

pubs.acs.org/JACS Communication

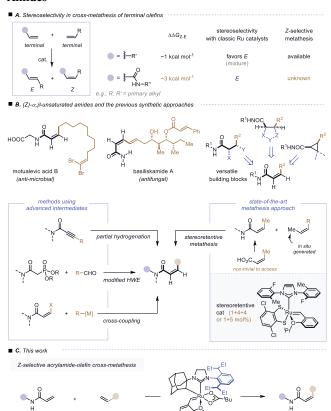
Efficient Z-Selective Olefin-Acrylamide Cross-Metathesis Enabled by Sterically Demanding Cyclometalated Ruthenium Catalysts

Yan Xu, Jonathan J. Wong, Adrian E. Samkian, Jeong Hoon Ko, Shuming Chen, K. N. Houk,* and Robert H. Grubbs*

Cite This: J. Am. Chem. Soc. 2020, 142, 20987-20993

ACCESS

Metrics & More


Article Recommendations

s Supporting Information

ABSTRACT: The efficient Z-selective cross-metathesis between acrylamides and common terminal olefins has been developed by the use of novel cyclometalated ruthenium catalysts with bulky N-heterocyclic carbene (NHC) ligands. Superior reactivity and stereoselectivity are realized for the first time in this challenging transformation, allowing streamlined access to an important class of *cis*-Michael acceptors from readily available feedstocks. The kinetic preference for cross-metathesis is enabled by a pivalate anionic ligand, and the origin of this effect is elucidated by density functional theory calculations.

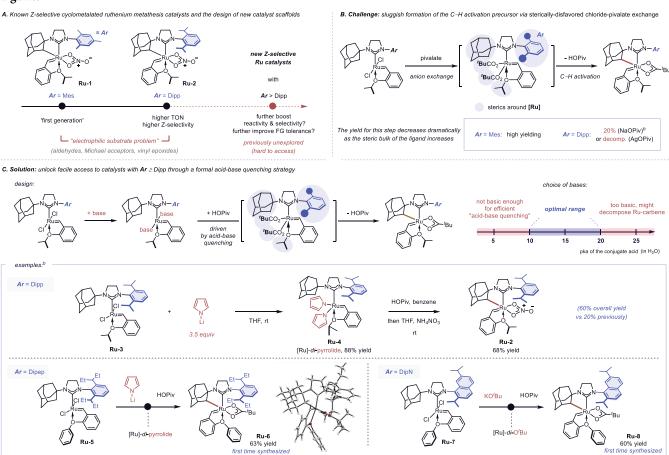
efin metathesis is a versatile method to access complex structures from simple, readily available feedstocks, 1,2

Scheme 1. Challenge in Z-Selective Acrylamide-Olefin Cross-Metathesis and the Synthesis of (Z)- α , β -Unsaturated Amides

and the precise control over the stereochemistry of the generated double bonds adds critical value to allow selective and divergent synthesis.³ Among various metathesis transformations, the acrylamide-olefin metathesis represents a highly streamlined approach to α,β -unsaturated amides, but full control over the stereoselectivity has been a long-standing challenge in this important transformation (Scheme 1a). Consistent with a larger thermodynamic gap between the Zand E-alkenyl amides compared to common internal olefins,⁵ substrate-controlled, high E selectivity (usually >25:1) is generally obtained in the acrylamide-olefin metathesis using classic catalysts. 4b However, the Z-selective acrylamide-olefin metathesis has been substantially difficult, even though efficient Z-selective metathesis protocols have been established for common terminal olefins.⁶ With high Z-selectivity adversely impacted by a strong thermodynamic preference for the E isomers, access to a useful turnover number (TON) is further hampered by the limited compatibility between acrylamides and the known Z-selective catalysts, including the cyclometalated Ru-1⁷ and Ru-2⁸ (vide infra) and those based on Mo⁹ or W.¹⁰ The streamlined access to (Z)- α , β -unsaturated amides is highly desirable because of their versatile utility as synthetic intermediates and bioactive molecules, e.g., covalently acting protein modulators (Scheme 1b).¹¹ Only a few conventional methods are available to date, but all rely on the use of prefunctionalized, advanced intermediates. 12 An alternative, stereoretentive cross-metathesis approach was recently achieved using (Z)-but-2-enamides and in situ-formed (Z)-2-alkenes, but access to these internal alkene starting materials, especially the (Z)-but-2-enamides, is nontrivial. ¹³

