;(x;;) =
min{u;_1 (Xp,q), @ (xp,i)}, Where @ (Xp,i) = 7 (Xh,i)+e:(np,i (1)) +
Vi, Here we have 7j,(xp,;) = m 1 Lz, i eXpi)Ys With
ny (1) = ;;l] ]l;% i€ Xnit e;(np i (1)) is the confidence interval
length on the estimate of the average 1 value in the cell
Ahi (see Lemma 3), and V), = L(v p"‘)ﬁ is an upper-
bound on the maximum variation of the n value in a cell
at level i of the tree of partitions (A})p>0. We can define
the lower-bound on the minimum # value in the cell in
a similar manner, [,(x;;) = max{l,_l(x;,,,-),?,(x;,,,-)}, where

li(xh,i) = 0 (xXh,i) — e:(np,i(f)) — Vi We set Ip(xp,i) = 0 and
up(xp,;) = 1 for all x; ;.

b) Refine or Request Label: In order to select a candidate
point, Algorithm 1 selects an unclassified point with maxi-
mum amount of uncertainty in its value. The uncertainty is
measured by the index 1" (x4.;) = ur(xh.i) — li(xh.i) (Line 9).
Having selected a candidate point xj,; at time ¢, the algo-
rithm either refines the cell (Lines 10-12) or requests a label
depending on the relative magnitudes of e;(ny, ; (f)) and Vj,
(Line 14). The label request depends on the query model and
consists of the following steps: (i) In the membership query
model (MQ), the point x; for which we request the label is
drawn from the distribution Py restricted to the cell A, ;,.
(ii) In the pool-based model (PB), we request the label if
there is an unlabelled sample remaining in the cell Ay, ;,, oth-
erwise, we remove Xj,;, from X,(“) and add it to X,(di. (iii)
In the stream-based model (SB), we discard the samples until
a point in A}, ; arrives. If N, = n”log(3n?) samples have
been discarded, we remove xp, ;, from A&} “) and add it to X,(d).
The pseudo-code of the above three steps is provided in the
subroutine REQUEST _LABEL in Algorithm 2.

¢) Classifier Definition: Let f, denote the time at which
the nth query is made and Algorithm 1 halts. We define the
final estimate of the regression function as 7(x) = 7, (77, (x)),
where m;, (x) = {xp; € X, | x € Ay}, and the discarded
region of the input space as ;{’,E‘” = U}wE X Xp,i. Finally,
the classifier returned by the algorithm is defined as

1 if up,(m,(x)) >1—4 or xe X9

8 =10 if ,(m,(x) <+ and x ¢ P,
A otherwise.

(@)

Analysis: Before stating an upper-bound on the excess risk
of Algorithm 1, we show (Lemma 1) that it will suffice to
prove this bound for the MQ model. Note that in MQ, the set
Ff’,fd) is empty. In Lemma 1 (proved in Appendix A-A), we
show that under mild assumptions, the Py measure of .f'n in
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Algorithm 2: REQUEST_LABEL Subroutine

Input: Mode, xj, j,, X,(d), Xt(“)
1 discard <« False,
2 if Mode==MQ then
3 ‘ Iy iy ~ Px(- | Xngiy)» ¥t ~ Bernoulli(n(%y, ;,)), Increment <«
True;

Increment < False, y; =1 (arbitrary value)

4 else if Mode==PB then

5 if Zt N Al j, # @ then
6 ‘ choose Xj, j, € Zt N A}, j, arbitrarily; yr ~ Bemoul]i(?](frh,,,} )),
Zt < Zt \ {Xp, ;). Increment < True;
7 else
8 | discard <« True;
9 end
10 else
11 counter < 1, discard < True;
12 while (counter < Np) do
13 Observe next element of the stream x ~ Py;
14 if x € A, ;, then
15 ih;,i; <X, ¥t~ Bernoulli(n(x)), discard <« False,
Increment < True;
16 counter < Np + 1;
17 end
18 counter <— counter +1;
19 end
20 end
u if discard then
2 29 < xv {xh.if 1 X"« {xn,, i 1s
23 Xp iy =NULL /+ A symbol indicating no label
observed. */

24 end
Output: Xt(u), Xf{d), J‘rhh,-r, ¥t. Increment

PB and SB models is no larger than 1/n with probability at
least (1 — 1/n). This implies that in these two models, with
high probability, the misclassification risk of g can be upper-
bounded by 1/n + Pxy(@(X) # ¥, §X) # A, X ¢ X,),
where the analysis of the second term is identical for all three
active learning models.

Lemma 1: Assume that in the pool-based model, the pool
size M, > max{2n3, 16n> log(n)}, and in the stream-based
model, N, = n?log(3n2). Then, we have P(Px(X") >
1/n) < 1/n.

As discussed above, given Lemma 1, we can carry out the
rest of the analysis for the MQ model, with the knowledge
that the same result holds for the other two models with an
additional 1/n term. We now obtain an upper-bound on the
excess risk of the classifier constructed by Algorithm 1 with
a budget of n label queries in the MQ model.

Theorem 1: Suppose that the assumptions (MA) and (HO)
hold, and let D be the dimension term (first introduced in
Remark 2) defined as D = max;_; »{D;}, where D; := D,,(¢1)
with £1(r) = 12(42)r# and y; = 3 + (—1¥(3 — A). For
a > D and the corresponding C,, assume n is large enough
to ensure (h’g’—n) > (LTG’:%%“E)(%?—)(ZB“);‘B. Then, for the clas-

sifier g defined by (2), with probability at least 1 — 2/n, we
have Ry (8) — Ry (g}) = O(n~P@+1/2F+)) yhere the hidden
constant depends on the parameters L, B, v, v2, p, Cp, and a.

The above result (proof in Appendix A-B) improves upon
the convergence rate of the plug-in scheme of [14] in the
passive setting, mirroring the benefits of active (over passive)
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learning in standard classification. We discuss this in more
details next.

B. Performance of Algorithm 1

The convergence rates of the excess risk of our active learn-
ing algorithms improve upon those obtained for the passive
case in the literature.

Achieved Rates: As shown in Theorem 1,
Algorithm 1 achieves an excess risk convergence rate
of (’j(n_ﬁ(w'*ﬂ)f(zﬂ”)). Since a < D, this implies that
apf > D/2 is a sufficient condition for the convergence rate
to be faster than n~'/2 — the parametric rate. Furthermore,
for a fixed B > 0, suppose the Py measure is such that
Px({x:|n(x) — y| < €}) = O for some small ¢y > 0. Then we
can see that «p is unbounded, and Theorem 1 implies that the
excess risk of Algorithm 1 converges faster than any negative
power of n.

