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1 Introduction

The sterile right-handed neutrino is one of the most well studied extensions of the Standard
Model (SM) motivated by, among other things, the observation of neutrino masses and
mixing. Instead of considering all possible models, an efficient alternative is to use a
model independent approach based on the principles of effective theory. The idea is to
construct all possible operators representing the interactions of sterile neutrinos with SM
fields consistent with the symmetries of the SM. The framework is valid between the scale
of electroweak symmetry breaking, µEW , and the cut-off scale for new physics, Λ.

In the effective theory approach, the leading terms of the effective Lagrangian are given
by the SM, and the new interactions of the right-handed neutrino with the SM fields are
described by higher dimension operators,

L =
∑
i

CiOi . (1.1)

The operatorsOi respect the SU(3)C×SU(2)L×U(1)Y gauge symmetry and are constructed
from SM and right-handed neutrino fields. The renormalization scale dependent Wilson
coefficient (WC) Ci, determines the size of the contribution of operator Oi, and is calculated
by matching the effective theory with the underlying theory.
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Given the absence of new physics signals at the LHC, the use of effective theory to
study physics beyond the SM has received much attention recently. With only SM fields,
the Standard Model Effective Field Theory (SMEFT) is obtained [1–4], and the one-loop
renormalization group evolution (RGE) of all dimension-six operators have been presented
in refs. [5–7].

Extending SMEFT with sterile right-handed neutrinos n, yields the Standard Model
Neutrino Effective Field Theory (SMNEFT) [8–12]. Loop effects in SMNEFT have only
recently started being studied. We presented the gauge terms of the one-loop RGE of
all dimension-six operators in SMNEFT [13]. The mixing between the bosonic operators
was discussed in ref. [14], and the one-loop RGE of a subset of four-fermion operators was
provided in ref. [15].

In this paper we calculate the one-loop RGE of all dimension-six four-fermion SMNEFT
operators that arises from the Yukawa interactions of the Higgs, right-handed neutrino and
SM fields. We assume the neutrinos are Dirac in nature. Our formalism is generalizable
to the Type-I two-Higgs-doublet model. Note that the neutrino Yukawa couplings may be
large if a contribution to Dirac neutrino masses from high scale physics, as for example in
ref. [16], is rendered small by virtue of a cancellation by the Yukawa contribution.

We present our calculations and results in the gauge basis because a transformation to
the mass basis involves a rotation of the quark and lepton fields to their mass eigenstates.
This rotation is inherently model-dependent since only the left-handed quark and lepton
mixing matrices are experimentally accessible. Moreover, how the Yukawa interactions
of the right-handed neutrinos relate to the neutrino mixing parameters depends on the
mechanism of neutrino mass generation.

The paper is organized as follows. In section 2, we introduce the formalism to compute
the RGE of the dimension-six operators. In section 3, we present the one-loop anomalous
dimension matrix (ADM) of all four-fermion operators in SMNEFT, and the additional
RGE terms in SMEFT that arise from Yukawa couplings of the right-handed neutrinos.
Finally, in section 4 we present our summary.

2 Formalism

The SMNEFT Lagrangian is

LSMNEFT ⊃ in̄/∂n+ LYukawa +
∑
i

CiOi , (2.1)

where Ci are the WCs of the dimension-six operators. The Yukawa terms with generation
indices suppressed, are

LYukawa = −[φ†j d̄Ydqj + φ̃†j ūYuqj + φ†j ēYe`j + φ̃†jn̄Yn`j + h.c.] , (2.2)

where φ is the Higgs doublet and φ̃j = εjkφ∗k. The four types of Yukawa interaction vertices
for the quark sector are shown in figure 1.

There are a total of 16 (∆B = 0 = ∆L) new operators in the SMNEFT framework,
which are shown in table 1 in the Warsaw basis convention [2].
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dr qjp

φj

−i[Y †
d ]pr

qjr dp

φj

−i[Yd]pr

ur qjp

φk

−iεjk[Y †
u ]pr

qjr up

φk

−i(ε†)kj[Yu]pr

Figure 1. The four types of Yukawa interaction vertices. The flavor indices ‘pr’ and SU(2)L
indices ‘jk’ are written explicitly.

