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Synthetic chemistry has greatly enabled discovery and inno-
vation in pharmaceutical, materials and other industries1,2. 
However, despite substantial development in the past century, 

modern synthetic chemistry is still not perfect or mature enough. 
For example, the lack of robust and straightforward synthetic meth-
ods has limited the thorough sampling of the chemical space in drug 
discovery efforts2,3. A strong bias towards linear and disc-shaped 
molecules has been observed in drug molecules. By contrast, spher-
ical molecules have been much less exploited due to the lack of effi-
cient access (Fig. 1a)3.

The properties of a molecule can be influenced by its shape to 
some degree. Thus, enhancing the ability of synthetic chemistry 
to access the less explored spherical chemical space would have a 
strong impact on decoding the full potential of such a large fam-
ily of molecules. Tetraarylmethanes represent such a unique family 
of spherical molecules. Their unusual geometry bestows them with 
special properties, allowing applications in different areas, such as 
optoelectronic devices, functional materials, drug delivery and pro-
tein translocation detection4–12. Consequently, substantial efforts 
have been devoted to their synthesis, dating back to the 1930s (refs. 
13–19). However, the general synthesis of these molecules remains 
elusive today20–24. For instance, chiral tetraarylmethanes (CTAMs), 
which bear four different aryl groups with defined stereochemistry 
(Fig. 1b), remain a mystery due to the lack of efficient asymmetric 
synthesis.

The challenge in asymmetric synthesis of CTAMs lies in not only 
the high barrier in making the extremely congested C‒C bond con-
necting the central carbon and the aryl rings by conventional strate-
gies, but also the difficult stereodifferentiation between the existing 
and likely similar aryl rings when attaching a new aryl ring to the 
central carbon. Both are formidable tasks in organic synthesis, par-
ticularly in an acyclic intermolecular context25,26. Consequently, 
there has been no direct strategy to construct the central C‒C bond 

in CTAMs with concomitant establishment of the quaternary ste-
reogenic centre27.

Herein we describe a catalytic asymmetric synthesis of tetraaryl-
methanes by chiral phosphoric catalysis. Starting from suitably 
tagged triarylmethanols, this protocol takes advantage of the hydro-
gen bonding interactions in the key para-quinone methide and 
extended iminium intermediates to build two libraries of enantio-
enriched CTAMs. Preliminary biological activity studies indicated 
that these spherical molecules are potential anticancer agents.

Results
Reaction development. Our general strategy to address the above 
problem is depicted in Fig. 1c. We hypothesized that a racemic tri-
arylmethane 1 with a leaving group on the central carbon would 
be easily activated by a catalyst to generate the triarylmethyl cation 
intermediate. Next, an electron-rich arene 2 serves as the nucleo-
phile to react to form the desired tetraarylmethane 3. Furthermore, 
the leaving group and the chiral catalyst could be initially designed 
such that the remaining part of the catalyst serves as a chiral counter 
anion paired with the corresponding cation. Thus the critical asym-
metric induction in the next bond formation would be expected 
to originate from the chiral counter anion. While the asymmetric 
ion-pairing catalysis concept has been well established28–30, its prac-
tice in differentiating three aryl groups is unknown. In this context, we 
envisioned that other weak interactions, such as hydrogen bonding, 
might be employed to direct such subtle differentiation (Fig. 1d)31.  
Thus, two of the three aryl groups were differently tagged, one of 
which would be a hydrogen-bond donor group (for example, OH) 
and the other of which would be a hydrogen-bond acceptor (for 
example, an alkoxy group). These electron-donating groups could 
further restrict the rotation of the central C–C bonds via resonance, 
thereby benefiting stereocontrol. Indeed, when a hydroxy group is 
attached to one of the aryl groups, the chiral ion pair intermediate 
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could be further stabilized as a hydrogen-bonded quinone methide 
(QM)32–41. The other tag then provides a secondary hydrogen-bond 
interaction to provide the key differentiation (Fig. 1d). Another sce-
nario we could envision is to employ an extended iminium as the 
intermediate42, which could potentially react in a similar manner 
(Fig. 1d). If successful, this process could be extended to CTAMs 
containing an indole motif, an important heterocycle widely present 
in numerous pharmaceuticals and natural products43,44. However, 
compared with the above para-QM intermediate, two possible geo-
metric isomers (Z and E) could be possible in this extended imin-
ium intermediate. This might lead to additional complication in 
asymmetric induction.