Improvement Over Passive Algorithms: The minmax excess
risk for classification with fixed cost of abstention in the pas-
sive case under the (MA) and (HO) assumptions is of the
order ©(nFU+20)/(D+28+20h)) * where the upper bound of
O(n—P(+20)/(D+28+20B)) j5 achieved by the plug-in scheme
of [14] using the estimators of [1]. The lower bound of
Q(nP+e0)/(D+26+20B)) can be proved by using Lemma 2
and the construction used in the proof of Theorem 3 and
we omit the details to avoid repetition. Since the term a is
never larger than D, and hence D + a¢p, the achieved rates
in the active setting are always faster than the correspond-
ing passive convergence rates. If in addition, we assume that
Px satisfies the strong density assumption,! then the passive
convergence rate improves to @(n_ﬁ(lwﬂ)/ (2‘3+D)). However,
with this assumption, the active rate also improves further as
we can show that D < max{0, D — apB} in this case (see
Appendix D for details).

Remark 3: We note that in this paper, we considered
the active learning problem under the smoothness assump-
tion (HO) on the regression function. An alternative approach
is often taken in some other works on active learning, such
as [6], in which complexity assumptions are placed on the
decision boundary. Informally, under this assumption, the deci-
sion boundaries of the classification problem bisect the input
space, and by placing regularity assumptions on the bound-
ary, the classification problem can be reduced to a number of
one-dimensional noisy binary search problems. However, as
described by the authors in [1], the results under these two con-
ditions are not directly comparable. For example, there exist
smooth functions that induce very complex boundaries.

C. Adaptivity to Smoothness Parameters

The knowledge of the smoothness parameters, (L, 8), is
required by Algorithm 1 at three junctures: 1) to define the
index I,(]) for selecting a candidate point, 2) to decide the set
of classified and unclassified active points, and 3) to decide

I That is, Py admits a density py with respect to the Lebesgue measure,
and furthermore, there exists a constant pp > 0 such that py(x) = pp for all
xe X.
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when to refine a cell. In this section, we describe a data-
driven approach that can achieve similar convergence rates
as Algorithm 1, without the knowledge of the smoothness
parameters, but under an additional assumption.

Additional Notation: We need to introduce additional nota-
tion to describe the results of this section. For any cell A} ;,
we define (i) the set 8 (h,1) = Aj4;N Ay, and the corresponding

partition of A}, ;, deﬁned as ?—i( D = {Xhtj,i  Xngjir € E( )}
In words, S(h ) is the set of points in the cell Ft’;” that
lie at level k + j in the tree of partitions (A})x=0, and
(ii) ﬁ(&’h‘,-) = N(xni) = fXM ndv, where v is the Lebesgue
measure? on [0, 1]°. The erripirical counterpart of 77(Xp,;) at
llme t is denoted by 7:(Xp;) = m(x;, i). Next we introduce

7" () == max acpho T(A) and il V(1) = min, i A, (A),
Wthh represenl the max1mum and minimum emplrlcal aver-
age n values in cells in ’HJ . We also define w}h D =

ax,, Age’H‘" (A1) — 11(A2)), and its empirical counterpart

(at time f) as w(h D) = 7D (7). Finally, we
define Vj; = supJrl X r}(xl) — n(xg) which is the vari-
ation of the function n(-) in the cell A} ;. Note that under
the assumption that the function is Holder continuous with
parameters (L, ) and that the cell A} ; is contained in a
ball of radius v ph, we have Vj; < L(*»r],o"")lB . This is equal

to the term V), that we previously used in Algorithm 1.
. . 8log(1/4
At the end, we introduce b(h,i,j) = JW, for
1 <j < ky = ['“g(;’: TER1. where & .
Note that by definition, we have e (np; (1) < b,(k, i,j), for
all 1 < j < k,. Finally, for eveArZ Xhi € Ft’, ), we intro-
duce the following two terms: ], = min{l < j; <
w2 WD (@0 — WD (1)) < aby(h, i jo), for all ji < jo < kn)
and W(}‘ D= 2(\?.:5(,, D) + 6b:(h, i, k).

Next we recalljthe definition of quality from [24], suitably
modified for our problem.

Definition 3: For a given X = [0, 11, a regression function
n:X + [0, 1], and a tree of partitions (A},)n=0, We say the pair
(n, (Xn)h=0) have quality g € (0, 1), if the following holds:
for any cell &} ;, there exist two cells Ay ;, and Xj ;,, both
subsets of A}, ;, such that 1) v(.l},;‘,-j) > qu(Ap,:), forj=1,2,
and 2) 7(Xy ;) — 1( Xy i) = Vi,i/2

We now state the additional assumption required by our
adaptive scheme.

(QU): The pair (n, (Xp)n=0) has quality ¢ > 1/log(n),
where n is the label budget.

Adaptive Version of Algorithm 1: In the MQ model consists
of the following steps.

o Candidate Points Selection: We select one candi-
date point for every h, such that &, N A, # @
Thus, Line 8 of Algorithm 1 changes to x,; €
argmax, ey, (i Ghi) + e (i), for all h:Xy N

X" £ g

) —

2To reduce notation in statmg the adaptive scheme, we assume that Py is
the Lebesgue measure on [0, 1]7. The construction can be extended to general
Py that admit a density w.r.t. Lebesgue measure, by discarding regions where
the density takes values below a threshold.

« Request Label: For every candidate point, if the stopping
rule (defined below) is not satisfied, we request the label
at a point drawn uniformly from the cell. Thus, in each
round, the algorithm may request up to fy,,, = O(logn)
labels.

« Stopping Rule: We use the following rule for cell refine-
ment: Refine a cell if wp‘ I)(I) — 8bs(h, i, k,) = 0. This
modification is introduced in Line 9 of Algorithm 1.

« Update X" and X/”: We follow the same rule for
updating the sets A; (‘) and X(C) as in Lines 10-11 of
Algorithm 1, but w1lh the data-driven construction of u;

and /;, defined as wu;(xp;) = mln{uf(xh i), U—1 (i)}
where @, (xp,i) = 7¢(Xni) + €:(nh,i) + W( , and [i(xp;) =
max{fr(xh,:z e 1(xn,:)}, where fr(xh,:) = 0(Xni) —

W

er(Mp,i) —

Theorem 2: Suppose that the msumguﬂons (MA), (HO),
and (QU) hold, and let D@ := max(D{", D§"}, with D\ =
Dy oy —1yae-— 1)(&'1 )) and E(a)(f) = 42(Lvi/wm)Prf, for
r > 0. Then, for large enough n, with probability at least
1—2/n, for the classifier § defined by (2) and for any a > D@,
we have R (§) — Ri.(g}) = O( y—A(l+a0)/(a+26)

o2 Tog(rlogn)
where the hidden constant depends on the parameters L, 8, vq,
v2, p, Cp, and a, and is explicitly defined in (10) and (11) in
Appendix B (where the proof of the theorem is given).

