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Federated Variance-Reduced Stochastic Gradient
Descent With Robustness to Byzantine Attacks

Zhaoxian Wu, Qing Ling

Abstract—This paper deals with distributed finite-sum opti-
mization for learning over multiple workers in the presence of
malicious Byzantine attacks. Most resilient approaches so far
combine stochastic gradient descent (SGD) with different robust
aggregation rules. However, the sizeable SGD-induced stochastic
gradient noise challenges discerning malicious messages sent by
the Byzantine attackers from noisy stochastic gradients sent by
the ‘honest” workers. This motivates reducing the variance of
stochastic gradients as a means of robustifying SGD. To this end,
a novel Byzantine attack resilient distributed (Byrd-) SAGA ap-
proach is introduced for federated learning tasks involving multiple
workers. Rather than the mean employed by distributed SAGA, the
novel Byrd-SAGA relies on the geometric median to aggregate the
corrected stochastic gradients sent by the workers. When less than
half of the workers are Byzantine attackers, Byrd-SAGA attains
provably linear convergence to a neighborhood of the optimal
solution, with the asymptotic learning error determined by the
number of Byzantine workers. Numerical tests corroborate the
robustness to various Byzantine attacks, as well as the merits of
Byrd-SAGA over Byzantine attack resilient distributed SGD.

Index Terms—Distributed finite-sum optimization, Byzantine
attacks, gradient noise, variance reduction.

1. INTRODUCTION

ITH the rapid development of information technologies,

the volume of distributed data increases explosively.
Every day, numerous distributed devices including sensors,
cellphones, computers, and vehicles, generate huge amounts
of data, which are often forwarded to datacenters for further
processing and learning tasks. However, collecting data from
distributed devices and storing them in datacenters raise ma-
jor privacy concerns [1]-[3]. Accounting for these concerns,
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federated learning has been advocated to provide a privacy-
preserving, decentralized data processing and machine learning
framework [4], [5]. Data in federated learning are kept private,
and local computations are carried at the distributed devices.
Updates of local variables (such as stochastic gradients, cor-
rected stochastic gradients, and model parameters) are found
using per-device private data, while the datacenter aggregates
local variables and disseminates the aggregated result to the
distributed devices.

Even though privacy is preserved, the distributed nature of
federated learning makes it vulnerable to errors and adversarial
attacks. Devices can then become unreliable in either computing
or communicating, or, they can even be hacked by adversaries.
As aresult, compromised devices may send malicious messages
to the datacenter, thus misleading the learning process [6], [7].
We will henceforth focus on the class of malicious attacks
known as Byzantine attacks [8]. Different from fixed or random
attacks, adversarial devices inflicting what are henceforth termed
Byantine attacks are adaptive in the sense that they can arbitrarily
bias their outputs and strategically inject false information in the
distributed system, by colluding with themselves [9]. Robustify-
ing federated learning against Byzantine attacks is of paramount
importance for secure processing and learning.

To cope with Byzantine attacks in federated learning, several
robust aggregation rules have been developed in recent years,
mainly towards improving the distributed stochastic gradient de-
scent (SGD) solver of the underlying optimization task. Through
aggregating stochastic gradients with the geometric median [10],
[11], median [12], trimmed mean [13], or iterative filtering [14],
stochastic algorithms have been able to tolerate a small number
of devices attacked by Byzantine adversaries. Other aggregation
rules include Krum [15] that selects a stochastic gradient having
the minimal cumulative squared distance from a given number
of nearest stochastic gradients, and robust stochastic aggregation
(RSA) [16] which aggregates models other than stochastic gra-
dients through penalizing the differences between the local and
global model parameters. Related works also include adversarial
learning in distributed principal component analysis [17], escap-
ing from saddle points in non-convex distributed learning under
Byzantine attacks [18], and leveraging redundant gradients to
improve robustness [19], [20].

Although robust SGD iterates can ensure convergence to a
neighborhood of the attack-free optimal solution, this neighbor-
hood size can be large when Byzantine attacks are carefully
crafted [21]. Essentially, SGD suffers from the sizeable approx-
imation error (noise) associated with stochastic gradients. This
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leads to the challenge of distinguishing malicious messages sent
by Byzantine attackers from the noisy stochastic gradients sent
by ‘honest’ devices.

In the face of this challenge, we posed the following ques-
tion: Is it possible to better distinguish the malicious messages
from the stochastic gradients through reducing the stochastic
gradient-induced noise? Our answer will turn out to be in the
affirmative. Intuitively, if the stochastic gradient noise is small,
the malicious messages should be easy to identify; see also the
illustrative example in Section ITI-D. This intuition suggests com-
bining variance reduction techniques with robust aggregation
rules to handle Byzantine attacks in federated learning.

Existing variance reduction techniques in stochastic opti-
mization include mini-batch [22], stochastic variance reduced
gradient [23], stochastic dual coordinate descent [24], stochastic
recursive gradient algorithm [25], stochastic average gradient
algorithm (SAGA) [26], and many others [27]-[30]. Among
them, we are particularly interested in SAGA, which has been
proven effective in finite-sum optimization. SAGA can also be
implemented in a distributed manner [31]-[33], and hence it
fits well the federated learning applications, where each device
deals with a finite number of data samples.

Our proposed novel Byzantine attack resilient distributed
(Byrd-) SAGA combines SAGA’s variance reduction with robust
aggregation to deal with the malicious attacks in federated
finite-sum optimization setups. Instead of the mean employed
by distributed SAGA, the datacenter in Byrd-SAGA relies on the
geometric median to aggregate the corrected stochastic gradients
sent by distributed devices. Through reducing the stochastic
gradient-induced noise, Byrd-SAGA turns out to outperform the
Byzantine attack resilient distributed SGD. When less than half
of the workers are Byzantine attackers, the robustness of geomet-
ric median to outliers enables Byrd-SAGA to achieve provably
linear convergence to a neighborhood of the optimal solution,
and the asymptotic learning error is solely determined by the
number of Byzantine workers. Numerical tests demonstrate the
robustness of Byrd-SAGA to various Byzantine attacks.