Condition optimization. To test our hypothesis, we chose the read-
ily available triarylmethanol 1a as the model substrate. As designed, 

a para-hydroxy group and an ortho-methoxy group were used as 
tags in two of the three phenyl groups. We used 2-methylpyrrole 
2a as a model nucleophile (Table 1). In the presence of 10 mol% 
of acid (R)-A1 (refs. 45,46), the reaction proceeded cleanly at room 
temperature to form the desired tetraarylmethane 3a in quantitative 
yield, albeit with low enantioselectivity (entry 1). Further screening 
other analogous catalysts identified that (R)-A3 could catalyse this 
process with both excellent efficiency (97% yield) and enantioselec-
tivity (93% e.e., entry 3). The use of other chiral backbones did not 
further improve the reaction outcome (entries 5–9). Optimization 
on other reaction parameters, such as solvent, concentration, tem-
perature and catalyst loading, finally concluded that the best result 
(97% yield, 96% e.e.) could be obtained when the reaction was run at 
0 °C with 7.5 mol% of catalyst (R)-A3 in 1,2-dichloroethane (DCE; 
entry 10; Supplementary Tables 1–4 for more details).
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Fig. 1 | Catalytic enantioselective synthesis of CTAMs. a, Introduction to molecular space in drug discovery. b, Introduction to CTAMs. c, Initial reaction 
design for CTAM synthesis. LG, leaving group; IP, ion pair; cat., catalyst. d, The designed tagging strategy for the differentiation of aryl groups.
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Substrates scope exploration. With this protocol, a wide range of 
enantioenriched tetraarylmethanes could be successfully generated 
with excellent efficiency and enantioselectivity under mild con-
ditions (Table 2). In addition to alkoxy groups, other groups (for 
example, sulfonamide, thioether, fluorine and even free hydroxy 
group) present in the ortho- position also worked well as the 
stereo-directing tag. From the enantioselectivities, we may also 
conclude that the ortho-alkoxy groups are stronger directing tags 
than sulfonamide, fluorine and acetal groups. Another important 
observation is that the remaining untagged aryl ring could also 
be substituted with various groups (3p–3y) as long as these sub-
stituents do not outcompete the ortho-methoxy group on the other 
aryl ring. For example, as a strong tagging group, the methoxy 
group could also be present in the untagged ring, but only at the 
para- and meta- positions (3q, 3r and 3t). However, weaker tags, 
such as fluorine and acetal, can be present at any position without 
much compromise in stereocontrol (for example, 3p, 3v and 3w). 
These interesting observations indicated that the excellent stereo-
control is based on weak interactions, and the subtle difference in 
interaction is sufficient to provide extraordinary control, which is 
remarkable in this delicate system. Moreover, substitution on the 

arene with a para-hydroxy group led to a lower rate, thus requiring 
a higher temperature and/or a higher catalyst loading (3z and 3aa). 
A range of other substituted pyrroles were also suitable nucleophiles  
(3ab–3af). Finally, product 3ag resulting from 4,7-dihydroindole 
could be easily oxidized to indole-substituted compound 3af, thus 
leading to another type of CTAM structure.

