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Abstract—Side-channel vulnerabilities in software are caused
by an observable imbalance in resource usage across different
program paths. We show that just-in-time (JIT) compilation,
which is crucial to the runtime performance of modern inter-
preted languages, can introduce timing side channels in cases
where the input distribution to the program is non-uniform.
Such timing channels can enable an attacker to infer potentially
sensitive information about predicates on the program input.

We define three attack models under which such side channels
are harnessable and five vulnerability templates to detect suscep-
tible code fragments and predicates. We also propose profiling
algorithms to generate the representative statistical information
necessary for the attacker to perform accurate inference.

We systematically evaluate the strength of these JIT-based
side channels on the �����������	
���, ������������	
, and
�������	
������	���
 classes from the Java standard library, and
on the JavaScript built-in objects �	
���, ��	
, and �

��. We
carry out our evaluation using two widely adopted, open-source,
JIT-enhanced runtime engines for the Java and JavaScript
languages: the Oracle HotSpot Java Virtual Machine and the
Google V8 JavaScript engine, respectively.

Finally, we demonstrate a few examples of JIT-based side
channels in the Apache Shiro security framework and the
GraphHopper route planning server, and show that they are
observable over the public Internet.

I. INTRODUCTION

Cyber-attacks that steal confidential information are becom-

ing increasingly frequent and devastating as modern software

systems store and manipulate greater amounts of sensitive

data. Leaking information about private user data, such as

the financial and medical records of individuals, trade secrets

of companies and military secrets of states can have drastic

consequences. Although programs that have access to secret

information are expected to protect it, many software systems

contain vulnerabilities that leak information.

By observing non-functional side effects of software sys-

tems such as execution time or memory usage, side-channel
attacks can capture secret information. Though side-channel

vulnerabilities have been known for decades [1], they are

still often neglected by software developers. They are com-

monly thought of as impractical despite a growing number of

demonstrations of realistic side-channel attacks that result in

This material is based on research sponsored by NSF under grant CCF-
1817242 and by DARPA under the agreement number FA8750-15-2-0087.
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Government.

������ ���� ��	�
��
���� ��	��� �
������
 ���� ����	����	�� ���� �
�� ���	����� �� ������� ����
�	
��� ����	�

!
�	
��� 
��	�

!

������ ���� ��	�
��
���� ��	��� �
���� "���
��	# ��
	$����
��	�
������
 ���� ����	����	�� ���� �
�� ���	����� �� ������� ����
"�� � ����	�

	��	
��
	$��� � ����	�

!
�	
��� "���

!

Fig. 1: A naive password-checking method and a “fixed” one.

critical security vulnerabilities [2]–[4]. Exploitable timing side

channels have been found in Google’s Keyczar Library [5],

the Xbox 360 [6], implementations of RSA encryption [2],

the open authorization protocol OAuth [7], and most modern

processors [8], [9]. These vulnerabilities highlight the need for

preemptive discovery of side-channel vulnerabilities.

We present a new class of side-channel vulnerabilities due to

the optimizations introduced by just-in-time (JIT) compilation.

We focus on the HotSpot JVM and Google V8 runtime

engines, but any JIT-enhanced runtime is similarly susceptible.

We show that if the input distribution to a program is non-

uniform, the JIT compiler state will be primed to favor certain

paths, resulting in optimizations that reduce their execution

time. This can introduce timing side channels even in programs

whose resource consumption has been carefully balanced.

II. AN OVERVIEW OF JIT-BASED SIDE CHANNELS

Consider the naive password-checking method shown in

Fig. 1 (left). In this Java method, the password and a guess

of matching length are compared character-wise. As soon as

there is a mismatch, ����� is returned. This early return results

in a timing side channel that enables an observer to correlate

the execution time with the number of characters matched.

A security-conscious developer might decide that, since the

method handles sensitive data, it is worth sacrificing the early

return in exchange for a more secure function. They might

propose a method like the one shown in Fig. 1 (right). In this

new version of �����, the same amount of work is performed

regardless of the length of the matching prefix.

The side-channel vulnerability appears to have been fixed in

the new version of the code. However, the source code written

by the developer is not the only factor impacting the execution

time of program paths. The runtime environment itself can

introduce timing side channels into deceptively secure-looking

code fragments when it attempts to optimize paths that it
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(a) With JIT enabled (b) With JIT disabled

Fig. 2: Execution time of the “fixed” method.

Induced Priming Natural Priming Model Natural Priming Model

Model Learning Typical Behavior Learning Atypical Behavior

Who primes Attacker Other users Other users
the runtime? (unknown bias) (known bias)

What can the Victim’s Attacker’s Attacker’s
attacker time? action own action own action

What does the Victim’s Unknown bias When atypical
attacker learn? input (typical behavior) event happens

Fig. 3: Attack models

deems “hot.” In this Java example, the HotSpot JVM tracks

how often each branch of a conditional branch instruction is

taken, and uses this information when JIT-compiling a method

to generate native code favoring the more frequent branch.

If an attacker is guessing potential passwords randomly, the

probability of missing is much higher than that of matching

something. As a result, the branch heats up, and JIT

introduces a timing side channel into the supposedly “fixed”

version. Figure 2a depicts the clear separability of the method’s

execution time distributions when the first character misses

the first character of the password (optimized branch) versus

when it correctly matches it (non-optimized branch). Figure 2b

shows how the side channel disappears when JIT is disabled.

The runtime behavior of the program introduces a side-

channel vulnerability, enabling the attacker to learn whether

the first character of the guess matches that of the pass-

word. This predicate is related to the branch condition in

Fig. 1 (right). We present a guide describing how JIT-based

side channels can enable an attacker to learn sensitive predi-

cates on input and how to identify potentially vulnerable code.

We assume that the attacker is interested in learning a predicate

φ about any input from a certain subset of all possible inputs

to program p. This subset is defined by the assumptions the

attacker can make about the input (e.g., that the guess is the

same length as the password as in the above example).

A. Attack Models

We now introduce attack models that establish the different

classes of attacks that we explore and their basic assumptions.

Key to inducing and leveraging JIT-based timing channels

is understanding that they arise from a bias in the distribution

of inputs to the program. We refer to the act of interacting

with a JIT-optimizing runtime in a biased manner as priming
the runtime. Priming means repeatedly running a program

with inputs that exercise certain paths, heating up the state of

optimization in a way that favors those paths. A runtime can

be primed in various ways, and how we assume it is primed

greatly influences what kinds of JIT-based side channels may

be used. Another key aspect is time measurement—what

exactly do we assume that the attacker is able to time? Lastly,

each attack model establishes the purpose of the attack—what

does the attacker learn if she succeeds? Figure 3 summarizes

the attack models whose details we present in the next sections.

B. Induced-Priming Model

Our first attack model is the induced-priming model ( ),

in which we assume that the attacker is able to prime the

runtime into a vulnerable state by repeatedly triggering the

program p on an input value (or values) of her choice and is

then able to time one subsequent call to p made by another

user with a secret value s. The attacker’s goal is to determine

whether s does or does not satisfy some predicate of interest φ.

This model is only realistic in scenarios where we can assume

that the attacker has dominant control of the runtime.

The goal of priming under is to force the runtime into a

state where the execution time of the call to p on s is correlated

with the value of the predicate φ on s. This is done by priming

with input values that induce heavier optimization along paths

where φ is satisfied (or, symmetrically, not satisfied). This

results in a “booby-trapped” runtime state in which the timing

of a subsequent invocation of p(s) may leak information about

the value of φ(s). Imagine, for example, that there is an

ongoing online charity in which participants can donate to one

of two political parties. The attacker knows when a particular

person will donate and wants to know which party they choose.

The attacker can prime the runtime with a flood of small

donations to one party, and then time the victim’s donation.

Its execution time will depend on whether or not the victim’s

party choice triggers the more optimized program path.

C. Natural-Priming Model

Our second model does not depend on the attacker’s ability

to control the priming of the runtime. In the natural-priming
model ( ), the runtime is primed through a natural bias

in the input distribution about predicate φ. The attacker can

measure the timing of her own call to p (her “probe”) on an

input of her choice. We study two subcases of this model,

differing in what the attacker tries to learn from her probe.

1) Typical Behavior: In the first version ( ), the

attacker aims to learn the typical behavior of the program.