II. PROBLEM STATEMENT

We start this section by specifying the federated finite-sum
optimization problem in the presence of Byzantine attacks. We
then elaborate on the limitation of Byzantine attack resilient
distributed SGD, which motivates our subsequent development
of Byrd-SAGA.

A. Federated Finite-Sum Optimization in the
Presence of Byzantine Attacks

Consider a network with one master node (datacenter) and
W workers (devices), among which B workers are Byzantine
attackers with their identities unknown to the master node. Let
W be the set of all workers, and B that of Byzantine attackers
with respective cardinalities |JV| = W and |B| = B. The data
samples are evenly distributed across the honest workers w ¢ B.
Each honest worker has J data samples, and f,, ;(z) denotes the
loss of the j-th data sample at the honest worker w with respect to
the model parameter = € RP. We are interested in the finite-sum
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optimization problem

. . 1
ot =argmin f(z) = I;fw(sc) (1)
where
1 J
Fol@) = 32 fuae). @
J:

The main challenge of solving (1) is that the Byzantine attackers
can collude and send arbitrary malicious messages to the master
node so as to bias the optimization process. We aspire to develop
a robust distributed stochastic algorithm to address this issue.
Intuitively, when a majority of workers are Byzantine attackers,
it is difficult to obtain a reasonable approximate solution to (1).
For this reason, we will assume B < % throughout, and prove
that the proposed Byzantine attack resilient algorithm is able to
tolerate attacks from up to half of the workers.

B. Sensitivity of Distributed SGD fo Byzantine Aftacks

When all workers are honest, a popular solver of (1) is
SGD [34]. At time slot (iteration) k, the master node broadcasts
z¥ to workers. Upon receiving z*, worker w uniformly at
random chooses a local data sample with index ¥ to obtain
the stochastic gradient f:u,i . (z*) that then communicates back
to the master node. Upon collecting stochastic gradients from
all workers, the master node updates the model as

w
1
S wzzjl Fioit, (%) (3)

where ~* is the non-negative step size. Note that the distributed
SGD can be extended to its mini-batch version; whereby, each
worker uniformly at random chooses a mini-batch of data sam-
ples per iteration, and communicates the averaged stochastic
gradient back to the master node.

While the honest workers send true stochastic gradients to the
master node, the Byzantine ones can send arbitrary malicious
messages to the master node in order to perturb the optimization
process. Let 772X denote the message worker w sends to the
master node at slot k, given by

r -
Sk {fw‘,,;g («¥), w¢B, @

v *, weB

where * denotes an arbitrary p x 1 vector. Then, the distributed
SGD update (3) becomes

1
k41 _ k _ k. =~k
T =z ¥ wE:1mw. (5)

Even when only one Byzantine attacker is present, the dis-
tributed SGD may fail. Consider that a Byzantine attacker wy,
sends to the master node ry, = — >, ., T4, Which yields
¥+l = 7% In practice, Byzantine attackers can send more
sophisticated messages to fool the master node, and thus bias

the optimization process.
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C. Byzantine Attack Resilient Distributed SGD

Recent works often robustify the distributed SGD by incor-
porating robust aggregation rules when the master node receives
messages from the workers. Here, we will adopt and analyze the
geometric median, even though alternative robust aggregation
rules are also viable [10], [11].

With Z denoting a subset in a normed space, the geometric
median of Z is

geomed{z} := argminz [ly — =]|- (6)
Ze2 v zeZ

Using (6), the distributed SGD in (5) can be modified to its
Byzantine attack resilient form as

oFH = 2% — A* . geomed{mF }. (7

wew

In essence, the geometric median chooses a reliable vector to
represent the received messages {r¥ ,w € W} through major-
ity voting. When the number of Byzantine workers B < %,
the geometric median approximates reasonably well the mean
of {fmk w ¢ B}. This property enables the Byzantine attack
resilient distributed SGD to converge to a neighborhood of the
optimal solution [10], [11].

D. Impact of Stochastic Gradient Noise on Robust Aggregation

In distributed SGD, the stochastic gradients evaluated by
honest workers are noisy because of the randomness in choosing
data samples. Due to the stochastic gradient noise however, it is
not always easy to distinguish the malicious messages from the
stochastic gradients using just the robust aggregation rules, e.g.
the geometric median. Several existing works have recognized
this issue. With carefully crafted Byzantine attacks, outputs of
several Byzantine attack resilient SGD algorithms can be far
away from the optimal solution [21]. In [11] and [19], the work-
ers are divided into several groups, with averages taken within
groups and the geometric median obtained across groups. This
approach leads to reduced variance and thus enhanced ability to
distinguish malicious messages. In [15], it is explicitly assumed
that the ratio of the variance of stochastic gradients to the
distance between iterate and optimal solution is upper-bounded.

Fig. 1 shows the impact of stochastic gradient noise on ge-
ometric median-based robust aggregation. When the stochastic
gradients sent by honest workers have small variance, the gap
between the true mean and the aggregated value is also small;
that is, the same Byzantine attacks are less effective. We will
quantify this statement in our analysis of Section IV-A.

Prompted by this observation, our key idea is to reduce the
variance of stochastic gradients in order to enhance robust-
ness to Byzantine attacks. In the Byzantine attack-free case,
an effective approach to alleviating stochastic gradient noise
in SGD is through variance reduction. By compensating for
stochastic gradient noise, variance reduction techniques lead to
faster convergence than SGD. For specificity, we will focus on
SAGA, which reduces stochastic gradient noise for finite-sum
optimization [26], and we will show how SAGA can also aid
robust aggregation against Byzantine attacks.
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Fig. 1. Impact of stochastic gradient noise on geometric median-based robust
aggregation. Blue dots denote stochastic gradients sent by the honest workers.
Red dots denote malicious messages sent by the Byzantine workers. Plus signs
denote the outputs of geometric median-based robust aggregation. Pentagrams
denote the means of the stochastic gradients sent by the honest workers. Variance
of the stochastic gradients from the honest workers is large in left and small in
right.