The result of Theorem 2 has two main differences with that
of Theorem 1: 1) there is an additional polylogarithmic in n
factor in the excess risk bound, and 2) the dimension term
D@ is larger than the corresponding dimension term D 1n
Theorem 1, as there is a factor of 42 in the definition of ;’
compared to 12 in the definition of {;. However, as we show in
Section III-B, under an additional strong density assumption,
both D and D@ can be upper-bounded by the same quantity,
max{0, D — apf}, which can be much smaller than D.

Remark 4: We note that there are other adaptive schemes
for active learning, such as [16], [17], that can also be suitably
modified to apply to the problem studied in this paper. Our
adaptive scheme allows us to obtain excess risk bounds that
depend on the local dimensionality of the space near the A and
1 —A level sets of 5, and thus, are most directly comparable to
the excess risk bounds of Algorithm 1. Moreover, we present
the risk bound for the adaptive scheme under the (HO) assump-
tion to facilitate comparison with Theorem 1. Our scheme
can be easily modified to deal with spatially inhomogeneous
n, as well as n with only implicit similarity information, as
in [5], [24].

D. Lower Bound

We now derive minimax lower-bounds on the expected
excess risk of the fixed-cost setting and the membership query
model. Since this is the strongest active learning query model,
the obtained lower-bounds are also true for the other two
models. The proof follows the general outline for obtain-
ing lower-bounds described in works, such as [1], [17],
reducing the estimation problem to an appropriate multiple
hypothesis testing problem, and then applying [28, Th. 2.5].
The novel elements of our proof are the construction of an
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appropriate class of regression functions (see Appendix C)
and the comparison inequality presented in Lemma 2 (proof
is in Appendix C).

Lemma 2: In the fixed-cost of abstention setting with the
cost A < 1/2, let g represent any abstaining classifier and
g5 represent the Bayes optimal one. Then, we have R;(g) —
Ry (g}) > cPx((GE\ G U(Gy\ G)I+e0)/e0 | where ¢ > 0 is
a constant and «p is the parameter of the assumption (MA).

Lemma 2 aids our lower-bound proof in several ways: 1) it
motivates our construction of hard problem instances in which
it is difficult to distinguish between the ‘abstain’ and ‘not-
abstain’ options, 2) it suggests a natural definition of pseudo-
metric (see Theorem 4 in Appendix C-B), and 3) it allows us
to convert the lower-bound on the hypothesis testing problem
to that on the excess risk. We now state the main result of this
section (see Appendix C for the proof).

Theorem 3: Let A be any active learning algorithm
in the fixed-cost A < 1/2 abstention setting and g,
be the abstaining classifier learned by A with n label
queries. Let P(L, B, ap) represent the class of joint distri-
butions Pyy satisfying the margin assumption (MA) with
exponent a9 > 0, whose regression function is (L, 8)
Holder continuous with L = 3 and 0 < B8 < 1.
Then, we have inf 4 SUpp,, cp(r. g.a) B[R (&n) — Ru(ED)]) =
Q (n—BU+a0)/(28+D)y

This result shows the minimax near-optimality of
Algorithm 1, as its excess risk upper-bound matches the lower-
bound up to poly-logarithmic factors in the worst case when
D=D.

Remark 5: As mentioned above, the result in Theorem 3
is sufficient to demonstrate the minimax near-optimality of
our proposed algorithm, since there exist problem instances
for which D = D. An interesting question for future work
is deriving more refined, instance dependent, lower bounds
that actually depend on the near-y dimension D of the given
problem instance. The techniques developed in multi-armed
bandit literature, such as [13], may be helpful in this task.

E. Numerical Illustration

We now verify the advantages of active (over passive) learn-
ing shown by our theoretical results on a class of toy problems.
In these problems, we fix A = [0, 1], Px as the uniform
distribution, and the cost of abstention at A = 0.4, and set
n(x) = 0.5(1 +a(22=0(—1)"(4x—k)b)), fora, b € [0, 1]. The
regression functions » are Holder continuous with L = 4P and
B = b. Moreover, with the above choice of n and Py, the (MA)
assumption holds with ag = 1/b.

Algorithm 1 constructs a non-uniform partition of the input
space, and then implements a piecewise constant estimator of
n to decide the classification rule. To provide a benchmark
for comparison, we consider a simple passive classifier which
implements a classification rule based on a piecewise constant
estimator of # using a uniform partition of A with a bandwidth
bw = 0.1.

We ran the experiment for four pairs of (a, b) parameters:
(a,b) € {(1.0,0.2), (1.0, 0.5), (0.8, 0.5), (0.5, 0.5)}. For every
combination of parameters a, b and n, we ran 50 repetitions of
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the active and passive algorithms and computed the empirical
risk with 10000 test samples. The variation of the empirical
risk (on the test set) with the sample size n for the active and
passive algorithms are plotted in Figure 2(b). We observe that
in all the cases considered, the active algorithm outperforms
the passive baseline.

IV. EXTENSION TO THE BOUNDED-RATE SETTING

In the bounded-rate setting, a classifier can abstain up to a
given fraction § € (0, 1) of the input samples without incurring
any cost. The misclassification risk of a classifier g in this
setting can be defined as R(g) := Pxy(g(X) # Y, g(X) # A),
and the corresponding classification problem is

méin R(g), subject to Px(g(X)=A) <34. (3)
The Bayes optimal classifier for (3) is in general a random-
ized classifier. However, under some continuity assumptions
on the joint distribution Pxy, it is again of a threshold type,
gg(x) = 1, 0, or A, depending on whether 1 — n(x), n(x),
or y; is minimum, where y; = sup{y = 0 : Px(In(X) —
1/2|<y) = 6} [8].

The main difference between (1) and (3) is that in the fixed-
cost setting, the threshold levels are known beforehand, while
in bounded-rate, the mapping 8§ > y; is unknown, and in
general is quite complex. In order to construct a classifier that
satisfies the constraint in (3), we need some information about
the marginal Px. Accordingly, this problem is studied in a
semi-supervised framework in which the learner can request a
limited number (polynomial in query budget n) of unlabelled
samples to estimate the measure of any set of interest (details
in [23, Appendix D]).

The optimal abstaining classifier in the bounded-rate setting
with parameter § corresponds to an optimal fixed-cost abstain-
ing classifier with cost A = A5 (= 1/2 — y;). In this case, the
idea underlying our fixed-cost algorithm (Algorithm 1) can be
generalized with suitable modifications to construct an active
classifier for the bounded rate setting. If the number of unla-
belled samples available to the learner is sufficiently large, then
the proposed classifier again achieves a O (n—F(1+0)/(D+28))
upper bound on the excess risk under an additional detectabil-
ity assumption. This assumption is a converse to the (MA)
assumption stated earlier and has been employed in sev-
eral works in nonparametric learning and estimation, such
as [6], [7], [29].

APPENDIX A
PROOFS FOR THE ALGORITHM FROM SECTION III-A

A. Proof of Lemma 1

We begin with the proof of Lemma 1 which shows that with
probability at least 1 — 1/n, the Py measure of the (random)
set .ﬁd) is no larger than 1/n.

