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Centralized HVAC systems are usually unable to cater to individual requirements when multiple occupants are
present in the same zone. Personalized Comfort Systems (PCS) such as local fans and heaters, heated/cooled
chairs, local ventilation systems, have shown to be useful for maintaining comfortable thermal conditions by
creating a microclimate around each occupant. Previous studies have mostly focused on personalized thermal
comfort modeling under regular HVAC operations, and there is a lack of work that focuses on personalized
thermal comfort modeling when PCS devices are in use. In this study, we compare different sensing and machine
learning methods to build personal comfort models when a local fan or heater is in use. The experiment was
conducted in a controlled environment with three segments: regular (no fan/heater), fan on, and heater on. Our
results indicate that the data from environmental sensors results in 2%-5% higher prediction accuracy compared
to using a wearable device to monitor wrist skin temperature or thermal imaging to monitor skin temperature
from different regions of the face. Furthermore, environmental sensors are more affordable and have relatively
fewer privacy concerns compared to the physiological sensors. Overall, the results of this study support the use of
environmental sensors for building personalized thermal comfort models with or without PCS. Furthermore, the
results also highlight the need for building separate personalized thermal comfort models when PCS devices are

in use, and when PCS devices are not in use.

1. Introduction

Heating, Ventilation, and Air Conditioning (HVAC) systems are
responsible for about 43% of total energy consumption in buildings [1].
Despite the large consumption of energy, centralized HVAC systems
often fail to meet their primary purpose of maintaining satisfactory
thermal environments for most of the building occupants due to poor
operation policies and differences in occupants’ comfort requirements.
ASHRAE 55 guidelines require HVAC systems to satisfy at least 80% of
building occupants [2]. However, field studies that surveyed occupants
in commercial buildings across North America showed that only about
38% of building occupants were actually satisfied with their thermal
environment, and only 8% of the surveyed buildings met the ASHRAE
requirement of satisfying more than 80% of building occupants [3]. The
poor performance of existing HVAC systems with regard to low occupant
satisfaction is caused by two primary reasons: (1) There is a large di-
versity in occupants comfort requirements and this diversity is not
accounted for in existing “one-size-fits-all” HVAC operations and (2)
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Centralized HVAC systems are usually unable to cater to individual re-
quirements, especially when there are multiple occupants in the HVAC
zone with large differences in comfort requirements, because of system
limitations in controlling the environment at a more local level than an
HVAC zone [4].

Current HVAC systems in most commercial buildings in the U.S. are
centralized and rely on the PMV/PPD model to determine the indoor
environmental conditions that are necessary for occupancy. The PMV/
PPD model does not accommodate for individual differences among
occupants, leading to a relatively static indoor thermal environment that
is controlled within a narrow range without accommodation for actual
occupant requirements. To shift away from the static operation of
thermal environments, several researchers have focused their efforts on
developing new techniques that can model personalized requirements
[5-7]. Such methods mostly rely on different sensors to monitor
different environmental and/or physiological parameters and leverage
different Machine Learning (ML) algorithms to model occupant’s ther-
mal sensation, satisfaction, or preferences [6,8], with the motivation of

Received 14 July 2020; Received in revised form 31 August 2020; Accepted 22 September 2020

Available online 24 September 2020
0360-1323/© 2020 Elsevier Ltd. All rights reserved.


mailto:becerik@usc.edu
www.sciencedirect.com/science/journal/03601323
https://http://www.elsevier.com/locate/buildenv
https://doi.org/10.1016/j.buildenv.2020.107316
https://doi.org/10.1016/j.buildenv.2020.107316
https://doi.org/10.1016/j.buildenv.2020.107316
http://crossmark.crossref.org/dialog/?doi=10.1016/j.buildenv.2020.107316&domain=pdf

A. Aryal and B. Becerik-Gerber

integrating such comfort models into the HVAC operations. A previous
study has shown that incorporating occupant comfort into centralized
HVAC operations by selecting zone level temperature setpoints based on
individual comfort models can improve the occupant satisfaction from
around 38%-63% [4].

Centralized HVAC systems are controlled at a room or a zone level.
Even when zone temperature setpoints are selected based on the occu-
pant requirements for that zone, the HVAC system alone cannot satisfy
all of the occupants in the zone. When there are more than 4-5 occu-
pants in the same zone, it becomes increasingly difficult to satisfy more
than 60% of the occupants in the zone [4], failing to meet the ASHRAE
requirements of satisfying more than 80% of occupants [2]. One of the
possible solutions is to utilize Personalized Comfort Systems (PCS) such
as local fans and heaters that are able to control the thermal environ-
ment at a more local level. PCS devices can create small microclimates
around each occupant and thus provide a more local control of the
environment around each occupant. Several studies have shown that
PCS devices are able to improve occupant satisfaction beyond what is
possible with HVAC systems alone [9,10]. Different PCS devices can
provide an effective cooling capacity of 2-3 °C and an effective heating
capacity of 7-10 °C, which can help in adjusting the thermal environ-
ment to meet individual occupant requirements [10,11].

Although several studies have developed methods to model indi-
vidual comfort requirements for HVAC operations [5,6,12], there is a
lack of research studies that have focused on understanding how indi-
vidual comfort requirements can be modeled when PCS devices are in
operation. In our previous study [6], we investigated the tradeoffs be-
tween different sensing and learning methods for modeling individual
comfort requirements for centralized HVAC operations. In this study, we
investigate the tradeoffs between using different sensing and machine
learning methods for modeling individual comfort requirements when
PCS devices are in use. We conducted controlled experiments to
compare how occupants’ thermal sensation and satisfaction changes
when PCS devices such as a fan or a heater are in operation and used
different sensing and machine learning methods to evaluate the accu-
racy of thermal sensation and satisfaction prediction under different
approaches. The rest of the paper is organized as follows. In section 2, we
review the relevant literature on personalized comfort models and PCS
devices. We describe our methodology for data collection and analysis in
section 3, followed by the results in section 4. We discuss some of the
practical considerations and the limitations of this study in section 5 and
conclude the study in section 6.