III. ALGORITHM DEVELOPMENT

In this section, we first introduce distributed SAGA with
mean aggregation. Then, we propose Byrd-SAGA, which re-
places mean aggregation by geometric median-based robust
aggregation.

A. Distributed SAGA With Mean Aggregation

In distributed SAGA, each worker maintains a table of
stochastic gradients for all of its local data samples [31], [32].
As in distributed SGD, the master node at slot k sends z* to
the workers, and every worker w uniformly at random chooses
a local data sample with index ¥ to find the stochastic gradient
frp it (z*). However, worker w does not send back f,, , K (zF) to

the master node. Instead, it corrects f . (z*) by first subtract-

ing the previously stored stochastic gradient of the i¥ -th data
sample, and then adding the average of the stored stochastic
gradients across local data samples. Then, worker w sends such
a corrected stochastic gradient to the master node, and stores
f1, 1 («*) as the stochastic gradient of the ij,-th data sample
in the table. After collecting the corrected stochastic gradients
from all workers, the master node updates the model z*+1.
To better describe distributed SAGA, let

k gk
w.J fL'k, J — ai’
where d)ﬁ:}l is the iterate at which the most recent f,, ; is

evaluated when slot k ends. Then, f{u,j(qbfu,j) refers to the
previously stored stochastic gradient of the j-th data sample
prior to slot k£ on worker w, and

J
0 = s (2) — o (B508) + 5 D Flng(85)
j=1
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Master node

f

Byzantine workers

Fig.2. Illustration of Byzantine attack resilient distributed SAGA. For the ease
of illustration, the honest workers are from 1 to W — B while the Byzantine
attackers are from W — B + 1 to W. But in practice, the identities of Byzantine
attackers are unknown to the master node.

is the corrected stochastic gradient of worker w at slot k. The
model update of SAGA is hence

1 ¥
RVl kL k
tH =af — 2yl )
w=1
where v > 0 is the constant step size.

B. Distributed SAGA With Geometric Median Aggregation

Here, it is useful to recall that Byzantine workers may send
to the master node malicious messages, other than the corrected
stochastic gradients. To account for this, the message sent from
worker w to the master node at slot k is expressed as

. :{giz, w¢ B,

m
v ¥, weDB

(10)

where * denotes an arbitrary p x 1 vector. Similar to distributed
SGD, distributed SAGA is also sensitive to Byzantine attacks.
Our robust aggregation rule here is the geometric median. This
leads to the proposed Byzantine attack resilient distributed
(Byrd) form of SAGA in (9), that is given by

k+1

= 1¥ — v . geomed{m¥ }. (11)

weWw

The proposed Byzantine attack resilient distributed SAGA,
abbreviated as Byrd-SAGA, is listed step-by-step under Algo-
rithm 1, and illustrated in Fig. 2. There are various implemen-
tations of the distributed SAGA. For example, [32] proposed
to store the tables of stochastic gradients in the master node.
The workers only need to upload the stochastic gradients and
their indexes, while the master node performs the aggregation.
This setup is also vulnerable to Byzantine attacks, since the
Byzantine attackers may upload incorrect stochastic gradients.
The proposed robust aggregation rule can also be applied therein.

Robust aggregations other than the geometric median are
available, including the median [12], Krum [15], marginal
trimmed mean [13], and iterative filtering [14]. In the median
for instance, the aggregation outputs the element-wise median
of {mX,w € W}; while in the Krum, the aggregation outputs

xT

Krum{mb} = my., w' = argmin 3" [fmb —mb |
w—w'
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Algorithm 1: Byzantine Attack Resilient Distributed
SAGA.

Require: step size +; number of workers W; number of data
samples .J on every honest worker w
Master node and honest workers initialize =
for all honest worker w do
forj € {1,...,J} do
Initializes gradient storage f;, ;(¢w ;) = :D,j(IO)
end for
Initializes average gradient g}, = < E‘J‘;l fu, j(:::”)
Sends g, to master node
end for
Master node updates ! = 1% — v - geomed ey {71}
forallk=1,2,--- do
Master node broadcasts z* to all workers
for all honest worker node w do
Samples i¥ from {1,..., J} uniformly at random
Updates mk = f1, 4 (¢%) = f1, s (Gu,ut) + 35
Sends m¥ to master node
Updates g&+1 Zﬁfﬁ'%(fiu,g{g, (z*) — fr it (w,i))
Stores gradient f;, ;. (dw,it) = £}, 1 (%)
end for
Master node updates z+! = ¥ — ~ - geomed, )y,
{ma}

end for

0

where w — w' (w # w') selects the indexes w' of the W — B —
2 nearest neighbors of m¥ in {m¥, ' € W}. Note that Krum
needs to know B, the number of Byzantine attackers, in advance.
In addition, other variance reduction techniques, such as mini-
batch [22], are also available to alleviate the gradient noise. Here
we opted for the combination of geometric median and SAGA.
Extending the current work to other robust aggregation rules and
variance reduction techniques, is in our future research agenda.

Remark 1: Computing the geometric median involves solving
an optimization problem in the form of (6). Since it is costly to
obtain the exact geometric median, one is typically satisfied with
an e-approximate value [35]. We say that z] is an e-approximate
geometric median of Z if

S llet — 2l < inf 3" lly — 21l + .

zeZ zeZ

(12)

We shall show that the e-approximation only slightly affects the
convergence of Byrd-SAGA.

Remark 2: Every worker in Byrd-SAGA stores J stochastic
gradients, where J is the number of local data samples. For
this reason, Byrd-SAGA fits setups where workers have enough
memory resources, such as federated learning among financial
institutions, hospitals, or the Internet of Vehicles [4], [5]. In
addition, our future work will pursue means of reducing Byrd-
SAGA’s storage requirements, as well as the communication
overhead along the lines of [36] and [37].

IV. THEORETICAL ANALYSIS

In this section, we theoretically justify the intuitive idea
that reducing stochastic gradient noise helps identify malicious
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messages in robust aggregation, specifically to the geometric
median in this paper. We prove that our Byrd-SAGA converges
to a neighborhood of the optimal solution at a linear rate under
Byzantine attacks, and the asymptotic learning error is deter-
mined by the number of Byzantine attackers.

