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Abstract—In the absence of dictionaries, translators, or gram-
mars, it is still possible to learn some of the words of a new
language by listening to spoken descriptions of images. If several
images, each containing a particular visually salient object, each
co-occur with a particular sequence of speech sounds, we can
infer that those speech sounds are a word whose definition is the
visible object. A multimodal word discovery system accepts, as
input, a database of spoken descriptions of images (or a set of
corresponding phone transcriptions) and learns a mapping from
waveform segments (or phone strings) to their associated image
concepts. In this paper, four multimodal word discovery systems
are demonstrated: three models based on statistical machine
translation (SMT) and one based on neural machine translation
(NMT). The systems are trained with phonetic transcriptions,
MFCC and multilingual bottleneck features (MBN). On the
phone-level, the SMT outperforms the NMT model, achieving
a 61.6% F1 score in the phone-level word discovery task on
Flickr30k. On the audio-level, we compared our models with the
existing ES-KMeans algorithm for word discovery and present
some of the challenges in multimodal spoken word discovery.

Index Terms—unsupervised word discovery, language acquisi-
tion, machine translation, multimodal learning

I. INTRODUCTION

Unsupervised word discovery aims to segment and cluster
spoken sentences, or their corresponding phone transcriptions,
into words. Word discovery is a useful first step in the
development of speech technology for unwritten languages
or languages in which word segmentation and lexicon will
be prohibitively expensive to acquire. Unsupervised word
discovery system exists [1]—[3], but the task has been shown
to be quite challenging. In this paper, we explore the use of
image as an additional information source for word discovery:
if each utterance is known to be a spoken description of
an image, the image labels can be seen as a bag of noisy
word labels for the speech. As a result, we can discover word
units from unsegmented spoken sounds by utilizing the co-
occurrence patterns between sound units and the image labels,
as illustrated in Fig. (1).

II. RELATED WORKS

Several works have used raw audio to discover word
units. Methods that imitate child language acquisition often
begin by finding recurring patterns in audio [2], [4]. Non-
parametric Bayesian hidden Markov models (HMMs) have
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been widely used in word-unit discovery and various other
clustering problem with audio, e.g., a latent Dirichlet process
with HMM acoustic models can be used to jointly segment and
cluster raw audio into sub-word units [5], [6], or the HMM
can be regularized using an ¢, norm as sparsity constraint
to encourage purer clusters [1]. Using word embeddings as
features, it is possible to perform automatic word discovery
by modeling each word as a Gaussian mixture model (GMM)
with a Dirichlet prior on its parameters; the model can be
trained using expectation maximization (EM) with Gibbs
sampling, or using a weighted K-Means algorithm [3]. The
segmental embedded systems in [3] outperformed the previous
systems by 10 % boundary F-score and 30 % word token
F-score for the low-resource language Xitsonga during the
2017 zero-resource speech challenge (ZRSC) [7]. Other works
have focused on discovering word units from phone sequences
or character sequences, such as models based on Pitman-Yor
processes [8].

A related task to the unsupervised spoken word discovery
is query-by-example keyword search in audio, which aims to
only search for a collection of keywords and leaves the rest of
the speech as background. The most recent widely published
benchmark evaluation of this task was the NIST OpenKWS
evaluation set on the language Georgian. The Kaldi OpenKWS
system [9] trained a Deep Neural Network (DNN)-HMM hy-
brid system and decoded the out-of-vocabulary (OOV) queries
by fusing the decoding scores on the word-level, phonetic-
level and morpheme-level lattices to maximize the average-
term weighted value. The BBN system [10] combined several
acoustic models based on DNN, long short-term memory
(LSTM) and convolutional neural net (CNN) on subword
units to perform joint decoding and handled OOV queries
on the sub-word unit. The STC keyword search system [11]
combined 9 different acoustic models based on DNN and
GMM with a phone-posterior based OOV decoder [12].

A multilingual approach for spoken word discovery has
been proposed by [13], which developed a variant of the IBM
model 3 SMT to discover word units of an under-resourced
language by aligning parallel texts in a high-resourced lan-
guage. The same task has been attempted [14] using NMT
with attention [15] to align speech or phone sequences to the
word labels of the high-resourced language; modifications of
the attention mechanism ensure coverage and richer context.
If the true phone sequence in the under-resourced language is
unknown, pseudo-phone labels generated by an unsupervised
non-parametric Bayesian model [6] can be used as input to
the NMT [16].

The database used in this paper was first published as
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Image concepts: canoe jacket male child man

Caption:

AHO M AEI NAHON D AHO L [H1 TAHO L B
OYIIHONBLUWI LAYl FJHAEIKIHOT
SAA1RROWI1IHONGAHOY EH1 LOWOK

AHO N UW1

Caption:

Image concepts: hands male child mouth

AHOS MAOI LB OY1 PAHI TIHONG S AH1
M TH IHO NG IHO N HH IH1 ZM AW1 TH W
IHI DHB OW1 THHHAEI ND Z

male_child:
I " |l.L‘AHOSMAOILB
oY1’
2.‘LIHITAHOLBOY!”
3.‘AHOY AHI NGB
oY1’

new_jersey
(Caption:
JHER1ZIYOL

AE1 TM EHI N

Image concepts: boat ledge male child

AHO Y AH1 NG B OY1 W EHI R IHO NG AHO
UHI K S DAWI NOWI1 V ER0OAHOL EHI JH

IYOB OWI T SIHON DH AHO WAOI1 T ERO

Fig. 1. Example of multimodal word discovery: The concept “male child” is learned by finding co-occurrences between phone strings and image labels. The
phones in green of the caption represents the ground truth phrases for the image concept/label of “male child” (marked in green as well), while the phones in
red represents the potential confounder M AE1 N to the algorithm. Notice that no word boundary or exact word label is provided and there can be multiple
image labels per image. Word discovery algorithms that require sequential phones would find the confounding sequence M AE1 N in only the first image,

while those that permit non-sequential phones would find it in all three images.

an image captioning corpus, for which the baseline system
[17] used IBM model I and II [18] combined with Kernel
Canonical Component Analysis (KCCA) for mapping both
image and text to a joint space. [19], [20] developed a two-
branch neural network system to learn the joint representation
of image and text. The speech files were first used to train
an end-to-end image retrieval system from speech [21]-[24]:
Pretrained image embeddings provided supervision to learn the
acoustic embeddings of spoken captions by maximizing cosine
similarity between the embeddings of image-caption pairs.
The task of multimodal word discovery was, we believe, first
proposed in [25], where it was performed as a generalization of
the image retrieval problem: [25] found that the same acoustic
embedding used in the image retrieval systems can be used to
discover word-like segments in speech and bounding boxes in
an image by exhaustively searching over grids in the speech
and image. The exhaustive search was replaced in [26] by a
more efficient convolutional time alignment, in which peaks
in the similarity between the image and audio convolutional
networks were taken to indicate discovered image concepts
and audio words, respectively. Convolutional multimodal time
alignment is able to automatically discover word alignments
between Hindi and English [27], and to discover phone-like
units in speech [28]. In a previous paper [29], we have refor-
mulated the multimodal word discovery problem as a statistical
machine translation problem to align between a sequence of
phone labels and a set of image concepts matched one-to-one
to the image regions. In [29], however, the phone labels are
assumed to be discrete and we only explored the alignment
model with the mixture assumption. This paper extends the
previous paper to allow any unsegmented, continuous acoustic
features for the audio modality.