From the timing of her own probe p(π), the attacker learns if

her input π agrees or disagrees with the typical input to p with
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respect to the predicate φ. Imagine, for example, that there is

an online referendum taking place. The attacker wants to know

what decision is favored by the majority. If enough users have

voted disproportionately in favor of one decision, the runtime

could have been primed to favor that choice. The timing of

the attacker’s probe p(π) could thus leak information about

whether her vote π represents the typical case.

2) Atypical Behavior: In the second version (�������),

the attacker aims to learn whether another user’s input to the

program is atypical with respect to a well-established bias.

Again, the attacker uses the timing of her subsequent probe

p(π) to learn this information. As we will see, depending on

which optimizations are involved, a small number of calls or

even a single call to p with an atypical value can change

the state of the runtime. This may significantly affect the

timing of future calls to p. For example, imagine a website

where patients of a clinic can obtain their test results for

a life-threatening infectious disease. The majority of results

come out negative. The attacker can learn when someone tests

positive by repeatedly polling her own negative result and

watching out for changes in timing.

D. Roadmap and Contributions

While details differ, inferring φ under each attack model

consists of the same three stages:

1) Priming: p is executed repeatedly with an input distribu-

tion biased with respect to predicate φ.

2) Timing: The attacker times the execution of p for a

particular input value.

3) Inference: Based on the observed execution time, the

attacker infers the value of predicate φ on unknown input.

Imbalances introduced through biased behavior at runtime

are related to various JIT optimizations. These optimizations

interact in complex and subtle ways. Combined with noisy

timing, this makes the art of leveraging JIT-based timing side

channels an intricate process. We identify several vulnerability
templates, each based on exploitable JIT optimizations. These

templates help us identify which predicates related to paths in

p may be amenable to JIT-based vulnerabilities, and guide us

in finding the right priming parameters or requirements.

While many JIT-based imbalances are small, and thus hard

to separate from the noise of a real-world system, we point

out that most large JIT-based imbalances consist of many small

ones combined. Studying the effects of fine-grained JIT-based

vulnerabilities is the initial step toward understanding their

contribution to coarse-grained, sizable phenomena.

We first apply our approach in a fine-grained analysis of

Java and JavaScript methods. Since the timing distribution

of different execution paths can overlap, we may not always

reach full certainty about the value of the predicate, even

if we induce a strong side channel. We use the conditional

entropy between the timing information and the value of

the predicate to quantify how much information about the

predicate is leaked. We discuss the results and lessons learned

from our most interesting experiments, both successful and

unsuccessful.

We then experiment with the Apache Shiro [10] security

framework and the GraphHopper [11] route planning server

to explore how JIT-based side channels can be induced in

large well-known applications. Our results show that they can

indeed be introduced, and that they can be sizable enough in

magnitude to be observable over the public internet.

Our contributions in this paper are:

• Definition and demonstration of a new class of timing side

channels due to JIT optimizations during runtime.

• Three attack models for learning predicates about secret

inputs using JIT-based side channels.

• Five vulnerability templates to identify code fragments

susceptible to JIT-based timing vulnerabilities.

• A profiling method to gather the statistical information

needed to infer predicate values in noisy environments.

• Experimental evaluation of applying our approach to widely

used Java and JavaScript functions.

• Examples and experimental analysis of multiple JIT-based

side channels in two well-known Java frameworks.

The paper is organized as follows: In Sect. III we review JIT

optimizations and introduce related vulnerability templates.

In Sect. IV we present algorithms to effectively use timing

information arising from JIT-based side channels. In Sect. V

we describe our experiments on built-in Java and JavaScript

functions. In Sect. VI we discuss the experimental results. In

Sect. VII we demonstrate JIT-based side channels in well-

known frameworks. In Sect. VIII we discuss related work. In

Sect. IX we present our conclusions and ideas for future work.

III. VULNERABILITY TEMPLATES FOR JIT-BASED

SIDE-CHANNELS

In this section we review basic characteristics of JIT com-

pilation mechanisms, and then identify vulnerability templates

for timing side channels based on JIT compilation techniques.

A. Just-in-time (JIT) compilation

Just-in-time compilation has been used since 1960 [12] to

improve the performance of interpreted languages. Based on

the observation that a majority of execution time is typically

spent executing a small fraction of the code [13], runtime

profiling can be used to detect “hot” functions or code portions

that are worth feeding into an optimizing compiler. This in-

volves a complex trade-off between initial compilation delays

(“warm-up time”) and subsequent performance benefits.

Modern JIT compiler implementations involve techniques

to dynamically adjust the optimization level (and thus the

compilation overhead) of each method in order to maximize

the return on investment. Aggressive speculative optimizations

may give rise to the need for recurrent assumption checks, and

to deoptimization penalties when such a check fails [14].

JIT compilation has been employed by many languages in-

cluding LISP [15], Smalltalk [16], FORTRAN [17], APL [18],

PHP [19], Java [20], and JavaScript [21].
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Fig. 4: Vulnerability templates for each attack model.

B. Vulnerability Templates and JIT Compilation Techniques

We show vulnerability templates centered on different JIT

compilation techniques. This facilitates identification of code

susceptible to a JIT-based side channel and systematic under-

standing of parameters needed to harness the side channel.

Each vulnerability template has:

• A particular kind of optimization that it exploits.

• A code pattern, e.g., that some method m must be called

when φ is satisfied and not when φ is not satisfied.

• A recipe that guides the search of suitable parameters

for priming: how biased the input distribution must be,

how many calls to p are needed, etc. This describes the

priming the attacker must be able to induce under ���

or the natural priming necessary under ���.

• The attack model(s) for which the template is harnessable.

As we introduce the templates, we provide the necessary

background about the JIT compilation techniques they exploit.

1) Branch prediction (TBRAN): JIT branch prediction uses

counters to track the frequency of each branch of a conditional.

When a method is compiled, this information may be used to

generate native code where the most taken branch appears

first, avoiding a jump instruction. Savings are amplified in the

case of loops. This optimization is independent of CPU-level

branch prediction, but can achieve positive synergy with it.

Code Pattern: TBRAN can be applied for any predicate

directly related to a conditional statement. The imbalance that

it introduces is small, so that it may only be observable in

specific cases. This template works best in situations where the

conditional is enclosed in a loop (which amplifies the small

difference), or in small programs, where the small difference

achieved is significant w.r.t. the cost of the rest of the program.

Recipe: The amount of priming must be sufficiently

high that JIT deems generating the more efficient native code

worthwhile. Also, priming must be sufficiently biased so that

a high-enough fraction of branching decisions favor one side.

Attack Models: ���, �����	�, �������.

2) Optimistic compilation (TOPTI): If, when a method

is aggressively compiled (e.g. elevated to a higher tier of

compilation in HotSpot), the counters shows that one side of

a conditional is very rare, the optimizing compiler may make

the optimistic assumption that the branch will never be taken.

Similarly, if counters show that a potentially polymorphic call

site always calls the same receivers, the optimizing compiler

may assume the rarely-seen dispatches never occur. In either

scenario, if and when the rare case occurs and the optimistic

assumption is broken, the method must be de-optimized and

replaced with a slower, more conservative version.

Code Pattern: TOPTI can be applied for any φ where

satisfying or not satisfying φ means that some non-empty

branch is never taken or some receiver never called.

Recipe: Priming must ensure that (i) the method contain-

ing the conditional is called enough times to be aggressively

compiled, and that (ii) by the time that happens, the conditional

or dispatch of interest has behaved almost always uniformly.

Attack Models: ���, �����	�, �������.

3) Method compilation (TMETH): Compilation decisions

are impacted by runtime profiling metrics. One key metric

is method invocation count. When the number of method

invocations reaches a certain threshold [22], the method may

be scheduled for compilation or more aggressive recompila-

tion. Another factor that may promote (re)compilation of a

method are back-edge counters that track how often backward

jumps (typically due to loops) are taken. TMETH exploits

the speed difference between interpreted and compiled (or

between conservatively and aggressively compiled) code.

Code Pattern: An input satisfying φ results in a call to

some method m that is not called when φ is unsatisfied.

Recipe: Priming must ensure that m is executed a suf-

ficiently high number of times, so that m is compiled to a

faster version. The speeding up of m thus causes or augments

an observable imbalance in the timing of p.

Attack models: ��� and �����	�. Not exploitable un-

der �������, bar extreme conditions. The atypical behavior

must impact the runtime state for the attacker to detect it. For

TMETH, this means that calls to p on an atypical value impact

m’s compilation level. To detect this, the attacker’s probe

needs to execute a path containing m (otherwise the probe’s

timing would be independent of m’s compilation level). But

this means that the attacker needs to ensure her own probes

are not responsible for the compilation of m, requiring a

very nuanced, and generally unrealistic, understanding of the

current profile of m.

