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Introduction

The Standard Model (SM) of particle physics is an effective theory valid to some mass

scale A. New physics at the scale A may address important issues like the origin of the

electroweak scale, gy . In the SM, electroweak symmetry breaking arises from a complex

fundamental Higgs scalar. Between pppy and A, an effective field theory (EFT) framework



can be used to describe new physics in a model independent way. In this approach, the
leading terms are given by the SM, and corrections from an underlying theory beyond the
SM are described by higher dimension operators,

=Y co. (1)

The operators O; are SU(3)¢c x SU(2)z x U(1)y invariant and are constructed only from
SM fields. The Wilson coefficients (WCs) C;, that determine the size of the contribution of
operators O;, can be calculated by matching the effective theory with the underlying theory.

Analyses of higher dimension operators [1] have begun anew in the study of the SM as
an effective field theory. Due to the phenomenological success of the SM gauge theory and
the Higgs mechanism, the most studied EFT is the Standard Model Effective Field Theory
(SMEFT) [2—4], which respects the SM gauge symmetry with only SM field content. The
one-loop renormalization group evolution (RGE) of all dimension-six operators in SMEFT
have been calculated in refs. [5-7].

In the SMEFT framework, new physics is considered to be heavy with A > ugw. How-
ever, many experiments point to new physics with a mass scale well below the electroweak
scale, and many experiments to search for new light states are planned. Since these states
do not appear in SMEFT, its Lagrangian must be supplemented by interactions between
these new states and the SM fields. Possible new states are right-handed neutrinos that
are sterile under SM gauge interactions. The masses of the sterile neutrinos can vary over
a large range and can be heavy or light compared to the electroweak scale. Light sterile
neutrinos have been invoked to explain many phenomena; see ref. [8] for a review.

In this paper, we consider the sterile neutrinos to be light so that they appear as explicit
degree of freedoms in the EFT framework. We use the Standard Model Neutrino Effective
Field Theory (SMNEFT) which augments SMEFT with right-handed (RH) neutrinos n [9-
13]. The RGE of some SMNEFT operators have been calculated. The mixing between the
bosonic operators has been calculated in refs. [14, 15], and the one-loop RGE of a subset
of four-fermion operators are given in ref. [16]. In this work, we present the gauge terms
of the one-loop RGE of all dimension-six operators in SMNEFT.

The paper is organized as follows. In section 2, we define SMNEFT and establish
our notation. Our diagrammatic approach to calculate the one-loop anomalous dimension
matrix (ADM) is described in section 3. In section 4, we present the ADM. In section 5, we
study operator mixing using the leading-log approximation. We discuss some phenomeno-
logical implications in section 6, and summarize in section 7. Details of our calculations
are provided in an appendix.

2 SMNEFT

In this section, we present SMNEFT. Neutrinos may be Dirac or Majorana. In the case
of Dirac neutrinos, vg = n, with n and the left-handed neutrino vy, in the same spinor

vp = (vz,n)T, and of the same mass. In the Majorana case, n and vy, are components of
two different spinors, vy = (vr, v§)T, ny = (n€,n)T, and can have different masses. Our



results are valid for both cases because we focus on the gauge sector. Without specifying any
possible Majorana and Dirac mass terms, the dimension-six B and L conserving SMNEFT

Lagrangian is

XS(I?/%NEFT D Zsm + indn + ZCiOi ; (2.1)

where C; are the WCs with the scale of new physics absorbed in them, and the SM La-
grangian is given by

PP P T O P
HD) (D16) + m?g1o — 5 (616)”
+i(CIpC + elpe + qlq + ulpu + dIpd)
—(0Yeep + qVyud + qVade +h.c.). (2.2)

Here, ¢/ = ejk(gbk)*, and the Higgs vacuum expectation value is (¢) = v/v/2 with v =
246 GeV. The covariant derivative and field strength tensors are defined by

, T T,

D, = 0, +igyB, + zggng + 19376’“, (2.3)
B/,LV = auBy - 8VB/J,7 (24)
Wi, = 0,W) —a,W] — gae" K WIWE (2.5)
Gy, = 0,Gy — 0,GY — g3 [ GG, (2.6)

where g1, g2, and g3 are the gauge couplings of U(1)y, SU(2)z, and SU(3)¢, respectively,
and y is the hypercharge. ¢//% and fo¢ are the SU(2); and SU(3)¢ structure constants,
respectively.

The 16 baryon and lepton number conserving (AB = AL =0 ) operators involving the
field n in SMNEFT are shown in table 1 [12] in the WCxf convention [17].