2. Literature review

The current guidelines for HVAC operations in buildings, such as the
ASHRAE 55 [2] and ISO 7730 [13], utilize the PMV/PPD model devel-
oped by Fanger [14] for fully air-conditioned buildings or the adaptive
model developed by de Dear and Brager [15] for naturally ventilated
buildings. Both the PMV/PPD model and the adaptive model are based
on an averaged response from a large sample, hence do not explicitly
accommodate individual occupant requirements [7,16]. With the rise of
the Internet of Things (IoT) and ML, several researchers have developed
methods to model individual comfort requirements by leveraging
different sensors to capture real-time information and different ML al-
gorithms [5-7,17]. The most common sensing methods used in building
personalized comfort models include environmental sensors [6,18],
wearable devices to monitor skin temperature from different body parts,
such as wrist and legs [6,19,20], and thermal imaging to monitor skin
temperature from different regions of the face [6,21,22]. Some of the
common ML algorithms used for personalized comfort modeling include
Random Forest [6,23-25], decision trees [26], Support Vector Machines
(SVM) [6,27], and Artificial Neural Networks (ANN) [28], with accu-
racies ranging from 75% to 95%. A general review of personal comfort
models can be found in Refs. [7], and the specific literature review
focusing on different sensing and machine learning methods for
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personalized comfort models can be found in the authors’ previous work
[6].

Although previously developed personal comfort models help in
controlling the HVAC temperature setpoints based on occupant re-
quirements, centralized HVAC systems are unable to control the thermal
environment at a local level for each individual occupant. There has
been a renewed interest in using PCS devices in recent years to control
the environment around each occupant. Several PCS devices, such as
heated chairs, hand warmers, local cooling fans have been studied
recently and can be used to control the local thermal environment
around occupants to improve their comfort and satisfaction [9-11,29].
In a field study, Bauman reported 100% thermal satisfaction from oc-
cupants using a desktop-based Task Ambient Conditioning (TAC) system
with an air supply nozzle and a radiant heating panel, compared to 80%
satisfaction from occupants without TAC system [30]. In another study
using ceiling-mounted Personal Ventilation (PV) system, Yang et al.
reported 77%-97% satisfaction under ambient temperatures of 26 °C
and supply air temperature in the range of 21 °C-26 °C and air speeds of
0.36-0.76 m/s [11,31]. Zhang et al. demonstrated in a field study that
the use of a combination of PCS devices which included a heated/cooled
chair, foot warmer and leg warmer resulted in increased thermal
acceptance from 56% to around 80% when the ambient temperatures
were between 20 °C and 25 °C [32]. These studies demonstrate that the
use of PCS devices can improve occupants’ comfort and satisfaction
levels and have the potential to meet the ASHRAE requirements of
satisfying 80% of building occupants.

PCS devices perform differently in their ability to provide local
heating and cooling. Some studies have attempted to quantify the ability
of PCS devices to correct the thermal discomfort in terms of temperature
by using the idea of corrective power. Corrective power is defined as the
difference between two ambient temperatures at which the same ther-
mal sensation is achieved — one with PCS and one without PCS [11].
Zhang et al. reviewed 41 studies and evaluated the corrective power of
different PCS devices that cooled the participant using frontal air jets,
ceiling fans, cooling chairs, and heated the participant using heated
chairs and foot warmers [11]. Cooling with air jets, directed to the face,
had a corrective power equivalent to -2 K to —3 K when air speeds were
around 0.4-0.6 m/s, and ambient temperature was around 26 °C-27 °C
[30,33]. At a higher ambient temperature of 28 °C-30 °C, air speeds of
0.8-1 m/s had a cooling effect of -2 K to -4 K [11,34], and above 32 °C,
high air speeds of up to 2 m/s was needed to maintain comfort [11,35].
Heating PCS devices, such as chairs, foot and leg warmers had a
corrective power of 7 K-10 K when the ambient temperature was
14 °C-16 °C [11,36,37]. In another study, Luo et al. found that the
corrective power of a small desk fan was 1.5 K, cooling wrist pad was 0.5
K and cooling chair was 2 K when the ambient temperature was 29 °C
[10]. In the same study, the corrective power of a heated wrist pad was
0.75 K, heated chair was 1.25 K and heated shoe insole was 0.26 K when
the ambient temperature was 18 °C [10]. The actual ability to correct for
thermal discomfort of the PCS device depends on the type and size of the
device, user perception, and the ambient conditions. However, previous
studies provide strong evidence that PCS, especially fans and heaters,
can be successfully used in cool to warm environments in the range of
18 °C-28 °C to maintain comfortable conditions for building occupants.

Several studies have developed methods to create personalized
comfort models for HVAC operations, and many studies have shown the
usefulness of using PCS devices to personalize the thermal environment.
However, previous studies utilizing PCS devices left the burden of con-
trol to the end-user. There is a lack of studies that focus on creating
personalized comfort models for PCS operation, which can be useful to
automatically control PCS devices or to incorporate the impact of PCS
devices on occupant comfort into HVAC operations. In this work, we
study the tradeoffs between different sensing and modeling methods for
personalized thermal comfort models when PCS devices (i.e., desk fan
and heater) are in use. We also provide insights regarding whether
existing thermal comfort models that are developed for centralized
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HVAC operations can be leveraged for controlling PCS devices by
adjusting the existing models with the corrective power of PCS devices.
The specific research questions that we attempt to answer in this paper
are: (1) What are the most useful sensing and modeling methods for
predicting individual thermal sensation and satisfaction when PCS de-
vices are in use? and (2) Can regular comfort models be utilized for
comfort prediction when PCS devices are in use by incorporating the
corrective power of PCS devices?

3. Methodology

The overall methodology used in this study involves a climate-
controlled experiment conducted in three segments where the room
temperature was gradually changed using the HVAC system for cooling
and space heaters placed more than 3 m away from the participants for
heating the room. It is important to note that these space heaters are
different from the heater that was used as a PCS device. The three seg-
ments are: regular (no fan or heater used), fan (fan is on throughout the
segment), and heater (PCS heater is on throughout the segment). The
environment was monitored using sensors to measure changes in air
temperature, humidity, air speed, and radiant temperature. Physiolog-
ical changes in skin temperature were monitored using a wearable de-
vice on the wrist as well as using a thermal camera directed at
participants’ faces. The three sensing methods (i.e., environmental,
wearable, and thermal imaging) were selected based on their perfor-
mance in building personal comfort models from previous literature [6].
Thermal sensation and thermal satisfaction votes were collected every 5
min from the participants in the form of self-reported values. The
collected data was used to train different ML models to learn individual
thermal sensation and satisfaction with and without PCS use. The
detailed methodology is described in the following subsections.

