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Abstract—Side-channel vulnerabilities in software are caused
by an observable imbalance in resource usage across different
program paths. We show that just-in-time (JIT) compilation,
which is crucial to the runtime performance of modern inter-
preted languages, can introduce timing side channels in cases
where the input distribution to the program is non-uniform.
Such timing channels can enable an attacker to infer potentially
sensitive information about predicates on the program input.

We define three attack models under which such side channels
are harnessable and five vulnerability templates to detect suscep-
tible code fragments and predicates. We also propose profiling
algorithms to generate the representative statistical information
necessary for the attacker to perform accurate inference.

We systematically evaluate the strength of these JIT-based
side channels on the java.lang.String, java.lang.Math, and
java.math.Biglnteger classes from the Java standard library, and
on the JavaScript built-in objects String, Math, and Array. We
carry out our evaluation using two widely adopted, open-source,
JIT-enhanced runtime engines for the Java and JavaScript
languages: the Oracle HotSpot Java Virtual Machine and the
Google V8 JavaScript engine, respectively.

Finally, we demonstrate a few examples of JIT-based side
channels in the Apache Shiro security framework and the
GraphHopper route planning server, and show that they are
observable over the public Internet.

I. INTRODUCTION

Cyber-attacks that steal confidential information are becom-
ing increasingly frequent and devastating as modern software
systems store and manipulate greater amounts of sensitive
data. Leaking information about private user data, such as
the financial and medical records of individuals, trade secrets
of companies and military secrets of states can have drastic
consequences. Although programs that have access to secret
information are expected to protect it, many software systems
contain vulnerabilities that leak information.

By observing non-functional side effects of software sys-
tems such as execution time or memory usage, side-channel
attacks can capture secret information. Though side-channel
vulnerabilities have been known for decades [1], they are
still often neglected by software developers. They are com-
monly thought of as impractical despite a growing number of
demonstrations of realistic side-channel attacks that result in
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public bool check(String guess) {
for(int i=0; i<guess.len; i++) {
if (guess[i] = password[i])

public bool check(String guess) {
bool flag=true, fakeFlag=true;
for(int i=0; i<guess.len; i++) {

return false; if (guess|i] = password[i])
} flag = false;
return true; else

fakeFlag = false;

return flag;

}
Fig. 1: A naive password-checking method and a “fixed” one.

critical security vulnerabilities [2]—[4]. Exploitable timing side
channels have been found in Google’s Keyczar Library [5],
the Xbox 360 [6], implementations of RSA encryption [2],
the open authorization protocol OAuth [7], and most modern
processors [8], [9]. These vulnerabilities highlight the need for
preemptive discovery of side-channel vulnerabilities.

We present a new class of side-channel vulnerabilities due to
the optimizations introduced by just-in-time (JIT) compilation.
We focus on the HotSpot JVM and Google V8 runtime
engines, but any JIT-enhanced runtime is similarly susceptible.

We show that if the input distribution to a program is non-
uniform, the JIT compiler state will be primed to favor certain
paths, resulting in optimizations that reduce their execution
time. This can introduce timing side channels even in programs
whose resource consumption has been carefully balanced.

II. AN OVERVIEW OF JIT-BASED SIDE CHANNELS

Consider the naive password-checking method shown in
Fig. 1 (left). In this Java method, the password and a guess
of matching length are compared character-wise. As soon as
there is a mismatch, false is returned. This early return results
in a timing side channel that enables an observer to correlate
the execution time with the number of characters matched.

A security-conscious developer might decide that, since the
method handles sensitive data, it is worth sacrificing the early
return in exchange for a more secure function. They might
propose a method like the one shown in Fig. 1 (right). In this
new version of check, the same amount of work is performed
regardless of the length of the matching prefix.

The side-channel vulnerability appears to have been fixed in
the new version of the code. However, the source code written
by the developer is not the only factor impacting the execution
time of program paths. The runtime environment itself can
introduce timing side channels into deceptively secure-looking
code fragments when it attempts to optimize paths that it
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Fig. 2: Execution time of the “fixed” check method.
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Fig. 3: Attack models

deems “hot.” In this Java example, the HotSpot JVM tracks
how often each branch of a conditional branch instruction is
taken, and uses this information when JIT-compiling a method
to generate native code favoring the more frequent branch.
If an attacker is guessing potential passwords randomly, the
probability of missing is much higher than that of matching
something. As a result, the then branch heats up, and JIT
introduces a timing side channel into the supposedly “fixed”
version. Figure 2a depicts the clear separability of the method’s
execution time distributions when the first character misses
the first character of the password (optimized branch) versus
when it correctly matches it (non-optimized branch). Figure 2b
shows how the side channel disappears when JIT is disabled.