III. NOTATIONS

In the paper, we use N(z|u,X) to denote the multivari-
ate normal distribution with mean p and covariance matrix
3. evaluated at point x. When there is a random process
(U1, X1) - (Up, X7), ci(u;z) denotes the count at the ¢-th
random variable pair (U;, X;). Both probability mass functions
and probability density functions are written with the notation
p(z), and thus p(x) may represent either Pr{X = =z}
or %Pr{X < z}, depending on whether X is discrete
or continuous. The parameters of the distribution are often
omitted for simplicity: p(-;0) =: p(-). Further, i.i.d stands
for “independent, identically distributed” in the subsequent
sections.

c(u; x) is the count of occurrences in which random variable
U takes value u when X is observed to be x. c(u|v;x)
represents the number of times random variable U with value
u is aligned to random variable V' with value v, which is
equivalent to ¢(i; ) where [ is the alignment variable between
U and V. E,[-] denotes the expectation over variable X and
(-} is a shorthand to denote the expectation of the counts. For
vectors and sequences, we use Ts.; to represent the elements
from index s to t.

IV. PROBLEM FORMULATION
A. Multimodal word discovery

Suppose we have a sequence of acoustic feature frames or
phone symbols z1,...,z7,, ; € X and a set of image con-
cepts Yo, Y1, - - -, Y1, ¥i € YU{NULL} with yo = NULL. The
goal of our algorithm is a sequence learning problem to align
every sequence of audio feature frames x = [21,...,271,] tO
a sequence of image concept y = [y1,...,yr,]. We assume
that T, > T,,. In other words, we seek an alignment matrix
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A€ [0,1)=*T = [af,...,a] ]" = [a;...ag,], such that
the following many-to-one constraint are met:
Ty
a >0, Y an=1,t=1,...,Ts, e
i=0

which intuitively ensures that one feature frame is aligned to
one and only one concept. For audio frames that are unaligned
to any of the image concepts, the NULL symbol acts as a
placeholder concept to enforce the constraint. Further, SMT-
based models assume that a;; € {0,1}, in which case we
define i(t) to be the index of the image concept aligned to the
frame at time ¢, i.e., agiry = 1, and let A be the set of all
matrices that satisfy Eq. (1). A maximum-likelihood alignment
model tries to maximize:

p(x,y|®) = > p(AlO)p(x,¥|A,6), 2)
AcA

over © for each input-concept sequence pair. When X is a
finite set of ground truth phonetic symbols for the spoken
language, the problem is described later as phone-level word
discovery; when X = RP, where D is the dimension of some
acoustic features such as mel-frequency ceptral coefficients
[30], bottleneck features [31], [32] or acoustic embeddings,
the problem is described as audio-level word discovery. For
the audio-level word discovery, we largely ignore speaker
variation and assume that proper speaker adaptation techniques
have been applied before the processing of our models.

B. Statistical multimodal alignment models

The statistical multimodal alignment models (SMA) learn
to generate phone sequences from image concepts and as-
sume that p(y|©) does not depend on O. The assumption
of a model-independent class distribution does not limit the
performance since the decision of the model is based on the
posterior alignment probabilities:

. p(A)p(x, y|A)
ARy = s p(ANp(x, yIAY) @
b(A )(x\y, A) “

ZA’ eAP (
which does not involve p(y). Further, such assumption makes
maximizing Eq. (2) equivalent to maximizing the likelihood
p(xly):

arg maxp(x, y|©) = arg max p(x|y, ©)

)p(x|y, A’)’

= argmax ) p(A|©)p(x]y, A, ©).
AcA
&)

C. Word discovery with neural multimodal alignment models

Instead of having a model-independent distribution over
the image concepts, the neural multimodal alignment model
(NMA) assumes a uniform distribution over the acoustic
feature frames:

1

p(x[T) = W

(6)

Therefore, maximizing Eq. (2) is equivalent to maximizing the
posterior probability:

arg max p(y|x, ©) = arg max/
e AcA

)

where A is the set of real-valued matrices that satisfies Eq.
(1). We have proposed several SMA and NMA models for
both phone-level and audio-level discovery and their relations
are shown in Fig. (2).

D. Multimodal image retrieval

In a standard multimodal image retrieval problem
[19], we have a database with image-caption pairs
(x',y™M), . (%%, y™9), where image y™(*) is uniquely
described by sentence x?. The goal is to learn the one-to-one
mapping 7 : {1,...,5} — {1,...,S} that maps from each
caption to the corresponding image.

V. SIMPLIFIED MIXTURE MULTIMODAL ALIGNMENT
MODELS

At the first glance, Eq. (5) may seem daunting to learn
since it contains the summation of TmT v terms and can be
hard to break down into a reasonable number of parameters.
However, if each feature frame is assumed to be independently
generated by a single concept selected uniformly from the set
of image concepts, the expression can be broken nicely into
the translation probabilities between single pairs of concepts
and acoustic frames/phonetic labels. Such a model is referred
later as a simplified mixture model.

A. Phone-level model

For the phone-level word discovery, following [33], we can
make use of the following assumptions:

1) Hard alignment assumption: A is integer-valued, specif-
ically ay; = 1 for i =i(t), else ay; = 0;

2) Uniform prior assumption: all alignments are equally
likely given only y: p(Aly,T.) = m;

3) Mixture assumption: given the alignment, each phone
depends only on its aligned image concept, thus
p(w¢|21.0-1), A,y) = p(@t|yir)). A consequence of
this assumption is that we lose the ability to model
phone sequence information; each word is modeled as a
mixture of phones, with no ability to model the sequence
information that distinguishes any word from its own
temporal permutations.

