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A B S T R A C T   

Centralized HVAC systems are usually unable to cater to individual requirements when multiple occupants are 
present in the same zone. Personalized Comfort Systems (PCS) such as local fans and heaters, heated/cooled 
chairs, local ventilation systems, have shown to be useful for maintaining comfortable thermal conditions by 
creating a microclimate around each occupant. Previous studies have mostly focused on personalized thermal 
comfort modeling under regular HVAC operations, and there is a lack of work that focuses on personalized 
thermal comfort modeling when PCS devices are in use. In this study, we compare different sensing and machine 
learning methods to build personal comfort models when a local fan or heater is in use. The experiment was 
conducted in a controlled environment with three segments: regular (no fan/heater), fan on, and heater on. Our 
results indicate that the data from environmental sensors results in 2%–5% higher prediction accuracy compared 
to using a wearable device to monitor wrist skin temperature or thermal imaging to monitor skin temperature 
from different regions of the face. Furthermore, environmental sensors are more affordable and have relatively 
fewer privacy concerns compared to the physiological sensors. Overall, the results of this study support the use of 
environmental sensors for building personalized thermal comfort models with or without PCS. Furthermore, the 
results also highlight the need for building separate personalized thermal comfort models when PCS devices are 
in use, and when PCS devices are not in use.   

1. Introduction 

Heating, Ventilation, and Air Conditioning (HVAC) systems are 
responsible for about 43% of total energy consumption in buildings [1]. 
Despite the large consumption of energy, centralized HVAC systems 
often fail to meet their primary purpose of maintaining satisfactory 
thermal environments for most of the building occupants due to poor 
operation policies and differences in occupants’ comfort requirements. 
ASHRAE 55 guidelines require HVAC systems to satisfy at least 80% of 
building occupants [2]. However, field studies that surveyed occupants 
in commercial buildings across North America showed that only about 
38% of building occupants were actually satisfied with their thermal 
environment, and only 8% of the surveyed buildings met the ASHRAE 
requirement of satisfying more than 80% of building occupants [3]. The 
poor performance of existing HVAC systems with regard to low occupant 
satisfaction is caused by two primary reasons: (1) There is a large di
versity in occupants comfort requirements and this diversity is not 
accounted for in existing “one-size-fits-all” HVAC operations and (2) 

Centralized HVAC systems are usually unable to cater to individual re
quirements, especially when there are multiple occupants in the HVAC 
zone with large differences in comfort requirements, because of system 
limitations in controlling the environment at a more local level than an 
HVAC zone [4]. 

Current HVAC systems in most commercial buildings in the U.S. are 
centralized and rely on the PMV/PPD model to determine the indoor 
environmental conditions that are necessary for occupancy. The PMV/ 
PPD model does not accommodate for individual differences among 
occupants, leading to a relatively static indoor thermal environment that 
is controlled within a narrow range without accommodation for actual 
occupant requirements. To shift away from the static operation of 
thermal environments, several researchers have focused their efforts on 
developing new techniques that can model personalized requirements 
[5–7]. Such methods mostly rely on different sensors to monitor 
different environmental and/or physiological parameters and leverage 
different Machine Learning (ML) algorithms to model occupant’s ther
mal sensation, satisfaction, or preferences [6,8], with the motivation of 
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integrating such comfort models into the HVAC operations. A previous 
study has shown that incorporating occupant comfort into centralized 
HVAC operations by selecting zone level temperature setpoints based on 
individual comfort models can improve the occupant satisfaction from 
around 38%–63% [4]. 

Centralized HVAC systems are controlled at a room or a zone level. 
Even when zone temperature setpoints are selected based on the occu
pant requirements for that zone, the HVAC system alone cannot satisfy 
all of the occupants in the zone. When there are more than 4–5 occu
pants in the same zone, it becomes increasingly difficult to satisfy more 
than 60% of the occupants in the zone [4], failing to meet the ASHRAE 
requirements of satisfying more than 80% of occupants [2]. One of the 
possible solutions is to utilize Personalized Comfort Systems (PCS) such 
as local fans and heaters that are able to control the thermal environ
ment at a more local level. PCS devices can create small microclimates 
around each occupant and thus provide a more local control of the 
environment around each occupant. Several studies have shown that 
PCS devices are able to improve occupant satisfaction beyond what is 
possible with HVAC systems alone [9,10]. Different PCS devices can 
provide an effective cooling capacity of 2–3 ◦C and an effective heating 
capacity of 7–10 ◦C, which can help in adjusting the thermal environ
ment to meet individual occupant requirements [10,11]. 

Although several studies have developed methods to model indi
vidual comfort requirements for HVAC operations [5,6,12], there is a 
lack of research studies that have focused on understanding how indi
vidual comfort requirements can be modeled when PCS devices are in 
operation. In our previous study [6], we investigated the tradeoffs be
tween different sensing and learning methods for modeling individual 
comfort requirements for centralized HVAC operations. In this study, we 
investigate the tradeoffs between using different sensing and machine 
learning methods for modeling individual comfort requirements when 
PCS devices are in use. We conducted controlled experiments to 
compare how occupants’ thermal sensation and satisfaction changes 
when PCS devices such as a fan or a heater are in operation and used 
different sensing and machine learning methods to evaluate the accu
racy of thermal sensation and satisfaction prediction under different 
approaches. The rest of the paper is organized as follows. In section 2, we 
review the relevant literature on personalized comfort models and PCS 
devices. We describe our methodology for data collection and analysis in 
section 3, followed by the results in section 4. We discuss some of the 
practical considerations and the limitations of this study in section 5 and 
conclude the study in section 6. 

2. Literature review 

The current guidelines for HVAC operations in buildings, such as the 
ASHRAE 55 [2] and ISO 7730 [13], utilize the PMV/PPD model devel
oped by Fanger [14] for fully air-conditioned buildings or the adaptive 
model developed by de Dear and Brager [15] for naturally ventilated 
buildings. Both the PMV/PPD model and the adaptive model are based 
on an averaged response from a large sample, hence do not explicitly 
accommodate individual occupant requirements [7,16]. With the rise of 
the Internet of Things (IoT) and ML, several researchers have developed 
methods to model individual comfort requirements by leveraging 
different sensors to capture real-time information and different ML al
gorithms [5–7,17]. The most common sensing methods used in building 
personalized comfort models include environmental sensors [6,18], 
wearable devices to monitor skin temperature from different body parts, 
such as wrist and legs [6,19,20], and thermal imaging to monitor skin 
temperature from different regions of the face [6,21,22]. Some of the 
common ML algorithms used for personalized comfort modeling include 
Random Forest [6,23–25], decision trees [26], Support Vector Machines 
(SVM) [6,27], and Artificial Neural Networks (ANN) [28], with accu
racies ranging from 75% to 95%. A general review of personal comfort 
models can be found in Refs. [7], and the specific literature review 
focusing on different sensing and machine learning methods for 

personalized comfort models can be found in the authors’ previous work 
[6]. 