3.1. Experiment procedure

The experiments were conducted in a research office at the Univer-
sity of Southern California (USC) in Los Angeles during the summer
months of July 2019 and August 2019. Los Angeles falls in a warm-
summer Mediterranean climate according to the Koppen-Geiger
climate classification [38]. The average outdoor temperature during
the data collection period was 23 °C, with average low and high outdoor
temperatures ranging from 18 °C to 30 °C, respectively. All the partic-
ipants were asked to wear trousers and t-shirts to keep the clothing levels
consistent. The approximate clothing insulation is 0.57 clo. for the
ensemble [2]. Fifteen healthy subjects, 11 males and 4 females partici-
pated in the study. The anthropometric details of the study participants
are shown in Table 1.

The experiment was conducted in three segments: (1) a regular
segment where no fan or heater was in use, (2) a fan segment where the
fan was in use, and (3) a heater segment where a heater was in use. In
each segment, the room temperature was changed either from cold
(approx. 19 °C) to hot (approx. 31 °C) or from hot to cold. All partici-
pants participated in all three phases resulting in roughly 6 h of data per
participant. The order of segments, regular, fan, and heater were ran-
domized, and the starting temperature (hot or cold) was also random-
ized for each segment. The randomization was done to avoid any
systematic biases in thermal sensation and satisfaction votes in the
collected data that could have resulted from the order of the experiments
or the direction of temperature change. For example, if the order of data

Table 1
Anthropometric details of study participants.

Gender Count Age (years) Height (cm) Weight (kg)
Male 11 21.5+ 3.5 174.0 + 5.7 67.3 +7.4
Female 4 22.0 £3.7 1549 + 2.9 60.2 + 4.0
Overall 15 21.6 £ 3.5 168.9 + 10.1 65.4 +7.3
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collection was fixed to fan, regular, and heater segments respectively,
participants might have compared their current sensation to their
sensation in the previous segment and report feeling much cooler or
warmer due to their previous thermal experience. Although partici-
pants’ thermal experience cannot be eliminated, randomization of the
data collection order would help to limit any potential systematic bias in
the collected data resulting from their previous thermal experience.
Each segment lasted between 1.5 and 2 h and was stopped when the
participant voted +3 or —3 for three consecutive times or when 2 h was
over. This approach was taken to gather data covering different ranges
of thermal sensations without causing too much discomfort to the par-
ticipants. There was at least a 1-h gap between the segments, and some
participants completed different segments over multiple days. Partici-
pants were asked to stay in the experiment room for at least 15 min to
acclimatize the participants to the starting hot or cold condition prior to
starting data collection in order to avoid overshoots in thermal sensa-
tion. Thermal overshoot is sometimes observed when the body’s thermal
stress is relieved by local cooling/heating to restore homeostasis and
tends to initially exceed their comfort state in a steady-state environ-
ment [39]. The room temperature was gradually changed at a rate of
1 °C/10 min to avoid sudden changes in the thermal environment in all
segments. For the fan segment, a small desk fan was operated at a dis-
tance of 1 m from the participant and directed at their face, which
generated an air speed of about 1.2 m/s around the participant’s face.
For the heater segment, a radiant heater of 1000 W was operated on the
ground, approximately 1 m away from the participant’s feet. A fan
directed to the face and heater directed to the feet were used because the
heightened sensitivity of head for cooling and feet for warming creates a
bigger comfort effect compared to other local heating or cooling regi-
mens [11,40]. The experimental setup for this study is shown in Fig. 1.
Different sensors were used to monitor changes in air temperature,
humidity, radiant temperature, and air speed. DHT22 (accuracy +0.5 °C
and resolution 0.1 °C) sensor connected to Arduino Uno was placed on
the desk roughly 0.5 m from the participant to monitor air temperature
and humidity every second. A handheld anemometer UT363BT (accu-
racy +0.5%rdg), was placed between the fan and the participant to
monitor air speed generated by the fan. The anemometer was placed
between the participant and the fan at a distance of 0.4 m from the fan to
monitor the air speed every second. A black globe temperature sensor,
Sper Scientific 800,037, was used to monitor dry globe and wet globe
temperatures which capture the radiant heat generated by the heater at
the height of 0.5 m (approximately knee height), placed 0.2 m parallel to
the knee. The black globe temperature sensor has an accuracy of 0.6 °C
for dry globe temperature. In addition to the environmental sensors, a
wearable device with MLX90614 (accuracy +£0.5 °C and resolution
0.02 °C) contact-less infrared temperature sensor fitted on a wristband
with the sensor, placed roughly 1 cm from the wrist, was used to monitor
changes in skin temperature from the wrist every second. The
MLX90614 sensor has been used to monitor skin temperatures in pre-
vious studies and has been shown to be useful for monitoring physio-
logical changes [6,41]. A FLIR Lepton thermal camera from Tinkerforge
was used to capture thermal images, and a standard web camera was
used to capture RGB images of the participants’ facial region every
second. The FLIR Lepton is a low-cost thermal camera capable of
capturing 80 x 60-pixel thermal images with an accuracy of +5 °C and a
resolution of 0.1 °C per pixel. It is important to note that the accuracy of
+5 °C is for measuring absolute temperatures in the worst-case scenario,
but in practice the FLIR Lepton provides consistent measurements for
monitoring changes in skin temperature over time [24]. FLIR Lepton
was previously validated by Li et al. [24]. and used in several previous
studies to monitor changes in skin temperature for thermal comfort
assessment [6,24,42]. In addition to sensor measurements, participants
were asked to rate their thermal sensation and thermal satisfaction on a
7-point scale every 5 min using a web interface shown in Fig. 2.
Approximately 28 comfort votes were collected for each participant in
each of the three phases, resulting in a total of around 85 thermal
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Thermal and RGB cameras
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Ambient temperature

and humidity sensor

S

Radiant heater

Fig. 1. Experimental setup.

Please enter vour particinant number

How do you feel about the Thermal Environment?

Cold Cool Slightly Cool
-3 -2 -1

Neutral

Slightly Warm Warm Hot
1 2 3

How satisfied are you with your Thermal Environment?

Very Somewhat Slightly
dissatisfied dissatisfied dissatisfied
-3 -2 -1

Neutral

Somewhat Very
Slightly satisfied satisfied Satisfied
1 2 3

Fig. 2. Web interface to collect participants’ thermal sensation and thermal satisfaction.

sensation and thermal satisfaction votes per participant.
3.2. Data analysis

The data analysis broadly consisted of three stages for building the
thermal sensation and thermal satisfaction prediction models: (1) data
cleaning and preprocessing, (2) feature extraction, and (3) training and
evaluation of different ML algorithms to predict individual thermal
sensation and satisfaction as described in sections 3.2.1 to 3.2.3. Further
analysis, described in section 3.2.4, was conducted to evaluate the
effectiveness of using corrective power to predict thermal sensation
under PCS use by using models built without PCS use.