Suppose the discarded region i’éd) = U

e ‘Xr{d’}Xk‘j con-
sists of T components, i.e., |.3C}fld)| = T. Since the algorithm
only refines cells up to the depth hmax = log(n), and the total

number of cells in &), is 2mx < ghmx — p, we can trivially
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Fig. 2. The figure plots the average (over 50 runs) empirical risk of the active and passive algorithms for four different pairs of (a, b) values. The error bars
show one standard deviation for the empirical risks.

upper bound the number of discarded cells/points with n, i.e., @ E s 1 1 1\
T <n. - Z {nf,r)<n] B E

a) Stream-Based Setting: In this case a cell A}, ; is discarded, =1 N 00
if after N, consecutive draws from Py, none of the samples _ (1 _ l) "]E Z 1 o
fall in Xj;. To write the steps of the proof, we introduce n? pu ne” <n}
some new notation. We use ng) to denote the number of oracle '
queries made by the algorithm prior to the iteration ¢ (earlier in = (1 — —2) Elt,]
Algorithm 1, we simply used n, to denote this quantity as the ¢ n N
dependence was not important). Also introduce the event E; = (i) - (1 B l ) n
{xp, i, is discarded at time ¢ , and Px (X, i) > 1 /nz} and let - n?

H;—1 denote the sigma-field o ({(X,,i,. ys) : s < 1 — 1}). Note N, loe(3m ) @
{ e _

that x, ; and ngt) are ‘H,_1 measurable quantities. = exp n2 +log(3n)
We now proceed as follows:

==

In the above display,
(a) follows from the pigeonhole principle.
(b) uses the fact that T < n almost surely.
P Px(i‘-(d)) - l —P Z PX(X!; ,-) > 1/n (c) follows directly from the del.i[.lition of the e_vent E;.
’ (d) uses the tower-rule for conditional expectations.
(e) uses the fact that ng) is H;_i—measurable.
("S) ]P(Elx;,‘,- c X,f,d) :PX(X;,‘,-) - l,z‘(nT)) (f) follows fr0fn the rule used for discarding cells in the
stream-based setting.

d
x.&,iEXng )

%) ]P(Elx;,‘,- c X:(d) . PX( -’C'h,i) -1 ,mz) . (g foll()\fvs from l.he fa_cl that f, < _3n aln.losl surel).!. This

" is because in every iteration the algorithm either queries the

(c) [ In oracle, or discards a cell or expands a cell. Since each of these

=E Z ]lEf] three operations can be performed no more than n times (as

:‘o:o] hmax = logn), we get that f, < 3n almost surely.

_E Z L L (h) follows from the choice of N, = n?log(3n?).

{n® <n) "~ Ei b) Pool-Based Setting: Let Z = {X;,X3, ..., Xy,} denote

:’o:o] the pool of unlabelled samples available to the learner, and

@ E ZE[JL[HUJ{,,IJLE,W{:—I]] for any A} ; we introduce the nota.lion_Mh‘,- = |ZN Al to

[ =1 ‘ represent the number of samples lying in the cell A ;. Recall

- oo that a cell &), ; is discarded if the number of unique unlabelled
OF ) Z 1 o ]E[]l AL f_1] samples in the cell is smaller than the number of label requests
| =1 frme” <) in the cell, which can be trivially upper bounded by n, the
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total budget. Thus, introducing the terms Ci = {x4i;|M; <
n and h < logy(n)} and Cy = {x4; € C1|Px(Xhi) > 1/(n?)},
we get the following (for any realization of Z):

Px(nﬁd)) <pPx| |J A

Iﬁ,iECI

1
ER(E)‘I'PX U il

x;lleCZ

where in first term after the second inequality above, we use
the fact that the total number of cells discarded up to the depth
of log(n) cannot be larger than n.

Now, we claim that to complete the proof, it suffices to
show that for any A} ; such that Px(Xp;) > ]_/Hz, we have
PMp; < n) < ]_/H?'. To see this introduce the notation C; =
{xn,i : Px(Xhi) > lfnz, and h < logy(n)} and note that Cy =
C; NCy. Now, suppose it were true that for any &}, ; € C), we
have P(M; < n) < l;’nz. Then we have, by union bound,
P({3Xh; € C, : Mp; < n}) < |C£|,z‘n2. Since |G| < n, as
it contains only cells up to a depth of log, n, it implies that
P({3&},; € C) : Mp; < n}) < 1/n. In words, this means that
with probability at least 1 —1/n, every cell & ; in C; satisfies
that M} ; > n. This in turn implies that with probability at
least 1 —1/n, C; = C, N C; must be empty.

It remains to show that P(Mj,; < n) < 1/a? for any Xj,; €
C”z. Consider any cell A} ; such that Px(Xp;) = p = 1 ;’nz.
For points X; in Z define the Bernoulli(p) random variable
Uj = lixex,,)- Suppose M, = max{2n°, 16n% log(n)}. Then
we have the following:

My Mp
(a) 1
P(Mh‘iﬁn)zp Zqun ZP EZ{&{F
" ”j:l
My

(&) 1
<Pl — U;<(1-1/2
< Mnj;"_( /2)p

© @ 1
< exp(—Mpp/8) < ol

In the above display:

(a) follows from the fact that M, > 2n3,

(b) follows from the fact that p > 1 ;’nz,

(c) follows from the application of Chernoff inequality for
the lower tail of Binomial,

(d) follows from the fact that M, =
and p > 1/n2.

16n2 log(n)

B. Proof of Theorem 1

We first present a lemma that gives us high probability
upper and lower bounds on the empirical estimates of the
average n value in a cell A} ; associated with a point x ;,
denoted by 7j(xsi) = [, Y n(x)dPx(x | Xy,i). The empirical
estimate ﬁ,(xh‘,-) is assumed to have been constructed from
labels queried at samples drawn according to the distribution
Px(- | X,;) in an i.i.d. manner. In conjunction with Lemma 1,
this next lemma provides a combined description of the con-
fidence intervals of the empirical estimates of the average n
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value of cells in X, or X' constructed by any of the three
active learning querying models.
Lemma 3: For t > 1, define the events €2, as follows:

Qs = {17(¥h.i) — 1(%ni)| < e(nni), Yxni € A},

2log(2723n/3)
i) =\ =

where ny, ;(f) is the number of times that x; ; has been queried
up until time f. Then the event 2 = N;>121, occurs with
probability at least 1 — .