Although previously developed personal comfort models help in 
controlling the HVAC temperature setpoints based on occupant re
quirements, centralized HVAC systems are unable to control the thermal 
environment at a local level for each individual occupant. There has 
been a renewed interest in using PCS devices in recent years to control 
the environment around each occupant. Several PCS devices, such as 
heated chairs, hand warmers, local cooling fans have been studied 
recently and can be used to control the local thermal environment 
around occupants to improve their comfort and satisfaction [9–11,29]. 
In a field study, Bauman reported 100% thermal satisfaction from oc
cupants using a desktop-based Task Ambient Conditioning (TAC) system 
with an air supply nozzle and a radiant heating panel, compared to 80% 
satisfaction from occupants without TAC system [30]. In another study 
using ceiling-mounted Personal Ventilation (PV) system, Yang et al. 
reported 77%–97% satisfaction under ambient temperatures of 26 ◦C 
and supply air temperature in the range of 21 ◦C–26 ◦C and air speeds of 
0.36–0.76 m/s [11,31]. Zhang et al. demonstrated in a field study that 
the use of a combination of PCS devices which included a heated/cooled 
chair, foot warmer and leg warmer resulted in increased thermal 
acceptance from 56% to around 80% when the ambient temperatures 
were between 20 ◦C and 25 ◦C [32]. These studies demonstrate that the 
use of PCS devices can improve occupants’ comfort and satisfaction 
levels and have the potential to meet the ASHRAE requirements of 
satisfying 80% of building occupants. 

PCS devices perform differently in their ability to provide local 
heating and cooling. Some studies have attempted to quantify the ability 
of PCS devices to correct the thermal discomfort in terms of temperature 
by using the idea of corrective power. Corrective power is defined as the 
difference between two ambient temperatures at which the same ther
mal sensation is achieved – one with PCS and one without PCS [11]. 
Zhang et al. reviewed 41 studies and evaluated the corrective power of 
different PCS devices that cooled the participant using frontal air jets, 
ceiling fans, cooling chairs, and heated the participant using heated 
chairs and foot warmers [11]. Cooling with air jets, directed to the face, 
had a corrective power equivalent to -2 K to −3 K when air speeds were 
around 0.4–0.6 m/s, and ambient temperature was around 26 ◦C–27 ◦C 
[30,33]. At a higher ambient temperature of 28 ◦C–30 ◦C, air speeds of 
0.8–1 m/s had a cooling effect of -2 K to -4 K [11,34], and above 32 ◦C, 
high air speeds of up to 2 m/s was needed to maintain comfort [11,35]. 
Heating PCS devices, such as chairs, foot and leg warmers had a 
corrective power of 7 K–10 K when the ambient temperature was 
14 ◦C–16 ◦C [11,36,37]. In another study, Luo et al. found that the 
corrective power of a small desk fan was 1.5 K, cooling wrist pad was 0.5 
K and cooling chair was 2 K when the ambient temperature was 29 ◦C 
[10]. In the same study, the corrective power of a heated wrist pad was 
0.75 K, heated chair was 1.25 K and heated shoe insole was 0.26 K when 
the ambient temperature was 18 ◦C [10]. The actual ability to correct for 
thermal discomfort of the PCS device depends on the type and size of the 
device, user perception, and the ambient conditions. However, previous 
studies provide strong evidence that PCS, especially fans and heaters, 
can be successfully used in cool to warm environments in the range of 
18 ◦C–28 ◦C to maintain comfortable conditions for building occupants. 

Several studies have developed methods to create personalized 
comfort models for HVAC operations, and many studies have shown the 
usefulness of using PCS devices to personalize the thermal environment. 
However, previous studies utilizing PCS devices left the burden of con
trol to the end-user. There is a lack of studies that focus on creating 
personalized comfort models for PCS operation, which can be useful to 
automatically control PCS devices or to incorporate the impact of PCS 
devices on occupant comfort into HVAC operations. In this work, we 
study the tradeoffs between different sensing and modeling methods for 
personalized thermal comfort models when PCS devices (i.e., desk fan 
and heater) are in use. We also provide insights regarding whether 
existing thermal comfort models that are developed for centralized 
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HVAC operations can be leveraged for controlling PCS devices by 
adjusting the existing models with the corrective power of PCS devices. 
The specific research questions that we attempt to answer in this paper 
are: (1) What are the most useful sensing and modeling methods for 
predicting individual thermal sensation and satisfaction when PCS de
vices are in use? and (2) Can regular comfort models be utilized for 
comfort prediction when PCS devices are in use by incorporating the 
corrective power of PCS devices? 

3. Methodology 

The overall methodology used in this study involves a climate- 
controlled experiment conducted in three segments where the room 
temperature was gradually changed using the HVAC system for cooling 
and space heaters placed more than 3 m away from the participants for 
heating the room. It is important to note that these space heaters are 
different from the heater that was used as a PCS device. The three seg
ments are: regular (no fan or heater used), fan (fan is on throughout the 
segment), and heater (PCS heater is on throughout the segment). The 
environment was monitored using sensors to measure changes in air 
temperature, humidity, air speed, and radiant temperature. Physiolog
ical changes in skin temperature were monitored using a wearable de
vice on the wrist as well as using a thermal camera directed at 
participants’ faces. The three sensing methods (i.e., environmental, 
wearable, and thermal imaging) were selected based on their perfor
mance in building personal comfort models from previous literature [6]. 
Thermal sensation and thermal satisfaction votes were collected every 5 
min from the participants in the form of self-reported values. The 
collected data was used to train different ML models to learn individual 
thermal sensation and satisfaction with and without PCS use. The 
detailed methodology is described in the following subsections. 

3.1. Experiment procedure 

The experiments were conducted in a research office at the Univer
sity of Southern California (USC) in Los Angeles during the summer 
months of July 2019 and August 2019. Los Angeles falls in a warm- 
summer Mediterranean climate according to the Koppen-Geiger 
climate classification [38]. The average outdoor temperature during 
the data collection period was 23 ◦C, with average low and high outdoor 
temperatures ranging from 18 ◦C to 30 ◦C, respectively. All the partic
ipants were asked to wear trousers and t-shirts to keep the clothing levels 
consistent. The approximate clothing insulation is 0.57 clo. for the 
ensemble [2]. Fifteen healthy subjects, 11 males and 4 females partici
pated in the study. The anthropometric details of the study participants 
are shown in Table 1. 