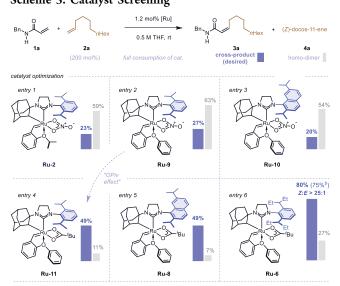
Received: October 28, 2020 Published: December 4, 2020

\$0.09/0



2.5 mol% loading

"Z-amides"


>20:1 Z selectivity

Scheme 2. Design and Development of Novel Z-Selective Cyclometalated Ruthenium Metathesis Catalysts with Bulky Ligands^a

^aAll yields are isolated yields. ^bIsolated as the ruthenium nitrate via further anion exchange with ammonium nitrate. For details, see SI.

Scheme 3. Catalyst Screening

"Yields determined by ¹H NMR using anthracene as an internal standard. ^bIsolated yields of the Z-product. For details, see SI.

We now report efficient Z-selective acrylamide-olefin metathesis by a novel, sterically demanding cyclometalated Ru catalyst that features high yield, high Z-selectivity, single operation (i.e., without adding the catalyst in portions), and use of readily available feedstocks (Scheme 1c).

To enable this challenging Z-selective metathesis, new catalyst scaffolds beyond the known platform are needed (Scheme 2a). In 2011, our group discovered that a type of cyclometalated Ru-carbene complexes kinetically favors Zproducts in the metathesis of two terminal olefins via a unique, side-bound cycloaddition pathway. 7a,16 The initial Z-selective catalysts feature a 2,4,6-mesityl (Mes) side arm on the Nheterocyclic carbene (NHC) ligand (e.g., Ru-1),7 and replacing the Mes with the bulkier 2,6-diisopropylphenyl (Dipp) led to the second-generation catalysts (e.g., Ru-2) with superior TONs and Z-selectivity.⁸ Despite their synthetic utility, both generations of catalysts are less compatible with electrophilic substrates such as aldehydes and Michael acceptors, 9c,14c,17 and the TONs and Z-selectivity require further improvement. We hypothesized that the introduction of new NHC side arms that are not only bulkier than Dipp but also sufficiently flexible may further boost the major catalyst parameters including the functional group (FG) compatibility, thus providing a vital opportunity with challenging substrates.18

Such a design, however, faces a significant synthetic difficulty (Scheme 2b). The conventional anion exchange that generates the key ruthenium dipivalate intermediates for the carboxylate-assisted C—H activation is only high yielding when the NHC ligand is relatively small (e.g., with Mes as the side arm), which

74% yield > 20:1 Z:E

Scheme 4. Substrate Scope with Various Common Olefins and Acrylamides

> 20:1 Z:E

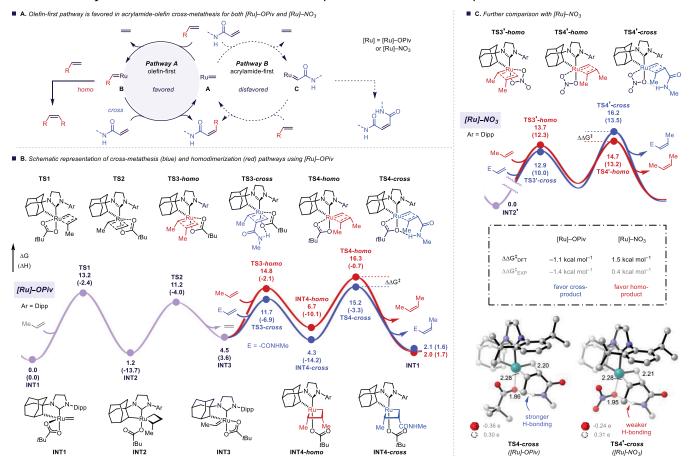
71% yield > 20:1 Z:E^t

^aGeneral reaction conditions: 1 (0.25 mmol), 2 (0.325 mmol), and Ru-6 (0.00625 mmol) in THF (0.4 mL). All yields are isolated yields of the Z-products. The stereoselectivity was determined by ¹H NMR analysis of the crude reaction mixture unless otherwise noted. ^bStereoselectivity determined by isolation. ^c2 was used in 1.6 equiv. ^d2 was used in 2 equiv. ^e2 was used in 1.8 equiv. For details, see SI.