4) Method compilation due to back-edges (TMETH-BE):
This template, specific to �����	�, exploits method compi-

lation due to back-edge counters rather than method invocation

counters. A method no longer needs to be called for one

predicate value and not the other. Instead, a method m called

the same number of times in both cases is (or is not) compiled

(or is compiled to a different level of optimization) depending

on whether the back-edge counters are sufficiently high.

Code Pattern: The predicate impacts the number of back

edges (jumps to previous code) traversed in a method m.

Recipe: The priming amount must be in the range to

induce a difference between the optimization level of m
according to the two priming scenarios. The ideal probe value

for this vulnerability template is one for which the method m is

expensive—making the difference in execution time between

its differently compiled versions more apparent.

Attack Models: �����	�.
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5) Method compilation due to imbalanced invocations
(TMETH-II): This template is specific to �������.

Code Pattern: This template applies to any predicate that

impacts the frequency of calls to a method m. The case where

m is never called for one predicate value is a specific one.

Recipe: The priming amount must be in the range so

that the level of compilation of m is different across the two

priming scenarios. The ideal probe value for this case is one

in which calls to m are expensive.

Attack Models: �������.

IV. STATISTICAL PROFILING FOR ACCURATE INFERENCE

In this section we discuss how an attacker can use the

timing information she collects to correctly infer predicate

values. Though not always necessary, the attacker’s endeavor

can be greatly aided if she builds an informative profile of the

expected timing distribution under different predicate values.

Two key factors about the predicate φ impact the attacker’s

profiling strategy. First, how many paths through program

does the satisfaction of the predicate φ (or ¬φ) correspond

to? Second, if the predicate corresponds to a set of program

paths, are there any additional assumptions the attacker can

make about the value of unknown input to p to reduce that set

of paths? The more limited this set of program paths is, the

simpler it will be to produce a reliable statistical model.

A. Learning under ���

Under 	��, the attacker primes the runtime engine into a

state where the execution time of a subsequent call to p on

an unknown value leaks information about whether that value

satisfies φ. For accurate inference, the attacker can develop

a statistical profile of the execution times of p on inputs

satisfying φ and ¬φ, respectively, after priming with a chosen

priming value. The more distinguishable the profiles under

the two cases, the more successfully the attacker has booby-

trapped the runtime engine.

Obtaining a statistical profile benefits us twofold. First, time

measurements are affected by nondeterminism from various

sources, from inevitable system noise to minor variations in

runtime decisions made by the JIT compiler as to which

optimizations to apply and in what order. The statistical nature

of the profile accounts for such noise. Second, the assumption

that the attacker has complete control over the runtime is often

unrealistic. When we build a statistical profile, we can simulate

an environment where some proportion of calls to p is outside

the control of the attacker. By priming with an α distribution
(with respect to φ) we mean priming p with inputs satisfying

φ with probability α, and ¬φ with probability 1−α. When we

build a statistical profile, we prime with α < 1 to simulate a

context where p is occasionally triggered on inputs satisfying

the opposite value to the one we have chosen to heat up.

The pseudocode in Algorithm 2 outlines the above process.

Here, the two priming input values pφ, p¬φ are chosen such

that (a) both satisfy any assumptions the attacker makes over

the input space, and (b) pφ satisfies φ whereas p¬φ satisfies

¬φ. The test values tφ and t¬φ are chosen randomly from the

set of possible secret values (Tφ and T¬φ) satisfying φ and

¬φ respectively (along with any additional assumptions on the

input space) to generate representative timing information for a

secret value. The priming amount n is the total number of calls

to the program p in the Prime algorithm (see Algorithm 1) and

the profiling amount N is the number of times the priming and

then timing subroutine is repeated during profiling in order to

generate a statistical profile robust to noise.

Choice of test values can impact the accuracy of the statis-

tical profile. The more similar the test values tφ and t¬φ to the

actual unknown value, the more accurate the profile likely is.

Here similarity means that modulo branch decisions correlated

with the predicate, the test input follows a similar program path

as the unknown input. Since this cannot be known beforehand,

the attacker’s best option is to generate and profile for a wide

set of test values. Likewise, choice of priming input can impact

how successful an attacker is in booby-trapping the runtime.

Ideally the attacker would choose priming input following

the same program path as the unknown input. If this is not

possible, an attacker could vary her priming input over a set

of possible paths in an attempt to avoid introducing a timing

channel due to an entirely different predicate.

B. Learning under ���

In ���, the runtime engine is primed by a natural bias

in the input distribution to p. The attacker then executes and

times p(π) on a probe value π of her choice. The timing is used

to infer either a) (�������) whether φ or ¬φ is sufficiently

dominant among the input to p, or b) (�������) if and when

a call to p that is atypical with respect to φ has been made.

As in 	��, we develop a statistical profile to reliably perform

inference when presented with the timing of p(π). Unlike 	��,

the attacker is not in control of the priming and so profiling

requires simulating the natural priming of the runtime.

Learning under �������: Here the bias of the natural

priming is unknown. The attacker instead generates two sets

of priming inputs (all values of one set satisfying φ and

all those of the other satisfying ¬φ) and primes using those

values. Again, we introduce the ratio α, this time to simulate

differing degrees of bias in the natural priming of p. The

attacker generates statistical profiles for the timing of her probe

π to p under both possible priming scenarios. The profiling

and subsequent inference specific to ������� is given in

Algorithm 3. The accuracy of this statistical profile depends

on how closely the set of possible priming input resembles the

input actually used to naturally prime the runtime engine.

Learning under �����	�: Here the bias of the priming

is known. The attacker can bias in favor of the appropriate

value of φ using priming values from the corresponding set.

She then generates a statistical profile of the timing of her

probe π to p after a call has been made to p using a randomly

chosen test value tφ. She then does the same for randomly

chosen t¬φ. Here tφ and t¬φ are drawn from the set of possible

test values satisfying φ or ¬φ as appropriate. The profiling and

inference code for ������� is given in Algorithm 4.
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input : n (priming amount), α (ratio), xmore, xless (priming inputs)

numItersBothSides ← 2(n− n · α);
numItersRemaining ← (n − numItersBothSides);
for i ← 1 to numItersBothSides do

if i is odd then
call p(xmore);

else
call p(xless);

end
end
for i ← 1 to numItersRemaining do

call p(xmore);
end

Algorithm 1: Prime pseudocode.

input : N (profiling amount), n (priming amount), α (ratio),
xφ, x¬φ (priming inputs), Tφ, T¬φ (profiling test input sets)

vφ, v¬φ ← two empty vectors to store timing profiles;
for i ← 1 to N do

tφ ← random(Tφ);
Prime(n, α, xφ, x¬φ );
vφ.append( Time(p(tφ)) ) �� ��� ����� �	�
 � ����
 �
��	��

end
for i ← 1 to N do

t¬φ ← random(T¬φ);
Prime(n, α, xφ, x¬φ );
v¬φ.append( Time(p(t¬φ)) ) �� ��� ����� �	�
 � ����
 �
��	��

end
Prime(n, 1.0, xφ, null);
timingOfSecretInput ← Time(RealCall);
leakageEst ← InferPred(vφ, v¬φ, timingOfSecretInput);

Algorithm 2: ��� attack pseudocode

V. LIBRARY EVALUATION: SETUP

We describe our subjects, setup, and decisions. In each case,

the program p under test is a method from the standard library.

A. Source of experimental subjects

We evaluated our approach on the �����������	
���


�,

��������
����� and ��������
����	�
 classes from the Java

standard library (JDK 8, rev. b132) [23] and on the ����,

���	�
 and ����� JavaScript objects from Google’s V8 open-

source JavaScript engine (V8 4.5.103.35) [24]. We removed

methods with no conditionals, native methods not written in

Java or JavaScript, duplicates modulo type (e.g., ���� vs.

��	
��), and those with isomorphic control-flow structures. For

the remaining methods we applied our approach and chose

predicates for conditionals that satisfied the most relevant

templates. In the following sections we show a selection of

our results featuring the cases (successful and unsuccessful)

that we found most interesting and relevant.