The experiment was conducted in three segments: (1) a regular 
segment where no fan or heater was in use, (2) a fan segment where the 
fan was in use, and (3) a heater segment where a heater was in use. In 
each segment, the room temperature was changed either from cold 
(approx. 19 ◦C) to hot (approx. 31 ◦C) or from hot to cold. All partici
pants participated in all three phases resulting in roughly 6 h of data per 
participant. The order of segments, regular, fan, and heater were ran
domized, and the starting temperature (hot or cold) was also random
ized for each segment. The randomization was done to avoid any 
systematic biases in thermal sensation and satisfaction votes in the 
collected data that could have resulted from the order of the experiments 
or the direction of temperature change. For example, if the order of data 

collection was fixed to fan, regular, and heater segments respectively, 
participants might have compared their current sensation to their 
sensation in the previous segment and report feeling much cooler or 
warmer due to their previous thermal experience. Although partici
pants’ thermal experience cannot be eliminated, randomization of the 
data collection order would help to limit any potential systematic bias in 
the collected data resulting from their previous thermal experience. 

Each segment lasted between 1.5 and 2 h and was stopped when the 
participant voted +3 or −3 for three consecutive times or when 2 h was 
over. This approach was taken to gather data covering different ranges 
of thermal sensations without causing too much discomfort to the par
ticipants. There was at least a 1-h gap between the segments, and some 
participants completed different segments over multiple days. Partici
pants were asked to stay in the experiment room for at least 15 min to 
acclimatize the participants to the starting hot or cold condition prior to 
starting data collection in order to avoid overshoots in thermal sensa
tion. Thermal overshoot is sometimes observed when the body’s thermal 
stress is relieved by local cooling/heating to restore homeostasis and 
tends to initially exceed their comfort state in a steady-state environ
ment [39]. The room temperature was gradually changed at a rate of 
1 ◦C/10 min to avoid sudden changes in the thermal environment in all 
segments. For the fan segment, a small desk fan was operated at a dis
tance of 1 m from the participant and directed at their face, which 
generated an air speed of about 1.2 m/s around the participant’s face. 
For the heater segment, a radiant heater of 1000 W was operated on the 
ground, approximately 1 m away from the participant’s feet. A fan 
directed to the face and heater directed to the feet were used because the 
heightened sensitivity of head for cooling and feet for warming creates a 
bigger comfort effect compared to other local heating or cooling regi
mens [11,40]. The experimental setup for this study is shown in Fig. 1. 

Different sensors were used to monitor changes in air temperature, 
humidity, radiant temperature, and air speed. DHT22 (accuracy ±0.5 ◦C 
and resolution 0.1 ◦C) sensor connected to Arduino Uno was placed on 
the desk roughly 0.5 m from the participant to monitor air temperature 
and humidity every second. A handheld anemometer UT363BT (accu
racy ±0.5%rdg), was placed between the fan and the participant to 
monitor air speed generated by the fan. The anemometer was placed 
between the participant and the fan at a distance of 0.4 m from the fan to 
monitor the air speed every second. A black globe temperature sensor, 
Sper Scientific 800,037, was used to monitor dry globe and wet globe 
temperatures which capture the radiant heat generated by the heater at 
the height of 0.5 m (approximately knee height), placed 0.2 m parallel to 
the knee. The black globe temperature sensor has an accuracy of ±0.6 ◦C 
for dry globe temperature. In addition to the environmental sensors, a 
wearable device with MLX90614 (accuracy ±0.5 ◦C and resolution 
0.02 ◦C) contact-less infrared temperature sensor fitted on a wristband 
with the sensor, placed roughly 1 cm from the wrist, was used to monitor 
changes in skin temperature from the wrist every second. The 
MLX90614 sensor has been used to monitor skin temperatures in pre
vious studies and has been shown to be useful for monitoring physio
logical changes [6,41]. A FLIR Lepton thermal camera from Tinkerforge 
was used to capture thermal images, and a standard web camera was 
used to capture RGB images of the participants’ facial region every 
second. The FLIR Lepton is a low-cost thermal camera capable of 
capturing 80 × 60-pixel thermal images with an accuracy of ±5 ◦C and a 
resolution of 0.1 ◦C per pixel. It is important to note that the accuracy of 
±5 ◦C is for measuring absolute temperatures in the worst-case scenario, 
but in practice the FLIR Lepton provides consistent measurements for 
monitoring changes in skin temperature over time [24]. FLIR Lepton 
was previously validated by Li et al. [24]. and used in several previous 
studies to monitor changes in skin temperature for thermal comfort 
assessment [6,24,42]. In addition to sensor measurements, participants 
were asked to rate their thermal sensation and thermal satisfaction on a 
7-point scale every 5 min using a web interface shown in Fig. 2. 
Approximately 28 comfort votes were collected for each participant in 
each of the three phases, resulting in a total of around 85 thermal 

Table 1 
Anthropometric details of study participants.  

Gender Count Age (years) Height (cm) Weight (kg) 

Male 11 21.5 ± 3.5 174.0 ± 5.7 67.3 ± 7.4 
Female 4 22.0 ± 3.7 154.9 ± 2.9 60.2 ± 4.0 
Overall 15 21.6 ± 3.5 168.9 ± 10.1 65.4 ± 7.3  
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sensation and thermal satisfaction votes per participant. 

3.2. Data analysis 

The data analysis broadly consisted of three stages for building the 
thermal sensation and thermal satisfaction prediction models: (1) data 
cleaning and preprocessing, (2) feature extraction, and (3) training and 
evaluation of different ML algorithms to predict individual thermal 
sensation and satisfaction as described in sections 3.2.1 to 3.2.3. Further 
analysis, described in section 3.2.4, was conducted to evaluate the 
effectiveness of using corrective power to predict thermal sensation 
under PCS use by using models built without PCS use. 

3.2.1. Data cleaning and preprocessing 
Skin temperatures from four Region of Interests (ROIs): nose, fore

head, right cheek, and left cheek were extracted from the thermal im
ages based on their usefulness identified in previous studies [21,24,43]. 
To extract temperature measurements from different ROIs, first, the RGB 
image was overlapped on the thermal image using image registration, 
then the facial landmark detection algorithm [44] was used to identify 
different landmarks such as lips, nose, eyebrows and face boundary. The 
locations of different ROIs were calculated based on their relative 
location in reference to the landmarks and the corresponding tempera
ture measurements of the ROIs were extracted from the thermal images. 
For a detailed description of the skin temperature extraction from 
thermal images, readers are referred to previous work by the authors in 
Refs. [21]. 