is consistent with a sterically disfavored process leading to a highly congested organometallic species. 19 Even in the preparation of known cyclometalated catalysts equipped with the Dipp ligand (e.g., Ru-2), the yield for this key transformation is only 20%,8 indicating a slightly favored productive pathway over metallocarbene decomposition, as the steric bulk increases. To overcome this long-existing limitation and to unlock unprecedented catalyst scaffolds with even bulkier side-arms, we envisioned the use of formal acid-base quenching to bypass the challenging salt metathesis, in which a ruthenium halide precursor is first treated with a base whose conjugated acid's pK_a is between 10 and 20 to generate a ruthenium-base complex and then pivalic acid to remove the basic ligands and yield a ruthenium dipivalate (Scheme 2c).²¹ A variety of bases were tested, yet most led to either no reaction, mono-exchange, or metallocarbene decomposition.²² Finally, lithium pyrrolide²³ was identified as a suitable base in a model reaction with Ru-3, successfully furnishing Ru-2 in a much improved, 60% isolated yield (vs 20% previously). Moreover, using this strategy, new catalyst scaffolds with bulky side-arms, such as 2,6-diisopentylphenyl²⁴ (Dipep, in Ru-6, bulkier than Dipp) and 2,7-diisopropylnaphthalen-1-yl18b (DipN, in Ru-8), could be obtained for the first time. 25 A less-electron-rich phenoxy group is also incorporated

63% yield > 20:1 Z:E

in **Ru-6** and **Ru-8** in place of the common Hoveyda auxiliary to allow fast catalyst initiation (*vide infra*) and potentially help with the accommodation of bulky NHCs.²⁶


scope of acrylamides

78% yield^d > 20:1 Z:E

N-Benzyl acylamide (1a) and 1-dodecene (2a) were selected as model substrates to test the Z-selective acrylamide-olefin cross-metathesis with various catalyst scaffolds (Scheme 3). The initial study revealed that the classic Z-selective catalysts (e.g., Ru-1 and Ru-2) are largely inefficient for this transformation. The use of the state-of-the-art Ru-2 achieved < 20 turnovers, together with a sluggish turnover frequency that required 2 days to reach full catalyst consumption. While the desired product 3a was obtained in only 23% yield, the homoproduct 4a was furnished in 59% yield, further indicating an undesired kinetic preference for the homodimerization (entry 1). Ru-9 with a fast-initiating phenoxy auxiliary was then tested, which indeed shortened the reaction time to ~8 h and resulted in a slightly improved yield (entry 2). While manipulating the side arm of Ru-9 alone appeared to be less fruitful (Ru-10, entry 3), we discovered that the kinetic preference between the cross- and the homometathesis could be further tuned by switching the anionic ligands. When the nitrate was replaced by pivalate, more than 10-fold change in the kinetic preference and a much higher yield of the desired product 3a was obtained (49% yield, Ru-11, entry 4). Further

20000

Scheme 5. Computational Studies on the Reaction Pathways and the Kinetic Selectivity between Cross- and Homometathesis

"All energies are reported in kcal/mol and are with respect to the lowest-energy intermediates in the olefin-first pathways (i.e., INT1 for [Ru]—OPiv and INT2' for [Ru]—NO₃). All distances are reported in Å. $\Delta\Delta G_{DFT}^{\dagger}$ values were calculated by subtracting the ΔG^{\dagger} for the homometathesis pathway from the ΔG^{\dagger} for the cross-metathesis pathway. $\Delta\Delta G_{exp}^{\dagger}$ values were derived from the experimental relative rate constants at an early stage. Calculations were carried out at the M06/6-311++G(d,p)-SDD(Ru), SMD(THF)//B3LYP-D3/6-31G(d)-SDD(Ru) level of theory with vibrational frequencies calculated using the Grimme quasi-rigid rotor-harmonic oscillator approximation (see SI for details).

improvement of the TONs and the Z-selectivity was realized by exploring cyclometalated ruthenium pivalate catalysts with more sterically demanding ligands. While the introduction of a DipN side arm (Ru-8) led to a similar yield as Ru-11, the use of Ru-6 with a Dipep side arm successfully increased the yield of 3a to 80%, together with >25:1 Z/E ratio. Compared with the classic metathesis catalysts (e.g., G-II catalyst) that predominately form (E)- α , β -unsaturated amides, the facile access to the Z products with Ru-6 represents a more than 500-fold change in the stereoselectivity, providing a valuable, complementary method to stereodivergent synthesis.