(R̄R)(R̄R) (L̄L)(R̄R) (L̄R)(R̄L) and (L̄R)(L̄R)

Ond (n̄pγµnr)(d̄sγµdt) Oqn (q̄pγµqr)(n̄sγµnt) O`n`e (¯̀j
pnr)εjk(¯̀k

set)

Onu (n̄pγµnr)(ūsγµut) O`n (¯̀
pγµ`r)(n̄sγµnt) O(1)

`nqd (¯̀j
pnr)εjk(q̄ksdt)

One (n̄pγµnr)(ēsγµet) O(3)
`nqd (¯̀j

pσµνnr)εjk(q̄ksσµνdt)

Onn (n̄pγµnr)(n̄sγµnt) O`nuq (¯̀j
pnr)(ūsq

j
t )

Onedu (n̄pγµer)(d̄sγµut)

ψ2φ3 ψ2φ2D ψ2Xφ

Onφ (φ†φ)(l̄pnrφ̃) Oφn i(φ†
↔
Dµφ)(n̄pγµnr) OnW (¯̀

pσ
µνnr)τ I φ̃W I

µν

Oφne i(φ̃†Dµφ)(n̄pγµer) OnB (¯̀
pσ

µνnr)φ̃Bµν

Table 1. The 16 SMNEFT operators involving the right-handed neutrinos n in the Warsaw
convention which conserve baryon and lepton number (∆B = ∆L = 0). The flavor indices ‘prst’
are suppressed for simplicity. The fundamental SU(2)L indices are denoted by j, k, and I is the
adjoint index.

The Lagrangian can be written in terms of bare fields ~O(0) as

LSMNEFT ⊃ ~C T · ~O + counterterms ≡ ~C T · Z · ~O(0) , (2.3)

where Z = Zct/Zwr is the renormalization constant matrix which depends on corrections
from the counterterms, Zct, and the wavefunction renormalizations, Zwr. Given that the
bare operators and Lagrangian are independent of the renormalization scale µ, the RG
equations for the Wilson coefficients are

~̇C ≡ 16π2µ
d

dµ
~C = −16π2(ZT )−1µ

d

dµ
ZT ~C . (2.4)

The main task is to calculate the expressions for Zwr and Zct, which is detailed below.

2.1 Wavefunction renormalization

The bare field ψ(0) is related to the renormalized field ψR via

ψR = 1√
Zψ

ψ(0). (2.5)
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φ

Figure 2. Self-energy of right-handed neutrino n.

For the four-fermion operator, O4ψ = ψ̄1ψ2ψ̄3ψ4, the wavefunction renormalization con-
stant is given by

Zwr ≡

√√√√ 4∏
i=1

Zψi
. (2.6)

From figure 2, the Yukawa-dependent wavefunction renormalization of a right-handed neu-
trino n is

Z(Y )
n
pr

= 1−
γ

(Y )
n
pr

16π2ε
, (2.7)

where γ(Y )
n
pr

= [YnY †n ]pr, in the notation of ref. [6]. We have taken dimension, D = 4 − 2ε,
in dimensional regularization. Similarly, we have,

γ
(Y )
`

pr

= 1
2[Y †e Ye + Y †nYn]pr , γ(Y )

e
pr

= [YeY †e ]pr ,

γ(Y )
q

pr

= 1
2[Y †d Yd + Y †uYu]pr , γ

(Y )
d
pr

= [YdY †d ]pr, γ(Y )
u
pr

= [YuY †u ]pr . (2.8)

2.2 Counterterms

The corrections from counterterms cancel the ultraviolet (UV) divergence from the one-
loop diagrams. In the one-loop diagrams, there are 14 different structures as in figure 3;
there are seven counterparts to those shown. We display the UV divergent part of each
structure in figure 3.