Fig. 1. Experimental setup.  

Fig. 2. Web interface to collect participants’ thermal sensation and thermal satisfaction.  
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All of the sensor measurements, including skin temperatures from 
the thermal camera, were cleaned by passing them through a moving 
median filter to remove sudden changes in sensor measurements if 
present. Then, a Savitzky-Golay filter, which removes some noise from 
the signal without greatly distorting the original sensor signal [45], was 
used to smooth the sensor measurements and reduce some of the sensor 
noise. Readers are referred to a previous work by the authors in Ref. [6] 
for further details on data cleaning and filtering. The sensor measure
ments were then synchronized to a common time axis for assisting in 
feature extraction. An example of collected ambient temperature mea
surements and corresponding thermal sensation and satisfaction from a 
participant under the three segments is shown in Fig. 3. Other sensor 
measurements are not shown to keep the figure legible. 

3.2.2. Feature extraction 
Prior to training individual comfort models, several features were 

extracted from the measurements. The measurements include air tem
perature, relative humidity, air speed, black globe temperature, wrist 
skin temperature, and temperatures from the forehead, nose, left cheek, 
and right cheek. For each Thermal Sensation Vote (TSV) and Thermal 
Satisfaction (TSat) from the participants, sensor measurements within a 
5-min window prior to the TSV was separated. Then, for each 5-min 
window corresponding to a TSV, seven different features that capture 
the value of measurements and the rate of change were extracted from 
each sensor measurement. The extracted features included: the instant 
measurement at the time of TSV; the minimum, maximum, average, 
standard deviation of the measurements, the overall change in the 
measurements between the first and the last values in the time window; 
and the average of the derivative of the measurements to capture the 
rate of change. These features were calculated based on their usefulness 
in previous studies for modeling thermal comfort [6,23,24]. Two binary 
variables indicating the states of fan and heater (on or off) were also 
added as features. The final dataset prior to training included a total of 
65 features for each corresponding TSV and TSat: 63 extracted from 
different sensor measurements and 2 features indicating fan and heater 
states. 

3.2.3. Training and evaluation of ML models 
The ASHRAE 7-point scale, which was used to collect thermal 

sensation, was grouped into three comfort states: Cold (TSV ε {-3, −2}), 
Comfortable (TSV ε {-1, 0, +1}) and Hot (TSV ε {+2, +3}). Previous 
studies have shown that a thermal sensation vote of 0 does not neces
sarily correspond to satisfaction, and the comfortable condition usually 
spans a larger range than the neutral sensation [46,47]. The grouping of 
thermal sensation into thermal comfort states is based on the assumption 
in ASHRAE 55 that occupants are satisfied in the range of −1.5 ≤ TSV ≤
+1.5 when the scale resolution is 0.5 or less, or −2< TSV<+2 when the 
scale resolution is limited to integers [2]. The Thermal Satisfaction was 
grouped into two categories, Satisfied (TSat ε {0, +1, +2, +3}) and 

Dissatisfied (TSat ε {-1, −2, −3}), based on the ASHRAE 55’s suggestion 
of thermal acceptability, although a more generous grouping of TSat ≥
−1 as satisfied is also permitted by the guidelines [2]. The grouped 
Thermal Sensation and Thermal Satisfaction values were used as target 
labels to train classification models to predict individual sensation and 
satisfaction, respectively. 

Prior to training the ML algorithms, we performed feature selection 
to remove the features that were less useful for the classification prob
lem using chi-squared statistics between each feature and the class. The 
chi-square test measures the dependence between the features and the 
training class, which enables removing features that are most likely to be 
independent of the training label and therefore not very useful for 
training a classification model. Thus, up to 15 best features were 
selected for each individual thermal sensation and satisfaction model 
separately using the chi-squared statistics before training each model. 
Removing unnecessary or redundant features can improve training 
performance both in terms of speed and accuracy. Furthermore, the 
feature selection also provides some insight into which features and 
which sensing methods are more useful than others for predicting 
thermal sensation and satisfaction. 

In order to answer the first research question “What are the most 
useful sensing and modeling methods for predicting individual thermal 
sensation and satisfaction when PCS devices are in use?“, we trained four 
different ML algorithms under different combinations of sensor inputs 
for each segment. For each participant, we trained separate models for 
each segment (regular, fan, and heater) to understand the differences in 
prediction accuracies when PCS devices were in use. We also trained 
general models for each participant with data from all segments to un
derstand the predictive accuracies when separate models are not avail
able. To understand which sensing methods are most useful, we repeated 
the model training by using features from different categories of sensing 
methods (environmental, wearable, and thermal imaging), and their 
combinations to understand the differences in predictive accuracy when 
only certain sensors are used in data collection. For each segment and 
combination of sensing methods, we evaluated Random Forest (RF), K- 
Nearest Neighbors (KNN), Support Vector Machine (SVM) with a cubic 
kernel, and Decision Trees (DT), based on their performance in previous 
studies [6,23–27,48]. Each algorithm was evaluated using 5-fold 
cross-validation, and hyperparameters were tuned with a grid search. 
In 5-fold cross-validation, the dataset is randomly partitioned into 5 
subsets, where 1 subset is held for validation and 4 subsets are used for 
training the model, and the training and validation are repeated 5 times 
with each subset acting as the validation set and remaining subsets used 
for training the models. The k-fold cross-validation is a common strategy 
to reduce the chances of overfitting the model to the training set and 
typically leads to a more generalizable model while utilizing the entire 
dataset [49]. 

The KNN algorithm makes a prediction for the input features based 
on a majority vote among k-nearest neighbors in the training set. The 

Fig. 3. Ambient temperature measurements with corresponding thermal sensation and satisfaction of a participant under three segments. The red background 
regions indicate thermal dissatisfaction and white regions indicate thermal satisfaction. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the Web version of this article.) 
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SVM method determines an optimal hyperplane in the feature space that 
separates different classes. Using a nonlinear kernel such as the cubic 
kernel enables the creation of nonlinear decision boundaries or support 
vectors in the feature space. The Decision Tree method repeatedly par
titions the dataset into subsets based on most significant differentiating 
features until the each of the remaining partitions fall under the same 
training label, or until the size limits specified for the tree structure are 
reached. Random Forest is an ensemble method that trains multiple 
decision trees on a random subset of features, resulting in a group of 
weak predictors. The Random Forest then combines the output of mul
tiple decision trees using specified consensus criteria resulting in a more 
robust prediction. All of the algorithms used in this study are standard 
ML classification algorithms and readers are referred to different ML 
textbooks for further details about each algorithm [50,51]. 