Eq. (5) is then simplified to:

Ty Ty
1
W tl;[ z; lt|yz(t) (3)

SMT model using similar assumptions are called mixture
model mainly due to the independence between alignments.
Optimization with EM results in an iterative formula in terms

p(Alx,0)p(y[x, A, O)dA,
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Fig. 2. Comparison of various multimodal word discovery systems. The input of the models are either the ground truth phonetic transcription, the MFCC
feature and the bottleneck feature of the spoken caption, while the output is the predicted alignment matrices, which is the negative sum square distance for
the simplified model, the alignment posterior probability for the enriched model and the attention weights for the NMT.

of the expected counts of a given phone-concept alignment
[18]:
(clryisxy)) — _ pl@dy)
Soilelwlyiixy)) ity pladys)
The optimal alignment between the phones and image

concepts can be then obtained by finding the highest-scored
translation pair of a given sentence:

(€))

i*(t) = argmlaxp(a:t\yi). (10)

B. Audio-level model

Continuous acoustic features may be modeled as a cluster-
mixture model, in which each image concept y; is mod-
eled as a set of acoustic feature vectors with centroids
{tem (y:) ?ii,m:1- Distinct cluster centroids may model seg-
mental variation (multiple phones are segmented to form a
word) and/or production variation (any given phone may be
pronounced in several different ways). In the cluster-mixture
model, both segmental variation and production variation are
modeled using the same mechanism. Instead of maximizing
the likelihood function, the model tries to minimize:

Ty

: 2
min E Ty — [ ; ,
A€AmEMTs e =ty (i )12

(1)

where M {1,---,M}. The update is similar to the
standard K-Means algorithm but guided by the image concepts

corresponding to each utterances:

(0, m* (1) = argmin o — ()P (12
Z 2(t)=i,m(t)=m Tt
o (y5) = SEAD=L = (13)

c(i, m;x,y)

C. Time-dependent alignment probabilities

Bock and her colleagues [34] have demonstrated that the
order of eye fixations on an image predicts the order in which
the objects will be mentioned. If we speculate that readers
of a left-to-right orthography (such as English) tend to also
read images left-to-right, it follows that native speakers of
English may show a tendency to generate sentences that name
the objects in an image from left to right. Brown et. al. [33]
has proposed an extension to the simplified mixture model
capable of discovering a left-to-right description bias, if it
exists: they proposed to relax the uniform prior assumption by
making the alignment probability time-dependent. Specifically
they introduce a set of parameters p(i|t, T, T},) := Pr{i(t) =
ix1:4, Y10, Ty Ty}, 1 € {1,..., T, }, t € {1,..., T} with the
constraint that ZiTio p(ilt, Ty, Ty) = 1. As a result, Eq. (5) is
modified to be:

T,

I1

t=1i(t)=0

Ty

p(O)|t, T, Ty)p(zelyicry), (14

€
(T, +1)T=

The expected count is then a weighted version of the simplified
mixture counterpart:

(c(zelys x,y))
S elzelyis x,y))

— p(i‘thmTy)p(xtlyi)

S ([t T T )plailyir)
(15)

D. Gaussian mixture models

The cluster-mixture alignment model (Eq. (11)) is rea-
sonable if this difference between a feature vector and its
cluster centroid is a Gaussian random variable, with spherical
covariance whose radius is independent of the cluster index.
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A slightly richer model is a Gaussian mixture model (GMM),
used to model each image concept:

Z

m=

l't|y1 xt|“m(y]) Zm(yj))a (16)
where {c,,(y)}, is the prior distribution for each mixture
associated with concept y;. Under the same assumption (1)-
(3) as the discrete mixture model, the expected count of the

continuous mixture model takes the form:
(ci(i,m;%,y))

Zyym/ <Ct(i/7 m'; X, y)> B

CM(yi)N(Xtmm (yz)v ZM(yi))
T M a7
Zz‘/y:1 Zm:1 Cm (yi/)N(XtW?n(yi’)a Ym (yz’))
M
(cr@elyix,y) = D (eliymix,y)). (18)
m=1

The EM algorithm for a GMM tries to maximize the Baum
auxiliary function:

T. Ty M
@ @ = Z Z Z (i(t)7m<t)|xayaé)'
t=14(t)=0m(t)=1
Ing(xtv ( )7 ( )‘yv ) (19)

Although not the logarithm of the translation probability as in
the discrete case, this auxiliary function is known to provide a
lower bound for the log-translation probability and guarantees
to converge to a local optimum [35]. The main advantage
of using the Baum auxiliary objective is that the mixture
means and variances now have closed-form expressions in
term of the expected count and the acoustic feature frames.
The auxiliary function approach will be applicable to all
the audio-level SMA models with continuous features in the
subsequent sections. More details about the EM update with
Baum auxiliary function can be found, for example, in [35].

In fact, the K-Means-based algorithm in the previous section
can be seen as a simplification of the enriched mixture
model when the mixture distribution is a Gaussian mixture
with diagonal and asymptotically zero covariances for each
component.

VI. SEGMENTAL MULTIMODAL ALIGNMENT MODELS

One major bottleneck of performance for a mixture model
is its independence assumption. The alignments for each
feature frame are assumed to be independent and thus the
global patterns formed by multiple acoustic feature frames are
overlooked. As a result, each feature frame needs to combine
enough context from the original speech waveform in order to
well represent a word-like unit. However, such an assumption
fails to hold for acoustic features like MFCCs even bottleneck
features fail to represent all of the context necessary to identify
a word unless they are specifically trained to do so. Without
sufficient context to represent a complete word, the mixture
assumption assigns the phone sequences of any order to equal
probability. In the phone-level discovery case, the word “god”
and “dog” will be equivalent. One natural approach to capture
multi-frame patterns is to replace the framewise model with

an acoustic model that operates at the level of segment or a
sequence of audio frames [3]. A segment is defined in this
context as a variable-length sequence of consecutive audio
feature frames that potentially represent a word or subword
unit. Models of segment probabilities are called segmental
models. The difference between segmental models and frame-
wise models is illustrated on Fig. (3).