The UV divergent parts in figures 3(a) to 3(c) are of the form

Da = − 1
64π2ε

(ψ̄1γ
µΓ1γµψ2)(ψ3Γ2ψ4) , (2.9)

Db = − 1
64π2ε

(ψ̄1γ
µΓ1ψ2)(ψ̄3γµΓ2ψ4) , (2.10)

Dc = − 1
64π2ε

(ψ̄1Γ1γ
µψ2)(ψ̄3γµΓ2ψ4) , (2.11)

where Γ1 and Γ2 are the Lorentz structures for the upper and lower vertex, respectively.
In figure 3(d), Γ1 has to be P2, which is the projection operator of the chiral fermion field
ψ2, because for the other possibilities, the UV divergent parts vanish. Thus we obtain

Dd = 1
16π2ε

(ψ̄1P2ψ2)(ψ̄3P4ψ4) . (2.12)

The UV divergent part of figure 3(e) is of the form

De = − 1
32π2ε

(ψ̄1γ
µP2ψ2)(ψ̄3γµP4ψ4) . (2.13)
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×
×

ψ2 ψ1

ψ4 ψ3

φ

(a)

×
×

ψ2 ψ1

ψ4 ψ3

φ

(b)

×
×

φ

ψ2 ψ1

ψ4 ψ3

(c)

×
×

ψ2 ψ1

ψ4 ψ3

φ

(d)

×
×

ψ2 ψ1

ψ4 ψ3

φ φ

(e)

×
×

ψ2 ψ1

ψ4 ψ3

V µ φ

(f)

×
×

ψ2 ψ1

ψ4 ψ3

φ V µ

(g)

Figure 3. The seven structures that contribute to the four-fermion operator anomalous dimension
matrix at the one-loop level. The ψi are operator-dependent external fermions. The fermion inside
the loop is related to ψi through Yukawa or gauge couplings.

For the dipole operators in figures 3(f) and 3(g), the UV divergent parts are of the form

Df = i

64π2ε
(ψ̄1σ

µνP2ψ2)(ψ̄3γ
βγαP4ψ4)(gµβgνα − gµαgνβ)

= 1
32π2ε

(ψ̄1σ
µνP2ψ2)(ψ̄3σµνP4ψ4) , (2.14)

Dg = i

64π2ε
(ψ̄1σ

µνP2ψ2)(ψ̄3γ
αγβP4ψ4)(gµβgνα − gµαgνβ)

= − 1
32π2ε

(ψ̄1σ
µνP2ψ2)(ψ̄3σµνP4ψ4) . (2.15)

To simplify our results further, we follow ref. [6] and define the amplitudes in figure 4 in
connection with figure 3(d):

ξn
pr

= 2C `n
pwvr

[Y †n ]wv −NcC(1)
`nqd
prvw

[Yd]wv −NcC`nuq
prvw

[Y †u ]wv − C`n`e
prvw

[Ye]wv ,

ξ e
pr

= 2C `e
pwvr

[Y †e ]wv −NcC`edq
prvw

[Y †d ]wv +NcC(1)
`equ
prvw

[Yu]wv − C`n`e
vwpr

[Yn]wv ,

ξu
pr

= 2
(
C(1)
qu

pwvr

+ CF,3C(8)
qu

pwvr

)
[Y †u ]wv −

(
NcC(1)

quqd
prvw

+ 1
2C

(1)
quqd
vrpw

+ 1
2CF,3C

(8)
quqd
vrpw

)
[Y †d ]wv

+C(1)
`equ
vwpr

[Ye]wv − C∗`nuq
vwrp

[Y †n ]vw ,
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×
×

nr `p

φ

×
×

er `p

φ

×
×

ur qp

φ

×
×

dr qp

φ

Figure 4. The Feynman diagrams associated with the ξ parameters in eq. (2.16).