A. Importance of Reducing Stochastic Gradient Noise

Here, we quantify the role of stochastic gradient noise on the
geometric median aggregation. Towards this objective, consider
the set of messages Z sent by all workers in W, and the set
Z’ of malicious messages sent by the Byzantine attackers in B.
Further, let z denote the true gradient given by the ensemble
average of stochastic gradients. Using these definitions, the
ensuing lemma bounds the mean-square error of the geometric
median relative to the true gradient.

Lemma 1. (Concentration property): Let Z be a subset of
random vectors distributed in a normed vector space. If Z' C Z

and | 2’| < £, then it holds that

E|geomed{z} — z||?

zeZ
. E||z — Ez||? N Ez — 2|2
where
_ ZZEZ‘ Ez
N

while C,, = =22

The left-hand side of (13) is the mean-square error of the
geometric median relative to the true gradient, while the right-
hand side is the sum of two terms. The first is determined by
the variances of the local stochastic gradients sent by the honest
workers (inner variation), while the second term is determined
by the variations of the local gradients at the honest workers with
respect to the true gradient (outer variation). In the Byzantine
attack resilient SGD, the upper bound can be large due to the
large stochastic gradient noise of SGD. Through reducing the
stochastic gradient noise in terms of either inner variation or
outer variation, we are able to attain improved accuracy under
malicious attacks.

B. Convergence of Byrd-SAGA and Comparison With
Byzantine Attack Resilient SGD

Here, we establish convergence of Byrd-SAGA, and theoreti-
cally justify that, through reducing the impact of inner variation,
Byrd-SAGA enjoys superior robustness to Byzantine attacks.
We begin with several needed assumptions on the functions
{f w,j, W ¢ B}

Assumption 1. (Strong convexity and Lipschitz continuity of
gradients): The function f is p-strongly convex and has L-
Lipschitz continuous gradients, which amounts to requiring that
for any x,y € RP, it holds that

f@) 2 f@) + (F Wz —n) +Slle—yl*  (14)
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and

I1'(x) = f @Il < Li|lz — yll.

Assumption 2. (Bounded outer variation): For any = € RP,
variation of the aggregated gradients at the honest workers with
respect to the overall gradient is upper-bounded by

S - F@I <2,
wigB

(15)

(16)

Assumption 3. (Bounded inner variation): For every honest
worker w and any = € RP, the variation of its stochastic gra-
dients with respect to its aggregated gradient is upper-bounded

by
Eu £y (2) = fo(@)|? <0, YwgB. (17

Assumption 1 is standard in convex analysis. Assumptions
2 and 3 bound the variation of gradients and the variation of
stochastic gradients within the honest workers, respectively [38].
For instance, most of the existing Byzantine attack resilient
SGD algorihtms assume that the stochastic gradients at the
honest workers are independently and identically distributed
(i.i.d.) with finite variance, such that the outer variation 62 in
Assumption 2 is proportional to 1/.J and the inner variation
o2 in Assumption 3 is finite. In the analysis of Byzantine
attack resilient SGD, both outer and inner variations must be
bounded. Interestingly, inner variation will turn out not to impact
Byrd-SAGA, and Assumption 3 will no longer be necessary in
its analysis.

The presence of geometric median makes Byrd-SAGA anal-
ysis challenging. Specifically, for every honest worker w ¢ B,

k- . . ’ k .
m,, is an unbiased estimate of f,,(z"), meaning

By, [my,] = fi,(z").

Averaging (18) over all honest workers w ¢ B, we have

ﬁ > Eulmy) =35 - 52 fule®) = f(="). (9

w§B w¢B

(18)

From (19), we observe that the mean of {m£, w ¢ B} is an
unbiased estimate of f'(x*). Nevertheless, the geometric median
of {mk w ¢ B}, even only over all the honest workers and
calculated accurately, is a biased estimate of f'(z*). This is the
main challenge in adapting the proof of SAGA to that of Byrd-
SAGA. Note that [39] also encounters the gradient estimate bias,
due to random shuffling in SAGA. However, the technique used
in [39] is unable to handle the gradient estimate bias caused by
geometric median here.

To simplify notation, we will henceforth use E to represent
the expectation with respect to all random variables ¥ .

The following theorem asserts that Byrd-SAGA converges
to a neighborhood of the optimal solution =* at a linear rate,
with the asymptotic learning error determined by the number of
Byzantine attackers.

Theorem 1: Under Assumptions 1 and 2, if the number of
Byzantine attackers satisfies B < % and the step size satisfies

7
< '
7= 82C.12
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then for Byrd-SAGA with e-approximate geometric median
aggregation, it holds that

k
E|lz* — 2| < (1 - %) A1+ Ag (20)
where
Ay = |2 — 2|2 - Ay (21)
A= — (14 327°C2+%L?) (4C26% + 2
22 @ at T (W-2B)?)"
22)
In (20), the constant of convergence rate is given by
gls 1
l-—>1- —
2 7 16J2Cat

which is close to 1 when J (the number of data samples at each
worker) and % (the condition number of functions) are large.
Observe that C, is monotonically increasing when the portion
of Byzantine attackers o increases. Therefore, (20) shows that
Byrd-SAGA converges slower as the number of Byzantine at-
tackers grows. Correspondingly, the theoretical upper bound of
step size + is small when J and C, are large. The asymp-
totic learning error Ay in (22) is also monotonically increas-
ing when Cy, (and hence the number of Byzantine attackers)
increases.

To demonstrate the superior robustness of Byrd-SAGA, we
also establish the convergence of Byzantine attack resilient SGD
with constant step size as a benchmark. As in Theorem 1,
the convergence of Byzantine attack resilient SGD is in the
mean-square error sense. This is different from [11], where
convergence is asserted in the high probability sense.