B. Computing information leakage via conditional entropy

For each experimental subject we ran 1000 iterations and,

on each iteration, we primed the runtime as described in each

of the next subsections and timed a subsequent call to the

method under test. From this data we computed the conditional

entropy between the value of the predicate and the observed

timing distribution. This tells us how many bits of information

about the value of φ(s) we can expect to be leaked from a

single time measurement. Since the value of φ encodes one

input : N (profiling amount), n (priming amount), α (ratio),
Xφ, X¬φ (profiling priming sets), π (probe)

vφ, v¬φ ← two empty vectors to store timing profiles;
for i ← 1 to N do

xφ, x¬φ ← random(Xφ), random(X¬φ)
Prime(n, α, xφ, x¬φ );
vφ.append( Time(p(π)) ) �� ��� ����� �	�
 � ����
 �
��	��

end
for i ← 1 to N do

xφ, x¬φ ← random(Xφ), random(X¬φ);
Prime(n, α, x¬φ, xφ );
v¬φ.append( Time(p(π)) ) �� ��� ����� �	�
 � ����
 �
��	��

end
RealPrime;
timingOfProbeAfterSecretPriming ← Time(p(π));
leakageEst ← InferPred(vφ, v¬φ, timingOfProbeAfterSecretPriming);

Algorithm 3: 
������ attack pseudocode

input : N (profiling amount), n (priming amount), α (ratio),
Xφ, X¬φ Tφ, T¬φ (profiling priming and test sets), π (probe)

vφ, v¬φ ← two empty vectors to store timing profiles;
for i ← 1 to N do

xφ, x¬φ ← random(Xφ), random(X¬φ);
Prime(n, α, xφ, x¬φ );
call p(tφ ← random(Tφ)) ;
vφ.append( Time(p(π)) ) �� ��� ����� �	�
 � ����
 �
��	��

end
for i ← 1 to N do

xφ, x¬φ ← random(Xφ), random(X¬φ);
Prime(n, α, xφ, x¬φ );
call p(t¬φ ← random(T¬φ)) ;
v¬φ.append( Time(p(π)) ) �� ��� ����� �	�
 � ����
 �
��	��

end
RealPrime;
RealCall;
timingOfProbeAfterSecretBehavior ← Time(p(π));
leakageEst ← InferPred(vφ, v¬φ, timingOfProbeAfterSecretBehavior);

Algorithm 4: 
������ attack pseudocode

bit of information, a value of 0.0 means no leakage, while 1.0

means full leakage of φ’s value from one timing observation.

C. Using priming distributions to simulate noisy triggering

As discussed in Section IV, the α ratio accounts for the fact

that in a realistic scenario, we will not have exclusive control

over the state of the runtime engine and the bias under 
��

may not be absolute. Table I shows the distributions that we

associated with each template under each model for both Java

and JavaScript programs.

D. ��� experiments

For each case under ���, we chose two values for prim-

ing: one satisfying φ and one satisfying ¬φ, following the

approach given in Algorithm 2. We then generated two sets

TABLE I: Priming distributions used in our experiments

��� ������� �����	�

Java JS Java JS Java JS

TOPTI 0.998 1.000 0.998 1.000 0.998 1.000
TMETH 0.950 0.950 0.950 0.950 n/a n/a
TBRAN 0.900 0.900 0.950 0.950 0.900 0.900
TMETH-BE n/a n/a 0.950 0.950 n/a n/a
TMETH-II n/a n/a 0.950 0.950 n/a n/a
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of possible secret inputs satisfying φ or ¬φ respectively and

both satisfying a set of additional assumptions over the space

of all possible inputs. These assumptions are further discussed

in Section B. We primed the runtime engine with the priming

values using the priming ratio α indicated by the template.

For TMETH and TOPTI cases we determined the number of

priming iterations as follows: Starting with an initial guess,

use the JITWatch tool [25] for Java, or the --trace-opt
option for JavaScript, to determine whether the optimization

has taken place. If not, increase the number of iterations until it

does. For TBRAN cases we tried priming {1000, 10000, 50000,

100000} times and kept the value that maximizes leakage.

For evaluation, we repeated the following 1000 times.

We primed the runtime engine using one priming value as

described above, then timed a call to the method on a randomly

chosen secret value satisfying φ. Then we performed another

1000 iterations of the experiment, now timing a call to the

method on a randomly chosen secret value satisfying ¬φ. From

this data we computed the leakage as explained in V-B.

In addition, we also re-executed all experiments (and leak-

age computation) for the following three priming scenarios:

1) Reversed priming: We re-ran all experiments with a ratio

α = (1− α) instead of α. In other words, if the runtime was

primed more heavily favoring φ in the original experiment, it

is now primed more heavily with input satisfying ¬φ, and vice

versa. This evaluates whether that test subject is reversible.

2) Even priming: We re-ran all experiments with a fixed

ratio α = 0.5, i.e., the amounts of priming satisfying φ and

¬φ are equal. This evaluates the importance of the imbalanced

priming ratio in introducing a side channel, as opposed to the

more general, overall heating up of the whole method.

3) No JIT: We re-ran all experiments with JIT disabled.

This evaluates the existence of a static (traditional, source-

code level) side-channel vulnerability, which our use of JIT

could augment or mitigate. We still used a very small, fixed,

balanced amount of priming (50 calls on both sides) to avoid

artificial noise from initial class/method loading delays.

E. experiments

For cases evaluated under , we generated two sets of

possible priming values, one satisfying φ and the other ¬φ.

For each case, we determined the number of priming iterations

in the same way as for (see V-D), using JITWatch or

--trace-opt to guide the search.

experiments: For evaluation, we repeated the

following experiment 1000 times. We primed the runtime

engine (with priming parameters obtained as described above)

in favor of priming values satisfying φ, and then timed a

subsequent call on a chosen probe input π. We manually

chose π such that the difference between the optimization

levels after the two types of priming would be observable.

We experimented again by priming the runtime engine with

the same parameters as before, but in favor of the priming

inputs satisfying ¬φ, and then timed a subsequent call on

the same probe π. Each experiment was repeated 1000 times.

From this data we computed the leakage as explained in V-B.

(a) ( ) (b) ( )

Fig. 5: Execution time distributions for JavaScript method

under (a) and (b) .

Since is the most expressive model in terms of

the vulnerability templates applicable under it, we focus our

experiments on methods and predicates satisfying templates

un-harnessable under the other models.

experiments: We additionally generated two

sets of possible secret inputs satisfying φ or ¬φ respectively

and both satisfying a set of additional assumptions over

the space of all possible inputs. For evaluation, we did the

following 1000 times. We primed the runtime (with priming

parameters obtained as above) in favor of the priming values

satisfying φ, then made a call to the method on a randomly

chosen secret value executing the ¬φ branch. We then timed a

subsequent call on a chosen probe input π. Then we performed

another 1000 iterations of the experiment, this time calling the

method on a randomly chosen secret value executing the φ
branch and timing the subsequent call on the same probe input

π. From this data we computed the leakage as explained in

V-B. We then re-ran all experiments under the reverse priming

model described in V-D. This evaluates whether the natural

priming needs to be more strongly in favor of one particular

value of φ for atypical behavior to be detected.

F. Hardware setup

The library experiments were run on an Intel NUC 5i5RYH

computer (Intel i5-6600K CPU at 3.50 GHz, 32 GB RAM)

running Ubuntu Linux 16.04 (kernel 4.4.0-103), the Java 8

Platform Standard Edition version 1.8.0_162 from OpenJDK,

and Node.js v4.2.6.

VI. EXPERIMENTAL RESULTS

Tables II, III, and IV summarize our results for Java and

JavaScript methods under , , respec-

tively. For each set of experiments we report the method name,

location of the selected branch instruction in the class source

code [23], [24], the template applied, other templates (if any)

that also arose unexpectedly, and the priming parameters used.

In all cases, we report the amount of information leaked about

the predicate value under all evaluated priming scenarios.