Indole-containing triarylmethanols 4 could also serve as the 
starting materials (Table 3). After slight modification of the reac-
tion conditions (Supplementary Tables 5–10 for details), the same 
catalyst (R)-A3 was able to catalyse these reactions to form the cor-
responding indole-containing tetraarylmethanes 5 with excellent 
efficiency and enantioselectivity. The structure and absolute config-
uration of 5a were confirmed by X-ray crystallography. Again, the 
presence of an ortho- tag (for example, alkoxy group) in one of the 
phenyl groups proved critical to selectivity control. It is likely that 
a weak hydrogen-bond interaction with the tag not only facilitates 
asymmetric control, but also stabilizes one of the Z/E isomers in 
the iminium intermediate and the transition state. Finally, we note 
that this synthetic protocol is equally robust for gram-scale synthe-
sis with no erosion of yield or enantioselectivity even at reduced 
catalyst loading (for example, 3ae and 5a).

Table 1 | Initial investigation of the conditions for enantioselective synthesis of CTAMa

Entry Conv. (%) Yield (%)b e.e. (%)

1
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Catalyst
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+
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OMe

(R)-C2 –75100 >99

(R)-B37 75 75 93

aReaction conditions: 1a (0.025�mmol), 2a (2 equiv.), catalyst (10�mol%), DCE (0.5�ml). CPA, chiral phosphoric acid; DCE, 1,2-dichloroethane; Conv., conversion; r.t., room temperature. bYield is based on 
analysis of the 1H NMR spectroscopy of the crude reaction mixture using 1,3,5-triisopropylbenzene as an internal standard; e.e. is determined by HPLC with a chiral stationary phase. cRun at 0�°C for 48�h 
with 7.5�mol% of catalyst.
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Table 2 | Substrate scope of enantioselective synthesis of CTAMs based on QM intermediatea
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3c, R = iPr, 91% yield, 92% e.e.
3d, R = Bn, 97% yield, 86% e.e.
3e, R = Allyl, 92% yield, 96% e.e.
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Gram scale: 98% yield, >99% e.e.k
86% yield, 86% e.e. 81% yield, 86% e.e.

3z 3aa

aReaction conditions: all reactions were performed with 1a (0.20�mmol, c�=�0.05�M), 2a (0.40�mmol) and (R)-A3 (0.015�mmol) in DCE (4.0�ml) at 0�°C for 48�h unless otherwise noted. Isolated yields are 
provided. c, concentration; r.t., room temperature; DDQ, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. bRun at r.t., c�=�0.1�M. cRun with (R)-B3 as catalyst. dRun at −20�°C. eRun in DCM at 40�°C with 20�mol% 
of catalyst. fRun at r.t. gc�=�0.1�M. h10�mol% of catalyst. iRun at 40�°C. jRun at 40�°C with 20�mol% of catalyst. k5�mol% of catalyst. lMeI, K2CO3; DDQ, DCM.
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Mechanistic studies and synthetic applications. Next, we car-
ried out a series of experiments to understand the reaction mech-
anism. First, substrate 1ab did not show any reactivity under the 

standard conditions, which is consistent with the formation of 
a para-quinone methide (Fig. 2a). Indeed, when substrate 1j was 
treated with the acid catalyst in the absence of a nucleophile, 

Table 3 | Scope of enantioselective synthesis of indole-containing CTAMsa
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para-QM 6 could be isolated and fully characterized. Next, the stan-
dard reaction of 6 with nucleophile 2a proceeded efficiently to form 
the corresponding product 3j with excellent enantioselectivity (Fig. 
2b). This result clearly demonstrated the chemical competence of 
the para-QM intermediate. Furthermore, carefully monitoring the 
standard reaction between 1a and 2a indicated kinetic resolution 
of 1a with a selectivity factor of 1.5 (Fig. 2c). The product enanti-
oselectivity remained constant (~95% e.e.) during the whole reac-
tion progress, consistent with its stereoconvergent nature involving 
an achiral p-QM intermediate. Moreover, the product e.e. showed 
a linear correlation to that of the catalyst (Fig. 2d), suggesting that 
only one catalyst molecule is likely involved in the enantiodetermin-
ing transition state. Then, the ortho-methoxy group in the model 
substrate 1a was modified to probe its role in stereocontrol (Fig. 
2e). Replacing it with o-Me, m-OMe, p-OMe, o-CH2OMe or o-Et 
resulted in a uniformly dramatic decrease in enantioselectivity, sug-
gesting that this o-OMe group mainly functions as a hydrogen-bond 
donor. The ortho-position of this tag is also crucial to the excellent 