3 Formalism

The anomalous dimensions of an operator are given by the infinite pieces, i.e., the coeffi-
cients of the 1/¢ terms of the diagrams. In this section, we define our procedure to calculate
the ADM, and relegate the details of our calculations to appendix A. To compute the ADM
we use the master formulae presented in ref. [18]. We compute one-loop contributions to
the ADM due to SM gauge couplings. The four-fermion operators (/%) in table 1 can be
divided into four categories: (RR)(RR), (LL)(RR), (LR)(RL), and (LR)(LR) on the basis
of the chiralities of the fields. The remaining operators are of the form 2¢3, ¥2¢>D and
2 X ¢. We focus on the 1%-1p* and ¢?* - 12¢>D operator mixing since the mixing between
V203, ¥2¢2D and 92X ¢ has been computed in the ref. [15] using the background field
method. We have checked that the resulting 5 x 5 matrix is consistent with the result for
the corresponding SMEFT operators [7] which have a similar ADM structure.



(RR)(RR) (LL)(RR) (LR)(RL) and (LR)(LR)
Ona | (Rpvune)(dsy"ds) | Ogn | (@p7uar) (s ne) | Opnee (Bne)en(Lrey)
Onu | (pyuns) (@sy™us) | O | (Gpyule)(sy™ng) | Oy | (Bne)ejn(ghdy)
One | (mpyumn)(En*er) Oona | (Bhoam)ejn(@tor” dy)
Onn | (Mpyuns)(nsy#ne) Otnug (En,)(tisq])
Ohnedu (p“m@r)( sYHut)

(Ualo V?¢?D VX ¢
Ous | 6'0)0med) | Opu | i@ Dud) Ay ny) | Ouw | (o n,)r oW,

Opne | 161 Due)(pre,) | Onp (epa“"nrwBW

Table 1. The 16 SMNEFT operators involving RH neutrinos n in the Warsaw basis convention
which conserve baryon and lepton number (AB = AL = 0). The flavor indices ‘prst‘ on the
operators are suppressed for simplicity. The fundamental SU(2) [, indices are denoted by 4, j, and T
is the adjoint index.

For the 1% operators the bare and renormalized operators are related by

1

N _1 LN N

0 =z,7, 22 Z 2 Z(0) = z(0), (3.1)
where the superscript (0) labels the bare matrix elements. Here, Z and Z,, are the renor-
malization constants for the operator O and the fields 1, respectively. In the MS scheme
at one-loop level, the renormalization constants take the form,

Z =14+ —"—=a} 3.2

( m)q/) + An anp ) ( )
am 1

(Zm)ij = 5” + 4:*@7}, (3.3)
. o 1

(Zm)ij = 0ij + ﬁgcg, (3.4)

with ¢ = {q,u,d,¢,e} and Z, = 1. The coupling constants are defined by a,, = g2, /47
with m = 1, 2, 3 for U(1)y, SU(2); and SU(3)¢, respectively. The coefficients of the

UV divergent parts of the diagrams (an/(4me)), ai, b} and ]}, are independent of the

Zj ?
gauge couplings. Note that ¢ can be related to ay; and by via eq. (3.1). The anomalous

dimension matrices are defined by the RG equations,
; d
Ci(p) = 1672#@01'(#) = (7¢)4;Ci (1), (3.5)

where y¢ = «T with 7 given by the matrix 7 as

Y :2_1 dZ ’
1672 dln p

and which can be directly expressed in terms of ay, and by

1
Yij = _297271 ( Z 5@5‘% + b?}) . (3.7)
s

=11,
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Figure 1. Current-current topologies with four-fermion insertions. Here X, represents the gauge
bosons B,,, W, and G,. The fermion fields ¢, u,d, ¢,e and n are represented by ;.
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Figure 2. Penguin topologies with four-fermion (d) and boson (e) insertions.

Here, the sum is over external fields ¥ to ¥4 in a given operator, and summation over m
is implicit. Therefore, in order to compute the ADM for a set of operators, we need to
calculate the coefficients a; and bj} from the field strength renormalization and operator
renormalization, respectively.

For the mixing between ¢*-¢* and 1*-1)2¢? D, the current-current (figure 1) and pen-
guin (figure 2) topologies mediated by the gauge bosons X,, = B,, W, G, or the scalar,
have to be calculated. These diagrams can be computed by easily generalizing the master
formulae of ref. [18] to SMNEFT; see eqgs. (A.1)—(A.7).

In appendix A, we present explicit calculations of the ADMs for O, —Opnd, Opn — Opa,
Ohnedu — Onedu and Opppe — Opppe operator mixing. The same method is applicable to the
other operators. It is worth noting that for most of the cases the structure of the ADMs
of the SMNEFT operators are similar to those of SMEFT operators [7]. Therefore, our
SMNEFT results also serve as an important cross-check for the corresponding gauge terms
appearing in the SMEFT ADMs.