Using 2.5 mol % of the optimal Ru-6, the substrate scope of the Z-selective acrylamide-olefin cross-metathesis was further examined (Scheme 4). The common olefins were used in slight excess (unless volatile or otherwise noted), but they could also be used in stoichiometric amounts relative to the acrylamide substrates without a significant decrease in the yield (see Scheme S3 in SI). Various acrylamides, including those with primary, secondary, and tertiary alkyl substituents, could be readily used as the substrates, through reacting with a large array of terminal olefins furnishing high-value-added products in decent yields. N-Aryl acrylamides could also be used despite a lower efficiency (3t). The Z-selectivity is in general over 20:1, except for secondary acrylamides bearing tertiary

substituents (3s, 15:1, and 3x, 17:1). A wide range of FGs are readily compatible, including sulfonates (3d), epoxides (3f), boronic esters (3h), alcohols (3i), alkyl and aryl halides (3k and 3o), and ketones (3x). Aldehydes (3b) and phenols (3c) are reportedly less compatible with Ru-1 and Ru-2 by significantly decreasing their TONs, 14c but are well-tolerated by the new catalyst. No olefin migration was noticed with allylbenzene (3m), and 1,1-disubstituted olefins remained untouched in 3n.²⁷ No intramolecular cyclization or notable erosion of the Z-selectivity was observed with substrates bearing tethered nucleophiles (3c, 3h, and 3i), further showcasing a very mild reaction condition. Many densely functionalized amide products are challenging to access by other methods (3v, 3w and 3x), which highlights the advantage of this method in accessing complex and biologically relevant molecules containing amide-based cis-Michael accept-

We then sought to further understand the intriguing role of pivalate, a key factor that significantly increases the kinetic preference for forming the desired cross-products and enables efficient Z-selective acrylamide-olefin metathesis. Using the Dipp-NHC as a model ligand, computational studies were performed to depict detailed mechanistic profiles with Z-selective ruthenium catalysts bearing different anionic ligands.

Law - 77-1 - 1-1 - - - 740 4004 (1- -- 0-1400)

First, it was found that the "olefin-first" pathway is favored by both the ruthenium pivalate and nitrate catalysts (Scheme 5a), in which a ruthenium methylidene (A) first reacts with a common olefin to form a ruthenium alkylidene (B) and then with an acrylamide or another molecule of common olefin to form the cross- or homoproduct. Proceeding through intermediate C, an alternative "acrylamide-first" pathway is higher in energy and thus disfavored. A schematic representation for the key intermediates and transition states of the "olefin-first" pathway was further depicted for a model cyclometalated ruthenium pivalate catalyst (Scheme 5b), and the cycloreversion of the most sterically congested, trisubstituted ruthenacyclobutanes was found to be the turnoverlimiting and the selectivity-determining step. Cross-metathesis and homodimerization have barriers of 15.2 kcal/mol (TS4cross) and 16.3 kcal/mol (TS4-homo), respectively, which align well with the observed experimental results, favoring crossmetathesis by 1.1 kcal/mol. As a comparison, when a model ruthenium nitrate catalyst was employed (Scheme 5c), the cross- and homometathesis are calculated to have barriers of 16.2 kcal/mol (TS4'-cross) and 14.7 kcal/mol (TS4'-homo), respectively. This leads to a reversed selectivity favoring homometathesis by 1.5 kcal/mol, which is also consistent with experimental observations. Using the corresponding activation energy of the homometathesis as a benchmark, it appears that the pivalate ligand is superior to the nitrate ligand in stabilizing the key cycloreversion transition state for the desired crossmetathesis. Analysis of the transition-state structure TS4-cross revealed a strong hydrogen-bonding interaction between the oxygen of the pivalate ligands and the N-H bond of the amide motif, which is shown by a short H···O distance (1.86 Å). The CM5 charge calculations indicate the oxygen has a negative charge of -0.36 and the hydrogen has a positive charge of +0.30, supporting favorable electrostatic interactions. When the pivalate ligand is replaced by a nitrate (TS4'-cross), such a hydrogen-bonding interaction is notably weakened, as seen by a longer H···O distance (1.95 Å) and a smaller negative charge on the oxygen (-0.24). As such, the observed kinetic preference of acrylamide-olefin cross-metathesis with the Zselective ruthenium pivalate catalysts could be rationalized by a more favorable hydrogen-bonding interaction between the pivalate ligand and the amide N-H bond in the key cycloreversion step. This is further supported by the experimental observation of a reversed kinetic preference with the pivalate catalysts when acrylamides are replaced by acrylates (favoring homometathesis), a type of substrates with similar electronic properties but unable to serve as the hydrogen-bond donor.28