Proof: 1t suffices to show that P(Q2{,) < . The result
then follows fromza union bound over all t > 1 and the fact
that th 1 ;2' = %. Now, for a given x;; € A; and for any
e;(ny,;(f)) > 0, by Hoeffding-Azuma’s inequality, we have

with

Pr(lfi(ns) — in)| > exmni(0))) < 2e~"emi®)’ 72,

2log((2mw
My 3

o—hi(0)aj, /2

n)/3)

Finally, by selecting e;(nj, ;(f)) = , we obtain

)D

(h,i):xp ey

= 2
(h,i)xp jey
(a) follows from the fact that |X;| < 2t, for all £ > 1. This is
because of the following reasoning: |Xp| = 1, and for any 1 <
i <t, we must have || € {|Xi_1| + 1, |X;i_1]} < | X1 + 1.
Thus by induction, we get |A;] < ¢+ 1, which is no larger
than 21, for r > 1. [ |

We now present a result on the monotonicity of the term
1" (x4,;) which will be used in obtaining bounds on the
estimation error of the regression function.

Lemma 4: I,(])(x;,h,-;) is non-increasing in f.

Proof: The proof of this statement relies on the mono-
tonic nature of u,(x; ;) and I,(x, ;). More specifically, for any
Xpi € X( ) we have Ifl)l (xp,i) < I,(])(x;,,,-) due to the defini-
tion of u,(xh‘,) and /i(xy,;) given in Step 2 of Algorithm 1.
Furthermore, if the algonlhm reﬁnes the cell &}, i, then by
definition, we also have I ](x;, =< I, (x;,, i), for h=h;+1
and i € {2i;—1, 2i;}, due to the cell refinement rule. These two
statements together imply that the term sup X{u} (J:,tIl i) is
also a non-increasing term. |

We next derive a bound on the error in estimating the regres-
sion function at the cells close to the threshold values A and
1—A.

Lemma 5: Suppose 1, is the time at which Algorithm 1
stops (i.e., performs the nth query) and A @ js the set
of unclassified points at time f,. Define the term D =
max{D;, D,}, where {D} —_1 = D124 (—1)i/2-5)(&1) in which
z1(r) = 12L(wn ,f(vgp))ﬁrﬁ and D, (¢) is from Definition 2.
Then for large enough n and for any a > D, with probability
at least 1 — %, we have

P(Q],) =2

3 @ 6
_
nr2t? — na?

| Ceni) — HChi)| < b

:4va( Ca

]

PP\ 12v}Py n

)JB (log(Zrm,B)) (714279?
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for all xp; € Ft’,f:‘).

Proof: First, note that 1, < n2, where t, is the time step at
which the algorithm halts. This follows from the fact that the
maximum depth explored by the algorithm is Anax = logn,
which implies that the maximum number of active points at
any time is n. This implies that between any two label requests
there can be at most n cell expansions/refinements. Together,
these facts imply that #, < n?.

Next, we recall that the algorithm refines the cell associ-
ated with a point xp;, if e;(n, (1)) < V, = L(vlp”)ﬂ. The
uncertainty of the estimate of n(x;;) can be further upper-
bounded at any time ¢ by setting f = 1, in the expression of
er(np,i(0), i.e.,

8log(272n7/3)
npit)

Thus, to find an upper-bound on the number of times a point
Xp,i is queried by the algorithm, it suffices to find the number
of queries sufficient to ensure that /(8 log(2m2n’/3))/np,i(f)
is less than or equal to Vj,. Equating this term with Vj, we
obtain

e:(m,i(0) <

8 log(2.112 n’/3)

4

nh,i(tn) =
where 1, is the time at which the budget of n label queries
is exhausted and the algorithm slo]?s Now, by definition,
a point x;; belongs to the set .36' , only if {A,1 — A} N
[le(xn,i), ur(xp,i)] # @. Suppose for a given x,; € A;, the
interval [/;(xp,;), t:(xp;)] contains A. This implies that for
h = 1, we have

sup |n(x) —

xe Xk, i

Al < max{u;(xni) + Vi — A, A —li(xn,i) — Vi

(b)
Uy (xXpi) — l(xn) < 4Vj_1
_ h—1\P
=4L(vip .

(a) follows from the condition that /;(xp;) < A < ur(Xp,i).

(b) follows from the rule used for refining the parent cell
of x;;, after which x; ; becomes active. More specifically, let
t; < t be the time at which the parent cell of x,; (denoted
by xj,_1,) was refined to activate the point x; ;. Then due
to the monotonicity of u, and I, we must have u,(x5;) <
sy (xp_1,), and L (xp,;) = Iy (xp_1,7). By definition we have
tyy (h—1,7) — Iy @h—1,7) < 2(Vi_1 + €, (y_1,7(11))). Finally,
since the cell X} ; y was refined at time 1, we must have
er, (ny_y1,7(t1)) < Vp_1, which implies the inequality (b) in
the above display.

Now, we define the function 1(r) = 12L(v; ,z’(v,»'g,o))‘ﬂrlB and
use it to define the term D1 = D;(&1) (see Definition 2).
Similarly, we define Dg = Dj_;(&) at the other threshold
value and introduce the notation D = max{D;, D,}. Thus, the
total number of points that are activated by the algorithm at
level h of the tree, denoted by N, can be upper-bounded by
the packing number of the set Xl(glfvgp”)) UXi_a( (vgp”))

ﬁ
IANE

3Ac}ua]ly, a factor of 4 instead of 12 suffices, but we use 12 so that the
same D can be used for stating the result of the bounded-rate setting as well.

with balls of radius vgph. Now, by the definition of f), for
any a > D, there exists a C, < oo such that we can upper-
bound N, with the term 2Ca(v2ph)“. Using the bound on N},
and ny, ;(f,), we observe that the number of queries made by
the algorithm at level h of the tree is no more than Npnp ().
Hence, for any H > 1, we have

H 2,7 vy H h(a+28)
8log(2m“n'/3 1
> Nimpi(ta) < ( —7 )Ca Z(—)
h=0 L™ h=o0 \P
2,7 —a H(a+28)
- 8log(272n’ /3)Cyv; 1 6
- v’ o

Next, we need to find a lower—bound on the depth in the tree
that has been explored by the algorithm. This can be done by
finding the largest H for which (5) is smaller than or equal
to n. By equating (5) with n, we obtain the following relation
for the largest such value of H, denoted by Hy,

1/(a+2 1/(a+2
(1)“0_ 2% /(a+28) ; /(@+28)
p) \ 8C log(272n7/3) '
(©)

Now, for any x Uxa,;e X‘E‘H)Xh';, we must have

17) — n@)| = |7y (76, 0)) — 0| < w1, (0) — by, (%)
(ﬂ) (1)(

(a) follows from the point selection rule of the algorithm.
Lemma 6 implies that if the algorithm is evaluated at a point
at level Hp at some time f < f,,, then we have

sup 1 (hi) < 4Vigy_1 = 4L(vi pM )P = b,
x;lleX;L"}

where

+2
b — 4va B/(a+2p) log(zﬂzn?f!3) B/(a+2p)
P L2 ﬁ n

( n —ﬁl(a+2ﬁ)
of() )
logn
]

We note that the our classifier is well defined only when
b, <1 —2A, a sufficient condition for which is that »n is large
enough to ensure that

n\_ (_64C aLv
(lﬂgﬂ)_ 1293 J\ (1 —20)pF

Finally, we combine Lemma 5 with the margin assumptions
to obtain the required result.