ξ d
pr

= 2
(
C(1)
qd

pwvr

+ CF,3C(8)
qd

pwvr

)
[Y †d ]wv −

(
NcC(1)

quqd
vrpw

+ 1
2C

(1)
quqd
prvw

+ 1
2CF,3C

(8)
quqd
prvw

)
[Y †u ]wv

−C∗`edq
vwrp

[Y †e ]vw − C(1)
`nqd
vwpr

[Yn]wv , (2.16)

where the quadratic Casimir CF,3 = 4
3 and the number of colors Nc = 3. The ξ parameter

for right-handed neutrinos n (ξn), corresponds to the new terms in SMNEFT, while the last
terms in ξe, ξu and ξd are contributions from the right-handed neutrino Yukawa couplings
not present in SMEFT.

3 Results

In this section, we present the Yukawa coupling contributions to the one-loop RGE for all
four-fermion SMNEFT operators, and the new RGE terms for the four-fermion SMEFT
operators due to the mixing between SMEFT and SMNEFT operators via the right-handed
neutrino Yukawa couplings Yn. The contributions from the fermionic operators come from
the Feynman diagrams in figures 3(a) to 3(d), with contributions from figure 3(d) given by
the ξ parameters.

3.1 Anomalous dimensions from Yukawa couplings: SMNEFT

The bosonic operators in table 1 contribute to the SMNEFT ADM but not the SMEFT
ADM. The contribution from the bosonic operator ψ2φ2D is shown in figure 3(e). The
RGE of the dipole operators O`n`e and O

(3)
`nqd is modified by the ψ2Xφ operators in table 1

and the relevant diagrams are shown in figures 3(f) and 3(g). These terms contain both
gauge and Yukawa coupling contributions.

3.1.1 (R̄R)(R̄R)

Ċ nd
prst

= −2[YnY †n ]prCφd
st

+ 2[YdY †d ]stCφn
pr

− 2[Yn]pv[Y †n ]wrC `d
vwst

− 2[Yd]sv[Y †d ]wtC qn
vwpr

−
(

[Yn]pv[Yd]swC
(1)
`nqd
vrwt

+ [Y †n ]vr[Y †d ]wtC(1)∗
`nqd
vpws

)

– 6 –
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+12
(

[Yn]pv[Yd]swC
(3)
`nqd
vrwt

+ [Y †n ]vr[Y †d ]wtC(3)∗
`nqd
vpws

)
+γ(Y )

n
pv

C nd
vrst

+ γ
(Y )
d
sv

C nd
prvt

+ C nd
pvst

γ(Y )
n
vr

+ C nd
prsv

γ
(Y )
d
vt

, (3.1)

Ċ nu
prst

= −2[YnY †n ]prCφu
st

− 2[YuY †u ]stCφn
pr

− 2[Yn]pv[Y †n ]wrC `u
vwst

− 2[Yu]sv[Y †u ]wtC qn
vwpr

+
(

[Yn]pv[Y †u ]wtC`nuq
vrsw

+ [Y †n ]vr[Yu]swC∗`nuq
vptw

)
+γ(Y )

n
pv

C nu
vrst

+ γ(Y )
u
sv

C nu
prvt

+ C nu
pvst

γ(Y )
n
vr

+ C nu
prsv

γ(Y )
u
vt

, (3.2)

Ċ ne
prst

= −2[YnY †n ]prCφe
st

+ 2[YeY †e ]stCφn
pr

+ 2[YeY †n ]srCφne
pt

+ 2[YnY †e ]ptC∗φne
rs

−2[Yn]pv[Y †n ]wrC `e
vwst

−
(

[Yn]pv[Ye]swC`n`e
vrwt

+ [Y †n ]vr[Y †e ]wtC∗`n`e
vpws

)
+
(

[Yn]pw[Ye]svC`n`e
vrwt

+ [Y †n ]wr[Y †e ]vtC∗`n`e
vpws

)
−2[Ye]sv[Y †e ]wtC `n

vwpr

+ γ(Y )
n
pv

C ne
vrst

+ γ(Y )
e

sv

C ne
prvt

+ C ne
pvst

γ(Y )
n
vr

+ C ne
prsv

γ(Y )
e
vt

, (3.3)