4 Anomalous dimensions

We now present terms for the one-loop ADM that depend on the gauge couplings oy, as and
ag for all 16 SMNEFT operators. The general formula for the ADM is given by eq. (3.7)
and details of the calculations of the Feynman diagrams to extract a,; and b can be found
in appendix A. The ADM for bosonic SMNEFT operators is given in ref. [15]. The ADM
of most SMNEFT operators can be obtained from the ADM of the SMEFT operators [7]
with a similar structure. For example, the ADM for the SMNEFT operators Oppq, Oé}l)qd



and Oéi)qd, can be obtained by replacing e with n, and switching v and d in the SMEFT

operators Opeqq, Oéi()w and Oéz);u-

No such comparison is possible for O,,cq,,, which has a structure not present in SMEFT.

We use this procedure as a cross-check when available.

4.1 o

The ADM for four-fermion operators are provided below.

4.1.1 (RR)(RR)

; 4 4 4 8 8
Cna = <Ncy?lc nd + 7Ncydyuc nu T *ydyec ne + 3 cydch gn T *ydyéc In

prst 3 prww 3 prww 3 prww 3 wwpr 3 wwpr
4 2
Jrgydyhcdm g1 5st ; (41)
pr
. 4 4 4 8 8
Cou = <Ncyuydc nd + *Ncyzc nu + sYuYeC ne + *Ncyuch gn T =Yu¥eC tn
prst 3 prww 3 prww 3 prww 3 wwpr 3 wwpr
4 2
+§yuyhc¢n 91 st 5 (4.2)
pr
. 4 4 4 8 8
Cne = (Ncyeydc nd + 5NYeyul nu + *ygc ne +3 cyech gn + =YeyeC in
prst 3 pruww 3 prww 3 prww 3 wwpr 3 wwpr
4 2
+§yeyhc¢n 91 Ost » (43)
pr
Cocan = ((ya = Yu)* + Ye(Ye + 8Yu = 20a))91Cred. (4.4)
prs prs
Con =0, (4.5)

prst

4.1.2 (LL)(RR)

. 4 4 4 8 8
an = (Ncyqydc nd + chyqyuC nu + *yqyec ne + chygc o T quyéc n

prst 3 stww stww 3 stww wwst wwst
4 2
+§ythc¢>n g1 5p7’ 5 (46)
st
. 4 4 4 8 8
Cwm = (Ncyfydc nd + s NeyeyulC nu + zY0YeC ne + cyéch gn T —y%C in
prst 3 stww 3 stww 3 stww 3 wwst 3 wwst
4 2
+§y€yhc¢n 91 6pr . (47)
st

4.1.3 (LR)(RL) and (LR)(LR)

. 3
Conte = ((yg — 8yeyr + 6yl2)g% - 29%) Conte — (4y8(ye + y@)g% - 39§)C£nze ) (48)

prst prst srpt
5(1 1
Conra = (W3 — 2yalye + 4yq) + (ye + g)2) g — 893)Cimry
prst prst
—24 2 +18¢3)C) 4.9
+(—24ye(ya + y¢) 97 + 1893)Crpya » (4.9)

prst



5 (3 1 3 1
énéd = ( — —ye(ya + yg)g; + g%) Cén)qd

prst 2 8 prst
+ ((yfl — 6yaye + Y7 + 6yeyq + v3)9t — 395 + 2932) o (4.10)
prat
Cénug = (((ye + yu)? + vq(yq — 2y¢ — 8yu)) g7 — 89%)%“? : (4.11)
prs prs
4.2 Y23
Cnp = — <9y?gf + 2479§>Cn¢ ~ 6(4yhyegt — yn9192)Cn + 3(4ynyegige — 392)Carv - (4.12)
pr pr - g
4.3 YP2¢p?D
C?: = (gyicif + chydthp%zw + chyuthp% + gyeyhcpgfw + % cythCw%
+§ywhcw€f;r)g% ; (4.13)
Cone = (—3YZCone )7 - (4.14)
pr pr
4.4 Y?*Xo
Cnplf/ = ((3Cp2 — bo2)g3 — 3ye?9%)cnpvy + 32/12919207;? : (4.15)
C};f? = (—3Crag5 + (3y; — bo,l)gf)cgg + 12(?F,2yzglgzcnply, (4.16)
where the quadratic Casimir Cpy = %. bo1 = —% and bp2 = % are the first coefficients

in the g; and go B—functions, respectively.