Lemma 6: The excess risk of the classifier ¢ in (2), learned
by Algorithm 1, w.r.t. the optimal classifier in the fixed cost of
abstention setting, with the fixed abstention cost A € (0, 1/2),
satisfies Ry (8) — Ra(g}) < O(nPleo+D/2B+a))

Proof: By definition of the classifier g =
under the event €21, the set G C G};.

Now, by Lemma 5, we know that supx;“_E X If(l)(x;,‘;) <
b,, which for n large enough ensures that b, < A leading to

(2B+a)/B
) )

(Go. G1, Gn),
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Go C {x € X|n(x) > 1/2}. This implies that Go N G = 0.
Similarly, we can obtain G1 N GE = (. Thus, the excess risk
of the estimated classifier can be written as

Ri(8) —Ru(g}) = féﬂ n(x)dPx + fc (1 — n(x))dPx
1
+ wPx(Ga)
- f n(x)dPy — f (1 — n(x))dPx
G} Gt

— APx(G})

- f (n(x) — A)dPx
GGy
_|_

ﬁ (1— A — n()dPx

GING}

+ f (0 — n(@)dPx
GaﬁGﬁ

+ f (n() — 1+ A)dPx
GANG}

= anX(ln(X) - )Ll = bn)
+ baPx(In(X) — 1 + A| < bn)
< 2CoblHe0,

APPENDIX B
PROOF OF THEOREM 2 (THE ADAPTIVE SCHEME)

In this section, we elaborate on the adaptive scheme intro-
duced in Section III-C of the main text. Before describing
the adaptive routine, we first state the following concentration
result.

Proposition 1: For a cell &j; and 1 < j < ky, and time
t > 1, we define the event ®(t, h, i, j) as follows:

O, h,i,) = {Ii4) = i) < bu(h i j) va € 1™

. 8log(sy)
h b(h = l—_—_—_—_——
where b L) = O Gl P

12

d § = ———.
and o =02 log(n)2m?

Then the event © = {NO(t, h, i, Pt = 1, (h, i) :xpi € X, 1 <
J < kn} occurs with probability at least 1 — 1/n.

The proof of this result follows in an analogous manner to
the proof of Lemma 3, and we omit the details.

We next state the lemma, which tells us that the adaptive
scheme ensures that the number of samples allocated to a cell
A),i before refining, denoted by ny ;(f), satisfies a condition
analogous to that derived in (4) for the known smoothness
case. As a consequence of this, we can also get an upper bound
on the total number of samples allocated up to a level H of
the tree of partition, similar to (5) in the known smoothness
case.

Lemma 7: If the adaptive scheme refines a cell A} ; at time
t, and if ny, ; denotes the number of labels that were requested
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in the cells A} ; before refining, then we have the following:
321og(1/8;) log(n) - 6273 1og(1/6;) logn
Vii - Vii '

Proof: We will drop the superscript and denote the terms
"D with w!
J

such as w: b9 for this proof. Since the cell was
refined at time f > 2, the following is true

< nji()

[, = | < AbuCh k) = o, = Sy, — Aby(h i k)
= Vhi = Wiy = Wi, — 2be(h, i, kn)

> Wi — 6by(h, i, kn) = 2b:(h, i, kn) (8)

Since by(h, i, ky) < | 2RECLU0E® | ihis implies that

3210g(1/6,)1
i) > 28U /o0 1ogT
Vk,f

Next, let f; denote the time at which a label was requested in
the cell A}, ;. Since it was not refined at time #;, the following
sequence is true.

[, o, | < 4by (b1, k) =5 b, <, +4biCh, i, ki)
=5 Wi, + b1y (h, i, k) < 14Dy, (h, i, Ky)

V .
= % < Wi, < W, + 2by, (h, i, kn)
< 14bf1 (h, i, k).

This implies the following for Ny = log(n):

Vi 4 81log(1/8;,) logn
2 (nr,i (1) — 1)
627210g(1/3;) log(n
= npit) < 1+ gU/5) log®)
Vk,i
6273log(1/8;) log(n)
j— V2 -
h,i

]
Next we present a lemma which obtains a bound on the
maximum deviation of n(x) from A or 1 — A for x lying
in the subset of the input space covered by the cells of the
unclassified active points.
Lemma 8: If a cell x; € Ft’,(“) for some h = 1, then we
must have for i’ .= [(i+ 1)/2],

miﬂ{ln(xk,f) -1+ l|, (i) —Al} <42V 1. (9)

Proof: Let t; < t be the time at which the parent cell of
Ah,; was expanded to include x;; in the active unclassified
set, and let f < f; be the previous time instant at which
the cell A}, was queried. Since x;; € .?(',(“), the interval
[l¢(xh,i), ur(xp,;)] must contain either 1 — A or A. Without loss
of generality assume that [[;(xsi), ur(xs,i)] contains A (The
other case can be handled in exactly the same way.). Then we
have the following:

InG) — Al < ur(xn,i) — 1 (i) < e, (xh—1.) — by (Xn—1,0°)

(a) _
< Uy (¥h—1,) — bty (¥h—1,7) <ty (Xp—1,)

_ frg(xh_l,f) = Z(e,z(nk_l,f) + Wéh—l,i’))
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(b)

IA

2e4, (Mth—1,i)
+ 4(8byy(h— 1,1 kn) + 6byy (h — 1,7, ky))
(h—

2 2by, (h— 1.1, kn)
+ 4(8by, (h — 1,1, kn) + 6by (h — 1,7, ky))
9@ V2(2b,y (h—1,7, k)
+ 4(8by (h— 1,7, k) + 6byy (h — 1,7, ky)))

(e)
L7, k) < 42Vi1 .

IA

84by, (h —

In the above display,

(a) follows from the definition of the terms E, and u;, and
the fact that f; <1,

(b) follows from the fact that # < #; and the monotonicity
of u; and [},

(c) follows from the fact that ep(np—1,7)) <
by (h— 1,7, kn),

(d) uses the fact that nj,_1 #(f2) = n,_y ¢ (t1)/2,

(e) uses the fact that Vj,_y 7 > 2b;, (h — 1,7, k) as shown
in (8). |

The rest of the proof follows along the lines of the proof
of Theorem 1. We first present a lemma, which is analo-
gous to Lemma 5 and introduces an appropriate notion of
dimensionality D'? for the adaptive scheme.