3.2.1. Data cleaning and preprocessing

Skin temperatures from four Region of Interests (ROIs): nose, fore-
head, right cheek, and left cheek were extracted from the thermal im-
ages based on their usefulness identified in previous studies [21,24,43].
To extract temperature measurements from different ROISs, first, the RGB
image was overlapped on the thermal image using image registration,
then the facial landmark detection algorithm [44] was used to identify
different landmarks such as lips, nose, eyebrows and face boundary. The
locations of different ROIs were calculated based on their relative
location in reference to the landmarks and the corresponding tempera-
ture measurements of the ROIs were extracted from the thermal images.
For a detailed description of the skin temperature extraction from
thermal images, readers are referred to previous work by the authors in
Refs. [21].



A. Aryal and B. Becerik-Gerber

All of the sensor measurements, including skin temperatures from
the thermal camera, were cleaned by passing them through a moving
median filter to remove sudden changes in sensor measurements if
present. Then, a Savitzky-Golay filter, which removes some noise from
the signal without greatly distorting the original sensor signal [45], was
used to smooth the sensor measurements and reduce some of the sensor
noise. Readers are referred to a previous work by the authors in Ref. [6]
for further details on data cleaning and filtering. The sensor measure-
ments were then synchronized to a common time axis for assisting in
feature extraction. An example of collected ambient temperature mea-
surements and corresponding thermal sensation and satisfaction from a
participant under the three segments is shown in Fig. 3. Other sensor
measurements are not shown to keep the figure legible.

3.2.2. Feature extraction

Prior to training individual comfort models, several features were
extracted from the measurements. The measurements include air tem-
perature, relative humidity, air speed, black globe temperature, wrist
skin temperature, and temperatures from the forehead, nose, left cheek,
and right cheek. For each Thermal Sensation Vote (TSV) and Thermal
Satisfaction (TSat) from the participants, sensor measurements within a
5-min window prior to the TSV was separated. Then, for each 5-min
window corresponding to a TSV, seven different features that capture
the value of measurements and the rate of change were extracted from
each sensor measurement. The extracted features included: the instant
measurement at the time of TSV; the minimum, maximum, average,
standard deviation of the measurements, the overall change in the
measurements between the first and the last values in the time window;
and the average of the derivative of the measurements to capture the
rate of change. These features were calculated based on their usefulness
in previous studies for modeling thermal comfort [6,23,24]. Two binary
variables indicating the states of fan and heater (on or off) were also
added as features. The final dataset prior to training included a total of
65 features for each corresponding TSV and TSat: 63 extracted from
different sensor measurements and 2 features indicating fan and heater
states.

3.2.3. Training and evaluation of ML models

The ASHRAE 7-point scale, which was used to collect thermal
sensation, was grouped into three comfort states: Cold (TSV € {-3, —2}),
Comfortable (TSV ¢ {-1, 0, +1}) and Hot (TSV ¢ {+2, +3}). Previous
studies have shown that a thermal sensation vote of 0 does not neces-
sarily correspond to satisfaction, and the comfortable condition usually
spans a larger range than the neutral sensation [46,47]. The grouping of
thermal sensation into thermal comfort states is based on the assumption
in ASHRAE 55 that occupants are satisfied in the range of —1.5 < TSV <
+1.5 when the scale resolution is 0.5 or less, or —2< TSV<+2 when the
scale resolution is limited to integers [2]. The Thermal Satisfaction was
grouped into two categories, Satisfied (TSat ¢ {0, +1, +2, +3}) and

Fan Segment

Regular Segment
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Dissatisfied (TSat € {-1, —2, —3}), based on the ASHRAE 55’s suggestion
of thermal acceptability, although a more generous grouping of TSat >
—1 as satisfied is also permitted by the guidelines [2]. The grouped
Thermal Sensation and Thermal Satisfaction values were used as target
labels to train classification models to predict individual sensation and
satisfaction, respectively.

Prior to training the ML algorithms, we performed feature selection
to remove the features that were less useful for the classification prob-
lem using chi-squared statistics between each feature and the class. The
chi-square test measures the dependence between the features and the
training class, which enables removing features that are most likely to be
independent of the training label and therefore not very useful for
training a classification model. Thus, up to 15 best features were
selected for each individual thermal sensation and satisfaction model
separately using the chi-squared statistics before training each model.
Removing unnecessary or redundant features can improve training
performance both in terms of speed and accuracy. Furthermore, the
feature selection also provides some insight into which features and
which sensing methods are more useful than others for predicting
thermal sensation and satisfaction.

In order to answer the first research question “What are the most
useful sensing and modeling methods for predicting individual thermal
sensation and satisfaction when PCS devices are in use?“, we trained four
different ML algorithms under different combinations of sensor inputs
for each segment. For each participant, we trained separate models for
each segment (regular, fan, and heater) to understand the differences in
prediction accuracies when PCS devices were in use. We also trained
general models for each participant with data from all segments to un-
derstand the predictive accuracies when separate models are not avail-
able. To understand which sensing methods are most useful, we repeated
the model training by using features from different categories of sensing
methods (environmental, wearable, and thermal imaging), and their
combinations to understand the differences in predictive accuracy when
only certain sensors are used in data collection. For each segment and
combination of sensing methods, we evaluated Random Forest (RF), K-
Nearest Neighbors (KNN), Support Vector Machine (SVM) with a cubic
kernel, and Decision Trees (DT), based on their performance in previous
studies [6,23-27,48]. Each algorithm was evaluated using 5-fold
cross-validation, and hyperparameters were tuned with a grid search.
In 5-fold cross-validation, the dataset is randomly partitioned into 5
subsets, where 1 subset is held for validation and 4 subsets are used for
training the model, and the training and validation are repeated 5 times
with each subset acting as the validation set and remaining subsets used
for training the models. The k-fold cross-validation is a common strategy
to reduce the chances of overfitting the model to the training set and
typically leads to a more generalizable model while utilizing the entire
dataset [49].