3.2.4. Corrective power calculations and model training 
In [11], Zhang et al. defined corrective power as the difference be

tween two ambient temperatures at which the same thermal sensation is 
achieved – one without PCS and one with PCS. In this study, multiple 
environmental parameters such as relative humidity, dry globe tem
perature, wet globe temperature were monitored in addition to the 
ambient temperature. Furthermore, different features extracted from the 
sensor measurements as described in section 3.2.2 in addition to the 
direct value of sensor measurements were used for the training of ML 
models. Therefore, we adopt the idea of corrective power from Ref. [11] 
and calculate it across the feature space used to train the ML comfort 
models as explained in section 3.2.3. In the present study, we define 
corrective power as the average difference between all the variables in 
the feature space at which the same thermal sensation is achieved – one 
without PCS and one with PCS. For calculation of corrective power, we 
calculate the average difference for all the features that resulted in the 
thermal sensation of cold, comfortable, and hot for each participant 
between regular, fan, and heater segments. The corrective power of the 

fan or heater is the average difference among all participants in the 
feature vectors where the same thermal sensation is achieved between 
the regular and fan or heater segments, respectively. 

To answer the second research question, “Can regular comfort models 
be utilized for comfort prediction when PCS devices are in use by incorpo
rating the corrective power of PCS devices?“, we utilized the thermal 
sensation prediction models from the regular segment as explained 
section 3.2.3 to predict thermal sensation during the fan and heater 
segments. The corrective power is integrated into the thermal comfort 
models by adding the corrective power of the fan and heater to the 
original features extracted from the fan and heater segments, respec
tively. We then compare the difference in prediction accuracies between 
the models when corrective power is added to the input features against 
when corrective power is not added to the input features to evaluate the 
effectiveness of integrating corrective power into thermal sensation 
prediction models. Since previous studies used environmental mea
surements for calculating corrective power, we evaluated the effec
tiveness of integrating corrective power into thermal sensation 
prediction only when environmental measurements are used. 

4. Results 

We trained several ML algorithms for predicting thermal sensation 
for different experiment segments using different combinations of sensor 
streams as described in section 3.2.3. For each participant, the average 
accuracy of the 5-fold cross-validation is taken as the prediction accu
racy for that participant. We then calculated the average and standard 
deviation among the 15 participants to compare the prediction accuracy 
of different approaches in Table 2, Table 3, and Table 5. The average 
prediction accuracies and standard deviations for thermal sensation 
predictions are shown in Table 2. From Table 2, we observe that all of 
the evaluated algorithms performed similarly and there was no statis
tically significant difference between the evaluated algorithms. 

Table 2 
Prediction accuracies for cold, comfortable, and hot sensations for each segment.  

Segment Algorithm Environmental 
only 

Wearable 
only 

Thermal Imaging 
only 

Wearable and 
Environmental 

Thermal Imaging and 
Environmental 

All Sensors 

Regular 
Segment 

KNN 0.90 ± 0.07 0.88 ± 0.11 0.87 ± 0.10 0.90 ± 0.07 0.90 ± 0.08 0.90 ±
0.07 

RF 0.89 ± 0.06 0.84 ± 0.12 0.87 ± 0.11 0.89 ± 0.05 0.88 ± 0.08 0.89 ±
0.08 

SVM 0.88 ± 0.11 0.83 ± 0.15 0.86 ± 0.11 0.88 ± 0.10 0.89 ± 0.09 0.90 ±
0.08 

DT 0.88 ± 0.07 0.82 ± 0.13 0.85 ± 0.12 0.89 ± 0.05 0.88 ± 0.12 0.88 ±
0.10 

Fan Segment KNN 0.86 ± 0.10 0.82 ± 0.12 0.86 ± 0.08 0.86 ± 0.10 0.87 ± 0.10 0.88 ±
0.10 

RF 0.84 ± 0.11 0.82 ± 0.13 0.84 ± 0.09 0.84 ± 0.09 0.86 ± 0.10 0.85 ±
0.09 

SVM 0.82 ± 0.11 0.78 ± 0.12 0.82 ± 0.12 0.82 ± 0.11 0.83 ± 0.11 0.83 ±
0.11 

DT 0.85 ± 0.11 0.79 ± 0.13 0.80 ± 0.11 0.85 ± 0.09 0.83 ± 0.13 0.83 ±
0.14 

Heater Segment KNN 0.86 ± 0.11 0.81 ± 0.15 0.81 ± 0.12 0.85 ± 0.12 0.85 ± 0.12 0.85 ±
0.11 

RF 0.83 ± 0.13 0.79 ± 0.16 0.81 ± 0.11 0.84 ± 0.13 0.84 ± 0.12 0.84 ±
0.12 

SVM 0.80 ± 0.14 0.76 ± 0.15 0.78 ± 0.15 0.81 ± 0.13 0.79 ± 0.15 0.80 ±
0.15 

DT 0.82 ± 0.17 0.76 ± 0.21 0.80 ± 0.14 0.82 ± 0.15 0.83 ± 0.13 0.83 ±
0.14 

All Segments KNN 0.78 ± 0.06 0.76 ± 0.12 0.78 ± 0.10 0.78 ± 0.07 0.80 ± 0.05 0.80 ±
0.06 

RF 0.72 ± 0.08 0.72 ± 0.12 0.76 ± 0.12 0.73 ± 0.09 0.78 ± 0.08 0.78 ±
0.09 

SVM 0.73 ± 0.09 0.68 ± 0.11 0.75 ± 0.09 0.72 ± 0.09 0.76 ± 0.09 0.77 ±
0.09 

DT 0.69 ± 0.12 0.66 ± 0.10 0.73 ± 0.13 0.69 ± 0.11 0.77 ± 0.10 0.76 ±
0.10  
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However, KNN generally outperformed other algorithms by a small 
margin. We also notice that building separate models for three segments: 
regular (no fan or heater), fan, and heater results in a higher accuracy 
compared to building a single model for all conditions. The highest ac
curacy achieved when a single model is built for all segments is 80%, 
whereas accuracies upwards of 85% are possible when separate models 
are built for different segments. Regardless of the algorithm used, using 
the data only from the environmental sensors leads to a better prediction 
accuracy compared to using data only from the wearable device or only 
from the thermal imaging. Combining data from environmental and 
physiological sensors results in a similar or slightly better accuracy 
compared to using data from environmental sensors alone. 