Lemma 9: Suppose 1, is the time at which the adaptive
algorithm stops (i.e., performs the nth query) and Ft’ @ is the
set of unclassified points at time f,. Define the term D@ —
max{f)ga),f)g’)}, where {D}a) }jz=l = Dy /24 (—1)i(1/2-1) (é'l(a)) in
which é'l(a)(f) = 36L(v1/(v20))Pr? and Dy, _1yi1/2-2)()
is from Definition 2. Then for large enough n and for any
a > D@, with probability at least 1 — 1, we have

]

. )—ﬂ(mﬁ)
logZ(n)
for all xj; € X(“).

[nCan,) — A 0a,)| < b5 = o(

Proozf: We know from Lemma 7 that we have Nj; <

6273 log 3) log(1/%) \where we used the fact that §, is decreas-
i

ing in f. Since the maximum depth is Apax = log(n), we must

have 1, < n?. Thus we can obtain the following bound:

Nii < 6273 1og(n2) log(1/5;) - 6273 log(n) l(‘;g(ns log(n))
Vii Vii
Cn
= . 10
7 (10

Also from Lemma 9, we know that any point in Xf(“) at level
h satisfies min{[n(xp,i) — 1 + Al, [n(xk,i) — A} < 42Vjp—1,;.

Due to the Holder continuity assumption on n, we again
have Vj,; < L(vlp”)‘g for all h, i. The rest of the proof follows
the steps of the proof of Lemma 5, and we get that

o \B [ mar 2,28\ /@2
|G, — )| < L =) (2=
‘ ‘ P 2CnCq
O\ —Pl@+28)
::b,gﬂ):o( > ) (11)
log“(n)

A sufficient condition for this bound to be non-trivial (i.e., for
the RHS to be less than 1) is if the following holds:

a+2p
log nlog(nlogn) — ngzv%ﬁ P

]
Having obtained the result of Lemma 9, the result in the
statement of Theorem 2 follows by an application of Lemma 6.

APPENDIX C
PROOF OF LOWER BOUND

A. Proof of Lemma 2

[In this section, we use the notation _f 1 Jdp as a shorthand
for [, 1 (0)dp(x) for the integral of function f* with respect to
some measure g over some set A.]

We first observe the following:

Ru(g) — Ru(GY) = f AdPy + fco ndPx + f (1 - n)dPy

[ AdPy — [ ndPx

—f (I —n)dPx
Gi

- f (O — m)dPy
G;\I'WGE

+[ (A — 1+ n)dPx
GNGE

+ [ (1 + 2)dPx
GinGo

+ f (1—n—1dPx
G;I'WG|

+[ (2n — 1)dPx
GoNG}

+[ (1 —2n)dPx
GﬁﬁG|

=T +T2+ T3+ T4+ Ts+Ts.

We now consider the six terms separately.

« By definition of G’{‘, we know that n = 1 — A in this set.
This implies that the integrand in 75 is at least 1 —24 > 0.
Thus we can lower bound 75 with 0. The term Tg can
similarly be shown to be non-negative.

« To lower bound the term Ty, we partition Gf into two
regions: Gg , which is close to the boundary, and Gg,
which is the region away from the boundary.

Gyo = {x € GjIn(x) > A —1t}, and
Gob = Go \ Go.a»

where f > 0 will be decided later. In the set G; N GE b
we have A —n > £, which implies that

I = [ (A —n)dPx = f (A —m)dPx
G\NG} GiNG},

> IPX(G;" N Gﬁ,b)
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> 1(Px(Gy. N Gg) — Px(Gj.0))
2 tPx (G, N G) — Cot' 0,

where the inequality (i) follows from the margin
condition.

« To lower bound the term 7>, we introduce the sets G’{‘ into
Gl ,UG], where G , :={x e G | n(x) <1 -2 +1}
and G} , '= G} \ G} ,. We then have:

= (l—1+n)dPXz[ (A —1+n)dPx
G;\I”IG? Glﬁc’r,b
> tPx(Gy NG} )
> 1(Px(Gy.N GY) — Px(GT )
> tPx(Gy N G}) — Cot'+.

« To lower bound T3 we introduce GI s = 1x e G: |
n(x) <A +1}, and G} , = G} \ G}’”a. Then we have the
following:

I3 = f (n —A)dPy = f (n — A)dPx
GonG; GonG;.
> tPx(Go NGy )

IV

1(Px(Go N G}) — Px(G;.,))
tPx(Go N G}) — Cor™o+!.

IV

« Finally, to lower bound the term Ty, we introuce GI,.: =
{xe G} | n(x) = 1 — A —1}, and G} ;, = G} \ G .. Then
we have

T4Z:f (l—n—l)dpxzf (1 —n—A)dPx
GING! GING;

tPx(G1 NG5 4)

> t(Px(G1 N G}) — Px(G} )

l‘Px(G] n Gi) — Co!aﬂ+] .

VoIV

IV

Combining the above we have the following:
Ry.(8) — Ri(g}) = t(Px(Gx N (G))°) + Px (G N G))
— 4Cyt'+0
= tPx(GLAG}) — 4Cot' 0. (13)

The result then follows by setting f such that
tPx (G, AGY) = 5Cot' 0, which leads to the following:

(14-atg) /g
Px (G, AG*
Ri(8) — Ru(g}) CD(M)

v

5C,

1\ d+e0)/ao , 1 N /a0
5 Co

x Px(GyAGE)!He0/
= cPx (G AGE) T,

B. Proof of Theorem 3

We follow the general scheme for obtaining lower bounds
in nonparametric learning problems used in prior work such
as [1], [17]. This method involves constructing a set of hard
problem instances which are (1) sufficiently well separated
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in terms of some pseudo-mefric, and (2) sufficiently close
together in terms of some statistical distance (such as KL
divergence or x2 distance). Once we have such a construction,
we can employ [28, Th. 2.5] (recalled below as Theorem 4)
to get a lower bound on the distance in terms of the pseudo-
metric for any estimator. Finally, we can use the comparison
lemma (Lemma 2) to convert this to a lower bound on the
excess risk.

Theorem 4 [28, Th. 2.5]: Assume that for M > 2, © =
{61,..., 05} dis a pseudo-metric on ©, and {ng | 6; € O} is
a collection of probability measures such that:

o d(6:;,6) >2s > 0forall 1 <i,j<M.

o Py << Pg, forall 1 <i=<M.

o £, Dxi(Py, Pay) < alog(M) for 0 < a < 1/8.

Then we have for M > 10,

inf sup Py (&(é, 9) > s) > 1
e 4
where the infimum is over all estimators # constructed using
samples from Py.

We now describe the construction of the regression func-
tions. First, given X = [0, 112, for some ¢ > 0 to be decided
later, we partition A" into hypercubes of side €, and denote by
M = (1/€)P the number of such hypercubes. Let V be the set
of centers of the hypercubes, ie., V = {21,22,....,2m}, and
let ¥ : A > V denote the projection operator onto V.

a) Choose Appropriate Subsets of the Input Space:
Assuming D > 2, let ey, e2, e3 and e4 denote any four corner
points of A = [0, 1]D . We define the following subsets of the
space A’

Qj={xeX||x—e¢| <1/3} forj=1,2,3and4.