The KNN algorithm makes a prediction for the input features based
on a majority vote among k-nearest neighbors in the training set. The

. Heater Segment
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SVM method determines an optimal hyperplane in the feature space that
separates different classes. Using a nonlinear kernel such as the cubic
kernel enables the creation of nonlinear decision boundaries or support
vectors in the feature space. The Decision Tree method repeatedly par-
titions the dataset into subsets based on most significant differentiating
features until the each of the remaining partitions fall under the same
training label, or until the size limits specified for the tree structure are
reached. Random Forest is an ensemble method that trains multiple
decision trees on a random subset of features, resulting in a group of
weak predictors. The Random Forest then combines the output of mul-
tiple decision trees using specified consensus criteria resulting in a more
robust prediction. All of the algorithms used in this study are standard
ML classification algorithms and readers are referred to different ML
textbooks for further details about each algorithm [50,51].

3.2.4. Corrective power calculations and model training

In [11], Zhang et al. defined corrective power as the difference be-
tween two ambient temperatures at which the same thermal sensation is
achieved — one without PCS and one with PCS. In this study, multiple
environmental parameters such as relative humidity, dry globe tem-
perature, wet globe temperature were monitored in addition to the
ambient temperature. Furthermore, different features extracted from the
sensor measurements as described in section 3.2.2 in addition to the
direct value of sensor measurements were used for the training of ML
models. Therefore, we adopt the idea of corrective power from Ref. [11]
and calculate it across the feature space used to train the ML comfort
models as explained in section 3.2.3. In the present study, we define
corrective power as the average difference between all the variables in
the feature space at which the same thermal sensation is achieved — one
without PCS and one with PCS. For calculation of corrective power, we
calculate the average difference for all the features that resulted in the
thermal sensation of cold, comfortable, and hot for each participant
between regular, fan, and heater segments. The corrective power of the

Table 2
Prediction accuracies for cold, comfortable, and hot sensations for each segment.
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fan or heater is the average difference among all participants in the
feature vectors where the same thermal sensation is achieved between
the regular and fan or heater segments, respectively.

To answer the second research question, “Can regular comfort models
be utilized for comfort prediction when PCS devices are in use by incorpo-
rating the corrective power of PCS devices?“, we utilized the thermal
sensation prediction models from the regular segment as explained
section 3.2.3 to predict thermal sensation during the fan and heater
segments. The corrective power is integrated into the thermal comfort
models by adding the corrective power of the fan and heater to the
original features extracted from the fan and heater segments, respec-
tively. We then compare the difference in prediction accuracies between
the models when corrective power is added to the input features against
when corrective power is not added to the input features to evaluate the
effectiveness of integrating corrective power into thermal sensation
prediction models. Since previous studies used environmental mea-
surements for calculating corrective power, we evaluated the effec-
tiveness of integrating corrective power into thermal sensation
prediction only when environmental measurements are used.

4. Results

We trained several ML algorithms for predicting thermal sensation
for different experiment segments using different combinations of sensor
streams as described in section 3.2.3. For each participant, the average
accuracy of the 5-fold cross-validation is taken as the prediction accu-
racy for that participant. We then calculated the average and standard
deviation among the 15 participants to compare the prediction accuracy
of different approaches in Table 2, Table 3, and Table 5. The average
prediction accuracies and standard deviations for thermal sensation
predictions are shown in Table 2. From Table 2, we observe that all of
the evaluated algorithms performed similarly and there was no statis-
tically significant difference between the evaluated algorithms.

Segment Algorithm  Environmental Wearable Thermal Imaging Wearable and Thermal Imaging and All Sensors
only only only Environmental Environmental
Regular KNN 0.90 + 0.07 0.88 + 0.11 0.87 + 0.10 0.90 + 0.07 0.90 + 0.08 0.90 +
Segment 0.07
RF 0.89 + 0.06 0.84 +£ 0.12 0.87 £0.11 0.89 + 0.05 0.88 + 0.08 0.89 +
0.08
SVM 0.88 +0.11 0.83 +0.15 0.86 + 0.11 0.88 +0.10 0.89 + 0.09 0.90 +
0.08
DT 0.88 + 0.07 0.82 +0.13 0.85 + 0.12 0.89 + 0.05 0.88 + 0.12 0.88 +
0.10
Fan Segment KNN 0.86 + 0.10 0.82 + 0.12 0.86 + 0.08 0.86 + 0.10 0.87 + 0.10 0.88 +
0.10
RF 0.84 +£0.11 0.82 +0.13 0.84 + 0.09 0.84 + 0.09 0.86 + 0.10 0.85 +
0.09
SVM 0.82 £ 0.11 0.78 +£ 0.12 0.82 £0.12 0.82 £0.11 0.83 +£0.11 0.83 £
0.11
DT 0.85 +0.11 0.79 £ 0.13 0.80 +0.11 0.85 + 0.09 0.83 +0.13 0.83 +
0.14
Heater Segment ~ KNN 0.86 + 0.11 0.81 + 0.15 0.81 + 0.12 0.85 + 0.12 0.85 + 0.12 0.85 +
0.11
RF 0.83 £0.13 0.79 £ 0.16 0.81 +0.11 0.84 + 0.13 0.84 +£0.12 0.84 +
0.12
SVM 0.80 + 0.14 0.76 + 0.15 0.78 + 0.15 0.81 +0.13 0.79 £ 0.15 0.80 +
0.15
DT 0.82 +£0.17 0.76 £ 0.21 0.80 £ 0.14 0.82 £0.15 0.83 £ 0.13 0.83 £
0.14
All Segments KNN 0.78 + 0.06 0.76 + 0.12 0.78 + 0.10 0.78 + 0.07 0.80 + 0.05 0.80 +
0.06
RF 0.72 + 0.08 0.72 £ 0.12 0.76 + 0.12 0.73 + 0.09 0.78 + 0.08 0.78 +
0.09
SVM 0.73 £ 0.09 0.68 + 0.11 0.75 + 0.09 0.72 + 0.09 0.76 + 0.09 0.77 +
0.09
DT 0.69 + 0.12 0.66 + 0.10 0.73 £0.13 0.69 +£0.11 0.77 £ 0.10 0.76 +