Ċ nn
prst

= −[YnY †n ]prCφn
st

− [YnY †n ]stCφn
pr

− [Yn]pv[Y †n ]wrC `n
vwst

− [Yn]sv[Y †n ]wtC `n
vwpr

+γ(Y )
n
pv

C nn
vrst

+ γ(Y )
n
sv

C nn
prvt

+ C nn
pvst

γ(Y )
n
vr

+ C nn
prsv

γ(Y )
n
vt

, (3.4)

Ċnedu
prst

= 2[YdY †u ]stCφne
pr

+ 2[YnY †e ]prC∗φud
ts

− [Yn]pv[Yd]sw
(
C(1)
`equ
vrwt

− 12C(3)
`equ
vrwt

)
+[Yn]pv[Y †u ]wtC`edq

vrsw

+ [Y †e ]vr[Y †u ]wt
(
C(1)∗
`nqd
vpws

− 12C(3)∗
`nqd
vpws

)
+ [Y †e ]vr[Yd]swC∗`nuq

vptw

+γ(Y )
n
pv

Cnedu
vrst

+ γ
(Y )
d
sv

Cnedu
prvt

+ Cnedu
pvst

γ(Y )
e

vr

+ Cnedu
prsv

γ(Y )
u
vt

. (3.5)

3.1.2 (L̄L)(R̄R)

Ċ qn
prst

= [Y †uYu − Y
†
d Yd]prCφn

st

− 2[YnY †n ]stC(1)
φq
pr

− 2[Yn]sv[Y †n ]wtC(1)
`q

vwpr

− [Yu]wr[Y †u ]pvC nu
stvw

−[Yd]wr[Y †d ]pvC nd
stvw

+ 1
2

(
[Yn]sw[Yd]vrC

(1)
`nqd
wtpv

+ [Y †n ]wt[Y †d ]pvC(1)∗
`nqd
wsrv

)

+6
(

[Yn]sw[Yd]vrC
(3)
`nqd
wtpv

+ [Y †n ]wt[Y †d ]pvC(3)∗
`nqd
wsrv

)

−1
2

(
[Yn]sw[Y †u ]pvC`nuq

wtvr

+ [Y †n ]wt[Yu]vrC∗`nuq
wsvp

)
+γ(Y )

q
pv

C qn
vrst

+ γ(Y )
n
sv

C qn
prvt

+ C qn
pvst

γ(Y )
q

vr

+ C qn
prsv

γ(Y )
n
vt

, (3.6)

Ċ `n
prst

= [Y †nYn − Y †e Ye]prCφn
st

− 2[YnY †n ]stC(1)
φ`
pr

+ [Y †n ]pw[Yn]svC `n
vrwt

+ [Y †n ]vt[Yn]wrC `n
pvsw

– 7 –
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−[Y †e ]pv[Ye]wrC ne
stvw

− 2[Y †n ]pv[Yn]wrC nn
vtsw

− 2[Y †n ]pv[Yn]wrC nn
vwst

− 2[Y †n ]vt[Yn]swC ``
pvwr

−4[Y †n ]wt[Yn]svC ``
prvw

+ 1
2

(
[Ye]wr[Yn]svC`n`e

vtpw

+ [Y †e ]pv[Y †n ]wtC∗`n`e
wsrv

)
+([Ye]wr[Yn]svC`n`e

ptvw

+ [Y †e ]pv[Y †n ]wtC∗`n`e
rswv

) + [Yn]srξn
pt

+ [Y †n ]ptξ∗n
rs

+ γ
(Y )
`

pv

C `n
vrst

+γ(Y )
n
sv

C `n
prvt

+ C `n
pvst

γ
(Y )
`

vr

+ C `n
prsv

γ(Y )
n
vt

. (3.7)

3.1.3 (L̄R)(R̄L) and (L̄R)(L̄R)