For € small enough, we note that there exists a constant ¢; > 0
such that the number of hypercubes contained inside each Q;,
denoted by M;, can be lower bounded by ¢y M. (Note that
by symmetry M1 = My = M3 = M4, so we will use M
to denote any of M;). We will use V; = {zj1,%2,.-., J'Jf}
to denote the centers of the hypercubes contained in @Q;, and
Yj = Uzeyj B (z, €/2) to denote the union of all the hyper-
cubes strictly contained in Q;. Here B (Z, €/2) denotes the
hypercube with center z and side €.

b) Define the Regression Function: Let u : [0, c0) — [0, 1]
be a function defined as u(z) = min{(1 — z)ﬁ, 0}. Note that
u satisfies the following properties: (1) u(0) =1 —u(l) =1,
(2), u(z) =0 for z = 1, and (3) u is (1, B) Holder continuous
for0 < B <1.

For any z € S, we define the function ¢,(x) =
L(e/2)Pu((2/€)||x — z|)- By construction, the function g, is
(L, ) Holder continuous. Furthermore, we assume that € is
small enough to ensure that L(€/2)f <1/2 —A.

For any o e {—1, l}M, for j = 1, 2 we introduce the nota-
tion ¢ = (61,6@) e {—1,1}*™. Next we define 1z (x) =
A+ YoM Ji(l)(PZl,i(x) forxe ¥y and 1 —A4+Y 2, di(z)gazzlj(x)
for x € ¥». For x lying in Q1 \ Y7 and O\ Y, we assign 13 (x)
the values A and 1 — A respectively.

Furthermore, we assign gz (x) = 1 forx € Q3 and nz(x) =0
for x € Q4.
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It remains to specify the values of 5z (-) in the region A \
(U4_1QJ) Forany A € & and x € &, we use da(x) :
1nf{||y — x|||ly € A} to represent the distance of the pomt x
from the set A. We also introduce the terms z; = (})!/# and
7 = (?}E)U‘B, and assume that L. > 3 which ensures that
71 <o < 1/6. Now for all x € X'\ U;":l Q;, we define

A+ Lu(1 — dg, (x)) if x : dg, (x) < z1
1— A —Lu(l —dg,(x)) if x : dg,(x) <z

ns(x) = { 1 — Lu(1 — dg,(x)) if x: dg,(x) <22
Lu(1 — dg,(x)) if x : dg,(x) <22
1/2 otherwise

This completes the definition of the regression function at
all points in X. By construction, we have that for any
o e {—1, 1}2‘“ , the regression function 5z is (L, 8) Holder
continuous for 0 < 8 <1 and L = 3.

¢) Define the Marginal Pyx: Next, we need to define a
marginal such that the margin condition is satisfied with expo-
nent «p > 0. For this we can proceed as in [1, Sec. 6.2] and
for some w < (1/ (2M)), define the density of the marginal
w.r.t. the Lebesgue measure as follows:

WL x),e/4)(X)

o)< forxeYiUl,
Px(x) = % forx € Q;, forj=3,4
0 otherwise.

We can now check that the joint distribution thus defined sat-
isfied the Margin condition for a given exponent ap > 0 with
constant Co = (8/3)P%, if we have Mw = O(%F).

d) Apply Theorem 4: In order to apply Theorem 4, we

proceed as follows: )

e Let ¥ denote the set {—1, 1}2‘“. Then by Gilbert-
Varshamov bound [28, Lemma 2. 9] we know that there
exists a subset of X, denoted by Z such that |E| = 2"’”4
gp=(1,1,...,1) e Z andforanycrl oy € E we have
dy (0, 07) > M,!4 Here dy(-,-) denotes the Hamming
distance.

e Let P’ denote the class of joint distributions Pz
with marginal Py, and conditional distribution nz
foo ¢ € . For any two P; and P; in

?’, we introduce the pseudo-metric d defined as
d(Ps,Pz) = Px(sign(nz —A) #sign(nz, — 1)) +
Px(sign(ng, — 1+ 1) # &gn(:r;,r;,~2 —1+1)).
Thus, by the properties of ¥, we get that for any 61, 07 €
¥, we have

- Mw

d(Pz,, Pz) > -

« Next, by using [17, eq. (10)], we can upper bound the

average KL divergence between the distributions in P’
after n label requests by any active learning algorithm:

2
Di(Ps,. Pz,) < 32nL2(§) :

If we select, € = cpn~1/(P+2B) with ¢, small enough
(a suitable value is ¢, = ((48c1)/(32212))"/P+P)), we
have

Dx1(P3,, Pa,) <

as required by Theorem 4.
Since all the conditions of Theorem 4 are satisfied by our
construction, we can conclude that for any active learning
algorithm 7, we have

inf sup ]P(Px(sign(r} — k) # sign(n — ) for
1 (n,Py)eP’
kK efr,1—1}) > csn_(“"ﬂ)f(mzﬂ)) > %
e) Apply the Comparison Inequality (Lemma 2): Finally, by
employing the comparison inequality (Lemma 2), we obtain
the following:

inf sup P(Ry(2) — Ra(*) = con P+ OH)) >
& (n.Py)eP

| —

which gives us the required bound:

inf sup E[Ru(8) — Ru(g*)] = LnP(+e0)/(D+26),
& (g,Px)eP’

APPENDIX D
DETAILS FROM SECTION III-B

Suppose that the marginal Py has a density px w.r.t. the
Lebesgue measure, and that the density is bounded below by
a constant ¢p > 0 almost surely. This implies that for any set
A C X, we have P(X € A) = Py(A) > coVol(A).

Here we show that under this assumption, we have D@ <
max{0, D—agpf} which also implies that D< max{0, D—apf}
as we know that D < D@ by definition. Recall that D? was
introduced in Theorem 2 and D was introduced in Remark 2.

Define 4; = 1/2+ (—l)f(l,z‘Z —A) for j=1,2, and the set
X,(63(n) = {x € X | In(x) — 4| < 42L(v1/(v2p))r’}. Then
by the assumption (MA), we have the following

vr\fe
Px (X, (21(r)) < COLO’O(@) < CirPo

for some constant ﬁ'l > 0 depending on L, vy, v2, p, Co, o, B.
Furthermore, by the additional assumption on Py, for any x
X and r > 0, we have

Px(B(x,r)) = coVol(B(x, r)) = E’grD

for some constant C; > 0 depending on c¢g and D. Thus for
r > 0, the r-packing number of the set Z, = &) ({3(r)) U
X3, (¢£3(r)) can be upper bounded as follows:

CirP® > Py(2,) > M(Z,,r)CorP

c
= M(Z,, 1) < —r—(D—Fa0),
(&)

Finally, by the definition of near-X dimension we observe that
D@ < max{0, D — Bao}.
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