0.10
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Table 3
Prediction accuracies for satisfied and dissatisfied conditions for each segment.
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Segment Algorithm  Environmental Wearable Thermal Imaging Wearable and Thermal Imaging and All Sensors
only only only Environmental Environmental
Regular KNN 0.94 + 0.08 0.92 + 0.08 0.92 £ 0.07 0.94 £ 0.07 0.92 + 0.09 0.93 +
Segment 0.08
RF 0.93 + 0.06 0.91 + 0.09 0.91 + 0.09 0.94 + 0.06 0.92 + 0.08 0.94 +
0.07
SVM 0.90 + 0.12 0.86 + 0.15 0.88 + 0.14 0.91 + 0.10 0.90 + 0.12 0.90 +
0.11
DT 0.92 +£0.10 0.89 + 0.11 0.89 +0.11 0.92 + 0.09 0.91 +0.11 0.93 +
0.10
Fan Segment KNN 0.88 + 0.07 0.84 + 0.12 0.88 + 0.06 0.87 + 0.06 0.88 + 0.05 0.88 +
0.06
RF 0.85 £+ 0.08 0.83 £ 0.14 0.85 + 0.08 0.85 £+ 0.07 0.86 + 0.07 0.86 +
0.06
SVM 0.80 £ 0.12 0.78 £ 0.11 0.81 +0.11 0.81 +0.11 0.83 £ 0.11 0.82 +
0.12
DT 0.83 £+ 0.09 0.79 +£ 0.17 0.86 + 0.08 0.84 £+ 0.09 0.86 + 0.10 0.86 +
0.10
Heater Segment ~ KNN 0.86 + 0.08 0.75 £ 0.11 0.81 +0.11 0.84 + 0.09 0.84 + 0.09 0.85 +
0.08
RF 0.82 +0.12 0.73 £ 0.10 0.78 + 0.16 0.81 +0.11 0.81 +£0.12 0.80 +
0.12
SVM 0.74 +£ 0.14 0.69 + 0.11 0.74 £0.14 0.75 £ 0.11 0.76 + 0.12 0.76 +
0.12
DT 0.80 £ 0.15 0.69 +0.13 0.78 + 0.16 0.77 + 0.14 0.80 + 0.14 0.78 +
0.14
All Segments KNN 0.81 £+ 0.08 0.75 £ 0.11 0.76 £ 0.11 0.80 + 0.08 0.81 £ 0.10 0.82 +
0.08
RF 0.75 £ 0.11 0.73 £0.17 0.72 + 0.12 0.76 + 0.13 0.75 £ 0.13 0.77 +
0.12
SVM 0.72 £ 0.12 0.70 £ 0.11 0.72 + 0.15 0.72 + 0.12 0.74 £ 0.13 0.75 +
0.13
DT 0.73 +£0.12 0.70 £ 0.15 0.69 +0.13 0.74 £0.13 0.71 +£0.11 0.72 &+
0.11

However, KNN generally outperformed other algorithms by a small
margin. We also notice that building separate models for three segments:
regular (no fan or heater), fan, and heater results in a higher accuracy
compared to building a single model for all conditions. The highest ac-
curacy achieved when a single model is built for all segments is 80%,
whereas accuracies upwards of 85% are possible when separate models
are built for different segments. Regardless of the algorithm used, using
the data only from the environmental sensors leads to a better prediction
accuracy compared to using data only from the wearable device or only
from the thermal imaging. Combining data from environmental and
physiological sensors results in a similar or slightly better accuracy
compared to using data from environmental sensors alone.

Past studies have shown that the thermal sensation of neutral or
comfortable does not necessarily correspond to thermal satisfaction [46,
471, and a significant number of occupants may be satisfied under cool
or warm conditions [6]. If an occupant is dissatisfied, then a thermal
sensation prediction model would still be needed to decide the appro-
priate control action (e.g., turn fan/heater on) based on their thermal
sensation. However, if the occupant is satisfied even when they are cool
or warm, then no control action would be necessary to make them
satisfied. Therefore, if the objective of using personalized models is to
optimize occupant satisfaction instead of optimizing for a neutral
sensation, it might be useful to directly predict thermal satisfaction in
addition to thermal sensation. We repeated the procedure described in
section 3.2.3 for predicting thermal satisfaction directly. The average
prediction accuracies and standard deviation for thermal satisfaction
prediction are shown in Table 3. Similar to the thermal sensation pre-
dictions, we observe that KNN outperforms other algorithms by a small
margin. Building separate models for different segments depending on
whether fan or heater are in use results in more accurate models
compared to building a single prediction model for all segments.
Furthermore, using data from environmental sensors only outperforms
using data from physiological sensors (wearable device or thermal

imaging), and combining physiological sensor data with environmental
sensor data improves the prediction slightly, similar to predicting
thermal sensation. It is important to note that predicting thermal satis-
faction is a two-class prediction problem (satisfied vs dissatisfied),
which results in slightly higher accuracy overall compared to a
three-class prediction problem for thermal sensation (cold, comfortable,
hot).

The feature selection based on the chi-squared statistic as described
in section 3.2.3 distinguishes features that are dependent on the training
label and enables selecting features that are most useful for the classi-
fication problem. The feature selection process also provides insight into
which sensor signals are most useful for the particular prediction
problem. Since the 15 features used to train individual comfort models
can differ from one participant to another, we evaluated 10 most useful
features based on the frequency of those features selected for thermal
sensation and satisfaction models for the 15 participants. The 10 most
useful features for predicting thermal sensation and thermal satisfaction
for each segment are listed in Table 4. We observe that Ambient Tem-
perature is the most useful sensor overall for both sensation and satis-
faction prediction. Furthermore, other environmental measurements,
such as Dry Globe Temperature and Wet Globe Temperature are also
quite useful. The variables indicating the state of the fan and heater are
also important when a single model is built for all segments, instead of a
single model for each segment. Physiological data from thermal imaging
and the wearable device are only somewhat useful based on their feature
importance seen in Table 4. This further solidifies the results from Ta-
bles 2 and 3 where using environmental measurements led to more ac-
curate models.

The prediction accuracies when thermal sensation prediction models
from the regular segment are used to predict thermal sensation in the fan
and heater segments are shown in Table 5. Four different algorithms,
KNN, RF, SVM, and DT used in section 3.2.3, were evaluated with and
without corrective power integrated to the input features. The results



A. Aryal and B. Becerik-Gerber

Table 4
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Ten most useful features for thermal sensation and satisfaction prediction for each segment.