stereocontrol. Finally, with compound 3r as an example, we dem-
onstrated that the p-hydroxy group could be easily removed (8) or 
converted by cross-coupling reactions (9) without erosion in enan-
tiopurity via triflate 7. Similar transformations were also expected 
for the ortho- tags (Fig. 2f).

Density functional theory (DFT) studies. To gain further insights 
into the mechanism and origins of selectivity, we performed DFT cal-
culations on the reaction of 1a and 2a with phosphoric acid (R)-A3 
as catalyst using Gaussian 16 (ref. 47). The structures were fully opti-
mized at the B3LYP-D3BJ/6-31G(d)-SMD(dichloroethane) level 
of theory48–50, and single-point energies were obtained with M06-
2X/6-311+G(d,p)-SMD(dichloroethane)51,52. On the basis of pre-
vious experimental observations, the proposed catalytic cycle for 
the model reaction is shown in Fig. 3a. In the initiation step, the 
chiral phosphoric acid (R)-A3 forms a hydrogen bond with the sub-
strate to generate two relatively stable complexes I-R and I-S. These 
intermediates I then undergo dehydration via TS1-R and TS1-S 
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0 °C or 40 °C 
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94% yield, 95% e.e.
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Fig. 2 | Control experiments and derivatizations. a, Reaction of 1ab. b, Isolation and reaction of the QM intermediate 6. c, Observation of kinetic 
resolution. s, selectivity factor. d, Absence of non-linear effects. e, Comparison of other tag groups in the substrates. f, Conversion and removal of the 
p-hydroxy group. BrettPhos, 2-(dicyclohexylphosphino)-3,6-dimethoxy-2′,4′,6′-triisopropyl-1,1′-biphenyl.
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to afford an identical p-QM intermediate II, requiring an activa-
tion free energy of 21.2 and 23.5 kcal mol–1, respectively. Next, the 
nucleophile pyrrole 2a attacks the p-QM intermediate via TS2-R 
and TS2-S to obtain III-R and III-S. The energy difference between 
TS2-S and TS2-R is 2.4 kcal mol–1, in good accord with the 96% e.e. 
obtained experimentally. The subsequent intermolecular proton 
shift process via TS3-R and TS3-S is facile with barriers of only 10.0 
and 9.2 kcal mol–1, respectively. Therefore, the enantiodetermining 
step for this reaction is the nucleophilic attack of pyrrole on the 
p-QM intermediate, TS2. However, the turnover-limiting step is the 
dehydration from I to II, which is consistent with the kinetic resolu-
tion observed in Fig. 2c.

We next investigated the origins of enantioselectivity. The 
geometries of transition states TS2-R and TS2-S were explored. 
As shown in Fig. 3b(i), obvious hydrogen-bonding interactions 
are detected between the 2-methoxyphenyl oxygen atom and the 
2-methylpyrrole hydrogen atom in transition states TS2-R and 
TS2-S. However, in the minor TS2-S, the methoxy group is orien-
tated towards the cyclohexyl groups in the catalyst, and H···H dis-
tances of 2.21 Å and 2.32 Å are observed, indicating steric interaction 
between the methoxy and cyclohexyl groups. However, there are no 
such steric repulsions in TS2-R. Further investigations revealed that 
this steric clash in TS2-S resulted in a longer O–H hydrogen-bond 
distance (1.81 Å) and thus weaker hydrogen-bonding interaction 
than that in TS2-R (1.69 Å). This is the key contribution to the 
2.4 kcal mol–1 preference for the formation of the major product. To 
better understand the pivotal importance of the hydrogen-bonding 
interactions, the methoxy group was replaced by a methyl group 
in the stereodetermining step as in 3ai (Fig. 3b(ii)). In the absence 
of the ortho-hydrogen bonding in TS4, the methyl group rotates 
away from the cyclohexyl substituents, which leads to a shorter 
O–H hydrogen-bond distance in TS4-S (1.74 Å) than that in TS2-S 
(1.81 Å). The stronger hydrogen bond and weaker steric repul-
sion in TS4-S make the energy difference between transition states 
TS4-S and TS4-R as low as only 0.6 kcal mol–1, which agrees with 
the low enantioselectivity observed for 3ai (52% e.e.). These results 
further support the dominant role of the ortho-hydrogen-bonding 
tag in achieving high enantioselectivity.