In summary, we have developed a novel synthesis of cyclometalated Z-selective ruthenium olefin metathesis catalysts by using a formal acid—base quenching protocol to bypass challenging salt metathesis, which ultimately unlocked facile access to sterically demanding catalysts that were previously hard to obtain or even unexplored. By using a novel catalyst featuring a bulky Dipep side arm and a pivalate bidentate anionic ligand, we successfully realized the first efficient Z-selective cross-metathesis between terminal acrylamides and common olefins, providing efficient access to an important class of cis-Michael acceptors from readily available feedstocks. A detailed reaction pathway and an intriguing "pivalate effect" were further elucidated by computational studies. Following this, efforts to develop more advanced Z-selective catalysts are currently underway.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c11334.

Crystallographic data (CIF)

Experimental procedures and spectral data (PDF)

Accession Codes

CCDC 2024207 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

AUTHOR INFORMATION

Corresponding Authors

K. N. Houk — Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States; orcid.org/0000-0002-8387-5261; Email: houk@chem.ucla.edu

Robert H. Grubbs — Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States; orcid.org/0000-0002-0057-7817; Email: rhg@caltech.edu

Authors

Yan Xu — Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States; orcid.org/0000-0003-2808-7964

Jonathan J. Wong – Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States

Adrian E. Samkian – Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States

Jeong Hoon Ko – Arnold and Mabel Beckman Laboratory of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States

Shuming Chen – Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.0c11334

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We gratefully acknowledge Umicore and National Science Foundation (Grant CHE-1764328 to K.N.H.) for financial support. Dr. Adam Johns is acknowledged for insightful suggestions. Dr. Ki-Young Yoon is acknowledged for assistance with crystallographic data. Dr. William Wolf, Dr. Jiaming Li, and Dr. Jianchun Wang are acknowledged for helpful discussions. Calculations were performed on the Hoffman2 cluster at the University of California, Los Angeles, and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation (Grant OCI-1053575).