Regular Fan

Heater All Segments

Sensation Prediction AmbTemp_max
AmbTemp_avg
AmbTemp_min
AmbTemp_last
DryGlobe_min
DryGlobe_avg
WetGlobe_last
Humidity_min
WetGlobe_min
WetGlobe_max
AmbTemp_max
AmbTemp_avg
WristTemp_max
AmbTemp_last
WristTemp_avg
AmbTemp_min
Humidity_min
Humidity_last
WetGlobe_max
WristTemp_last

Satisfaction Prediction

AmbTemp_last
AmbTemp_min
AmbTemp_max
WetGlobe_min
WetGlobe_max
WetGlobe_avg
AmbTemp_avg
DryGlobe_min
WetGlobe_last
DryGlobe_max
AmbTemp_last
AmbTemp_min
WetGlobe_min
AmbTemp_max
AmbTemp_avg
WetGlobe_avg
WetGlobe_max
WetGlobe _last
NoseTemp _last
DryGlobe_min

AmbTemp _last
LCheekTemp_avg
Fan_state
RCheekTemp_avg
NoseTemp_avg
Heater state
AmbTemp_min
AmbTemp_max
AmbTemp_avg
NoseTemp_max
Heater state
Fan_state
WristTemp_std
Humidity_min
Humidity_last
DryGlobe_std
AmbTemp_max
Humidity_max
Humidity_avg
AmbTemp_avg

AmbTemp_last
AmbTemp_max
AmbTemp_min
AmbTemp_avg
WetGlobe_max
WetGlobe_min
WetGlobe_avg
WetGlobe_last
WristTemp_avg
WristTemp_last
AmbTemp_min
AmbTemp_last
Humidity_avg
AmbTemp_max
AmbTemp_avg
Humidity_min
Humidity_max
Humidity_last
WetGlobe_min
WetGlobe_max

Table 5

Thermal sensation prediction accuracies when using models from regular con-
dition to predict thermal sensation when PCS devices are used, with and without
corrective power.

Segment Algorithm Using CP Not using CP
Regular Segment KNN 0.90 £+ 0.07 0.90 £+ 0.07
RF 0.89 + 0.06 0.89 + 0.06
SVM 0.88 +0.11 0.88 £ 0.11
DT 0.88 + 0.07 0.88 + 0.07
Fan Segment KNN 0.41 +£0.23 0.35 £ 0.27
RF 0.52 + 0.21 0.42 + 0.27
SVM 0.38 + 0.29 0.33 +0.27
DT 0.49 + 0.24 0.38 + 0.26
Heater Segment KNN 0.55 + 0.23 0.44 £+ 0.24
RF 0.58 + 0.21 0.49 £ 0.20
SVM 0.49 + 0.36 0.37 £ 0.27
DT 0.51 + 0.26 0.40 + 0.23

indicate that there is an improvement of around 5%-12% in thermal
sensation prediction when corrective power is integrated into the input
features, compared to not using corrective power, when models from the
regular condition are used to predict thermal sensation when PCS de-
vices are in use. However, when comparing the results from Tables 2 and
5, the overall accuracy of thermal sensation prediction when PCS de-
vices are in use is relatively poor even when corrective power is added to
the input features (about 50%), compared to when separate models are
built (about 84%) when PCS devices are in use. Furthermore, the rela-
tively large standard deviation when using regular comfort models to
predict thermal sensation under PCS use as seen in Table 5 suggests that
separate models are needed to predict thermal sensation when PCS de-
vices are used.

5. Discussion

The difference in the performance of the evaluated algorithms for
different combinations of sensor inputs was consistent, and using fea-
tures extracted from the environmental sensors led to better perfor-
mance compared to both wearable device and thermal imaging,
although only by a small margin of 2%-5%. The ranking of important
features based on chi-squared statistic also suggests that environmental
sensors are more useful in predicting thermal sensation and satisfaction
compared to the physiological sensors. Overall, the results from this
study as shown in Table 2, Table 3, and Table 4 show that environmental
measurements are more useful compared to the wrist skin temperature

or facial temperature from thermal imaging for predicting thermal
sensation and satisfaction at an individual level when PCS devices are in
use. The results are consistent with our previous study where environ-
mental sensors were found to be more useful for building personal
thermal comfort models when PCS devices were not in use [6]. Due to
relatively small number of participants in this study, the differences
observed were not statistically significant, and future studies with a
larger number of participants are needed to solidify the findings of this
study.

One of the potential reasons for relatively better performance when
environmental measurements are used is that physiological measure-
ments are more prone to noise. Wearable devices, especially wrist-worn
devices, can move when an occupant moves their hand while perform-
ing regular activities like working on a computer, which leads to sudden
changes in sensor measurements and adds noise to the measured signals.
Skin temperatures extracted from thermal imaging is also more prone to
noise because when the participant moves relative to the camera, the
calculated location of different ROIs can move slightly, which adds noise
to the extracted temperature measurements [21]. Environmental sen-
sors, on the other hand, do not get affected by occupant movement
which leads to a more stable signal. Among the evaluated algorithms,
KNN and Random Forest performed relatively better compared to SVM
and Decision Trees. One of the reasons behind a better performance of
KNN compared to other algorithms is because of the way KNN makes
predictions. KNN predicts a label based on a majority vote among k
nearest points, which in case of thermal comfort models means that the
thermal sensation or satisfaction of a data point is assigned based on k
closest data points. The way KNN makes predictions closely matches
occupants’ thermal sensation and satisfaction. For instance, if someone
feels comfortable at a temperature of 22 °C and 23 °C, then they are
likely to feel comfortable at a temperature of 22.5 °C as well.

Although using data from the environmental sensors resulted in
overall higher prediction accuracy compared to the physiological mea-
surements, other considerations are also important from a practical
deployment perspective. Although ambient air temperature sensors are
relatively cheap, anemometer needed to monitor air speed and black
globe temperature sensor needed to monitor radiant heat are more
expensive. In our study, the cost of ambient temperature sensor used is
around $5, an anemometer costs around $30, and the black globe
temperature sensor costs around $40. The overall cost of all the envi-
ronmental sensors is around $75. Wearable devices to collect skin
temperature costs around $100, and the FLIR Lepton, which is one of the
cheaper thermal cameras, costs around $250. When considering the
costs of different sensors, environmental sensors are less expensive than
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physiological sensors. Furthermore, collecting physiological data could
raise privacy concerns among occupants compared to collecting envi-
ronmental measurements. Overall, when considering the cost, predic-
tion accuracy, and associated privacy concerns, environmental sensors
seem to be a more suitable option for collecting data for building
personalized thermal comfort models.