To further verify the accuracy of our computational results, 
the predicted enantioselectivities were compared with the experi-
mentally observed values (Supplementary Table 11). A plot of the 
experimental and theoretical data on ten different products indi-
cated a good correlation between the corresponding energy values 
derived from the experimentally observed e.e. and the calculated 
activation free energy difference (R2 = 0.81, Supplementary Fig. 1). 
Meanwhile, single-point energies were also evaluated within the 
SMD model using the B3LYP-D3BJ, ωB97X-D, PBE0-D3BJ and 
MN15 functionals to compare the stereoselectivities computed 
using different methods (Supplementary Table 12). The predicted  
enantioselectivities are consistent with each of five density  

functional methods. These results indicate that the calculated enan-
tiodetermining transition state is likely correct, and not an artefact 
of a specific computational method.

Biological activity study. Finally, we were intrigued by the poten-
tial biological activities of these spherical enantioenriched tet-
raarylmethanes. Thus, five randomly selected products were 
evaluated for their preliminary cytotoxicity by MTT assay (MTT, 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). 
We first screened their cytotoxicity in human cervical adenocarci-
noma (HeLa) cells with the widely used anticancer drug doxorubi-
cin as a control. As shown in Table 4, all of them were cytotoxic to 
HeLa cells with half maximal inhibitory concentration (IC50) values 
in the low micromolar range. We further examined their anticancer 
potency in other human cancer cells, including A2780 ovarian carci-
noma cells, MCF-7 breast adenocarcinoma cells, HCT116 colorectal 
carcinoma cells and A549 lung carcinoma cells. These compounds 
also exhibited impressive preliminary cytotoxicity, with IC50 values 
in the range of 1.5 to 45.6 μM. HeLa cells were found to respond the 
most, followed by A2780 and A549 cells. For comparison, we also 
tested their cytotoxicity in human normal lung fibroblasts (MRC-
5). Notably, all of them were less cytotoxic towards these normal 
cells (versus cancer cells, or versus the drug molecule doxorubicin). 
These preliminary results indicate that the unusual spherical tet-
raarylmethanes show great potential for further development into 
anticancer agents.

Conclusions
We have developed a catalytic enantioselective synthesis of CTAMs, 
a family of spherical molecules without previous direct access. In 
spite of the substantial challenges in steric demand and stereo-
control when establishing the all-aryl quaternary stereocentre, 
a delicate system created by utilizing well-positioned removable 
directing tags proved successful and effective. Mechanistically, the 
in-situ-generated para-quinone methides or extended iminium 
intermediates as well as the multiple weak hydrogen-bonding 
interactions with well-designed tags constitute the key elements 
to success. DFT calculations also provided strong support for the 
mechanism. With this process, two libraries of structurally distinct 
CTAMs were efficiently synthesized with high enantioselectivity. 
Preliminary biological activity studies indicate that these spheri-
cal molecules are highly promising anticancer agents. This study is 
expected to stimulate a more systematic exploration of this impor-
tant chemical space.