5 Operator mixing

We study operator mixing by solving the RG equations presented above in the leading-log
approximation. The solution to these equations for running between scales A and p is

Ciln) = (@-j + 0%, K) Ci(A). (5.1)

1672
Depending upon the mixing structure the operators are divided into five subsets form-
ing 6 x 6, 3 x3,3x3,2x2, and 2 x 2 ADMs. Defining dC;(u) = C;(u) — Ci(A), the
leading-log solution for the first group reads

oC nd C nd
prst prww
4 8 4 4 4 2
oC nu §855t _16§ 6515 9 g st _8§ 5st §§st _4§ 537& C nu
st TWW
5CP _§6st jést _g(sst §5st _gést §6st Cp
ne 4 8 4 4 4 2 ne
prst st In M §5st *gést §5st *gfsst gést *gést prww (5 2)
— A A 2 4 2 2 2 1 .
oC an 4 A _§5st §5st _gést §5st _gést gést ¢ qan
stpr 2 4 2 2 2 1 wwpr
26y —46y 264 —204 264 —3i6
6C tn 3 ;t :)Zl st 3Ust 32 st 3 ;t 31 st C tn
stpr —= = — 2 = —= = wwpr
3 3 3 3 3
P (w) /()



Summation over the repeated w index is implicit. Next, we have the 3 x 3 structure,

oC C
i , ~5(g} +3g3) —3g2(g? +303) 3q1(s?+ 3\ [ W
_ K 1 3
ol =gy 0 _ﬁ(9g§ +1192) . 9:% Crpy
0CnB 0 _79592 1(779% - 93) CnB
prl () /(A
(5.3)
The operators ngzzd and ct?f;?]d mix according to
56(1) C(l)
fngd a [ L =2 as [0 18 as [—80 fnqd
B =i (e )t i &l
1 _10 3 8
5C€nqd A [ Ar 24 9 Am 8 -3 Am 0 3 Cﬁnqd
prst (u) prst (A)
(5.4)
The operator Cppp. mix with different flavors:
oC C
Wi _ontas, p(=5 =3 [T (5.5)
0Conte 4m A\ -3 _% Cente
srpt (“) sTpt (A)
The remaining operators do not mix:
5Cnedu Cnedu
prst _4 0 prst
5Cy — A _2 @3 _ Ce
e I el R = B 1 el B
(5C¢ne - 0 C¢n€
Prs ()

(A

To study the running numerically, we set {prst} = {1111} for illustration. We list the
16 x 16 ADM in the basis

5 = {Cnd7 Cnua C’I’L67 an7 Cﬂna C¢n7 Cnd)v CnWa CTLB)

ngzm Cég?ld’ Cnedua Cﬁnﬁea Cﬁnuqa C(bnea Cnn} . (57)

The gauge couplings at 1 TeV are set to g1 = 0.36, go = 0.64, g3 = 1.1 [19]. The 16 WCs
at Mz and at A = 1TeV are related by

—-0.87 1.7 —0.87 0.87 —0.87 0.43
1.7 =35 17 -—-17 1.7 -0.87
—-26 52 —-26 26 -26 1.3
044 —-0.87 044 —-0.44 0.44 —-0.22
-13 26 -13 13 -13 0.65
1.3 -26 39 -13 13 -0.65

46 39 —8.8

6C(Mz) _ 071 52 C(A)
10-3 0 16 —0.99 ’

150 —110

—2.2 —29

7.9
—0.43
150
5.9

(5.8)

The running effects in the 6 x 6 and 3 x 3 blocks are small because only electroweak
gauge couplings contribute. The mixing in the 2 x 2 block is large as it is governed by QCD.



6 Phenomenology

We briefly comment on some phenomenological consequences of our results; for earlier work
see refs. [20-25]. Semileptonic decays of the b quark are topical given that both charged
current and neutral current decay measurements are hinting at new physics. SMNEFT
operators lead to the charged current decay b — c¢fn, which contributes at the hadronic level
to B — D™ 7. They also generate the neutral current decay b — sin which contributes
at the hadronic level to B — K®) + invisible decays, which is interpreted as B — K )y
in the SM. In the lepton sector, of interest are the FCNC decays 7 — u + invisible and
@ — e + invisible. To make contact with low-energy phenomenology, we first run the RG
equations down to the weak scale and then match to the low-energy effective field theory
extended with right-handed neutrinos n (LNEFT). Depending on the process, further RG
running must be performed from the electroweak scale to the appropriate low energy scale
such as the my scale for B meson decay and the m, scale for 7 decay. Note that the
sterile neutrino can mix with the active neutrinos, which in itself produces interesting
phenomenology, but to keep our discussion simple we neglect this mixing. We select the
following four types of process and list the SMNEFT operators relevant to them:

e B— D7 Onedu, Otnug Oé?qd’ and Og)t)qd

e B— KWup & K — v Onds Ogn, ng)qd’ and Og’%d
o t = cvv & ¢ = uwwv: Opy,y Ogn, and Oppyg

o 7= pvv & = evv: Ope, Oy, and Oppye

The FCNC operators, Opd, Onu, One, Ogn and Oy, do not run when only gauge interactions
are considered. So we do not study these operators and focus on the five operators, O,equ,
Otnugs Oé'}z)qd? (’)gz]d and Oppre. Interestingly, Oppuyg, Oé}l)qd and C’)gﬁ]d can contribute to
both the charged current and neutral current decays, and to coherent elastic neutrino-
nucleus scattering [16]. For certain flavor combinations, Oy, can produce both 7 — p
and p — e decays.