Theorem 2: Under Assumptions 1, 2 and 3, if the number of
Byzantine attackers is B < % and the step size satisfies

In
V= 312
then for Byzantine attack resilient SGD with e-approximate
geometric median aggregation, it holds that

E|lz* —z*|” < (1 —yp)* A} + A (23)
where
1=l — 2t - A (24)
. 2 2 2 2 2 2¢?
Al = m (461,0 +4C%5% + W —3B2 )" (25)

Let us ignore the approximation error in computing geometric
median by setting e = 0, and compare the two asymptotic learn-
ing errors Ay and Al,. With the step size v < pu/(8J2CyL?),
the constant 1 + 32J3C2~2L? in A, is in the order of O(1).
Therefore, we deduce that

2 2
Ay =0 (0—352) and Ay =0 (0—3(02 + 52)) :
p p

Observe that Af, the asymptotic learning error of Byzantine
attack resilient SGD, is proportional to the sum of inner and outer
variations. With all honest workers having a same data sample,
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we have o2 = §2 = 0. In this case, the asymptotic learning error
A, vanishes because the geometric median aggregation takes
effect and attains the true gradient. However, when all honest
workers share the same set of different data samples, the inner
variation o2 is no longer zero and the asymptotic learning error

5, can be large. In contrast, Byrd-SAGA effectively reduces the
impact of inner variation, and is able to achieve smaller learning
Error.

V. NUMERICAL EXPERIMENTS

Here we present numerical experiments on convex and non-
convex learning problems.! For each problem, we evenly dis-
tribute the dataset into W — B = 50 honest workers unless in-
dicated otherwise. To account for malicious attacks, we addition-
ally launch B = 20 Byzantine workers. We test the performance
of the proposed Byrd-SAGA under three typical Byzantine
attacks: Gaussian, sign-flipping and zero-gradient attacks [16],
[40]. For a Gaussian attack, a Byzantine attacker w € B draws its
mk from a Gaussian distribution with mean 273" ,z5 mE,
and variance 30. For a sign-flipping attack, a Byzantine attacker
w € B sets its message as mf, = u - g Y g5 Mk, Where
the magnitude u = —3 is used in the numerical experiments.
And for a zero-gradient attack, a Byzantine attacker w € B
sends my, = —5 D45 My SO that the messages at the master
sum up to zero. We use the algorithm in [35] to obtain the
e-approximate geometric median with e = 1 x 107>,

A. {3-Regularized Logistic Regression

Consider the £3-regularized logistic regression cost, where
each summand f,, ;(x) is given by

Fui(@) =In (1+ exp (~bui{au,i, 7)) + £l

with a,, ; € RP being the feature vector, b, ; € {—1,1} the
label, and p = 0.01 a constant. We use the IICNN1 and COV-
TYPE datasets.” JICNNT1 contains 49,990 training data samples
of internal combustion engine outputs, each with p = 22 di-
mensions. COVTYPE contains 581,012 training data samples
of forest cover types, each with p = 54 dimensions.

We first compare SGD, mini-batch (B)SGD with batch size
50 and SAGA, using mean and geometric median aggrega-
tion rules. Compared to SGD, BSGD enjoys smaller stochas-
tic gradient noise, but incurs higher computational cost. In
comparison, SAGA also reduces stochastic gradient noise, but
its computational cost is in the same order as that of SGD.
For each algorithm, we adopt a constant step size, which is
tuned to achieve the best optimality gap f(z*) — f(z*) in the
Byzantine-free scenario. The performance of these algorithms
on the IJCNN1 and COVTYPE datasets is depicted in Fig. 3 and
Fig. 4, respectively. With Byzantine attacks, all three algorithms
using mean aggregation fail. Among the three using geometric
median aggregation, Byrd-SAGA markedly outperforms the
other two, while BSGD is better than SGD. This demonstrates

I'The codes are available at https:/github.com/MrFive5555/Byrd-SAGA
Zhttps://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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Fig. 3. Performance of the distributed SGD, mini-batch (B)SGD and SAGA, with mean and geometric median (geomed) aggregation rules on IJCNN1 dataset.
The step sizes are 0.02, 0.01, and 0.02, respectively. SAGA geomed stands for the proposed Byrd-SAGA. From top to bottom: optimality gap and variance of
honest messages. From left to right: without attack, Gaussian attack, sign-flipping attack, and zero-gradient attack.
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Fig.4. Performance of the distributed SGD, mini-batch (B)SGD and SAGA, with mean and geometric median (geomed) aggregation rules on COVTYPE dataset.
The step sizes are 0.01, 0.005, and 0.01, respectively. SAGA geomed stands for the proposed Byrd-SAGA. From top to bottom: optimality gap and variance of
honest messages. From left to right: without attack, Gaussian attack, sign-flipping attack, and zero-gradient attack.

the importance of variance reduction to handling Byzantine Byrd-SAGA and Byzantine attack resilient BSGD have the same
attacks. Regarding the variance of honest messages in particular, order of variance with respect to honest messages. In this case,
Byrd-SAGA, Byzantine attack resilient BSGD and Byzantine Byrd-SAGA achieves similar optimality gap as Byzantine attack
attack resilient SGD are in the order of 10~3, 102 and 101, resilient BSGD, but converges faster because it is able to use a
respectively, for the IJICNNI1 dataset. For the COVTYPE dataset, larger step size.
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Fig. 5. Performance of the distributed SGD, mini-batch (B)SGD and SAGA, with geometric median (geomed) aggregation rule. Every honest worker has
the whole IJCNN1 dataset and the outer variation 42 = 0. The step sizes are 0.0004, 0.0002, and 0.0004, respectively. SAGA geomed stands for the proposed
Byrd-SAGA. From top to bottom: optimality gap and variance of honest messages. From left to right: without attack, Gaussian attack, sign-flipping attack, and
zero-gradient attack.
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Fig. 6. Optimality gaps of distributed SAGA with different aggregation rules: mean, geometric median, median and Krum. The step sizes are 0.02 and 0.01 for
the IICNN1 and COVTYPE datasets, respectively. Curves of geometric median correspond to the proposed Byrd-SAGA. From top to bottom: on IJCNN1 dataset
and on COVTYPE dataset. From left to right: without attack, with Gaussian attack, with sign-flipping attack, and with zero-gradient attack.