Methods
General procedure for the synthesis of enantioenriched CTAM 3. At 0 °C, a 
solution of catalyst (R)-A3 (14.9 mg, 0.015 mmol, 7.5 mol%) in DCE (0.4 ml) was 
slowly added to an oven-dried 10 ml vial charged with a solution of the tertiary 
alcohol 1 (0.2 mmol) and pyrrole 2 (0.4 mmol) in DCE (3.6 ml). The reaction 
mixture was stirred at the same temperature for 48 h. Next, Na2CO3 (212 mg, 

Table 4 | The cytotoxicity of the synthetic compounds in various human cell lines

Compound IC50 value (μM)a

HeLa A2780 MCF-7 HCT116 A549 MRC-5

3s 7.1�±�1.8 10.1�±�0.7 21.1�±�1.0 38.8�±�3.3 13.0�±�0.6 59.7�±�5.5

3t 5.4�±�1.2 14.6�±�2.6 32.8�±�0.7 45.6�±�3.6 12.9�±�0.3 106.8�±�6.4

5a 3.2�±�0.5 7.2�±�0.6 8.0�±�0.9 4.8�±�0.3 14.2�±�1.2 19.8�±�2.1

5g 3.7�±�0.2 11.1�±�0.9 7.4�±�0.6 6.4�±�0.7 9.7�±�0.8 18.1�±�1.2

5s 1.5�±�0.1 9.6�±�0.7 4.8�±�0.5 16.7�±�2.3 8.3�±�0.8 22.6�±�1.9

Doxorubicin 1.7�±�0.3 0.38�±�0.09 0.42�±�0.07 1.2�±�0.3 0.19�±�0.03 0.77�±�0.1
aThe half maximal inhibitory concentration (IC50) was determined by MTT assay in 72�h. Data were calculated from three independent experiments using OriginLab 2019 software. The error bars were 
calculated as the standard deviation from the mean value.
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2.0 mmol) was added. The mixture was stirred for 10 min and concentrated under 
reduced pressure. The residue was purified by silica gel flash chromatography to 
afford the desired product.

General procedure for the synthesis of enantioenriched CTAM 5. At room 
temperature, a solution of catalyst (R)-A3 (14.9 mg, 0.015 mmol, 7.5 mol%) in 
dichloromethane (DCM, 0.2 ml) was slowly added to an oven-dried 4 ml vial 
charged with a solution of tertiary alcohol 4 (0.2 mmol) and pyrrole 2 (0.4 mmol) 
in DCM (0.8 ml). The reaction mixture was stirred at the same temperature for 
24 h. Next, Na2CO3 (212 mg, 2.0 mmol) was added. The mixture was stirred for 
10 min and concentrated under reduced pressure. The residue was purified by silica 
gel chromatography to afford the desired product.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data generated and analysed during this study are included in this Article and 
its Supplementary Information. They are also available from the authors upon 
reasonable request. The X-ray crystallographic coordinates for the structures 
of 3ae′ (derivative of 3ae) and 5a have been deposited at the Cambridge 
Crystallographic Data Centre under deposition numbers CCDC 1935077 and 
CCDC 1935078, respectively, and can be obtained free of charge from the CCDC 
via http://www.ccdc.cam.ac.uk/data_request/cif.
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replication are successful.

Randomization No randomization was used for in vitro experiments. In this study, randomization is not relevant as we did not use any animal models.

Blinding No blinding was used for in vitro experiments. Blinding is not not applicable, since our experiments are based on cell culture.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HeLa (ATCC® CCL-2�), MCF7 (ATCC® HTB-22�), HCT116 (ATCC® CCL-247),  A549 (ATCC® CCL-185�), and MRC-5 (ATCC® 
CCL-171) were obtained from American Type Culture Collection (ATCC). A2780 cell line (orginally purchased from ATCC) is a 
kind gift from Prof. ANG Wee Han of the Department of Chemistry, National University of Singapore, Singapore.  

Authentication Cell lines were stored in liquid nitrogen, and were only used within passage 20. None of the cell lines used were 
authenticated.

Mycoplasma contamination All the cell lines used were negative for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No cell lines used in this manuscript were misidentified.