Before studying the low-energy phenomenology, we first run the operators down from
the new physics scale A to the weak scale ugw. By using the leading-log approximation
in eq. (5.1), we relate the values of the WCs at My to their values at 1 TeV:

Cned;u, Cned;u
prs prs
Cﬂnuq 100 101 8 8 CZnuq
prst . prst
1 = 1 , 6.1
Céni,d 0 0 1.1 —0.11 oén;d (6.1)
prst -3 prst
(3) 0 0 —2.2x10 0.97 (3)
Cﬁnqd Cénqd
prst (MZ) prst (1 TeV)
Cente B 10 —1.3x 1072\ [Cinte (6.2)
Conte - \—1.3x1072 1.0 Conte ' '
srpt (MZ) srpt (1 TeV)



To study the phenomenology at energies below the electroweak scale one can no longer
use SMNEFT because of electroweak symmetry breaking. Instead, LNEFT, which respects
the SU(3)~ x U(1)g symmetry must be employed to study the processes listed above. We
introduce the relevant LNEFT operators and match them with the SMNEFT operators at
the weak scale. The SMNEFT operators can generate both neutral and charged current
processes after electroweak symmetry breaking. The induced LNEFT operators in the
convention of ref. [13] are displayed in table 2 and their matching relations at tree level are

V,RR _ S,RL _ SRR (1) Vss

Cnedu = Credu 5 Cenud - CZ”“‘I ’ Cenud — T “Yinqd Ve,
prst prst prst prst prst prot st
TRR _ _ ~(3) Vs SRR _

Cenud — T “ingd V. ) Cenye - _CZnZea (63)
prst prét st prst prst
S,RL _ * S,RR _ ~(1) T,RR _ ~(3) S,RR _

CVTLUU - CZ”“‘I‘/US ’ C1Vndd - Cﬁnqd ’ Cundd - Cﬁnqd ’ CVnee - Cfnée :
prst prsé prst prst prst prst prst prst

(6.4)

where we chose a flavor basis in which the left-handed down-type quarks and charged
leptons are aligned. The flavor basis for up-type quarks in terms of the mass basis is given
by Viur, where V is the SM CKM matrix. The neutrino fields are in the flavor basis
for convenience. In the next subsections, we study the low-energy phenomenology of the
listed processes.

6.1 B — DWrp

The CC LNEFT operators induced by the SMNEFT operators

1 3 . .
Onedwo@numoénz;d and Oén)qd can affect this process; see table 2. Here, « is the fla-
@332 3023 3423 3a23

vor index of the right-handed neutrino n. Accounting for QED and QCD running below
the weak scale, the one-loop RGE for the four LNEFT operators is given by

~V,RR V,RR
Cnedu Cnedu

a332 @332

CrSRL —400 O 00 0O OSRL

Gud |, 040 0 Lzl 00 Grud (6.5)
¢S AR 0048 |"Hloo —so|||csar| '
Sazs 00 % _%0 00 O % Gas

~T,RR CT,RR

enud enud

3a23 (/") 3a23 (;U')

where e is the QED coupling. Using eq. (5.1), we relate the four LNEFT operators at the
my, and My scales:

V.RR V,RR

nedu nedu

@332 @332

S,RL 1.0 0 0 0 S,RL
Cenud 0 1.2 0 0 Cenud

3a23 — . 3a23 (66)
SRR 0 0 1.2 —15x 1072 | | oSER

3023 0 0 —32x107% 093 3023

T,RR T,RR
Cenud Cenud

3023 / (my) 3a23 / (My)

~10 -



SMNEFT NC LNEFT CC LNEFT

Onedu - O:L/éljf = (’FLRp’yNeRr)(diRs’yuuRt)

prst prst
S,RL _ (- _ S,RL _ /- _

Otnug Opnan = (VLpnpr ) (URsuLt) OZvud = (€Lpnrr)(Ursdrt)
prst prst prst

O 0ot = (Prpnge)(drsdry) 05 = (eLpnpr)(tipsdry)
prst prst prst
3 — 7 _ _

Oy | ONEE = (0" np) (dLsouwdre) | OLAT = (E1p0" o) (140w dry)
prst prst prat

Otnte OSEE = (Drpnre)(ELsert) OZRE — (erpnr,)(PLsent)
prst prst prst

Table 2. Operator structure matching between SMNEFT and LNEFT.