Past studies have shown that the thermal sensation of neutral or 
comfortable does not necessarily correspond to thermal satisfaction [46, 
47], and a significant number of occupants may be satisfied under cool 
or warm conditions [6]. If an occupant is dissatisfied, then a thermal 
sensation prediction model would still be needed to decide the appro
priate control action (e.g., turn fan/heater on) based on their thermal 
sensation. However, if the occupant is satisfied even when they are cool 
or warm, then no control action would be necessary to make them 
satisfied. Therefore, if the objective of using personalized models is to 
optimize occupant satisfaction instead of optimizing for a neutral 
sensation, it might be useful to directly predict thermal satisfaction in 
addition to thermal sensation. We repeated the procedure described in 
section 3.2.3 for predicting thermal satisfaction directly. The average 
prediction accuracies and standard deviation for thermal satisfaction 
prediction are shown in Table 3. Similar to the thermal sensation pre
dictions, we observe that KNN outperforms other algorithms by a small 
margin. Building separate models for different segments depending on 
whether fan or heater are in use results in more accurate models 
compared to building a single prediction model for all segments. 
Furthermore, using data from environmental sensors only outperforms 
using data from physiological sensors (wearable device or thermal 

imaging), and combining physiological sensor data with environmental 
sensor data improves the prediction slightly, similar to predicting 
thermal sensation. It is important to note that predicting thermal satis
faction is a two-class prediction problem (satisfied vs dissatisfied), 
which results in slightly higher accuracy overall compared to a 
three-class prediction problem for thermal sensation (cold, comfortable, 
hot). 

The feature selection based on the chi-squared statistic as described 
in section 3.2.3 distinguishes features that are dependent on the training 
label and enables selecting features that are most useful for the classi
fication problem. The feature selection process also provides insight into 
which sensor signals are most useful for the particular prediction 
problem. Since the 15 features used to train individual comfort models 
can differ from one participant to another, we evaluated 10 most useful 
features based on the frequency of those features selected for thermal 
sensation and satisfaction models for the 15 participants. The 10 most 
useful features for predicting thermal sensation and thermal satisfaction 
for each segment are listed in Table 4. We observe that Ambient Tem
perature is the most useful sensor overall for both sensation and satis
faction prediction. Furthermore, other environmental measurements, 
such as Dry Globe Temperature and Wet Globe Temperature are also 
quite useful. The variables indicating the state of the fan and heater are 
also important when a single model is built for all segments, instead of a 
single model for each segment. Physiological data from thermal imaging 
and the wearable device are only somewhat useful based on their feature 
importance seen in Table 4. This further solidifies the results from Ta
bles 2 and 3 where using environmental measurements led to more ac
curate models. 

The prediction accuracies when thermal sensation prediction models 
from the regular segment are used to predict thermal sensation in the fan 
and heater segments are shown in Table 5. Four different algorithms, 
KNN, RF, SVM, and DT used in section 3.2.3, were evaluated with and 
without corrective power integrated to the input features. The results 

Table 3 
Prediction accuracies for satisfied and dissatisfied conditions for each segment.  

Segment Algorithm Environmental 
only 

Wearable 
only 

Thermal Imaging 
only 

Wearable and 
Environmental 

Thermal Imaging and 
Environmental 

All Sensors 

Regular 
Segment 

KNN 0.94 ± 0.08 0.92 ± 0.08 0.92 ± 0.07 0.94 ± 0.07 0.92 ± 0.09 0.93 ±
0.08 

RF 0.93 ± 0.06 0.91 ± 0.09 0.91 ± 0.09 0.94 ± 0.06 0.92 ± 0.08 0.94 ±
0.07 

SVM 0.90 ± 0.12 0.86 ± 0.15 0.88 ± 0.14 0.91 ± 0.10 0.90 ± 0.12 0.90 ±
0.11 

DT 0.92 ± 0.10 0.89 ± 0.11 0.89 ± 0.11 0.92 ± 0.09 0.91 ± 0.11 0.93 ±
0.10 

Fan Segment KNN 0.88 ± 0.07 0.84 ± 0.12 0.88 ± 0.06 0.87 ± 0.06 0.88 ± 0.05 0.88 ±
0.06 

RF 0.85 ± 0.08 0.83 ± 0.14 0.85 ± 0.08 0.85 ± 0.07 0.86 ± 0.07 0.86 ±
0.06 

SVM 0.80 ± 0.12 0.78 ± 0.11 0.81 ± 0.11 0.81 ± 0.11 0.83 ± 0.11 0.82 ±
0.12 

DT 0.83 ± 0.09 0.79 ± 0.17 0.86 ± 0.08 0.84 ± 0.09 0.86 ± 0.10 0.86 ±
0.10 

Heater Segment KNN 0.86 ± 0.08 0.75 ± 0.11 0.81 ± 0.11 0.84 ± 0.09 0.84 ± 0.09 0.85 ±
0.08 

RF 0.82 ± 0.12 0.73 ± 0.10 0.78 ± 0.16 0.81 ± 0.11 0.81 ± 0.12 0.80 ±
0.12 

SVM 0.74 ± 0.14 0.69 ± 0.11 0.74 ± 0.14 0.75 ± 0.11 0.76 ± 0.12 0.76 ±
0.12 

DT 0.80 ± 0.15 0.69 ± 0.13 0.78 ± 0.16 0.77 ± 0.14 0.80 ± 0.14 0.78 ±
0.14 

All Segments KNN 0.81 ± 0.08 0.75 ± 0.11 0.76 ± 0.11 0.80 ± 0.08 0.81 ± 0.10 0.82 ±
0.08 

RF 0.75 ± 0.11 0.73 ± 0.17 0.72 ± 0.12 0.76 ± 0.13 0.75 ± 0.13 0.77 ±
0.12 

SVM 0.72 ± 0.12 0.70 ± 0.11 0.72 ± 0.15 0.72 ± 0.12 0.74 ± 0.13 0.75 ±
0.13 

DT 0.73 ± 0.12 0.70 ± 0.15 0.69 ± 0.13 0.74 ± 0.13 0.71 ± 0.11 0.72 ±
0.11  
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indicate that there is an improvement of around 5%–12% in thermal 
sensation prediction when corrective power is integrated into the input 
features, compared to not using corrective power, when models from the 
regular condition are used to predict thermal sensation when PCS de
vices are in use. However, when comparing the results from Tables 2 and 
5, the overall accuracy of thermal sensation prediction when PCS de
vices are in use is relatively poor even when corrective power is added to 
the input features (about 50%), compared to when separate models are 
built (about 84%) when PCS devices are in use. Furthermore, the rela
tively large standard deviation when using regular comfort models to 
predict thermal sensation under PCS use as seen in Table 5 suggests that 
separate models are needed to predict thermal sensation when PCS de
vices are used. 