A. Optimistic compilation (TOPTI)

When optimistic compilation could be induced, a siz-

able timing difference arises (e.g., see Fig. 6b), resulting in

very reliable learning of φ(s) under . Our high-leakage

results for Java methods , ,
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TABLE II: Experimental results for ��� in Java (top) and JavaScript (bottom)

Programming Method Branch Template Priming Priming Leakage Leakage Leakage Leakage
language name instruction (applied, arisen) amount ratio (α) under α under α 0.5 | 0.5 w/o JIT

Java ����������	
�� line 3477 TOPTI 100,000 0.998 1.00 1.00 0.02 0.06
Java ����������	��
���� line 1085 TBRAN 10,000 0.900 0.52 0.16 0.10 0.03
Java ����������	��������� line 2908 TMETH 10,000 0.950 0.99 0.95 0.75 0.79

Java ����	
�� line 1316 TBRAN 10,000 0.900 0.28 0.25 0.04 0.03
Java ����	�
� line 1443 TMETH 50,000 0.950 0.05 0.05 0.02 0.25
Java ����	��������� line 1926 TOPTI 100,000 0.998 1.00 0.89 0.02 0.03
Java ����	
�� line 1350 TOPTI 100,000 0.998 0.03 0.01 0.02 0.03

Java ������	����
� line 976 TOPTI, TBRAN 100,000 0.998 0.44 0.04 0.12 0.04
Java ������	��
������ line 1151 TOPTI 100,000 0.998 0.99 0.03 0.02 0.20
Java ������	���������� line 1400 TBRAN 1,000 0.900 0.46 0.16 0.21 0.25

JavaScript ����	
�� line 73 TOPTI 100,000 1.000 1.00 1.00 0.07 0.16
JavaScript ����	����� line 176 TBRAN 10,000 0.900 0.08 0.07 0.08 0.02
JavaScript ����	����� line 199 TOPTI 100,000 1.000 1.00 0.97 0.03 0.06

JavaScript ������	������ line 71 TOPTI 100,000 1.000 1.00 0.14 0.07 0.09
JavaScript ������	������� line 118 TBRAN 10,000 0.900 0.35 0.05 0.15 0.03

JavaScript �����	������
������� line 224 TOPTI 100,000 1.000 1.00 0.11 0.06 0.49
JavaScript �����	�
��� line 736 TOPTI 100,000 1.000 0.04 0.04 0.03 0.04
JavaScript �����	
���������� line 1444 TOPTI 100,000 1.000 0.99 0.04 0.05 0.04

TABLE III: Experimental results for ������� in Java (top) and JavaScript (bottom)

Programming Method Branch Template Priming Priming Leakage
language name instruction (applied, arisen) amount ratio (α) under α

Java ����������	
�� line 2402 TMETH 10,000 0.950 0.33
Java ����������	
�� line 2402 TMETH 10,000 0.950 1.00
Java ����������	��� line 3054 TMETH-BE 500 0.950 1.00

Java ����	���
 line 2287 TMETH-BE 5,000 0.950 0.58

Java ������	���
 line 2857 TMETH-BE 5,000 0.950 1.00
Java ������	���
��� line 2060 TMETH-BE, TBRAN 2,000 0.950 0.92
Java ������	���
��� line 2060 TBRAN 2,000 0.950 0.66
Java ������	!���������� line 250 TMETH-II 500 0.950 0.08

JavaScript ����	
�� line 133 TMETH-BE 1,000 0.950 0.96
JavaScript ����	����� line 231 TMETH-II 100 0.950 0.83

JavaScript ������	��
�� line 614 TMETH 1,000 0.950 1.00
JavaScript ������	������ line 100 TMETH-BE 1,000 0.950 0.83
JavaScript ������	������ line 551 TMETH 1,000 0.950 0.93

JavaScript �����	������� line 622 TMETH 100 0.950 1.00
JavaScript �����	
�� line 1344 TMETH-BE 1,000 0.950 0.99

TABLE IV: Experimental results for �����	� in Java (top) and JavaScript (bottom)

Programming Method Branch Template Priming Priming Leakage Leakage
language name instruction (applied, arisen) amount ratio (α) under α under α

Java ����������	
�� line 3477 TOPTI 100,000 0.998 1.00 1.00
Java ����������	��
���� line 1085 TBRAN 10,000 0.900 0.03 0.03

Java ����	
�� line 1316 TBRAN 10,000 0.900 0.03 0.03
Java ����	��������� line 1926 TOPTI 100,000 0.998 1.00 1.00
Java ����	
�� line 1350 TOPTI 100,000 0.998 0.04 0.03

Java ������	����
� line 976 TOPTI, TBRAN 100,000 0.998 0.04 0.03
Java ������	��
������ line 1151 TOPTI 100,000 0.998 1.00 0.03
Java ������	���������� line 1400 TBRAN 1,000 0.900 0.05 0.03

JavaScript ����	
�� line 73 TOPTI 100,000 1.000 0.71 0.14
JavaScript ����	����� line 176 TBRAN 10,000 0.900 0.04 0.03
JavaScript ����	����� line 199 TOPTI 100,000 1.000 0.23 0.22

JavaScript ������	������ line 71 TOPTI 100,000 1.000 0.56 0.10
JavaScript ������	������� line 118 TBRAN 10,000 0.900 0.04 0.03

JavaScript �����	������
������� line 224 TOPTI 100,000 1.000 0.90 0.04
JavaScript �����	�
��� line 736 TOPTI 100,000 1.000 0.03 0.02
JavaScript �����	
���������� line 1444 TOPTI 100,000 1.000 0.12 0.04
JavaScript �����	
���������� line 1444 TOPTI 100,000 1.000 0.87 0.04
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and and JavaScript methods ,

, , and

were obtained in this way. Leakage is also

reliably high for these methods under . When the

call on the unknown value breaks the optimistic assumption,

the runtime engine must revert to a less optimized version of

the method under test. This results in an observable difference

in the timing of the attacker’s probe to the method when com-

pared to the case where the optimistic assumption is not broken

(and the highly optimized code used). This timing difference

can be augmented by choosing a probe value for which the

method is expensive and the difference between versions more

apparent. Nevertheless, the magnitude of the timing difference

is less than in when the actual execution time of the

call breaking the optimistic assumption is measured. Figure 5

demonstrates the relative difference in magnitude across the

two attack models for the JavaScript method .

Both runtime engines require a strong bias for optimistic

compilation to occur. For all JavaScript cases, we found that

complete bias (α = 1.00) is needed to introduce optimistic

compilation. In contrast, a very small fraction of input could

exercise the uncommon branch before aggressive compilation

of the method in the Java cases and optimistic compilation

would still occur. Because of this, we used different α distri-

butions for the Java and JavaScript cases exercising TOPTI.

For the other two Java cases, and

and the JavaScript case , our priming did not

succeed in inducing optimistic compilation. In

and , this was because the functions themselves

were not compiled despite their large number of invocations.

was compiled but we could not induce optimistic

compilation due to a combination of two facts: (i) optimistic

compilation requires an extremely lopsided history at the time

of aggressive compilation, and (ii) is triggered

too frequently by other parts of our experiment driver. Hence,

this template is suitable for contexts where the attacker has

nearly-exclusive control over the triggering of p. In contrast,

the method, which has an almost identical

structure to with respect to the selected predicate

and its branches, was much more amenable to leakage from

optimistic compilation due to its less frequent usage elsewhere.

Despite our inability to induce an optimistic compilation of

, we still achieved sizable leakage in this method

thanks to branch prediction, which does not require a history

as strongly lopsided as optimistic compilation.

There was no notable leakage for the Java methods

and or the JavaScript method

under . This is expected in the cases of

and as no optimistic compilation was

introduced into the compiled code. For , there

remained the possibility that branch prediction might allow for

a timing channel. However, as we will discuss in the section

on TBRAN, no such side channel was created. For JavaScript

method , the leakage under is present,

but small. This is because is inexpensive, making

the difference from using its deoptimized version minor.

(a) ( ) (b) ( )

Fig. 6: Execution time distributions after priming for Java

methods (a) and (b) .

The two results reported for JavaScript method

demonstrate the nuances of choosing a good

probe value. Initially, we experimented with a fairly small

probe and obtained a leakage of 0.12. Then we tried probing

with a more expensive value, obtaining the higher leakage of

0.87, but with a curious side effect that the faster case was

actually when optimistic compilation was broken immediately

prior to the probe. This means that the deoptimized version

of the code was actually faster for our expensive probe.

Inspection showed that our expensive probe exercised new

behavior and itself triggered deoptimization. When at least

some deoptimization had already occurred, this had less of an

effect and the execution was faster.

Note that when an attacker succeeds in inducing optimistic

compilation, the first call to p that takes the uncommon branch

will break the optimistic assumption, and de-optimization will

only take place once. Under , this means the attacker must

trigger and time p on the secret input before some other user

triggers and thus “spoils” the optimistic assumption. Under

, this means that the attacker is only able to observe

the first occurrence of atypical program behavior. Once shown

false, JIT will not make the same optimistic assumption again.