Ċ`n`e
prst

= −4
(

[Y †n ]vr[Y †e ]wtC ``
pvsw

− [Y †n ]vr[Y †e ]wtC ``
svpw

)
+4
(

[Y †n ]wr[Y †e ]vtC ``
pvsw

− [Y †n ]wt[Y †e ]vtC ``
svpw

)
−4
(

[Y †n ]pv[Y †e ]swC ne
vrwt

− [Y †n ]sv[Y †e ]pwC ne
vrwt

)
+ 4[Y †n ]sw[Y †e ]vtC `n

pvwr

+4[Y †n ]vr[Y †e ]pwC `e
svwt

+ 4g1(ye + y`)CnB
pr

[Y †e ]st − 8g1(ye + y`)CnB
sr

[Y †e ]pt

−6g2CnW
pr

[Y †e ]st + 12g2CnW
sr

[Y †e ]pt + 4g1(yn + y`)CeB
st

[Y †n ]pr

−8g1(yn + y`)CeB
pt

[Y †n ]sr − 6g2CeW
st

[Y †n ]pr + 12g2CeW
pt

[Y †n ]sr − 2ξn
pr

[Y †e ]st

−2ξ e
st

[Y †n ]pr + γ
(Y )
`

pv

C`n`e
vrst

+ γ
(Y )
`

sv

C`n`e
prvt

+ C`n`e
pvst

γ(Y )
n
vr

+ C`n`e
prsv

γ(Y )
e
vt

, (3.8)

Ċ(1)
`nqd
prst

= −2[Y †n ]vr[Y †e ]pwC∗`edq
vwts

+ 2[Y †n ]pw[Y †d ]vtC qn
svwr

+ 2[Y †e ]pw[Y †u ]svC∗nedu
rwtv

+2[Y †n ]vr[Y †d ]swC `d
pvwt

− 2[Y †d ]wt[Y †u ]svC`nuq
prvw

− 2[Y †n ]pw[Y †d ]svC nd
wrvt

−2[Y †n ]vr[Y †d ]wtC(1)
`q

pvsw

+ 6[Y †n ]vr[Y †d ]wtC(3)
`q

pvsw

− 2ξn
pr

[Y †d ]st

−2ξd
st

[Y †n ]pr + γ
(Y )
`

pv

C(1)
`nqd
vrst

+ γ(Y )
q

sv

C(1)
`nqd
prvt

+ C(1)
`nqd
pvst

γ(Y )
n
vr

+ C(1)
`nqd
prsv

γ
(Y )
d
vt

, (3.9)

Ċ(3)
`nqd
prst

= −1
2[Y †e ]pw[Y †u ]svC∗nedu

rwtv

+ 1
2[Y †n ]vr[Y †d ]wtC(1)

`q
pvsw

− 3
2[Y †n ]vr[Y †d ]wtC(3)

`q
pvsw

1
2[Y †n ]vr[Y †d ]swC `d

pvwt

+ 1
2[Y †n ]pw[Y †d ]vtC qn

svwr

+ 1
2[Y †n ]pw[Y †d ]svC nd

wrvt

−g1(yd + yq)CnB
pr

[Y †d ]st − g1(yn + y`)CdB
st

[Y †n ]pr + 3
2g2CnW

pr

[Y †d ]st

+3
2g2CdW

st

[Y †n ]pr + γ
(Y )
`

pv

C(3)
`nqd
vrst

+ γ(Y )
q

sv

C(3)
`nqd
prvt

+ C(3)
`nqd
pvst

γ(Y )
n
vr

+ C(3)
`nqd
prsv

γ
(Y )
d
vt

, (3.10)

Ċ`nuq
prst

= 2[Y †n ]wr[Y †e ]pvC(1)∗
`equ
wvts

− 2[Y †n ]pw[Yu]svC qn
vtwr

+ 2[Y †n ]pw[Yu]vtC nu
wrsv

+2[Y †e ]pw[Yd]vtC∗nedu
rwvs

+ 2[Y †n ]vr[Yu]wtC(1)
`q

pvwt

+ 6[Y †n ]vr[Yu]wtC(3)
`q

pvwt

– 8 –
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(L̄L)(L̄L) (L̄L)(R̄R) (L̄R)(R̄L) and (L̄R)(L̄R)