T,RR
enud

The mixing between Ofﬁlsz and O
corresponding mixing of the SMNEFT operators is relatively strong as it comes from elec-

is small as it is induced by QED. However, the

troweak effects.

6.2 B — K®Wui & K — v

B — K® 4+ invisible decay, which would be interpreted as B — K®vw in the SM, is
produced by OfﬁdR and Ozﬂ;ﬁg. The flavor structures are {prst} = {a/323}. The process
K — 7vv can also be generated with the flavor structures, {prst} = {a/12}. The ADM

S,RR T,RR .
for O, and O, =" is

vnd
Cf%}‘;; 20 80 Cf’égg
ChhR [ ( 0 3) ( 0 3)] Comed
«B28 / (n) «B28 /()
The WCs at my and My are related by
Coreiat Coreiat
B2 B (1.2 0 > 25 (6.8)
T,RR o T,RR ) :
Cundd 0 0.92 Cl/ndd
afB23 (mb) afB23 (MZ)

While there is no mixing between the NC LNEFT operators, their corresponding SMNEFT
operators can mix above the weak scale. For K — mwvv one has to run down to a scale

appropriate for kaon decays.

6.3 t— cvv & ¢ — uvv

rnuu

with {prst} = {a323}. The RG equation for O3;FL below the weak scale is

rnuu

The NC LNEFT operator O5:EL induced by Opnug can generate the rare decay t — cvv

esit = (= 5) + s esit. (6:9)

and
Coni (= mp) = 1.2 Col (1 = M) . (6.10)

rnuu
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6.4 T — pvv & u— evv

The decays 7 — p + invisible and y — e + invisible are generated by O52F and OEE,

Note that the flavor is mixed for Oppe. The flavor combination {prst} = {1132} can

generate both 7 — p and y — e decays. The relevant operators are OS:EE QSRR S ER

vnee enve rvnee
1132 1132 3112
and Ofﬁljf. The running at one-loop order is given by
3112
~S,RR S.RR
Cl/nee C ve
1132 1132
~“S,RR — S,RR
C@TLV@ 6 4 CEVVE
3112 . 62 0 2 3112 (6 11)
SRR - _ S,RR ) ’
Cem/e 6 4 Cel/lle
1132 0 2 1132
7S, RR S,RR
Cl/nee C rve
3112 (H) 3112 (/"’)
The WCs at m, and My are related by
S,RR
C5 o
1132 1132
S.RR 1.0 9.9 x 1073 SRR
Ceﬁue enve
3112 — 0 ]-O 3112 (6 12)
S,RR 1.0 —9.9x 1073 | | oS.RR ' :
Ceﬁue enve
1132 0 1.0 1132
S,RR
Chrice Conelt
3112 (m7) 3112 (Mz)

The small mixing between these operators is a consequence of QED. For muon decay, one
needs to run down to the muon mass.

6.5 Electroweak precision observables

The operators Oy, and Oy, give rise to RH Z-couplings to n and RH W couplings to
n and leptons. The RH Z couplings to n can be parameterized in terms of the Wilson
coefficient Cy,, as

6Lz = =20 Conlyr (yyuns) Zp (6.13)

where g% = g% + g3. Therefore, Cy, contributes to the Z-width via I'(Z — nn). Similary,
the RH W couplings can be parameterized in terms of Cg,. as

ILw = —%UQ[C(ME]W (pyter) W+ hc.. (6.14)
Note that such leptonic RH W couplings are absent in SMEFT because the RH neutrino
field is absent. The modified Z and W couplings affect electroweak precision observ-
ables. Interestingly, while Oy, does not mix with the other operators as can be seen
from eq. (4.14), Oyy, has mixing with other operators; see eq. (4.13). Hence, electroweak
precision observables can place indirect constraints on the O,4, Onu, One, Ogn and Opy,
operators that mix with Og,, by a global fit.
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7 Summary

We presented the gauge terms of the one-loop anomalous dimension matrix for the
dimension-six operators of SMNEFT; see egs. (5.2) to (5.6). We found that renormal-
ization group evolution introduces interesting correlations among observables in different
sectors. We discussed a few phenomenological implications of our results. To make contact
with low energy observables we also included the matching of SMNEFT to LNEFT at the
weak scale and RGE below the weak scale. However, to be confident that cancellations of
terms between independent operators are absent, the full one-loop RGE must be calculated.
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A Derivation of anomalous dimensions