5. Discussion 

The difference in the performance of the evaluated algorithms for 
different combinations of sensor inputs was consistent, and using fea
tures extracted from the environmental sensors led to better perfor
mance compared to both wearable device and thermal imaging, 
although only by a small margin of 2%–5%. The ranking of important 
features based on chi-squared statistic also suggests that environmental 
sensors are more useful in predicting thermal sensation and satisfaction 
compared to the physiological sensors. Overall, the results from this 
study as shown in Table 2, Table 3, and Table 4 show that environmental 
measurements are more useful compared to the wrist skin temperature 

or facial temperature from thermal imaging for predicting thermal 
sensation and satisfaction at an individual level when PCS devices are in 
use. The results are consistent with our previous study where environ
mental sensors were found to be more useful for building personal 
thermal comfort models when PCS devices were not in use [6]. Due to 
relatively small number of participants in this study, the differences 
observed were not statistically significant, and future studies with a 
larger number of participants are needed to solidify the findings of this 
study. 

One of the potential reasons for relatively better performance when 
environmental measurements are used is that physiological measure
ments are more prone to noise. Wearable devices, especially wrist-worn 
devices, can move when an occupant moves their hand while perform
ing regular activities like working on a computer, which leads to sudden 
changes in sensor measurements and adds noise to the measured signals. 
Skin temperatures extracted from thermal imaging is also more prone to 
noise because when the participant moves relative to the camera, the 
calculated location of different ROIs can move slightly, which adds noise 
to the extracted temperature measurements [21]. Environmental sen
sors, on the other hand, do not get affected by occupant movement 
which leads to a more stable signal. Among the evaluated algorithms, 
KNN and Random Forest performed relatively better compared to SVM 
and Decision Trees. One of the reasons behind a better performance of 
KNN compared to other algorithms is because of the way KNN makes 
predictions. KNN predicts a label based on a majority vote among k 
nearest points, which in case of thermal comfort models means that the 
thermal sensation or satisfaction of a data point is assigned based on k 
closest data points. The way KNN makes predictions closely matches 
occupants’ thermal sensation and satisfaction. For instance, if someone 
feels comfortable at a temperature of 22 ◦C and 23 ◦C, then they are 
likely to feel comfortable at a temperature of 22.5 ◦C as well. 

Although using data from the environmental sensors resulted in 
overall higher prediction accuracy compared to the physiological mea
surements, other considerations are also important from a practical 
deployment perspective. Although ambient air temperature sensors are 
relatively cheap, anemometer needed to monitor air speed and black 
globe temperature sensor needed to monitor radiant heat are more 
expensive. In our study, the cost of ambient temperature sensor used is 
around $5, an anemometer costs around $30, and the black globe 
temperature sensor costs around $40. The overall cost of all the envi
ronmental sensors is around $75. Wearable devices to collect skin 
temperature costs around $100, and the FLIR Lepton, which is one of the 
cheaper thermal cameras, costs around $250. When considering the 
costs of different sensors, environmental sensors are less expensive than 

Table 4 
Ten most useful features for thermal sensation and satisfaction prediction for each segment.   

Regular Fan Heater All Segments 

Sensation Prediction AmbTemp_max AmbTemp_last AmbTemp_last AmbTemp_last 
AmbTemp_avg AmbTemp_min AmbTemp_max LCheekTemp_avg 
AmbTemp_min AmbTemp_max AmbTemp_min Fan_state 
AmbTemp_last WetGlobe_min AmbTemp_avg RCheekTemp_avg 
DryGlobe_min WetGlobe_max WetGlobe_max NoseTemp_avg 
DryGlobe_avg WetGlobe_avg WetGlobe_min Heater_state 
WetGlobe_last AmbTemp_avg WetGlobe_avg AmbTemp_min 
Humidity_min DryGlobe_min WetGlobe_last AmbTemp_max 
WetGlobe_min WetGlobe_last WristTemp_avg AmbTemp_avg 
WetGlobe_max DryGlobe_max WristTemp_last NoseTemp_max 

Satisfaction Prediction AmbTemp_max AmbTemp_last AmbTemp_min Heater_state 
AmbTemp_avg AmbTemp_min AmbTemp_last Fan_state 
WristTemp_max WetGlobe_min Humidity_avg WristTemp_std 
AmbTemp_last AmbTemp_max AmbTemp_max Humidity_min 
WristTemp_avg AmbTemp_avg AmbTemp_avg Humidity_last 
AmbTemp_min WetGlobe_avg Humidity_min DryGlobe_std 
Humidity_min WetGlobe_max Humidity_max AmbTemp_max 
Humidity_last WetGlobe_last Humidity_last Humidity_max 
WetGlobe_max NoseTemp_last WetGlobe_min Humidity_avg 
WristTemp_last DryGlobe_min WetGlobe_max AmbTemp_avg  

Table 5 
Thermal sensation prediction accuracies when using models from regular con
dition to predict thermal sensation when PCS devices are used, with and without 
corrective power.  

Segment Algorithm Using CP Not using CP 

Regular Segment KNN 0.90 ± 0.07 0.90 ± 0.07 
RF 0.89 ± 0.06 0.89 ± 0.06 
SVM 0.88 ± 0.11 0.88 ± 0.11 
DT 0.88 ± 0.07 0.88 ± 0.07 

Fan Segment KNN 0.41 ± 0.23 0.35 ± 0.27 
RF 0.52 ± 0.21 0.42 ± 0.27 
SVM 0.38 ± 0.29 0.33 ± 0.27 
DT 0.49 ± 0.24 0.38 ± 0.26 

Heater Segment KNN 0.55 ± 0.23 0.44 ± 0.24 
RF 0.58 ± 0.21 0.49 ± 0.20 
SVM 0.49 ± 0.36 0.37 ± 0.27 
DT 0.51 ± 0.26 0.40 ± 0.23  
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physiological sensors. Furthermore, collecting physiological data could 
raise privacy concerns among occupants compared to collecting envi
ronmental measurements. Overall, when considering the cost, predic
tion accuracy, and associated privacy concerns, environmental sensors 
seem to be a more suitable option for collecting data for building 
personalized thermal comfort models. 

The primary motivation for building personalized comfort models is 
to control the HVAC system. Previous studies that utilized PCS devices to 
control the thermal environment left the control to be manually adjusted 
by the user. Understanding and modeling of occupant comfort under the 
operation of PCS devices are useful to directly control the PCS devices 
and to incorporate the impact of PCS operation on occupant comfort into 
HVAC operations. If personalized comfort models are to be used when 
PCS devices are operated, then our study shows that having separate 
models for each PCS device state leads to an overall better accuracy 
(85%–90%) compared to a single comfort model (around 80%). Our 
results show that under regular conditions when PCS devices are not in 
use, both thermal sensation and satisfaction can be predicted with an 
accuracy of around 90%. However, the prediction accuracy drops to 
around 84% when a fan or heater is in use even when separate models 
are built for those conditions. This suggests a need for better sensing and 
modeling methods when PCS devices are used in order to achieve pre
diction accuracy on par with regular conditions when PCS devices are 
not in use and should be considered in future studies. 