The primary motivation for building personalized comfort models is
to control the HVAC system. Previous studies that utilized PCS devices to
control the thermal environment left the control to be manually adjusted
by the user. Understanding and modeling of occupant comfort under the
operation of PCS devices are useful to directly control the PCS devices
and to incorporate the impact of PCS operation on occupant comfort into
HVAC operations. If personalized comfort models are to be used when
PCS devices are operated, then our study shows that having separate
models for each PCS device state leads to an overall better accuracy
(85%-90%) compared to a single comfort model (around 80%). Our
results show that under regular conditions when PCS devices are not in
use, both thermal sensation and satisfaction can be predicted with an
accuracy of around 90%. However, the prediction accuracy drops to
around 84% when a fan or heater is in use even when separate models
are built for those conditions. This suggests a need for better sensing and
modeling methods when PCS devices are used in order to achieve pre-
diction accuracy on par with regular conditions when PCS devices are
not in use and should be considered in future studies.

When PCS devices are used in real world scenarios, they would either
be controlled by the occupants or be automatically controlled by an
intelligent control agent. In this study, participants did not have control
over the PCS devices because the goal of this study was to compare the
differences in accuracy of comfort models when PCS devices are used vs.
when PCS devices are not used. Therefore, an experiment protocol to
compare conditions with and without PCS devices was used in this
study. From a practical deployment perspective, our results suggest the
need to have separate comfort models with and without PCS, and if an
intelligent agent is used to control the PCS devices, then the agent would
need to consider the state of PCS devices and use a separate comfort
model when making comfort predictions under PCS use. Future studies
could focus on developing control agents that monitor for changes in the
state of PCS devices and utilize separate comfort models to achieve
higher occupant satisfaction.

In this study, thermal sensation with PCS by integrating the correc-
tive power into the regular comfort models resulted in an accuracy of
about 50%, compared to an accuracy of about 40% without integrating
corrective power, as seen in Table 5. Although integrating corrective
power improved the thermal sensation prediction accuracies by about
10%, the overall thermal sensation prediction accuracy when relying on
models built without PCS devices is quite low. One of the potential
reasons why integrating corrective power into the comfort models
resulted in only a small improvement in accuracy is that the local effects
of PCS devices on thermal sensation varies from one person to another,
and an averaged corrective power is not sufficient to greatly improve the
comfort models. The large standard deviations observed in the accuracy
of comfort models in Table 5 also supports that there is a large variation
in thermal sensation between participants when PCS devices are used,
which is not sufficiently captured by the averaged corrective power. The
results in Table 5 further support that separate comfort models are
necessary to predict thermal sensation when PCS devices are used.
Future studies can also focus on developing new ways to utilize regular
comfort models for thermal comfort prediction when PCS devices are
used in order to reduce the requirement of large amounts of training
data for personal comfort models.

One of the limitations of this study is that it involved 15 participants.
Although the number of participants is slightly smaller compared to the
previous studies that involved around 20-25 participants, each partici-
pant in this study participated in three segments and the experiment
took around 8 h per participant. The data collection protocol was
designed to have variation in the collected dataset by exposing the
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participants to a wide range of environmental conditions so the partic-
ipants would potentially report a wide range of different thermal
sensation and satisfaction votes. A ML model trained on a dataset
without much variation might give an artificially high accuracy due to
lack of diverse training classes in the dataset. To avoid this issue, we
prioritized the length of data collection and the range of conditions that
the participants were exposed to, as shown in Fig. 3, over the number of
participants. The overall dataset consists of 1276 sets of features and
corresponding TSVs, equivalent to roughly 85 TSVs per participant,
which is twice as large when compared to similar studies [6,23,24,52,
53]. Even though the dataset is comparable to similar previous studies,
neither this study nor prior studies are large enough to draw broadly
generalizable conclusions. Furthermore, due to the small number of
female participants, the potential impact of gender differences on the
accuracy of comfort models could not be evaluated. However, because
the comfort models are trained for each individual participant, the
average accuracies of the comfort models reported in Table 2, Table 3,
and Table 5 should be reflective of the accuracy that can be expected
when individual comfort models are trained using a similar approach.
Another limitation of this study is that the experiment was performed in
a room without windows, and further studies are needed to understand
the impact of solar radiation on occupant comfort when PCS devices are
used. Furthermore, this study was designed as a climate-controlled study
when the temperature was ramped up or down in a relatively short
timeframe to understand the effectiveness of different sensing and
modeling methods under a large range of thermal conditions. However,
thermal conditions in actual buildings are relatively stable and do not
cover a large range of temperatures as covered by this study. Future
studies with a larger number of participants and long-term observations
in real-world settings are necessary to solidify the findings of this study.

6. Conclusions

Centralized HVAC systems are unable to meet the comfort re-
quirements of most building occupants due to the centralized “one size
fits all” operation that does not consider real-time occupant re-
quirements, and due to their inability to control the thermal environ-
ment at a more local level than an HVAC zone, which could be shared by
multiple occupants. Personalized comfort models can improve the
controls of HVAC systems by providing information about occupant
requirements instead of current “one size fits all” operations. PCS de-
vices enable more local control of the thermal environment by creating a
microclimate around each occupant and providing small adjustments to
improve occupant satisfaction. Although several studies have developed
personalized comfort models for controlling HVAC temperature set-
points, there is a lack of studies that developed personalized comfort
models for operating PCS devices. Personalized comfort models when
PCS devices are in use are needed to either directly control the PCS
devices or to incorporate the impact of PCS operation on occupant
comfort into HVAC operations. In this study, we compared different
sensing and modeling methods for predicting thermal sensation and
thermal satisfaction when PCS devices are used. We also evaluated the
effectiveness of integrating the idea of corrective power for thermal
sensation prediction when PCS devices are in use.

Our results indicate that using a combination of environmental
sensors (ambient temperature, humidity, air speed, and radiant tem-
perature) results in higher predictive accuracy for both thermal sensa-
tion and thermal satisfaction, compared to using a wearable device that
monitors skin temperature from the wrist, or thermal imaging that
monitors skin temperature from different regions of the face. In general,
using environmental sensors led to 2%-5% better accuracy compared to
physiological sensors. Among the different algorithms evaluated, KNN
outperformed other algorithms by a small margin. The observation that
environmental sensors were more useful was consistent regardless of the
ML algorithm used, which is also supported by the relative dependence
of features evaluated using the chi-squared statistic. Furthermore,
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environmental sensors have a lower cost and relatively fewer privacy
concerns compared to physiological sensors. Therefore, we suggest the
use of environmental sensors as the preferred data source for building
personalized thermal comfort models under regular conditions when
PCS devices are not used, as well as when PCS devices are in use. Our
results also support building separate personal comfort models when
PCS devices are used and when they are not used instead of using a
single personal comfort model for comfort predictions with and without
PCS.
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