O`` (¯̀
pγµ`r)(¯̀

sγ
µ`t) O`d (¯̀

pγµ`r)(d̄sγµdt) O(1)
`equ (¯̀j

per)εjk(q̄ksut)

O(1)
`q (¯̀

pγµ`r)(q̄sγµqt) O`u (¯̀
pγµ`r)(ūsγµut) O(3)

`equ (¯̀j
pσµνer)εjk(q̄ksσµνut)

O(3)
`q (¯̀

pγµτ
I`r)(q̄sγµτ Iqt) O`e (¯̀

pγµ`r)(ēsγµet) O`edq (¯̀j
per)(d̄sq

j
t )

O(1)
qu (q̄pγµqr)(ūsγµut) O(1)

quqd (¯̀j
pnr)(ūsq

j
t )

O(8)
qu (q̄pγµTAqr)(ūsγµTAut)

O(1)
qd (q̄pγµqr)(d̄sγµdt)

O(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

Table 2. The 14 four-fermion SMEFT operators whose anomalous dimensions are modified by
right-handed neutrino Yukawa couplings. Here, I(A) is the adjoint index of SU(2)L (SU(3)C).

−2[Y †n ]vr[Yu]wtC `u
pvsw

− 2[Y †u ]sv[Yd]wtC
(1)
`nqd
prvw

− 2ξn
pr

[Yu]st − 2ξ∗u
st

[Y †n ]pr

+γ(Y )
`

pv

C`nuq
vrst

+ γ(Y )
u
sv

C`nuq
prvt

+ C`nuq
pvst

γ(Y )
n
vr

+ C`nuq
prsv

γ(Y )
q
vt

, (3.11)

where yn = 0, ye = −1, y` = −1/2, yd = −1/3, yu = 2/3, and yq = 1/6 are the
hypercharges.

3.2 Anomalous dimensions from Yukawa couplings: SMEFT

The Yukawa interactions of the right-handed neutrinos modify the RGE of the four-fermion
SMEFT operators listed in table 2. We only provide the additional terms induced by the
right-handed neutrino Yukawa couplings Yn. For the operators in the lower panel of table 2,
the anomalous dimensions are modified via the ξ parameters in eq. (2.16).

3.2.1 (L̄L)(L̄L)

Ċ ``
prst

⊃ 1
2[Y †nYn]pr

(
C(1)
φ`
st

+ C(3)
φ`
st

)
+ 1

2[Y †nYn]st
(
C(1)
φ`
pr

+ C(3)
φ`
pr

)
− 1

2[Yn]sv[Yn]wtC `n
prvw

−1
2[Yn]pv[Yn]wrC `n

stvw

− 1
2

(
[Yn]vr[Ye]wtC`n`e

pvsw

+ [Yn]wt[Ye]vrC`n`e
swpv

)
−1

2

(
[Y †n ]pv[Y †e ]swC∗`n`e

rvtw

+ [Y †n ]sw[Y †e ]pvC∗`n`e
twrv

)
,

Ċ(1)
`q

prst

⊃ [Y †nYn]prC(1)
φq
st

− [Y †n ]pv[Yn]wrC qn
stvw

+ 1
4

(
[Yn]vr[Yu]swC`nuq

pvwt

+ [Y †n ]pv[Y †u ]wtC∗`nuq
rvws

)

−1
4

(
[Yn]vr[Yd]wtC

(1)
`nqd
pvsw

+ [Y †n ]pv[Y †d ]swC(1)∗
`nqd
rvtw

)

+3
(

[Yn]vr[Yd]wtC
(3)
`nqd
pvsw

+ [Y †n ]pv[Y †d ]swC(3)∗
`nqd
rvtw

)
,

– 9 –
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Ċ(3)
`q

prst

⊃ −[Y †nYn]prC(3)
φq
st

+ 1
4

(
[Yn]vr[Yu]swC`nuq

pvwt

+ [Y †n ]pv[Y †u ]wtC∗`nuq
rvws

)