A. Phone-level word discovery

Models that represent the likelihood of each frame and the
frame sequence with separate probabilities are called sequence
models. On of the simplest types of sequence model represents
the dependence between alignments. We may replace the
uniform prior assumption with the following Markov assump-
tions: p(i(t)|i(1 : t),Ty) =: p(i(t)|i(t — 1), Ty). Eq. (5) then
simplifies to:

T’—%l (T, +1)T= EZ: II])

AcAt=1

i(t — 1), Ty)p(@e|yicry)
(20)

where p(i(1)]2(0)) = p(i(1)). This model, as first shown by
[36], [37], is a hidden Markov model (HMM) with alignment
vectors as the states. Maximizing Eq. (20) amounts to collect-
ing the expected counts:

(c(i(t = 1), i(t)x,y)) _
S (e, jlx,y))
v (i(t — ))pli(8)]i(t — 1), T,

p(xly) =

) ($t|yz(t))ﬁt( (t))

@1)
Sy (it — 1)plili(t — 1), Ty)p(elys) B (i)
Ty
(e(z]yis x,y)) = Z<ct<z",z‘|x,y>>, (22)
where (i) = p(x1.4,i(t) = dly) and Bi(i) =

p(x¢41.7,|i(t) =4, y) can be updated iteratively via dynamic
programming.

Standard Viterbi decoding can be applied to find the optimal
alignment between concept and phone:

i"(t) = max {p(ere—il:t = 1)ly)p

(@li(t = 1)p(welya)}-

(23)

For image retrieval, the translation probability from Eq. (20)
is used to find the optimal set of image concepts:

Ty

vy = maxp(x|y) = maxZozT
=1

B. Audio-level word discovery

1) Static Subword-level Segmentation Approach: While
modeling intermediate correlations between alignments may
be sufficient for phone-level word discovery, the audio-level
feature may require modeling directly on the level of the
segment. Assume that the first word starts at the first frame
and the last word ends at the last frame with no gap or overlap
between segments. Let IV be the number of segments, and we
have s1 = 1, s; < 5541,1 < j < Nand sy =T, + 1.
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lu male ChlldHNULL l],

Frame-level

u male child

Jnuie u’\
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X1t —1 Xty :t0—1Xt0: Ty,
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Fig. 3. Comparison between frame-wise models and segmental models. Frame-wise models cluster each acoustic frame directly, without taking into account
contextual information on the segment level; in contrary, segmental models exploits segmental information by clustering fixed length embedding representations
of the segments, the boundaries of which are learned through the hidden factors s;, j = 1,---, N.

A segmentation is then uniquely characterized by the vector
s = [s1,---, sn], where s; is the starting frame of segment j.
The segmentation can be alternatively represented by a binary
boundary vector b € {0,1}= such thatb,, =1,j =1,...,N
and O otherwise. Let Sty denote all the segmentations of
length N for feature sequence of length 7. By the definition
of the segment, all feature frames belonging to the same
segment will align to the same image concept. As a result,
if the segmentation is known, the alignment matrix A can be
compressed into a smaller matrix A € {0,1}7v*N with the
property in Eq. (1), which will be referred to as the assignment
matrix. Let the set of all assignment matrices for N segment
be Ay the translation probability of the segmental model can
be expressed as:

Nomax

2. v

N=Np,in SESN

(sly) > p(Als,y)p(x|A;s,y).
AcAy

p(xly) =

(24)

The expression shows that once the segmentation is fixed, the
problem reduces to maximizing the likelihood of the segments
given the image concept.

Suppose there is a subword-level segmentation s* based on
prior knowledge, for instance, the acoustic properties of the
syllable units, the problem reduces to maximizing:

p(x|y) = p(x|y,s”). (25)

Consequently, with a similar Markov assumption as in the
phone-level word discovery, the translation probability can be
broken into probabilities of the subword units:

Ty+1

N
p(xly,s") = m H Z

J=1i(j)=0
p( (.])| (j - 1)7Y) (.’Eéj 5j+1|yi(j)7m(j))7 (26)

can be modelled using an HMM with a
observation  density:  p(ws;.s;, [¥i(5)) =

which
mixture

p(m(i)|yi(j), $)P(s:s,41 [Yi(j), m (7)) The Baum auxiliary
function for the segmental model is then:

Q(67 6) =

N
Z lm[logp(IS 8 +17Z(j)7m(.j)|i(j_1)7yi(j)7@)|xayvé]'
=1
J 27)

The challenge here is that the segments are variable in
length and p(ws;.s;.,|yi(;)) can not be directly modelled
with a fixed dimensional density function. Besides mod-
eling each segment using an HMM [5], one existing ap-
proach [3] is to embed each segment into a fixed-dimensional
space as an embedding vector so the embedding vec-
tor can be modelled with a fixed dimensional density
function. Denote the embedded j-th segment as z; =
Je(xs;_,:s;),80 := 1 and X := [Z1,--- ,Zn], the assumption
amounts {0 P(@ i, Vi) )P(E5 i) 91 7%, p(F5 lyacs)) =
> m=1Cm i) N (Z s m (Yi5)) 2 (i(s)))- A special case
of such embedding assumptions is that most spoken words are
distinguisable by the ear even after they are properly scaled to
the same size. Therefore, the embedding vector can simply be
the resampled version of the segment it represents. While dura-
tion carries information in many languages and the embedded
segment may suffer from loss of high-frequency information
when the downsampling rate is too high, embedding segments
to fixed length greatly reduces the complexity of the model.
This model will be referred to as the static segmental HMM.

2) Static Word-level Segmentation Approach: Suppose s*
is instead a word-level pre-segmentation and the pseudo-word
segments satisfy the following segmental mixture assump-
tion: Given the assignment, each segment depends only on
its aligned image concept, thus p(xsjzsjﬂ,l\xﬂA,&y) =
P(%s, iy -1 1¥ite) = DO 1Yiey)) =, where x~ denotes
the segments other than j. Combined with the embedding
vector approach, a simplified or enriched mixture model can
be used to model the segments. The key difference between
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the word-level segmentation approach to the subword-level
approach is the omission of the transition probabilities for
model simplicity, as the intermediate contextual information
between words is much weaker than those between image
concepts and word units.