B. Method Compilation (TMETH)

Our high-leakage result for exemplifies

the potential of TMETH under . In , a

different method is called depending on the value of φ. With

JIT disabled, the execution time does leak information about

which branch was taken. This is not surprising, as one can

expect that the unoptimized versions of two different methods

would be distinguishable. What we wish to emphasize is that

any of the two callee methods can be made observably faster

than the other through the appropriate priming. Moreover,

both priming scenarios result in stronger side channels than

those that occur with JIT disabled or with an even priming

distribution. This demonstrates how strongly the execution

time of a path can vary depending on how aggressively the

methods called along that path are optimized.
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In the Java method ��������, a method is called when

input satisfies φ but not when it satisfies ¬φ, motivating us

to apply the TMETH template. We thought that by compiling

that method, we might significantly reduce the execution time

on input satisfying φ. This was not the case. The method that

we aimed at (and succeeded at) compiling was an extremely

inexpensive, constant-time method. Thus the timing of input

satisfying φ did not change significantly with its compilation,

and did not fall below that of input satisfying ¬φ. The degree

to which an application of TMETH can impact the execution

time is bounded by the degree to which compilation can speed

up the method called in the heated-up branch.

Results for the Java 	�
��
 constructor are similarly ex-

plained. Again, we successfully found priming values inducing

different levels of optimization in the callee method m but ob-

served minimal leakage. This is due to m performing efficient

constant-time computation, making the difference in efficiency

between its compiled and un-compiled states indiscernible.

The large majority of function calls made by JavaScript

methods in our evaluated libraries were to built-in functions

implemented in C. The four JavaScript methods evaluated

(����������, 	�
��
������, 	�
��
����
��, and �

���
���
��)

are some of the few that do call other JavaScript methods large

enough to not get inlined. We initially wanted to evaluate these

methods under ���, but in each case, there was a strong side

channel even when JIT was disabled (though enabling JIT did

allow us to augment these existing side channels). Because

of this, we choose to evaluate these methods under ����

���. For each method, we were able to find priming values

inducing different optimization levels across the potential

secret primings as well as an expensive probe value for which

the difference in execution time between the optimized and

non-optimized code is sizable.

The difference between the two results for Java function

��
����
�
���� stems from an experiment allowing the at-

tacker stronger timing abilities. The second row gives the

leakage when we do not time p, but rather its callee m whose

compilation we aim to induce. Such refined timing information

substantially increases leakage, but requires more assumptions.

C. Branch Prediction (TBRAN)

Branch prediction introduces considerably smaller timing

differences than other templates (e.g., see Fig. 6a). Never-

theless, it can still sometimes be exploited to great effect.

The Java methods ��
����
�
�������� , 	�
��
����
�� ���, and

�������! and JavaScript method 	�
��
�����!�� are exam-

ples of methods that are small enough that the effect of branch

prediction is observable over the computational noise of the

method. JavaScript method ������
���, on the other hand,

is an example where the timing difference is too small to

be reliable. Whether or not the branch condition is looped

over can also impact the observability of the side channel.

In �������, where we can choose the test value, a looping

construct may enable the choice of a test value for which

the effects of branch prediction are multiplied, i.e., the branch

prediction is repeatedly correct or incorrect across iterations of

the loop. 	�
��
�
������ (discussed in the next section due to

its interaction with TMETH-BE) is an example of this scenario.

Under �������, we hoped that branch prediction might

be harnessed to detect if atypical behavior occurs. This would

occur if executing the method on a secret value that causes

the less-seen branch to be taken makes JIT recompile the

code to favor the other branch. Differing distributions in

the time of the attacker’s probe might result. However, our

experiments on ��
����
�
�������� , �������!, 	�
��
��"����,

and 	�
��
����
�� ��� and JavaScript method 	�
��
�����!��

showed this to not be the case. In fact, we even ran experiments

were we repeatedly executed the method on test input causing

the hitherto less frequent branch to be taken to determine if a

heavy change in profiling behavior of the branch would cause

JIT to recompile the method. In no cases did this occur, leading

us to conclude that TBRAN is not effective under �������.

D. Method Compilation via Back Edges (TMETH-BE)

This template is specific to �������. Every time we tried

to apply TMETH-BE, we successfully found priming amounts

such that the method was compiled to different levels of

optimization. In the Java cases ��
����
�
���� and 	�
��
��
��

cases and the JavaScript cases ��������, 	�
��
�������, and

�

������, we were able to find a probe value expensive

enough for differing levels of compilation to be observable.

This is due to the large number of potential loop iterations

within these methods. This was not the case in the Java method

���������#, where the maximum possible number of loop

iterations is four. The strength of a side channel introduced

by TMETH-BE is thus bounded by how expensive the method

in question can be made by suitably chosen probe values.

In the Java method 	�
��
�
������ we show an inter-

esting example of interaction between back-edge-induced-

compilation and branch-prediction side channels. We again

succeed in inducing differing levels of optimization for the

same priming amount. But that priming also induced a branch-

prediction-based side channel. The timing of p(t) is thus not

only affected by the compilation level of the method, but also

by branch prediction. Since the priming input satisfying φ
induced a higher level of compilation, we expected that the

timing of the call to p(t) would be faster under that priming.

When we choose t to benefit from the branch prediction

induced when priming in favor of φ, this was the case. This

is shown in our first result for 	�
��
�
������. However, when

we choose a probing value that was hindered by the branch

prediction induced by priming favoring φ, and aided by branch

prediction induced when priming favoring ¬φ, the expected

outcome was reversed. The timing of p(t) was actually faster

under the ¬φ priming, even though the method had not been

compiled because of the unintended branch prediction. This is

shown in our second result for 	�
��
�
������.

VII. APPLICATION LEAKAGE EXAMPLES

A. Apache Shiro

Apache Shiro [10] is an easy-to-use, open-source Java

security framework for authentication. It has over 2000 stars
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on Github as of this writing. Developers use Shiro to add per-

missions, roles, and session management to their applications.

1) Shiro Tutorial: The official tutorial shows how to inte-

grate Shiro into your application using a simple user database.

Given a username and password, the example code performs a

Shiro login with the given credentials, checks them against the

database, tests whether the user has a permission, and reports

whether they can perform an action. Even this very simple

example code could leak under �������. Let us imagine

that having permission to perform the action, as checked by

the �	
��

������
������
�������
����� statement in the code,

is highly unusual. If an attacker probes the system at regular

intervals by timing her own call to the example code, she can

find out when someone passes the �����
������� test.

We experimentally demonstrate. Using the unmodified Shiro

tutorial code inside a loop, we make unprivileged users prime

the system 5000 times by repeatedly logging in and conse-

quently heating up the typical branch; an unprivileged attacker

probe the system 200 times through her own login; and a

privileged user log in between the attacker’s 100’th and 101’st

probes. Due to JIT nondeterminism, we repeat the experiment

100 times. Figure 7ab shows the 100 superimposed traces. The

point at which the atypical event happens is clearly visible:

the attacker’s 101’st probe (first one after the event) takes an

unprecedented amount of time. The following probes are also

more expensive, although the effect soon wears down.

In Figure 7aa we show the null version of the experiment:

same conditions, priming, and probing, but the atypical event

is replaced with a typical one. This aims at confirming that the

phenomenon is caused by the presence of the atypical event,

rather than some other aspect of our experimental setup.

We then wrap the same Shiro tutorial program in a simple

TCP server. A TCP client connects to the server from a dif-

ferent computer and issues login/action/logout commands. The

same priming, probing, and atypical event as before are now

executed on the server at the client’s requests. Response times

are measured on the client side. The LAN setup is described

in Section VII-C. Figure 7ac shows that, even partially fuzzed

by network noise, the phenomenon is still clearly observable

through our LAN. However, it is not strong enough to be

realistically observable through the public Internet.

Optimistic compilation is the enabler of this side channel.

The large majority of users do not have the special priv-

ilege, resulting in highly compiled code with an optimistic

assumption. When the privileged user logs on, the assumption

is broken, forcing the JVM to fall back to less optimized

code. The change in the timing of the probes reflects this.

As recompilation happens, the timing of the probes drops.

2) Amplification through computation: The fact that the

previous example leaks is remarkable considering that all it

does is to check a permission. Observability can be amplified

by calling Shiro’s �����
������� method from a function that

actually computes something—thus increasing the difference

between optimized and unoptimized versions of said function.