REFERENCES

- (1) (a) Fürstner, A. Olefin metathesis and beyond. Angew. Chem., Int. Ed. 2000, 39, 3012–3043. (b) Schrock, R. R.; Hoveyda, A. H. Molybdenum and tungsten imido alkylidene complexes as efficient olefin-metathesis catalysts. Angew. Chem., Int. Ed. 2003, 42, 4592–4633. (c) Schrock, R. R. Recent advances in high oxidation state Mo and W imido alkylidene chemistry. Chem. Rev. 2009, 109, 3211–3226. (d) Samojłowicz, C.; Bieniek, M.; Grela, K. Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. Chem. Rev. 2009, 109, 3708–3742. (e) Vougioukalakis, G. C.; Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 2010, 110, 1746–1787. (f) Nelson, D. J.; Manzini, S.; Urbina-Blanco, C. A.; Nolan, S. P. Key processes in ruthenium-catalysed olefin metathesis. Chem. Commun. 2014, 50, 10355–10375.
- (2) (a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Metathesis reactions in total synthesis. *Angew. Chem., Int. Ed.* **2005**, 44, 4490–4527. (b) Binder, J. B.; Raines, R. T. Olefin metathesis for chemical biology. *Curr. Opin. Chem. Biol.* **2008**, 12, 767–773. (c) Sinclair, F.; Alkattan, M.; Prunet, J.; Shaver, M. P. Olefin cross metathesis and ring-closing metathesis in polymer chemistry. *Polym. Chem.* **2017**, 8, 3385–3398.
- (3) For reviews, see: (a) Fürstner, A. Teaching metathesis "simple" stereochemistry. Science 2013, 341, 1229713. (b) Hoveyda, A. H.; Khan, R. K. M.; Torker, S.; Malcolmson, S. J. Catalyst-controlled stereoselective olefin metathesis. In Handbook of Metathesis; Grubbs, R. H., Wenzel, A. G., O'Leary, D. J., Khosravi, E., Eds.; Wiley-VCH: Weinheim, 2014; pp 503–562. (c) Montgomery, T. P.; Ahmed, T. S.; Grubbs, R. H. Stereoretentive olefin metathesis: an avenue to kinetic selectivity. Angew. Chem., Int. Ed. 2017, 56, 11024–11036.
- (4) (a) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. Synthesis of functionalized olefins by cross and ring-closing metathesis. *J. Am. Chem. Soc.* **2000**, 122, 3783–3784. (b) Choi, T.-L.; Chatterjee, A. K.; Grubbs, R. H. Synthesis of α,β -unsaturated amides by olefin cross-metathesis. *Angew. Chem., Int. Ed.* **2001**, 40, 1277–1279.
- (5) (a) Ritter, T.; Hejl, A.; Wenzel, A. G.; Funk, T. W.; Grubbs, R. H. A standard system of characterization for olefin metathesis catalysts. *Organometallics* **2006**, *25*, 5740–5745. (b) See the SI for calculated energy differences.
- (6) Herbert, M. B.; Grubbs, R. H. Z-Selective cross metathesis with ruthenium catalysts: synthetic applications and mechanistic implications. *Angew. Chem., Int. Ed.* **2015**, *54*, 5018–5024.
- (7) (a) Endo, K.; Grubbs, R. H. Chelated ruthenium catalysts for Z-selective olefin metathesis. J. Am. Chem. Soc. 2011, 133, 8525–8527. (b) Keitz, B. K.; Endo, K.; Patel, P. R.; Herbert, M. B.; Grubbs, R. H. Improved ruthenium catalysts for Z-selective olefin metathesis. J. Am. Chem. Soc. 2012, 134, 693–699.
- (8) (a) Rosebrugh, L. E.; Herbert, M. B.; Marx, V. M.; Keitz, B. K.; Grubbs, R. H. Highly active ruthenium metathesis catalysts exhibiting unprecedented activity and Z-selectivity. J. Am. Chem. Soc. 2013, 135, 1276–1279. A related catalyst with an unsaturated NHC ligand: (b) Dumas, A.; Tarrieu, R.; Vives, T.; Roisnel, T.; Dorcet, V.; Baslé, O.; Mauduit, M. A versatile and highly Z-selective olefin metathesis ruthenium catalyst based on a readily accessible N-heterocyclic carbene. ACS Catal. 2018, 8, 3257–3262.
- (9) For selected examples with molybdenum-based complexes, see: (a) Townsend, E. M.; Schrock, R. R.; Hoveyda, A. H. Z-selective metathesis homocoupling of 1,3-dienes by molybdenum and tungsten monoaryloxide pyrrolide (MAP) complexes. J. Am. Chem. Soc. 2012, 134, 11334–11337. (b) Kiesewetter, E. T.; O'Brien, R. V.; Yu, E. C.; Meek, S. J.; Schrock, R. R.; Hoveyda, A. H. Synthesis of Z-(pinacolato)allylboron and Z-(pinacolato)alkenylboron compounds through stereoselective catalytic cross-metathesis. J. Am. Chem. Soc. 2013, 135, 6026–6029. (c) Zhang, H.; Yu, E. C.; Torker, S.; Schrock, R. R.; Hoveyda, A. H. Preparation of macrocyclic Z-enoates and (E,Z)- or (Z,E)-dienoates through catalytic stereoselective ring-closing metathesis. J. Am. Chem. Soc. 2014, 136, 16493–16496. (d) Yu, E. C.; Johnson, B. M.; Townsend, E. M.; Schrock, R. R.;