3) Dynamic Segmentation Approach: The approaches
above fix the noisy word boundaries through the clustering
process, and their performance is therefore constrained by
the quality of the pre-segmentation. It is more appealing to
jointly refine the segmentation and clusters during training [3].
Suppose, given the segmentation, the utterance can be modeled
by an enriched mixture model, then the Baum auxiliary
function is:

Nmax

= 2. 2

N=Npin seSN

slx,y,©

EAm [logp(x,s,m,A|y7@>|x,y,s,é] 8

One key challenge of the jointly segment-and-cluster approach
is to model the distribution of the segmentation p(s|x,y)
and p(s|y). Similar to the prior probabilities of alignments,
the summation over the priors and posteriors of segmenta-
tion in Eq. (24) and Eq. (28) respectively has (Naz —

T, . S
Ninin) ( N j 1 terms and requires a prohibitive amount

of parameters. Suppose p(s|x,y) and p(s|y) are known, we
can approximate the sums by its unbiased sampled version:

p(xly) ~ p(x|y,s’) (29)
Q(0,0) ~ EAm [logp(i,s”, A, mly,0)x,y,s",0

(30)

=: Q(0,0]s"), (31)

where s’ ~ p(sly),s p(s|x,y). This representation is

unbiased since:
Zp "Y)p(xly,s’) =

E. [Q(6, 6|S")\X v, O]
=> p(s|x,y) > _ p(m, Als,x,y)logp(X,s",m, Aly, )
5 A,m

Eq [p(xly,s’ p(x|y)

:Q(éa @)

Notice that this expressions are the same as those of the
models with fixed segmentation, except the segmentations are
now drawn randomly rather than deterministically.

To model p(s|x,y) and p(s|y), One approach is to use
adaptor grammar [5], [8], which assumes the segmentation
boundary vector b to be a sequence of i.i.d Bernoulli random
variables with parameter ay. oy is assumed to be generated
by a symmetric Dirichlet process to encourage sparsity of
the boundary vector. During inference, the boundary vector
and Bernoulli parameter can be sampled efficiently using
a collapsed Gibbs sampler. Once the boundary vector is
fixed, each segment can be modelled separately. However,
the approach is not scalable to large dataset on the audio
level since it requires intensive amount of Gibbs sampling
at every time step. The second approach is employed by the

Bayesian embedded segmental GMM (BESGMM) system [3]
and assumes each segmentation s; to be uniformly distributed
between [0, s;41]. Under this assumption and the segmental
mixture assumption, s can be sampled backward from the
posterior p(s|x,y):

~ p(sjls—j, X, y)

o< p(8j, 8541, X1: 8541 ly)

(57 ‘Y) (X1:81+1|51v5j+1a)’>
o p(X1.s, [y)P(E;]y) 175,

where the second oc uses the uniform assumption of s;.
p(x1:5,|y) can be computed recursively with dynamic pro-
gramming, and the last o comes from the segmental mixture
assumption. The key motivation of the segmental mixture
assumption is to prevent both under- and over-segmentation:
if instead p(x1.,|y) = Hf”gl p(x¢]y), the probabilities will
tend to decay as the sequence becomes longer; if p(x1.,|y) :=
p(Z;]y), the model will achieve the highest likelihood if
it treats the whole sentence as the segment. Further, the
expression also models the dependence between the adjacent
segments with the term p(xi.s,[y).

Optimizing Eq. (29) with the EM algorithm results in a
formula in terms of the following expected count:

(cj(i,m;s,X,y))
Zz‘T’yzl %:1<Cj(i’,m’;s,x,y)>
(cm(yi)N('i‘j |Mm(yi), Zm (yi)))sj+1_sj

T M (e ()N G i (95), S (1)) 51—
(33)

The model infers the optimal segmentation and alignment
using Viterbi decoding:

(32)

3,17 () = max{p(es, ly)p(F; w) 7+ ), G4
where similar to the sampling step, the p(x1.,, |y;) is evaluated
forward from s; = 1 while the optimization starts from
backward from s;; = T, + 1. This model is based on BES-
GMM [3] with additional image concepts input and referred
later as dynamic segmental model. When the segmentation is
fixed during training, the model is referred as static segmental
GMM. [3] also proposes a simplified version of the BES -
GMM called ES-KMeans, which can be naturally adapted to

the multimodal setting to optimize:

N
SH&H& (85— sj-1)lv;

j=1

— ey (wG)I3. (35)

This simplified model is referred to later as the simplified
dynamic segmental model.

VII. NMA MODELS
Similar to the SMA model, the NMA makes use of several
assumptions:
1) Dominant path assumption: There is a “dominant” align-
ment A* such that p(A*|x) =~ 1;
2) Embedding assumption: The input representation of the
phone z; can be compressed into a lower-dimensional
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embedding hy(z;) =: hy, Vt € {1,--- T, }. Let h =
[hl’ . 7hTm]§
3) There exists some “context” vector c;(h, A*),i =
{1,---,T,} such that y; is conditionally independent
of h given c;.
4) There exists some “state” vector s;(y1.;,—1) such that y;
is independent of y1.;_o given s; and y;_1.
The dominant path assumption is in stark contrast to the
uniform prior assumption of the SMA model and instead
of summing over all possible alignments, only a single soft
alignment is used to compute the probability.
By sequentially applying the assumptions above, Eq. (7) is
then simplified to one term:

Ty Ty
pylx, A) = [ pwilyri-1.x, A*) = [ pwily1:i-1, b, A*)
i=1 i=1
(36)
Ty
= || p(Wilyii-1,¢:) 37
=1
Ty
= || p(Wilyi-1,8i,¢i). (38)

1

.
Il

In the standard attention model [15], the dominant alignment
is learned via a soft alignment:

exp(e(h(xt),y:)/T)
Sy exple(h(xe), y;)/T)

where e(-) can be learned by a feedforward neural network.
Compared to the original attention mechanism, our attention
has two main differences: First, the attention weights are
normalized across concepts for a given acoustic feature frame;
second, the decoder state is not fed into the attention to avoid
dependency on future states when computing the softmax over
all the image concepts. These assumptions are necessary to
represent p(y|x,A) in a problem like ours, with no fixed
sequencing of the concepts in y, and these assumptions may
be ignored if the network learns p(x|y, A) instead. However,
such modeling choice is at odds with the discriminative nature
of the NMA model: the acoustic features can be continuous
and cannot be divided into a finite number of categories, and
thus the output probability cannot be modelled by a softmax
function. The context vectors are then learned by:

A =y =

(39)

(40)

rather than being normalized across feature frames for a given
concept; the assumption (3) of this section can be viewed as
a soft version of the SMA assumption (3) in the previous
section: in the SMA model, concept y; depends only on the
phones that align to it, which is equivalent to the special case
when o, in Eq. (40) is either O or 1. Therefore, the set of
probabilities {p(yi|yi,1,si,1,ci)}ﬁl can be learned using
a recurrent neural net f with state vector s;. The problem
then boils down to learning the functions h, e, f such that the
log-likelihood of the concepts given the phone sequence is
maximized.