Theorem 1 establishes that when the outer variation §2 = 0, resilient SGD is still proportional to the inner variation o2. To
the asymptotic learning error of Byrd-SAGA is zero, no matter  validate these theoretical results, we conducted a second set
how large the inner variation ¢ is. In contrast, according to  of numerical experiments, where every honest worker has the
Theorem 2, the asymptotic learning error of Byzantine attack whole IICNN1 dataset. Therefore, §2 = 0 and o2 remains the
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TABLE 1
ACCURACY OF SGD, MINI-BATCH (B)SGD AND SAGA, WITH MEAN AND
GEOMETRIC MEDIAN (GEOMED) AGGREGATION RULES. SAGA GEOMED
STANDS FOR THE PROPOSED BYRD-SAGA

attack algorithm  mean acc (%) geomed acc (%)

without SGD 97.0 923
BSGD 98.6 98.0

SAGA 96.5 96.3

Gaussian SGD 36.3 925
BSGD 36.3 98.0

SAGA 14.5 96.4

sign-flipping SGD 0.11 0.03
BSGD 0.16 90.3

SAGA 0.12 86.4

zero-gradient SGD 9.94 26.2
BSGD 9.89 81.5

SAGA 9.88 924

same as that in the first set of experiments. We compare SGD,
BSGD with batch size 50 and SAGA, all using the geometric
median aggregation rule. The results depicted in Fig. 5 corrob-
orate the theoretical findings — the asymptotic learning error of
Byrd-SAGA vanishes, while those of Byzantine attack resilient
SGD and BSGD are the same as those shown in Fig. 3.

In the third set of numerical experiments, we compare the
use of different aggregation rules in distributed SAGA: mean,
geometric median, median, and Krum. As shown in Fig. 6,
distributed SAGA using mean aggregation is the best in terms of
the optimality gap f(z*) — f(z*) when there are no Byzantine
attacks. However, it fails under all kinds of attacks. With Gaus-
sian attacks, Byrd-SAGA using geometric median achieves the
best performance. With sign-flipping and zero-gradient attacks,
Byrd-SAGA using Krum is the best, while that using geometric
median also performs well. Note that Krum has to know the exact
number of Byzantine attackers in advance, while geometric
median and median do not need this prior knowledge.

B. Neural Network Training

Here we test training a neural network with one hidden layer
of 50 neurons and “tanh” activation function, for multi-class
classification on the MNIST dataset.> MNIST contains 60,000
training and 10,000 testing data samples of handwritten digits,
each with p = 784 dimensions. We compare SGD with step size
0.1, BSGD with step size 0.5 and batch size 50, and SAGA with
step size 0.1. We run the algorithms for 15,000 iterations, and
report the final accuracy in Table I. With mean aggregation,
all algorithms yield low accuracy in the presence of Byzantine
attacks. With the help of geometric median aggregation, BSGD
and SAGA are both robust and outperform SGD. Note that Byrd-
SAGA exhibits a much lower per-iteration computational cost
relative to Byzantine attack resilient BSGD.

VI. CONCLUSION

The present paper developed a novel Byzantine attack re-
silient distributed (Byrd-) SAGA approach to federated finite-
sum optimization in the presence of Byzantine attacks. On
a par with SAGA, Byrd-SAGA corrects stochastic gradients

3http://yann.lecun.com/exdb/mnist
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through variance reduction. Per iteration, distributed workers
obtain their corrected stochastic gradients before uploading to
the master node. Different from SAGA though, the master node
in Byrd-SAGA aggregates the received messages using the
geometric median rather than the mean. This robust aggregation
markedly enhances robustness of Byrd-SAGA in the presence of
Byzantine attacks. It was established that Byrd-SAGA converges
linearly to a neighborhood of the optimal solution, with the
asymptotic learning error determined solely by the number of
Byzantine workers.

As confirmed by numerical tests, combinations with other
robust aggregation rules also exhibit satisfactory robustness.
In addition to investigating their analyses, our future research
agenda also includes communication-efficient extensions of
Byrd-SAGA [36], [37], as well as the development and analysis
of Byzantine attack resilient algorithms over fully decentralized
networks [41], [42].

APPENDIX A
PROOF OF LEMMA 1

The proof of Lemma 1 relies on the following lemma.
Lemma 2: Let Z be a subset of random vectors distributed in
a normed vector space. If Z’ C Z and | 2’| < %, then it holds
that
E|lz|?
F||geomed{z}||® < 02&L 26
where C, := 222 and o := l,%'—

Proof: With z* = geomed, {2} and z € Z’, it holds that

[[z* — z|| = ||z]| — ||z*||; and for all z ¢ Z’, we have |z* —
z|| = ||z*|| — ||z]|- Then, summing up ||z* — z|| over all z € Z
yields
Dol =zl 2yl + (21 = 22Dl =2 ) =l
zeZ zeZ zgZ'
27

According to the definition of geometric median, it holds that

Dol =zl =infd lly -2l <Yl (28)
zEZ zeZ zeZ
Combining the two inequalities, we arrive at
* 22z§2' ”z” _ Ezng ”z”
I°1 < = Ca ; 29)
121 -2[2'| 121 = 12']
and upon squaring both sides of the latter, we find
* (X agz lI21)? 2 2agz 2117
|2°|° < C2=2E2 = < C2&=2E2 . (30)
“(21=12m — 121 =12
Then taking expectations on both sides, yields (26), and com-
pletes the proof. |

With Lemma 2, the proof of Lemma 1 is straightforward.
Proof: 1t follows readily from Lemma 2 that

E|geomed{z} — z||* = E||geomed{z — z}|*
zeZ zeZ

o? > gz Ellz — z||?

<C, -
- 12— 12']

3D
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Applying the inequality of ||z — z||? < 2||z — Ez||> + 2||Ez —
z||? to (31), yields

 E||z — Ez||?
12] = 12|
22z BIEZ 2|12
121 =127]

which completes the proof. |

E||geomed{z} — z||* <
zeZ

(32

APPENDIX B
LEMMA 3 AND ITS PROOF

Since computing the accurate geometric median is difficult,
we consider the e-approximate geometric median in this pa-
per. The following lemma is the e-approximate counterpart of
Lemma 2.