A.1 Master formulae for the ADM

In this appendix, we collect the master formulae [18] for computing the ADM in the context
of low energy effective field theory due to one-loop QCD corrections and generalize them
to the electroweak interactions and use them for deriving ADMs in SMNEFT. Consider
an insertion of a four-fermion ¢* operator (&f’i(f/l)aﬁ?ijfldjg’j) ® ( g’k(%)y&kllﬂﬂbi’l) into
the diagrams in figure 1 (current-current topology) and 2(d) (penguin topology). Here,
Vi @ Va represent the SU(3)¢ and SU(2). structure of the operator, and the color and
isospin indices are denoted by Greek and Latin letters. For the four-fermion operators in
table 1, V; @ V4 are 00, 0ij, 0apdijs Ejks OapEjk, €tc., and I'1 o are Dirac matrices.

The UV divergent parts of the current-current diagrams in figure 1 mediated by the
gauge boson X, = (B,, W,,G}) depend on «,, and are given by

oy 1
Dy = DY + DY = 7= (D77 l17P 7 © T 4+ COT1 @ 77,7, (AD)
am 1
Dy = D,()l) + Dz(f) =~ I (C,Sl)I‘yypfyM ® DoyPy* + CZSQ)W%D ® ’y“’y”l“g) , (A.2)
a1
D, =DV +DP) = AT 4e (Cél)Fwwu ® Y9 Te + C£2)'Yu'7prl ® FQ’YP’Y!L) - (A3)

. . CL . 1
In dimensional regularization, we use the convention d = 4 — 2¢. Here, ’D((z 2 .

(2)

the symmetric counterparts of the diagrams D, . shown in figure 1. The two terms in

represent

egs. (A.1)—(A.3) corespond to these two kinds of diagrams. The coefficients are given by

CH = 2Vt @V,  CP =V @ JEVhJE, (A4)
¢ =ik e, o =Jshe sk, (A.5)
¢ =iz @ J=Vs,  CW = JEV; @ VhJ (A.6)
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where JZ (m = 1,2,3) are the SU(3)¢, SU(2)r, and U(1)y generators. The sum over the
index x is implied.

For the penguin insertion in figure 2(d), the UV divergent part, if we close Vil'; part
of the inserted operator, is given by

am 1 [1qg*qY g A\
Dyg=Cq—— |= “— | Tr(T r A7
a=Cay 1o {6 2 12] (17 w) T2 @ 77, (A7)
with the coefficient Cq = Tr(V1.J% )V ® J%. Note that, depending upon the structure of the
operator given by the matrix (‘71) and the type of gauge boson mediated in the penguin

diagram figure 2(d), the trace can be over the SU(3)¢ or SU(2)y indices.

A.2 Field strength renormalization

The field strength renormalization constants are defined in eq. (3.2). At one-loop, these
are given by the coefficients

4
ag%d = —g 5 a?’e = 0, (AS)
3
G;Zl = _Z y aidﬁ = O, (Ag)
allp = —yi ; al?? =0, (A.10)

where yy, is the hypercharge of the fields ¢ = {q,u,d, ¢, e}.

A.3 Operator renormalization

For illustration, we present an explicit computation of the renormalization constants for

Ond, Onedu, Oenee and Og,. For the other operators, a similar procedure can be followed.

Here we present «, and in section 4 we present y¢ = 7.

A.3.1 0,4-O,q mixing

To extract the divergent pieces of the diagrams we use the master formulae of appendix A.1.

For the insertion of 0,4 = (npyunr)(dsy*d:) to generate the same, we have

djl =Ny, 1/)2 =Ny, ¢3 = ds; ¢4 = dt, (All)
‘71 & VQ :504,8, I'n®y Z’)/#PR &® ’)/MPR . (A.12)

In this case, DgQ), i.e. the first topology in figure 1 with X,, = G, or B, connected be-
tween two d-quark legs is generated. Using eq. (A.1), the divergent parts of these two
contributions are given by

Ozlll

DP[B] = 515(43/3)(%133@7“133), (A.13)
@g — 231116 u
DGl = o3 OuPr®9"PR). (A.14)
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A.3.2 0,4-0p, mixing

Next, we consider the penguin insertion which leads to O,,4-O,, operator mixing through
Dy[B]. The penguin insertion of Oy, leads to operator O,  for

Y1 =ny, g =Ny, Y3 =ds, Py = dy, (A.15)
Vi® Vo =0ap, Iy @0y =~,Pr®""Pg. (A.16)

Now, using the eq. (A.7), we obtain

ay; 12
Dd[B] = _ﬁggydyuNc(’V,uPR ® 'YMPR) . (A17)