VIII. EXPERIMENTS
A. Datasets

Our dataset consists of 7996 images that are present in the
Flickr8k [17] and Flickr30k corpus [38]. We choose to use
Flickr8k primarily because it contains phrases that describe
particular regions of the image, for instance, “a girl in a pink
dress”. The phrase-level segmentation is used as our gold
alignment. We only used images that appeared in the Flickr8k
dataset so that we can compare our results to the speech-to-
image [21] and text-to-image [20] system. In order to make
sure that we used the same dataset as in [20], [21], we divided
the data into training set (6996 images) and test set (the same
1000 images used in [20], [21]). We use Flickr30kEntities [39]
to extract image concepts from the phrase-level descriptions
and merged similar entities using WordNet [40] synsets. By
considering captions in which every concepts appear at least
10 times in the training and test sets, we are able to find
a list of 1547 concepts. Repeated concepts in a sentence
are merged to maintain the many-to-one mapping between
the phone sequence and the image concepts. To generate the
phone sequence for the caption, we used the CMU dictionary
which consists of 39 distinct phone labels and 69 tokens
in total with the stress symbols. Words without an entry in
the dictionary are simply replaced with an UNK symbol. For
audio-level discovery, we used audio from the Flickr-audio
dataset [21], which are spoken captions for Flikcr8k collected
on Amazon Mechanical Turk. We extract the MFCC features
as in [2], [26] with 12 cepstral coefficients, 25 ms window
and 10 ms overlaps, and normalize them across speakers with
cepstral mean and variance normalization (CMVN). Another
acoustic feature we use is the multilingual bottleneck feature
from the BUT project trained on 20 different languages [32].
Utterances longer than 2000 frames are truncated. Using word-
level forced alignment by an ASR system [41], we are able
to convert the phone-level gold alignment to the alignment
of acoustic feature frames. Many of the audio waveforms are
corrupted and did not have successful forced alignments, so
we filter them out from our dataset, and leaving with 6610
images.

B. Evaluation metrics

For the word-discovery task, we evaluate our systems by
comparing the predicted and gold alignments. The alignment
accuracy is defined as the percentage of phones that align to
the correct image concept, which is equal to the complement
of the alignment error rate (AER) metric commonly used
in machine translation systems (see, for example, [36]). In
addition, we use the alignment recall, precision and F-score
to evaluate the quality of the alignment. The concept-specific
alignment recall is defined as the percentage of correctly
aligned phones or audio frames to a given concept over all the
phones or audio frames that should be aligned to the concept;
the concept-specific alignment precision is the percentage of
correctly aligned phones or audio frames to a given concept
over all the predicted aligned phones or audio frames to the
concept. The corpus-level alignment precision and recall are
the average of their concept-specific counterpart across all
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image-caption pairs. The F-score is then the harmonic average
between the alignment recall and the alignment precision. For
visualization purposes, we also computed the concept-specific
alignment F-score over the entire corpus for each concept.
Besides, we also used the grouping, boundary and token/type
metrics used in 2017 ZRSC [7]. Since our dataset is not
balanced (for example, the NULL concepts are much more
common than any other concepts) and the model can achieve
high alignment accuracy by aligning only to the most frequent
concepts, such retrieval-based metrics help us to fairly evaluate
our systems. For the speech-to-image retrieval task, we follow
[20], [21] to use recall@1, 5, 10 to measure the performance of
our system. We assume one-to-one mappings between image
and caption, despite having a large number of image-caption
pairs with similar concepts. To compare the performance, we
use the speech-to-image system by [21] and the text-to-image
system by [20] as baselines.

C. Model parameters

The main parameters of the phone-level SMT are the trans-
lation probabilities and alignment probabilities. We run the
simplified mixture model until convergence and the enriched
and segmental models for 50 iterations. We initialize p(z|y;)
by adding one to the numerator when phone z; and y; co-
occur in a sentence. For the segmental model, we initialize
the alignment transition matrix with a uniform distribution for
each row.

For the NMT system, we used a 512-dimensional embed-
ding layer followed by a single layer bidirectional LSTM with
512 hidden nodes as the encoder and another single layer
LSTM with 512 hidden nodes as decoder.

For the audio-level simplified mixture model, the main
hyperparameter is the number of mixtures per concept M
and the dimension of the acoustic embedding. We found that
M = 5 produces the best results and any value larger than 5
leads to many empty clusters. For the enriched mixture model,
the covariance matrices become singular as the posterior of
any certain mixture becomes too small, so we simply fix
the covariance matrices to be diagonal with diagonal entries
equal to 0.002 for the framewise approach and 2 for the pre-
segmental approach, based on the increase of log-likelihood
during training. Both models are initialized with randomly
generated clusters and assignments. For the segmental model,
we used M = 1 for computational efficiency and initialized
the cluster randomly. For the embedding dimension, we ex-
perimented with 10 and 20 equally spaced frames and found
only marginal improvement when using 20 equally spaced
frames with proper resampling or interpolation, so we follow
[3] to concatenate 10 equally spaced frames. Again following
[26], we pre-segmented the audio to syllable-level using the
unsupervised syllable-segmentation system by [2] and only
consider the boundaries detected by the system during the
segment step. This limits the performance of our system to
the coverage of their system, but significantly reduces the
disk space for storing the embeddings and inference time.
To ensure a better coverage of the true word boundaries,
we combine the landmarks detected by all three syllable
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segmentation algorithms (Oscillator, EnvMin, VSeg) [2] and
remove boundaries that are within 20 ms from each other. This
results in a coverage of about 83.5% of all the word boundaries
to be within 30 ms. Due to run time constraint, we experiment
mainly with the ES-Kmeans based segmental system and
leaves the comparison with BES-GMM for future work. From
our preliminary experiments, the word segmentation results of
the two models are very similar.