When PCS devices are used in real world scenarios, they would either 
be controlled by the occupants or be automatically controlled by an 
intelligent control agent. In this study, participants did not have control 
over the PCS devices because the goal of this study was to compare the 
differences in accuracy of comfort models when PCS devices are used vs. 
when PCS devices are not used. Therefore, an experiment protocol to 
compare conditions with and without PCS devices was used in this 
study. From a practical deployment perspective, our results suggest the 
need to have separate comfort models with and without PCS, and if an 
intelligent agent is used to control the PCS devices, then the agent would 
need to consider the state of PCS devices and use a separate comfort 
model when making comfort predictions under PCS use. Future studies 
could focus on developing control agents that monitor for changes in the 
state of PCS devices and utilize separate comfort models to achieve 
higher occupant satisfaction. 

In this study, thermal sensation with PCS by integrating the correc
tive power into the regular comfort models resulted in an accuracy of 
about 50%, compared to an accuracy of about 40% without integrating 
corrective power, as seen in Table 5. Although integrating corrective 
power improved the thermal sensation prediction accuracies by about 
10%, the overall thermal sensation prediction accuracy when relying on 
models built without PCS devices is quite low. One of the potential 
reasons why integrating corrective power into the comfort models 
resulted in only a small improvement in accuracy is that the local effects 
of PCS devices on thermal sensation varies from one person to another, 
and an averaged corrective power is not sufficient to greatly improve the 
comfort models. The large standard deviations observed in the accuracy 
of comfort models in Table 5 also supports that there is a large variation 
in thermal sensation between participants when PCS devices are used, 
which is not sufficiently captured by the averaged corrective power. The 
results in Table 5 further support that separate comfort models are 
necessary to predict thermal sensation when PCS devices are used. 
Future studies can also focus on developing new ways to utilize regular 
comfort models for thermal comfort prediction when PCS devices are 
used in order to reduce the requirement of large amounts of training 
data for personal comfort models. 

One of the limitations of this study is that it involved 15 participants. 
Although the number of participants is slightly smaller compared to the 
previous studies that involved around 20–25 participants, each partici
pant in this study participated in three segments and the experiment 
took around 8 h per participant. The data collection protocol was 
designed to have variation in the collected dataset by exposing the 

participants to a wide range of environmental conditions so the partic
ipants would potentially report a wide range of different thermal 
sensation and satisfaction votes. A ML model trained on a dataset 
without much variation might give an artificially high accuracy due to 
lack of diverse training classes in the dataset. To avoid this issue, we 
prioritized the length of data collection and the range of conditions that 
the participants were exposed to, as shown in Fig. 3, over the number of 
participants. The overall dataset consists of 1276 sets of features and 
corresponding TSVs, equivalent to roughly 85 TSVs per participant, 
which is twice as large when compared to similar studies [6,23,24,52, 
53]. Even though the dataset is comparable to similar previous studies, 
neither this study nor prior studies are large enough to draw broadly 
generalizable conclusions. Furthermore, due to the small number of 
female participants, the potential impact of gender differences on the 
accuracy of comfort models could not be evaluated. However, because 
the comfort models are trained for each individual participant, the 
average accuracies of the comfort models reported in Table 2, Table 3, 
and Table 5 should be reflective of the accuracy that can be expected 
when individual comfort models are trained using a similar approach. 
Another limitation of this study is that the experiment was performed in 
a room without windows, and further studies are needed to understand 
the impact of solar radiation on occupant comfort when PCS devices are 
used. Furthermore, this study was designed as a climate-controlled study 
when the temperature was ramped up or down in a relatively short 
timeframe to understand the effectiveness of different sensing and 
modeling methods under a large range of thermal conditions. However, 
thermal conditions in actual buildings are relatively stable and do not 
cover a large range of temperatures as covered by this study. Future 
studies with a larger number of participants and long-term observations 
in real-world settings are necessary to solidify the findings of this study. 

6. Conclusions 

Centralized HVAC systems are unable to meet the comfort re
quirements of most building occupants due to the centralized “one size 
fits all” operation that does not consider real-time occupant re
quirements, and due to their inability to control the thermal environ
ment at a more local level than an HVAC zone, which could be shared by 
multiple occupants. Personalized comfort models can improve the 
controls of HVAC systems by providing information about occupant 
requirements instead of current “one size fits all” operations. PCS de
vices enable more local control of the thermal environment by creating a 
microclimate around each occupant and providing small adjustments to 
improve occupant satisfaction. Although several studies have developed 
personalized comfort models for controlling HVAC temperature set
points, there is a lack of studies that developed personalized comfort 
models for operating PCS devices. Personalized comfort models when 
PCS devices are in use are needed to either directly control the PCS 
devices or to incorporate the impact of PCS operation on occupant 
comfort into HVAC operations. In this study, we compared different 
sensing and modeling methods for predicting thermal sensation and 
thermal satisfaction when PCS devices are used. We also evaluated the 
effectiveness of integrating the idea of corrective power for thermal 
sensation prediction when PCS devices are in use. 

Our results indicate that using a combination of environmental 
sensors (ambient temperature, humidity, air speed, and radiant tem
perature) results in higher predictive accuracy for both thermal sensa
tion and thermal satisfaction, compared to using a wearable device that 
monitors skin temperature from the wrist, or thermal imaging that 
monitors skin temperature from different regions of the face. In general, 
using environmental sensors led to 2%–5% better accuracy compared to 
physiological sensors. Among the different algorithms evaluated, KNN 
outperformed other algorithms by a small margin. The observation that 
environmental sensors were more useful was consistent regardless of the 
ML algorithm used, which is also supported by the relative dependence 
of features evaluated using the chi-squared statistic. Furthermore, 
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environmental sensors have a lower cost and relatively fewer privacy 
concerns compared to physiological sensors. Therefore, we suggest the 
use of environmental sensors as the preferred data source for building 
personalized thermal comfort models under regular conditions when 
PCS devices are not used, as well as when PCS devices are in use. Our 
results also support building separate personal comfort models when 
PCS devices are used and when they are not used instead of using a 
single personal comfort model for comfort predictions with and without 
PCS. 
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