A.3.3 0y,4-Oy, mixing

As an example of fermionic and bosonic oprator mixing, we present the mixing between
Opna and Oy, which is given by figure 2(e). Its divergent part reads

04112

De[B] = =~ 3¥ayn(uPr © 7" Pr) . (A.18)

Combining all these contributions yields the renormalization constants,

4

2 2 3
blnd,nd = Y491 > bnd,nd = 5932,, (A.19)
prst prst prst prst
1 2 2 1 2 2
b ,nd — _gydyuglésth; b¢n,nd = _gydyhgldstv (Azo)
prww prst pr prst

and subsequently combining these constants with the field renormalizations (A.8), the
elements of the ADM are obtained using eq. (3.7):

4 4
()t nt =<2+ =0, (e =-2( 5 +3)E =0, (a2)
prst prst prst prst 3 3
2 2 2 2
(’71) nu ,nd — 2| — gydyuést Ncgl7 (’Yl)(ﬁ)n, nd — 2| — gydyh(sst 91 (A22)
prww prst pr prst

where (71);; = —2¢% (Zzb:wl,...w %a}ﬁij + b}j), and similarly for vo and ~s.

A.3.4 Oy,-0Opg mixing

Dy which involves a penguin insertion of 0,4 can be computed using eq. (A.7):

(65} 1 2
DyBl = ———(v,P DFPp) = N,. A.23
a[B] 47r5(7“ R® R)3ydyh c ( )
The renormalization constant and anomalous dimension are then
2

Dnd o = — 5 YaUnNegi0st (A.24)

prst pr

4 2

(1) nd ,on = gydthc.%&st- (A.25)

prst pr

Note that in this case there are no contributions from wavefunction renormalization.
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A.3.5 Opnedu-Onedy mixing

For the insertion of O,eqy, = (ﬁp’yuer)(czsfy“ut), we have

QIZ)]- = np’ sz)2 = €r, w?) - ds 5 ¢4 = Uyt , (A26)
‘71 & V2 =008, I'eol'y=v,PrR@Y'Pg. (A.27)

In this case, D((f), DZSQ) and D§2) mediated by the gauge boson B, and D((f) mediated by
G, are generated. We find

04111

DP[B] = 7~ (4yays) (1 Pr ©7"Pr) (A.28)
a;ll
Dy [B] = ~ 1252 (160e) (P © 7 Pr) (A.29)
PA(B —0‘11 4 Pr®+"P, A.30
1 1 16
PG = 0‘3 Pr@~"P, A31
Therefore, the divergent parts are
bl — —4 20 _4 A.32
nedu,nedu (ydyu YeYu + ydye)gl ) nedu,nedu 37 ( . )
prst  prst prst prst
and using eqs. (A.8) and (3.7), the elements of the ADM are
2
(VI)nedu,nedu = - 2( - & T yi + YaYu — 4YeYu + yd?/e) g% s
prst prst 2 2 2
4 4
(’73)nedu,nedu =-2 —-+<-]=0. (A.33)
prst prst 3 3

A.3.6 Ognge—(')[nge mixing

The operator Oppe = (Z%nr)ejk(@;et) mixes with itself through its insertion into the dia-
grams D [B], DI¥(B], D) [B] and D [W]. We have

w1:£%7 ¢2:n7~, w3:€’;7 w4:€t’ (A34)
‘71®V2:5jka Inely=Pr® Pgr. (A.35)

The contributions to the divergent parts are

DP[B] = 212 ((Pr) ® 7075(PrI*1°) e (A.36)
DP1B] = ~ 5122 (a1p(Pr) 4% (Pr)) i (4.37)
DOB] = S22 (va13(Pr) © (PR e (A39)
DY [W] = ZQ ii ('Va'Yﬁ(PR) ®v*yP (PR)> %sjk. (A.39)

After simplification using the Fierz identity,

(@;UWPRW)%(ZSUWPRet) = —40¢ne + 80¢nie (A.40)

prst srpt
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we find the renormalization constants to be

1 2\ 2 1 2 2
bonte onte = (4YeYe — 297)91 » bonte inte = (297 + 2YeYe) 91 5 (A.41)
prst prst srpt prst
3 3
2 2 2 2
bZnZe,ZnZe = 592 ) blnée,fnée = *592' (A42)
prst prst srpt prst

The elements of the ADM are

2
Y 3 3
(V1) ente tnee = — 2( —3y; — =+ 4y£ye>9% s (72)ente e = — 2( - —+ )9% , (A43)
prst prst 2 prst prst 4 2
3
(’Yl)énfe,@n@e = - 2(21/% + 2y€ye)g% ) (VQ)EnKE,KnEe = -2 ( - 2)9% . (A44)
srpt prst srpt prst
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