We tested a simple function that converts an array of points

from spherical to Cartesian coordinates. Before the compu-

tation, the function checks �	
��

������
������
�������
�����,
as indicated by the Shiro documentation. The code (see

Appendix 9) is written in a completely symmetric way, in an

attempt to avoid any traditional (non-JIT) timing side channel.

It is nevertheless affected by the same JIT-based side channel

leakage seen in the previous example, now more amplified.

We perform a similar experiment as before. We can use

fewer priming iterations (1000) since additional back-edges

cause the function to compile earlier. Figure 7ba shows the null

experiment. Figure 7bb shows the results when the atypical

event occurs after the 100’th probe. Figure 7bc shows that the

effects of reverting to less optimized code are observable over

the public Internet, and last until the method is recompiled.

This increased observability is due to the now larger difference

between the highly optimized and less optimized versions of

the function. While we experimented with a specific non-

trivial, highly-optimizable function, any method involving

computation satisfying similar properties and containing a

Shiro permission check would be similarly susceptible.

It is noteworthy that, to harness side channels under ����
���, the attacker only needs to time her own probes. In con-

trast to many traditional side channels, the attacker actually in-

fers sensitive information from computation we would expect

to be entirely independent from that information. While this

increases the applicability of �������, the non-resetability

of this side channel also deserves note. Once the optimistic

assumption is broken, the compiler will not reintroduce the

same optimistic compilation again. This means the attacker can

detect only the first occurrence of the rare event. Nevertheless,

for highly sensitive events, this kind of vulnerability is critical.

Additionally, if the attacker is able to force the JVM to reset

(should she be a system admin of a company or able to force

a reset through an orthogonal denial-of-service attack), then

she can continue her detection of rare behavior.

B. GraphHopper

GraphHopper [11] (GH) is an open-source framework that

computes directions on city maps. It uses maps from the Open-

StreetMap [26] project. The GH server can answer queries like

“best route from A to B by train in Berlin” issued by clients

through a RESTful API. GraphHopper is a well-known project

with over 1,800 stars on Github as of this writing.

We present two examples of leakage due to optimistic

compilation in GH. One allows an attacker to discover when

someone issues a query in which the origin and destination

points are further than a certain threshold apart. The second

one allows an attacker to find out when someone issues a

query with a certain preference of routing algorithm. Both

side channels ultimately adhere to the TOPTI template, though

their presence in a large application makes their behavior more

intricate. We again evaluate under ������� since it makes

the fewest assumptions about the attacker’s capabilities.

We did not modify GraphHopper in any way. Our ex-

periments can be replicated using the unmodified current

distribution of the GH server (VII-C) and the map of Berlin.
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(a) Apache Shiro: Tutorial example (unmodified).

(b) Apache Shiro: Tutorial example (augmented).

(c) GraphHopper: Maximum distance vulnerability.

(d) GraphHopper: Atypical algorithm vulnerability.

Fig. 7: Plots for Apache Shiro and GraphHopper experiments

1) Distance Threshold: GH has a configurable maximum

separation (graph edges) between allowable from and to points.

We used a limit of 5000 edges. We experimented under the

assumption that the majority of users issued queries within

range. We collected 100 traces of the following experiment.

We primed the JVM with 3000 routing queries between

random locations within range; probed with a routing query

between two fixed locations within range; and made a routing

query between two random locations outside of the range

between the 100’th and 101’st probe. Figure 7cb shows the

results over the LAN. Figure 7ca shows the null version.

Figure 7cc shows the results over the public Internet. Though

not perfectly reliably, this timing channel is observable over

the public Internet and the attacker is likely able to infer if

and when a user makes an atypical routing query.

2) Routing Algorithm: GraphHopper defaults to Dijkstra’s

algorithm for routing computation. The API allows the user to

select a different one, such as the A∗ algorithm. If the typical

case is Dijkstra, an attacker can probe regularly to detect when

another user atypically asks to use the A∗ algorithm.

We collected 100 traces of the following experiment. We

primed the JVM with 1000 routing queries between random

locations using Dijkstra’s algorithm; probed with a routing

query between two fixed locations using Dijkstra’s algorithm;

and made a routing query on two random locations using the

A∗ algorithm between the 100’th and 101’st probe. Figure 7db

shows the results over a LAN. Figure 7da shows the null

version. Figure 7dc shows the results across the public Internet.

The shift in the timing of the probes is observable over the

public Internet. In fact, the probe following the rare behavior

takes much longer than any prior probe (usually by ~15 msec)

due to the less compiled version of the relevant routing-

algorithm-handling code being noticeable more expensive for

probes requiring many iterations of the algorithm. However,

using such an expensive probe means many back edges are

taken, resulting in quick recompilation and a fading effect.

C. Experimental setup

We ran Apache Shiro v1.3.2 and GraphHopper v11.0 on

two Intel NUC 5i5RYH computers. Both machines are on our
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Ethernet LAN via a Netgear GS108Ev3 switch. Another five

computers are on the LAN. Under low load, typical round-trip

time between the client and the server machines through the

LAN was 0.27 msec (min 0.25, mean 0.273, max 0.34).

For the public Internet experiments we ran the server on the

same NUC 5i5RYH computer in our lab, and the client on a

remote machine located about 2000 miles away. According to

����������, the route comprises 10 hops. The remote machine

is a shared webserver that hosts 20+ live websites. Round-trip

time and noise vary depending on load, but typical RTT was

around 55 msec (min 54.1, mean 55.04, max 57.7).

VIII. RELATED WORK

To the best of our knowledge, the idea that JIT could impact

and potentially introduce timing channel vulnerabilities was

first put forth by Page [27]. Noting that compiled code can

differ from source code, he explores the impact of dynamic

compilation through a case study on his own Java imple-

mentation of a double-and-add-based multiplication program.

Because the doubling method is called more frequently than

the addition method, it is compiled sooner. If an attacker

can obtain a timing profile of each method called within the

multiplication code, she can infer the order of the sequence of

doublings and additions performed. Page also proposes some

potential mitigations at both the language level and the virtual

machine level. Our work goes beyond the observation that dy-

namic compilation may introduce side channels by demonstrat-

ing how to systematically induce JIT-based runtime-behavior-

dependent side channels through bias in input distribution.

We actively exploit JIT’s focus on optimization to create side

channels and demonstrate our approach on real applications.

In work complementary to ours, Cleemput et al. [28]

propose leveraging the profiling information used in dynamic

compilation to mitigate timing side channels. Starting from

a developer-chosen root method, profiling information on the

number of back edges taken or method invocations is collected

for values in a training input set. Based on this process, a

set of methods potentially vulnerable to timing channels is

selected. Control-flow and data-flow transformations are then

applied to reduce their susceptibility to side channels. Control-

flow transformations, such as if-conversion, from their paper

would aid in protecting sensitive functions from JIT-based side

channels. In fact, there is existing work on compiler based

strategies for mitigating side-channel vulnerabilities which

might be germane to that purpose [29]–[31]. However, none

of the solutions they offer have been integrated into the widely

used runtimes explored in our work. Frassetto et al. [32]

propose JITGuard, a guard for JIT compilers against code-

injection, code-reuse and data-only attacks. However, side-

channel vulnerabilities are out of scope of their work. Ahead-

of-time compilation, where a compilation to native machine

code happens before execution rather than during, is a potential

mitigation for JIT-induced side channels. Since compilation

happens before runtime, it is agnostic to input distribution.

Ahead-of-time compilation is an option in some versions of

Java [33], [34] and JavaScript [35], [36], but generally is not

standard or even always available.

Static Side-Channel Analysis: The problem of statically

detecting side channels in software has been widely addressed.

Antopoulos et al. [37], Chen et al. [38] and Brennan et al. [39]

propose techniques to detect imbalanced paths through the

control flow graph of a method. More expensive techniques

requiring symbolic execution and model counting enable

quantifying the amount of information leaked [40] and even

synthesizing input so as to maximize the amount of infor-

mation that can be extracted through the side channel [41],

[42]. These approaches rely on a cost model that statically

approximates observable information (e.g., execution time)

along a program path. What our work demonstrates is that

such a cost model is insufficient. The execution time of a

path depends not only on the instructions along that path

but also, and to a great extent, on the state of the runtime.

The state of the runtime is in turn influenced by all previous

invocations of the code under test. Currently no static approach

to side channel detection even attempts to model this complex

interaction. Some approaches to side-channel analysis include

a dynamic component where runtime information is collected

and statistical inference performed [43], [44]. However, none

consider the space of possible primed runtime environments.