- Hoveyda, A. H. Synthesis of linear (Z)- α , β -unsaturated esters by catalytic cross-metathesis. The influence of acetonitrile. *Angew. Chem., Int. Ed.* **2016**, *55*, 13210–13214.
- (10) For selected examples with tungsten-based complexes, see: (a) Jiang, A. J.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. Highly Z-selective metathesis homocoupling of terminal olefins. J. Am. Chem. Soc. 2009, 131, 16630–16631. (b) Peryshkov, D. V.; Schrock, R. R.; Takase, M. K.; Müller, P.; Hoveyda, A. H. Z-Selective olefin metathesis reactions promoted by tungsten oxo alkylidene complexes. J. Am. Chem. Soc. 2011, 133, 20754–20757.
- (11) (a) Zhang, S.; Neumann, H.; Beller, M. Synthesis of α,β-unsaturated carbonyl compounds by carbonylation reactions. *Chem. Soc. Rev.* **2020**, *49*, 3187–3210. (b) Jiang, S.; Yang, K.; Yu, X. Synthesis of α,β-unsaturated amide via phosphonium ylide. *Synth. Commun.* **2009**, 39, 1759–1767. (c) Nomura, D. K.; Maimone, T. J. Target identification of bioactive covalently acting natural products. *Curr. Top. Microbiol. Immunol.* **2018**, *420*, 351–374. (d) Lanning, B. R.; Whitby, L. R.; Dix, M. M.; Douhan, J.; Gilbert, A. M.; Hett, E. C.; Johnson, T. O.; Joslyn, C.; Kath, J. C.; Niessen, S.; Roberts, L. R.; Schnute, M. E.; Wang, C.; Hulce, J. J.; Wei, B.; Whiteley, L. O.; Hayward, M. M.; Cravatt, B. F. A road map to evaluate the proteomewide selectivity of covalent kinase inhibitors. *Nat. Chem. Biol.* **2014**, *10*, 760–767.
- (12) (a) Raphael, R. A.; Sondheimer, F. The synthesis of long-chain aliphatic acids from acetylenic compounds. Part I. The synthesis of a geometrical isomer of herculin. *J. Chem. Soc.* **1950**, 115–119. (b) Ando, K. Preparation of (Z)- α , β -unsaturated amides by using Horner-Wadsworth-Emmons reagents, (diphenylphosphono)-acetamides. *Synlett* **2001**, 2001, 1272–1274. (c) Chen, M.; Roush, W. R. Enantioselective synthesis of (–)-Basiliskamide A. *Org. Lett.* **2012**, 14, 1556–1559.
- (13) Liu, Z.; Xu, C.; del Pozo, J.; Torker, S.; Hoveyda, A. H. Rubased catechothiolate complexes bearing an unsaturated NHC ligand: effective cross-metathesis catalysts for synthesis of (Z)- α , β -unsaturated esters, carboxylic acids, and primary, secondary, and Weinreb amides. *J. Am. Chem. Soc.* **2019**, *141*, 7137–7146.
- (14) For selected examples with ruthenium-based stereoretentive catalysts, see: (a) Khan, R. K. M.; Torker, S.; Hoveyda, A. H. Readily accessible and easily modifiable Ru-based catalysts for efficient and Zselective ring-opening metathesis polymerization and ring-opening/ cross-metathesis. J. Am. Chem. Soc. 2013, 135, 10258-10261. (b) Koh, M. J.; Khan, R. K. M.; Torker, S.; Hoveyda, A. H. Broadly applicable Z- and diastereoselective ring-opening/cross-metathesis catalyzed by a dithiolate Ru complex. Angew. Chem., Int. Ed. 2014, 53, 1968-1972. (c) Koh, M. J.; Khan, R. K. M.; Torker, S.; Yu, M.; Mikus, M. S.; Hoveyda, A. H. High-value alcohols and higheroxidation-state compounds by catalytic Z-selective cross-metathesis. Nature 2015, 517, 181-186. (d) Johns, A. M.; Ahmed, T. S.; Jackson, B. W.; Grubbs, R. H.; Pederson, R. L. High trans kinetic selectivity in ruthenium-based olefin cross-metathesis through stereoretention. Org. Lett. 2016, 18, 772-775. (e) Ahmed, T. S.; Grubbs, R. H. Fastinitiating, ruthenium-based catalysts for improved activity in highly Eselective cross metathesis. J. Am. Chem. Soc. 2017, 139, 1532-1537.
- (15) Xu, C.; Shen, X.; Hoveyda, A. H. In situ methylene capping: a general strategy for efficient stereoretentive catalytic olefin metathesis. The concept, methodological implications, and applications to synthesis of biologically active compounds. *J. Am. J. Am. Chem. Soc.* **2017**, *139*, 10919–10928.
- (16) Liu, P.; Xu, X.; Dong, X.; Keitz, B. K.; Herbert, M. B.; Grubbs, R. H.; Houk, K. N. Z-selectivity in olefin metathesis with chelated Ru catalysts: computational studies of mechanism and selectivity. *J. Am. Chem. Soc.* **2012**, *134*, 1464–1467.
- (17) Li, J.; Ahmed, T. S.; Xu, C.; Stoltz, B. M.; Grubbs, R. H. Concise syntheses of $\Delta 12$ -prostaglandin J natural products via stereoretentive metathesis. J. Am. Chem. Soc. **2019**, 141, 154–158.
- (18) For selected examples of bulky-yet-flexible NHCs, see: (a) Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. Sterically demanding, bioxazoline-derived N-heterocyclic carbene ligands with restricted flexibility for catalysis. *J. Am. Chem. Soc.*

Law - 77-1 - 1-1 - - - 740 4004 (1- -- 0-1400)