Lemma 3: Let Z be a subset of random vectors distributed in
anormed vector space. If 2’ C Z and | 2’| < = |z| , it holds that

2¢2

,.( ez Bl
Bz < 203 222 SEAL

121 —=12']

. Z . .
where C, := 222 o -|,—||-, and z is an e-approximate geo-

metric median of Z.
Proof: Because z; is an e-approximate geometric median, it
follows that

33
2 33

Dol -zl < mfZIIy—ZII +e<) llzll+e (34
zEZ zeZ zeZ
Notice that (27) remains valid here. Hence, we have
Ezéz’ ”z" €
. 35
Bl =T oz e
Squaring both sides of (35), leads to
2
*12 « C EzéZ' "z" € 36
121 < (CBEE o
2 2
’ 2e
< 9202 (Ezez ||z||) + (37)
“\IZI =12 (121 =22")?
r 252
< 202 ZZEZ ”z” + ) (38)
1Z1=12 (2] -22")?
Then taking expectations on both sides, yields (33), and com-
pletes the proof. |

APPENDIX C
LEMMA 4 AND ITS PROOF

As we have indicated in Section IV-B, the main challenge
in the proof of Byrd-SAGA is that the geometric median of
{mE% w € W} is a biased estimate of the gradient f'(z*). To
handle the bias, the following lemma characterizes the error
between an e-approximate geometric median of {mX ,w € W}
and f'(z*) per slot k.

Lemma 4: Consider Byrd-SAGA with e-approximate geo-
metric median aggregation. Under Assumptions 1 and 2, if
the number of Byzantine attackers satisfies B < %, then an
e-approximate geometric median of {mX  w € W}, denoted by
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z;, satisfies

2¢2
o g kY2 < 402126k 2 <2
Bl = £/ < 4CRL7S* + 4038 + —opy
39)
where

Ca ::figa and o % (40)

while S* is defined as

1 J

el e D o i R %)

wg‘éB j=1

Proof: We begin with upper bounding the mean-square error
E||mE — f!,(z%)||?, where w ¢ B. Using the definition of m¥
in (10), we have for any w ¢ B that

E|jm}, — fu,(=)[1?
= Ellfy0, (") = fro,in (P
1 J
+ 5D Fui(Gg) = Ful@®)I?
j=1
= E|\f}, a1 (%) = fiy e (85 )12
1 J
— £ = 3 fu (@)
Jj=1

< Bl fp,u (%) —
< L?E||z*

:u,z'fv (d’fu,,sfu )”2

w,ik ”2
w

(42)

where the second equality is due to variance decomposi-
tion E||a — Ea|> = E||a||* — |Ea|?® with a = fr, i (%) —

Fuoat (B ) and Ba = f1,(%) — 5557 f1, (9%, ); while
the Tast 1nequality comes from Assumption 1.

Next, we will derive an upper bound on E ||z — f'(z*)||%.
According to (33) in Lemma 3, (42), and Assumption 2, it holds

that
E||zf — f'(z®)|1?

2¢2
<202 10 kY ||12
20% B%Enm ~ @I+ G =spy
<4C? W = > Ellmy, — fr,(zF)|1?
wigB
1 €2
402 ! ky _ preoky 2
<402 37 IBlla* — b I
wigB
2¢2
4C% 6% + —m——
Tt G aBp
_ AC2IPSF 4 AC2 + @3)
“ “ (W —2B)?
which completes the proof. u
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APPENDIX D
LEMMA 5 AND ITS PROOF

In Lemma 4, the upper bound of E||z¥ — f'(z*)||? contains
a time-varying term S*. The following lemma characterizes the
evolution of S*.

Lemma 5: Consider Byrd-SAGA with e-approximate geo-
metric median aggregation. Under Assumptions 1, it holds that

ESF! < 4] - B||zF — oF 44 f'(a))?

+4Jy2L?||z* — || + (1 - ﬁ) Sk (44)

where S* is defined in (41).
Proof: For the expectation of ES*t!, we have that

ESkt!

E

J
=30 =D ek - g
w¢gB " =1

IA
&y

J
= 30 = YR - K
é '=

J
Z Z 1+ B)|l=" — o' 11
wgB © =1

1
—(+ A7) Bl =P+ 14 9) (1-7)
45)
where the inequality comes from ||a + b2 < (1 + 871)||al|? +
(1 + B)||b||? for any B > 0, and the third equality holds because

at slot k, honest worker w uniformly at random chooses one out
of J data samples. For the chosen data sample j, q‘;kH z*;

otherwise, ¢! = ¢% .. Then it holds
;Zli”“’k 1__ Sk
W -B J J
(46)

wgB  j=1
Using the fact that f'(z*) = 0, the first term in the right-hand
side of (45) can be bounded as
&

= [ls*+1

—2® 4y f () = f (") + 7 ()P
< 2l|zF T — 2F 4 4 1 (2F)12 4 29| £ (2F) — (=)
— 2 4y f(2®)|]? + 29 L%||* — "> @T)

where the first inequality comes from ||a + b||? < 2||a||? +
2||b||, and the last inequality comes from Assumption 1.
Substituting (47) into (45), and choosing 3 = 1/J, we have

S 2||Ik+1

ESM < (14 J) - Blla* — 2|2 + (1 - ﬁ) S*

<27 - Elle* — k|2 + (1 B ﬁ) S

4593

<4J- e —aF o f ()
+ 4Jy2L2||2* — =*|? + (1 — %) Sk (48)
which completes the proof. |
APPENDIX E

PROOF OF THEOREM 1

Proof: Let z} be the e-approximate geometric median of
{mk  w € W}. We begin by manipulating E||z*+! — z*||2 as

Bjjst+ — 2|

_ E"fL'k k+1

—yf(2F) — 2" + T = 2F 4y ()

_I*HZ

1
< T—lla* —7f'(a*)
-7

1
B = f @I, (49)
where 0 < 77 < 1, and the inequality comes from |ja + b||*> <
Llall? + 25 1b]1>

To bound the first term in the right-hand side of (49), we use
that f,, ;& is p-strongly convex and has L-Lipschitz continuous
gradients. Using also the fact that f’(z*) = 0, we obtain

=% =7 f'(z*) — ="

= |£* = (f'(=¥) = f'(z")) — 7|

= [l* — =*|1? = 29(f'(z*) = f'(2"), 2" — z7)
+7%1F(«*) = £(=)1?