Runtime-based CPU-induced side channels: Branch pre-

diction analysis (BPA) attacks and cache attacks are side-

channel attacks which leverage runtime-dependent behavior of

CPUs. Cache-based side-channel attacks [3], [45]–[49] have

been theorized for years and have increasingly been shown as

a powerful technique for recovering sensitive information in

practical scenarios. Acıiçmez et al. first demonstrated that the

CPU’s branch predictor could be leveraged to introduce timing

channels in security-related code [50]–[52]. Since then, the

CPU’s Branch Prediction Unit has been exploited to introduce

various flavors of timing channel vulnerabilities [53]–[55].

IX. CONCLUSIONS AND FUTURE WORK

We presented a new class of runtime-behavior-dependent

timing side channels that fundamentally differ from traditional,

static-code-dependent side channels. JIT compilation intro-

duces these side channels due to non-uniformity in a program’s

input distribution with respect to certain predicates. We pro-

posed three attack models under which these side channels are

harnessable and five vulnerability templates to detect suscepti-

ble code and predicates. We presented a fine-grained analysis

of JIT-based side channels on Java and JavaScript functions

and demonstrated JIT-based timing channels observable over

the public Internet in well-known frameworks.

In the future, we plan to develop a fuzzing strategy over

possible priming and test values to induce and evaluate side

channels automatically. We also plan to develop an online

statistical strategy for detection of atypical behavior under

�	
��
�. We believe that with robust statistical models and

enough engineering effort, JIT-based side channels can be

used to learn sensitive information in the wild and are worth

continued exploration.
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analysis for side channels with segmented oracles,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. ACM, 2016, pp. 193–204.

[41] C. S. Pasareanu, Q.-S. Phan, and P. Malacaria, “Multi-run side-channel
analysis using symbolic execution and max-smt,” in Computer Security
Foundations Symposium (CSF), 2016 IEEE 29th. IEEE, 2016, pp.
387–400.

[42] Q.-S. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and T. Bultan,
“Synthesis of adaptive side-channel attacks,” in Computer Security
Foundations Symposium (CSF), 2017 IEEE 30th. IEEE, 2017, pp.
328–342.

[43] K. Zhang, Z. Li, R. Wang, X. Wang, and S. Chen, “Sidebuster:
automated detection and quantification of side-channel leaks in web
application development,” in Proceedings of the 17th ACM conference
on Computer and communications security. ACM, 2010, pp. 595–606.

[44] P. Chapman and D. Evans, “Automated black-box detection of side-
channel vulnerabilities in web applications,” in Proceedings of the 18th
ACM conference on Computer and communications security. ACM,
2011, pp. 263–274.

[45] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side channel crypt-
analysis of product ciphers,” in European Symposium on Research in
Computer Security. Springer, 1998, pp. 97–110.

[46] D. Page, “Theoretical use of cache memory as a cryptanalytic side-
channel.” IACR Cryptology ePrint Archive, vol. 2002, p. 169, 2002.

[47] B. B. Brumley and R. M. Hakala, “Cache-timing template attacks,” in
International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2009, pp. 667–684.

[48] C. Percival, “Cache missing for fun and profit,” 2005.
[49] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise,

l3 cache side-channel attack.” in USENIX Security Symposium, 2014,
pp. 719–732.

[50] O. Acıiçmez, Ç. K. Koç, and J.-P. Seifert, “Predicting secret keys via
branch prediction,” in Cryptographers Track at the RSA Conference.
Springer, 2007, pp. 225–242.

[51] O. Aciiçmez, Ç. K. Koç, and J.-P. Seifert, “On the power of simple
branch prediction analysis,” in Proceedings of the 2nd ACM symposium
on Information, computer and communications security. ACM, 2007,
pp. 312–320.

[52] O. Acıiçmez, S. Gueron, and J.-P. Seifert, “New branch prediction
vulnerabilities in openssl and necessary software countermeasures,” in
IMA International Conference on Cryptography and Coding. Springer,
2007, pp. 185–203.

1220

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 09,2021 at 06:51:56 UTC from IEEE Xplore.  Restrictions apply. 



[53] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over
aslr: Attacking branch predictors to bypass aslr,” in Microarchitecture
(MICRO), 2016 49th Annual IEEE/ACM International Symposium on.
IEEE, 2016, pp. 1–13.

[54] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside sgx enclaves with branch shadowing,” in
26th USENIX Security Symposium, USENIX Security, 2017, pp. 16–18.

[55] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, D. Ponomarev et al.,
“Branchscope: A new side-channel attack on directional branch pre-
dictor,” in Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM, 2018, pp. 693–707.

[56] Oracle. The Java HotSpot Virtual Machine at a glance. http://www.
oracle.com/technetwork/java/javase/tech/index-jsp-136373.html.

APPENDIX

A. Other JIT optimizations

We briefly overview other JIT optimization techniques,

which, though not directly exploited in any of our vulnerability

templates, may nevertheless impact the appearance or strength

of a side channel.

If a method is deemed small enough, it may be inlined

into its callers, thus avoiding the overhead of a method call.

This deceptively simple-looking optimization is in fact very

nuanced, as it interacts with other optimizations in nontrivial

ways. For instance, when m calls m′, inlining m′ into m can

impact ulterior optimizations of m, and the same effect may

cascade to deeper levels. While none of our experiments is

based solely on inlining, we do use this optimization in com-

bination with other ones (see Section VI). JIT compilation can

feature many other optimizations, e.g., loop unrolling, escape

analysis, dead code elimination, etc. Some are essentially akin

to those present in modern static optimizing compilers, while

many others are truly adaptive in nature and can only be

performed in a context where they may be de-optimized as

needed. For further details about specific optimizations used

in the HotSpot and V8 runtime engines, we refer the reader

to the documentation [21], [56].

B. Assumptions on Input Space

We evaluate the ��� and ������� cases with secret test

values that satisfy a certain set of assumptions. In some cases,

there were no assumptions made. In the majority of cases,

the assumptions amounted to ensuring that the input satisfies

certain sanity checks. For example, that the input is not null;

that it is not an extreme value such as NaN, positive or negative

infinity; or that the length of two strings being compared is

equal. This observation also makes more reasonable the ����

�	� assumption that the values we choose for priming are

representative of the set of possible priming values satisfying

the assumptions and agreeing on φ more reasonable. Even

in the few cases where the assumptions were more nuanced,

such as in Java method 
��
����������, they were still very

reasonable (the character to be replaced must not be the

same as the one it will be replaced by). The only case

where we used a stronger assumption about the set of secret

values is �
�����������
������ where the test set of values was

constrained in a non-trivial way. When a test value was above

a certain threshold, it introduced unexpected behavior into the

program. Thus we placed an upper limit on the magnitude of

the test values. Nevertheless, we had both positve and negative

test values that different by thousands.
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if (currentUser.isPermitted("seeSecretData")) {
log.info("Secret data being accessed");

} else {
log.info("Public data being accessed");

}

Fig. 8: Code example of Apache Shiro permissions checking.

public static double[] compute(PointPair[] points, Subject currentUser) {
double x=1, y=1, z=1;
double a=1, b=1, c=1;
double[] result = new double[points.length];

// Use Shiro to check permission as seen in the tutorial.
if (currentUser.isPermitted("seeSecretData")) {

log.info("Secret data being accessed");
} else {

log.info("Public data being accessed");
}

for(int i=0; i<points.length; i++) {
// Convert first point to rectangular coordinates
x = points[i].p1.r*Math.sin(points[i].p1.theta)*Math.cos(points[i].p1.phi);
y = points[i].p1.r*Math.sin(points[i].p1.theta)*Math.sin(points[i].p1.phi);
z = points[i].p1.r*Math.cos(points[i].p1.theta);

// Convert second point to rectangular coordinates
a = points[i].p2.r*Math.sin(points[i].p2.theta)*Math.cos(points[i].p2.phi);
b = points[i].p2.r*Math.sin(points[i].p2.theta)*Math.sin(points[i].p2.phi);
c = points[i].p2.r*Math.cos(points[i].p2.theta);

result[i] = Math.sqrt((x+a)*(x+a)+(y+b)*(y+b)+(z+c)*(z+c));
}

return result;
}

Fig. 9: Code example from the Apache Shiro Tutorial augmented by performing some computation.
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