- 2004, 126, 15195-15201. (b) Luan, X.; Mariz, R.; Gatti, M.; Costabile, C.; Poater, A.; Cavallo, L.; Linden, A.; Dorta, R. Identification and characterization of a new family of catalytically highly active imidazolin-2-ylidenes. J. Am. Chem. Soc. 2008, 130, 6848-6858. (c) Organ, M. G.; Çalimsiz, S.; Sayah, M.; Hoi, K. H.; Lough, A. J. Pd-PEPPSI-IPent: an active, sterically demanding crosscoupling catalyst and its application in the synthesis of tetra-orthosubstituted biaryls. Angew. Chem., Int. Ed. 2009, 48, 2383-2387. (d) Meiries, S.; Le Duc, G.; Chartoire, A.; Collado, A.; Speck, K.; Arachchige, K. S. A.; Slawin, A. M. Z.; Nolan, S. P. Large yet flexible N-heterocyclic carbene ligands for palladium catalysis. Chem. - Eur. J. 2013, 19, 17358-17368. For reviews, see: (e) Würtz, S.; Glorius, F. Surveying sterically demanding N-heterocyclic carbene ligands with restricted flexibility for palladium-catalyzed cross-coupling reactions. Acc. Chem. Res. 2008, 41, 1523-1533. (f) Gómez-Suárez, A.; Nelson, D. J.; Nolan, S. P. Quantifying and understanding the steric properties of N-heterocyclic carbenes. Chem. Commun. 2017, 53, 2650-2660. (19) Cannon, J. S.; Zou, L.; Liu, P.; Lan, Y.; O'Leary, D. J.; Houk, K. N.; Grubbs, R. H. Carboxylate-assisted C(sp³)-H activation in olefin
- metathesis-relevant ruthenium complexes. J. Am. Chem. Soc. 2014, 136, 6733-6743.
- (20) Herbert, M. B.; Lan, Y.; Keitz, B. K.; Liu, P.; Endo, K.; Day, M. W.; Houk, K. N.; Grubbs, R. H. Decomposition pathways of Zselective ruthenium metathesis catalysts. J. Am. Chem. Soc. 2012, 134,
- (21) Sanford, M. S. Synthetic and mechanistic investigations of ruthenium olefin metathesis catalysts. Ph.D. Dissertation, California Institute of Technology, Pasadena, California.
- (22) (a) Manzini, S.; Poater, A.; Nelson, D. J.; Cavallo, L.; Slawin, A. M. Z.; Nolan, S. P. Insights into the decomposition of olefin metathesis precatalysts. Angew. Chem., Int. Ed. 2014, 53, 8995-8999. (b) Beach, N. J.; Lummiss, J. A. M.; Bates, J. M.; Fogg, D. E. Reactions of Grubbs catalysts with excess methoxide: formation of novel methoxyhydride complexes. Organometallics 2012, 31, 2349-2356.
- (23) Hock, A. S.; Schrock, R. R.; Hoveyda, A. H. Dipyrrolyl precursors to bisalkoxide molybdenum olefin metathesis catalysts. J. Am. Chem. Soc. 2006, 128, 16373-16375.
- (24) Małecki, P.; Gajda, K.; Gajda, R.; Woźniak, K.; Trzaskowski, B.; Kajetanowicz, A.; Grela, K. Specialized ruthenium olefin metathesis catalysts bearing bulky unsymmetrical NHC ligands: computations, synthesis, and application. ACS Catal. 2019, 9, 587-598.
- (25) For successful use of these side arms in novel Pd catalysts, see: (a) Wu, L.; Drinkel, E.; Gaggia, F.; Capolicchio, S.; Linden, A.; Falivene, L.; Cavallo, L.; Dorta, R. Room-temperature synthesis of tetra-ortho-substituted biaryls by NHC-catalyzed Suzuki-Miyaura couplings. Chem. - Eur. J. 2011, 17, 12886-12890. (b) Froese, R. D. J.; Lombardi, C.; Pompeo, M.; Rucker, R. P.; Organ, M. G. Designing Pd-N-heterocyclic carbene complexes for high reactivity and selectivity for cross-coupling applications. Acc. Chem. Res. 2017, 50, 2244-2253.
- (26) Engle, K. M.; Lu, G.; Luo, S.-X.; Henling, L. M.; Takase, M. K.; Liu, P.; Houk, K. N.; Grubbs, R. H. Origins of initiation rate differences in ruthenium olefin metathesis catalysts containing chelating benzylidenes. J. Am. Chem. Soc. 2015, 137, 5782-5792.
- (27) Cannon, J. S.; Grubbs, R. H. Alkene chemoselectivity in ruthenium-catalyzed Z-selective olefin metathesis. Angew. Chem., Int. Ed. 2013, 52, 9001-9004.
- (28) See the SI for details.