D. Results

1) Phone-level discovery: The phone-level word discovery
results are summarized in Table (I). From the retrieval based



IEEE TRANSACTION OF AUDIO, SPEECH AND LANGUAGE PROCESSING

Simplified | Enriched | Segmental Adaptor .
Migture Mixture (EIMM) NMT Grarrrl)ma.r Majority
Accuracy 43.8 40.0 55.4 41.5 - 47.8
Alignment Precision 46.7 414 56.7 33.0 - 26.8
Recall 52.9 46.9 67.4 29.2 - 13.4
F1 49.6 44.0 61.6 31.2 - 17.8
Precision 65.5 54.3 332 38.7 - 0.01
Grouping Recall 76.9 67.2 70.0 54.5 - 1.0
F1 70.7 60.1 45.0 453 - 0.02
Precision 12.6 9.6 35.1 9.38 32.01 1.0
Boundary Recall 62.8 47.2 46.0 15.7 74.0 30.0
F1 21.0 16.0 39.8 11.7 44.7 46.15
Precision 0.508 0.199 5.72 0.153 12.05 0.05
Token Recall 2.24 1.35 11.7 1.09 25.16 0.009
F1 0.993 0.275 7.68 0.268 16.3 0.015
Precision 3.72 1.51 3.37 0.296 29.49 0.05
Type Recall 13.5 11.1 51.7 3.82 4.31 0.009
Fl 5.83 2.66 6.33 0.549 7.53 0.015
Avg. Word Length
(True Avg. = 9.13) 2.58 2.62 6.88 20.7 5.77 -
TABLE T

PHONE-LEVEL WORD DISCOVERY RESULTS INCLUDING THE ALIGNMENT ACCUARCY, ALIGNMENT/GROUPING/BOUNDARY/TOKEN/TYPE RECALL,
PRECISION, F-SCORE (ALL IN %) AND THE AVERAGE WORD LENGTH (IN NUMBER OF PHONES) ARE SHOWN

10 Highest

10 Lowest

Simplified Mixture

ocean, sunglasses, paper, adolescent, flower,
jean, water, people, baseball_glove, water_scooter

instrument, expression, hole, seat, NULL,
lawn, drive, rug, fabric, slope

Segmental (HMM)

sunglasses, motorcyclist, resort_area, adolescent, microphone,
couple, people, cyclist, ocean, girl

NULL, base, seat, headscarf, bride,
reversal, lawn, fabric, log, line

NMT (Normalized Over Time)

man, male_child, goggles, plant, plaything,
grass, hair, guitar, sweatshirt, shirt

fountain, truck, puddle, puppy, adolescent,
court, cat, snowboarder, slide, climber

TABLE IT
10 CONCEPTS WITH THE HIGHEST AND LOWEST ALIGNMENT F1 SCORES FOR DIFFERENT PHONE-LEVEL WORD DISCOVERY MODELS
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Fig. 6. FI1 histograms for audio-level models with bottleneck features. F1
histograms for phone-level models. The horizontal axis is the cutoff values
of concept-specific F-scores for each bar and the vertical axis represents the
number of concepts with alignment F-scores that lie in between the cutoff F-
scores. There are 1547 concepts in total and the more the F-score distribution
leans toward F-score=1, the better the model performs.

scores, we see that segmental model is better at aligning
phone to image concepts as it performs better in both recall
and precision than the simplified model. The enriched model,
however, performs worse than the simplified model potentially
because the image concepts do not appear in approximately
the same order as the corresponding words in the utterances.

Further, we compare our models with the adaptor grammar [8],
which only has access to the ground truth phone labels. We see
that the SMT models perform worse than the adaptor grammar
in the boundary, token and type F1 score, but the segmental
models perform slightly better in the boundary precision score
and much better in the type recall score. This can be explained
by the fact that the phone-level segmental model does not
use word-level contextual information as the adaptor grammar
does, and tends to discover many incorrect sub-strings for each
word type, which lowers its type and token precision scores.
Since the adaptor grammar can be viewed as a more thorough-
going segmental model than the HMM segmental model, this
result confirms again the superiority of the segmental model
over the frame-wise model.

The alignment probability/attention matrices for the four
models are shown in Fig. (7). For the segmental model, the
alignment probabilities are defined as the Viterbi probabili-
ties normalized across concepts at a given time. From the
alignment probability, we notice that the segmental model
has much sparser alignment probabilities and produces much
more continuous pseudo-words that are closer the length of
a real word, suggesting that contextual information between
phones is crucial for discovering word-like units. However, the
segmental model seems to be worse at distinguishing NULL
from actual concepts, making many false positives, indicating
that the NULL concept is statistically distinct from the rest
of the concepts and should be modelled separately. Another
cause of the false discovery stems from the limitation of a
concept-independent jump transition probabilities: it appears
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Fig. 7. Attention/alignment probability matrices annotated with discovered word-like units of various phone-level models for the utterance “A child in a pink
dress is climbing pass the stairs of a entry way”. Leftmost: simplified mixture model; middle left: enriched mixture model; middle right: segmental model;

rightmost: NMT

that the segmental model prefers smaller jumps than larger
ones, causing a exceedingly slow transition from one concept
to another. This is evident from the example attention plot:
almost every transition moves one step at a time. In particular,
we can clearly see that the model stays at the concept “child”
for eight extra phones until the alignment probability drops
gradually. Another observation is that the accuracy of SMT
is generally lower than the retrieval metrics as opposed to
higher in the case of NMT primary because SMT is less
biased towards concepts that appear more frequently while
NMT tends to memorize the prior distribution of the concepts
in the training data.

The histograms of concept-specific F1 scores for the mix-
ture, segmental and NMT models are shown in Fig. (4). The
mixture SMT and HMM SMT both outperforms the the NMT
models with a large gap between their F1 score distributions.
While the mean F1 scores of the mixture and HMM SMT are
centered around 0.6 and 0.7 respectively, the mean NMT score
stays at 0.5. Further, the F1 score of the segmental model for
1200 out of 1547 concepts is higher than 60%, followed by
900 concepts for the mixture model and 200 for the NMT
model. This result suggests that the overall performance of
the segmental model is superior to the other models.

The top 10 easiest and hardest concepts for different models
are shown in Table II. As we can see, both the phone-
level SMT and NMT models are better at discovering human
concepts such as “adolescent” and “people” in the case of SMT
and “man” and “male_child” in the case of NMT. The models
are also able to discover some human-related concepts such

SylSeg | ES-KMeans Dyna?rilrir(ipéic?;r(rilental
Reeall | MFCC [ g5 | 357 356
Precision M];SC 339 41_'0 1(1)2
P MICC gy | 772
TABLE TIT

AUDIO-LEVEL WORD SEGMENTATION BOUNDARY RECALL, PRECISION
AND F-SCORE (ALL IN %)

as “sunglasses” and “goggles”. Shorter, more concrete words
with one or two syllables such as “grass” and “ocean” tend to
be easier to discover than longer, more abstract words such as
“expression” and “instrument”.

Unsurprisingly, the segmental model performs better at
discovering longer words such as “microphone” and “motor-
cyclist” than the mixture model, and the sets of easy and hard
concepts for SMT and NMT models can be quite different.
One example is the concept “adolescent” is among the easiest
concepts for SMT models but one of the hardest concepts
for NMT. Another example is the placeholder NULL concept,
which is among the hardest concepts for SMT to discover but
does not appear in the top 10 hardest concepts of NMT.