< |l2* — 27| = 2qullz* — 2*|* + PPL?||=F — 27|12

= (1 =2y +~"L?)|jz* — ="||. (50)

Here (f'(z*) — f'(z*), 2% — z*) > p||z* — z*||? because f is
p-strongly convex [43, Theorem 2.1.9]. Further, because f
has L-Lipschitz continuous gradients, it holds that || f'(z*) —

f'(@*)I? < L2||l=* — 2|2
Substituting (50) into (49) yields
1-2 22
E”Ik+1 _ I*H‘Z < F]}-(“—ﬂ”:ck _ :L'*”Z
1
Bl =t e f P 6D
With 1 = yp/2, as long as
YL < (52)
it follows that
1—2yu+~°L?
—_— <1 —pu.
17 = TH
Therefore, (51) can be rewritten as
E||z*t — 2*|1? < (1 — p)[|=* — z*||?
2
Bl =t f P 653
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Then, we construct a Lyapunov function T* as
Tk .= ||z* — z*||2 + cS* (54)

where c is any positive constant. According to the definition in
(41), we know S* is non-negative. Therefore, T* is also non-
negative.

Substituting (44) and (53) into (54), it follows that

ET** < (1 - yp + 4eJ7*L?)||* — |2
+ (40T ) Bl =t 0f )P

+(1— %)cs". (55)

According to Lemma 4, the second term on the right-hand side
(55) can be bounded as

E|**! — 2* +4f' (") = v Bllz - f'(«")|?

22

< ’}'2 (4O§L25k + 40352 + m) . (56)

Hence, we have

ET*' < (1 — yp + 4cJy*L?)||z* — 2|2

+ ((1 — %) c+ (% + 4cJ) 4037%52) Sk

+ 77 2 +4eJ | | 4C26% + 2¢
b C —_ | -
T\ o T W —2B)?
7
If we constrain the step size v as
4eJy2I2 < % (58)

the coefficient in front of || =% — x*||? satisfies
1 —’yp—l—f-lcj’yzL? <1l-— %

Similarly, if -y and ¢ are chosen such that

% < 41? and 16JC2°L? < 135 (59)
and
16J2C2% L2 8C2~L2
T T a7 (/P —ap/2 - 16JC2y°L3)

the coefficient in front of S* satisfies

1—L c+ E—I—éicJ 4024212
J? Y

_ 1 2, 272 8CayL? gl
Therefore, (57) becomes
ETk+1

(- -1 (=)
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+4? (3 + 4CJ) (40352 +
T

(-

32 372
4+ (2_7 + M) (40‘252 +
p p

262 )
(W—-2B)2 )"
(60)

For simplicity, let also
~ 2y 64J3C2%43L2 2 2 2¢2
Apg=|—4+—2— | [4C0" + ——== | -
2 (H o0t W—2Bp
(61)
Using telescopic cancellation on (60) from slot 1 to slot k, we
arrive at

2 . 2 .
ETk < (1- 1Lk {TU - —AQ} +—A;  (62)
2 TH T
Here and thereafter, the expectation is taken over i¥, for all

workers w ¢ Bandslotst <k — 1.
The definition of the Lyapunov function in (54), implies that

Bl - P < BT < (1- 2 218, @)
where the constants A; and A» are defined as
Ay = |z = 2*||* = Ag (64
Ay = 152
o

_4 32, 272 2 ¢2 2¢?
=2 (143273C2y%L?) (4C26% + WD)
(65)

In our derivation so far, the step size « must satisfy (52), (58)
and (59), meaning that

. Iz 7 1 1
< L .
7= { 202 8\BJ32C L2’ 2020 8J3/2C, L }
Therefore, we simply choose

S
8J2C,L?

and the proof is complete. u

Y=

APPENDIX F
PROOF OF THEOREM 2

Let z! denote the e-approximate geometric median of
{mk w e W}, where mk = Fooit (z*) for w ¢ B, and arbi-
trary otherwise. Similar to the proof of Theorem 1, we first derive
an upper bound on E||z**! — z*||. Inequality (53) is still true
for Byzantine attack resilient SGD with y < p/(2L?), and the
only difference is that E||z**! — z* + 4 f'(z*)||? becomes

E|**! — 2* + 4 f'(«")|?
=7E||z; — f'(«")|?
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Sugs Bl o (%) — £/(2%)]2
W -—-B

22

<~?2 (202
=7 | e (W —_2B)?

1 ! !
<4? QCﬁm > 2B||fy, o1 (%) — fu («F)|?
wgB

1 r r
+7° QCgm D2l fu(=F) = F(F)|I?
wigB
4 2¢2
W —2B)

<42 (40302 +4C25% + (66)

2¢2
(W —2B)?
where first two inequalities are analogous to those in (43), while

the last inequality comes from Assumptions 2 and 3. Therefore,
for Byzantine attack resilient SGD, we have

Blla*+! — 2|
. 2
< = p)llet = o+ Z Bl =¥ 4o )P

< (L—yp)ll=* —=*|?

2~ 2¢2
+— _ .
P (W —2B)?
Here and thereafter, the expectation is taken over ¥ for all
workers w ¢ B, andslots ¢ <k — 1.

Using telescopic cancellation on (67) from slot 1 to slot k, we
deduce that

(403 o? +4C2%6% + (67)

Bz — 2| < (1 - yp)" A + A (68)
where A} and A, are defined as
Af =2 = 2"|? - A (69)
. 3 2 2 2 ¢2 2¢
Al = e (46:10 +4C2%6% + W 3B (70)

and the proof is complete.
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