+1
4

(
[Yn]vr[Yd]wtC

(1)
`nqd
pvsw

+ [Y †n ]pv[Y †d ]swC(1)∗
`nqd
rvtw

)

−3
(

[Yn]vr[Yd]wtC
(3)
`nqd
pvsw

+ [Y †n ]pv[Y †d ]swC(3)∗
`nqd
rvtw

)
. (3.12)

3.2.2 (L̄L)(R̄R)

Ċ `d
prst

⊃ [Y †nYn]prCφd
st

− [Yn]pv[Y †n ]wrC nd
vwst

+ 1
2

(
[Yd]sw[Yn]vrC(1)

`nqd
pvwt

+ [Y †d ]wt[Y †n ]pvC(1)∗
`nqd
rvws

)

+6
(

[Yd]sw[Yn]vrC(3)
`nqd
pvwt

+ [Y †d ]wt[Y †n ]pvC(3)∗
`nqd
rvws

)
, (3.13)

Ċ `u
prst

⊃ [Y †nYn]prCφu
st

− [Yn]pv[Y †n ]wrC nu
vwst

− 1
2

(
[Y †u ]wt[Yn]vrC`nuq

pvsw

+ [Yu]sw[Y †n ]pvC∗`nuq
rvtw

)
,

(3.14)
Ċ `e

prst

⊃ [Ye]srξ e
pt

+ [Y †e ]ptξ∗e
rs

+ [Y †nYn]prCφe
st

− [Yn]pv[Y †n ]wrC ne
vwst

+1
2

(
[Ye]sw[Yn]vrC`n`e

pvwt

+ [Y †e ]wt[Y †n ]pvC∗`n`e
rvws

)
, (3.15)

Ċ(1)
qu

prst

⊃ 1
Nc

[Yu]srξu
pt

+ 1
Nc

[Y †u ]ptξ∗u
rs

, (3.16)

Ċ(8)
qu

prst

⊃ 2[Yu]srξu
pt

+ 2[Y †u ]ptξ∗u
rs

, (3.17)

Ċ(1)
qd

prst

⊃ 1
Nc

[Yd]srξd
pt

+ 1
Nc

[Y †d ]ptξ∗d
rs

, (3.18)

Ċ(8)
qd

prst

⊃ 2[Yd]srξd
pt

+ 2[Y †d ]ptξ∗d
rs

. (3.19)

3.2.3 (L̄R)(R̄L) and (L̄R)(L̄R)

Ċ`edq
prst

⊃ −2[Yd]stξ e
pr

− 2[Y †e ]prξ∗d
ts

+ 2[Y †n ]pv[Y †e ]wrC(1)∗
`nqd
wvst

+ 2[Y †n ]pv[Yu]wtCnedu
vrsw

, (3.20)

Ċ(1)
`equ
prst

⊃ 2[Y †u ]stξ e
pr

+ 2[Y †e ]prξu
st

+ 2[Y †n ]pv[Y †e ]wrC∗`nuq
wvts

− 2[Y †n ]pv[Y †d ]swCnedu
vrwt

, (3.21)

Ċ(3)
`equ
prst

⊃ 1
2[Y †n ]pv[Y †d ]swCnedu

vrwt

, (3.22)

Ċ(1)
quqd
prst

⊃ −2[Y †u ]prξd
st

− 2[Y †d ]stξu
pr

. (3.23)

4 Summary

We presented the Yukawa terms of the one-loop anomalous dimension matrix for the
dimension-six four-fermion operators of SMNEFT. This complements the gauge terms cal-
culated in ref. [13]. Even if the right-handed neutrino Yukawa couplings are small, the
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induced mixings between SMNEFT operators can result in large RG running proportional
to the other Yukawa couplings. The Yukawa couplings of the right-handed neutrinos also
cause the SMEFT and SMNEFT operators to mix. We calculated the new ADM contribu-
tions for the 14 four-fermion SMEFT operators that are affected by this operator mixing.
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