2) Audio-level discovery: Table (IV) shows the audio-level
word discovery results. Segmental models generally outper-
form the simplified model approaches and produce words
more realistic lengths. The static segmental models generally
performs better than the dynamic model when using MFCC.
The static segmental GMM performs best when using either
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and is omitted.

.. . . . s . NMA
Simplified | Enriched | Static Segmental | Static Segmental | Simplified Dynamic . .
Migture Mixture GM%VI HM%VI pSegmentyall (Normalized | Majority
ov. Concept)
Accuracy MFCC 32.2 27.1 36.6 31.2 28.0 19.3 551
BN 35.6 36.6 40.8 37.9 29.7 20.3 ’
Recall MFCC 30.4 27.5 36.1 32.7 26.2 25.7 270
BN 36.5 36.4 44.1 39.7 374 27.0 ’
Precision MFCC 29.8 26.9 34.7 30.6 23.9 12.2 (5.4
BN 34.6 343 40.5 36.5 394 13.3 :
F1 MFCC 30.1 27.2 35.4 31.6 25.0 23.1 196
BN 35.5 35.3 42.3 38.0 38.3 17.8 ’
Avg. Word Length | MFCC 3.14 3.26 39.9 40.8 140.1 36.9
(True Avg. = 61.2) BN 6.32 6.31 42.2 39.9 71.8 16.0 -
TABLE

AUDIO-LEVEL WORD DISCOVERY ALIGNMENT ACCUARCY, RECALL, PRECISION, F-SCORE (ALL IN %) AND AVERAGE WORD LENGTH (IN NUMBER OF
ACOUSTIC FRAMES)

MEFCC or BN, suggesting that the dynamic segmentation may
be unnecessary for our dataset since most words have one
or two syllables. This is also consistent with the observation
that the Markov assumption does not boost the performance
of word discovery, suggesting that different syllables in the
speech are weakly correlated. The dynamic segmental model
produces words of the most realistic lengths when using
BN but tends to under-segment and create extremely long
segment when using MFCC. The bottleneck feature performs
significantly better than the MFCC in all models possibly
by incorporating more contextual information. Most models
have lower F1 score than the most closely related phone-level
models, e.g. SylSeg is worse than segmental and K-Means is
worse than the simplified mixture models, possibly because of

the aliasing introduced by the resampled embedding approach,
the speaker variability and other losses of information during
the feature extraction process. Indeed, from Table. (III), feature
embedding seems to subvert the segmentation process since
the feature-free SylSeg model has a higher F1 score than
the feature-dependent ES-KMeans model and multimodal ES-
Kmeans model, while the similar phone-level mixture models
are likely to improve the F-score given a pre-segmentation.

The F1 histograms for audio-level word-discovery results
are shown in Fig. (5)(6). The frame-wise approach has almost
no concepts with Fl-scores higher than 60%. The segmental
approach performs better by having 600 concepts for the
mixture model and 300 concepts for the Markov model with
F-scores over 60%, though accompanying with about 100 con-
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cepts with an F-score of 0. Within the segmental model, GMM
has more concepts with higher F-scores than HMM possibly
possibly because the correlation between segments is too weak
to model meaningfully by the HMM. The large within-token
variabilities of the acoustic units may also exacerbate the issue
by making it hard to cluster units of the same type.

The alignment probability matrices for four audio-level
models are shown in Fig. (8). Different from the phone-level
plots, the plots are not generated by exponentiating the raw
translation probabilities but as a smoothed version with some

temperature 7":
o _exp(logp(i(t)[x,y)/T)
PUORY) = 5 expllog p(iTx, )/T)

The smoothing does not alter the trend of the probabilities but
makes it more visually informative. We found 7" = 1000 to
produce figures with visually salient segmentations. Judging
from the plots, the two static segmental models perform
similarly in true discoveries and the HMM tend to discover
more continuous words, but the HMM has more false positives
and false negatives. Indeed, all except the static segmental
HMM model cluster the first few frames of silence to NULL
symbol. Overall, most models display a high level of false
discoveries, possibly because the statistical properties of NULL
symbol are different from other concepts in that it is more
dependent on the other concepts present in an image. Further,
the dramatic drop in F1 score indicates that the audio-level
models are having troubles extracting the phonetic information
from audio that is necessary to reduce the problem to the
phone-level discovery.

3) Phone-to-concept retrieval: The result for phone-to-
concept retrieval compared with the speech-to-image and text-
to-image systems are shown in Table. (V). The performance of
the simplified SMA retriever is just in between the speech-to-
image system [21] and the text-to-image system by [20]. The
segmental SMA retriever, however, performs better than both
the speech-to-image and text-to-image models by about 300 %,
100 % and 75 % for recall@1, 5, 10 respectively relative to the
text-to-image system. The gain in performance can be partly
explained by the use of ground truth hard labels for the image
concepts and phone labels for the caption used by the system
and demostrates that proper representation of speech is a main
challenge in speech-to-image system. It also demonstrates that
detecting the entities is the key for the image retrieval task on
our dataset. Nevertheless, many of the errors made by our
systems come from either unknown image concepts or image
with very similar top concepts, so there is a substantial room
for improvement on the concept level, especially in making use
of the contextual information between concepts in retrieval.
For example, the concepts “shirt” and “hand” are more likely
when a person is present. Indeed, the SMA-based retriever
does not perform well in our preliminary experiments for the
more challenging task of captioning primarily due to the lack
of modeling of the relations between concepts.

IX. CONCLUSION

This paper describes a unified framework for multimodal
word discovery with spoken captions and image concepts.

Recall@1 | Recall@5 | Recall@10
Simplified SMT 9.42% 21.1% 29.1%
Segmental SMT 46.7% 65.2% 72.2%
Harwath&Glass [21] - - 17.9%
Karpathy [20] 10.3% 31.4% 42.5%
TABLE

COMPARISON OF QUERY-BY-EXAMPLE IMAGE SEARCH WITH
SPOKEN/PHONE SEQUENCE RESULT

Four systems were tested with three different representations
of the spoken caption: the ground truth phonetic labels, MFCC
and MBN. With the amount of data we have, the segmental
SMT approach performs best in the phone-level while the
enriched SMT performs best in the audio-level, according
to our evaluation metrics. We applied our word discovery
system to the task of image retrieval and show that the
segmental SMT-based system achieves 72.2% recall@ 10 score
in the phone-level. However, the drop in performance of all
systems in the audio-level suggests a urgent need for better
unsupervised phone-level and syllable-level representation for
spoken language.
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