The runtime behavior of the program introduces a side-
channel vulnerability, enabling the attacker to learn whether
the first character of the guess matches that of the pass-
word. This predicate is related to the branch condition in
Fig. 1 (right). We present a guide describing how JIT-based
side channels can enable an attacker to learn sensitive predi-
cates on input and how to identify potentially vulnerable code.
We assume that the attacker is interested in learning a predicate
¢ about any input from a certain subset of all possible inputs
to program p. This subset is defined by the assumptions the
attacker can make about the input (e.g., that the guess is the
same length as the password as in the above example).

A. Attack Models

We now introduce attack models that establish the different
classes of attacks that we explore and their basic assumptions.

Key to inducing and leveraging JIT-based timing channels
is understanding that they arise from a bias in the distribution
of inputs to the program. We refer to the act of interacting
with a JIT-optimizing runtime in a biased manner as priming
the runtime. Priming means repeatedly running a program
with inputs that exercise certain paths, heating up the state of
optimization in a way that favors those paths. A runtime can
be primed in various ways, and how we assume it is primed
greatly influences what kinds of JIT-based side channels may
be used. Another key aspect is time measurement—what
exactly do we assume that the attacker is able to time? Lastly,
each attack model establishes the purpose of the attack—what
does the attacker learn if she succeeds? Figure 3 summarizes
the attack models whose details we present in the next sections.

B. Induced-Priming Model

Our first attack model is the induced-priming model (IPM),
in which we assume that the attacker is able to prime the
runtime into a vulnerable state by repeatedly triggering the
program p on an input value (or values) of her choice and is
then able to time one subsequent call to p made by another
user with a secret value s. The attacker’s goal is to determine
whether s does or does not satisfy some predicate of interest ¢.
This model is only realistic in scenarios where we can assume
that the attacker has dominant control of the runtime.

The goal of priming under IPM is to force the runtime into a
state where the execution time of the call to p on s is correlated
with the value of the predicate ¢ on s. This is done by priming
with input values that induce heavier optimization along paths
where ¢ is satisfied (or, symmetrically, not satisfied). This
results in a “booby-trapped” runtime state in which the timing
of a subsequent invocation of p(s) may leak information about
the value of ¢(s). Imagine, for example, that there is an
ongoing online charity in which participants can donate to one
of two political parties. The attacker knows when a particular
person will donate and wants to know which party they choose.
The attacker can prime the runtime with a flood of small
donations to one party, and then time the victim’s donation.
Its execution time will depend on whether or not the victim’s
party choice triggers the more optimized program path.

C. Natural-Priming Model

Our second model does not depend on the attacker’s ability
to control the priming of the runtime. In the natural-priming
model (NPM), the runtime is primed through a natural bias
in the input distribution about predicate ¢. The attacker can
measure the timing of her own call to p (her “probe”) on an
input of her choice. We study two subcases of this model,
differing in what the attacker tries to learn from her probe.

1) Typical Behavior: In the first version (NPM-LTB), the
attacker aims to learn the typical behavior of the program.
From the timing of her own probe p(7), the attacker learns if
her input 7 agrees or disagrees with the typical input to p with
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respect to the predicate ¢. Imagine, for example, that there is
an online referendum taking place. The attacker wants to know
what decision is favored by the majority. If enough users have
voted disproportionately in favor of one decision, the runtime
could have been primed to favor that choice. The timing of
the attacker’s probe p(m) could thus leak information about
whether her vote 7 represents the typical case.

2) Atypical Behavior: In the second version (NPM-LAB),
the attacker aims to learn whether another user’s input to the
program is atypical with respect to a well-established bias.
Again, the attacker uses the timing of her subsequent probe
p(m) to learn this information. As we will see, depending on
which optimizations are involved, a small number of calls or
even a single call to p with an atypical value can change
the state of the runtime. This may significantly affect the
timing of future calls to p. For example, imagine a website
where patients of a clinic can obtain their test results for
a life-threatening infectious disease. The majority of results
come out negative. The attacker can learn when someone tests
positive by repeatedly polling her own negative result and
watching out for changes in timing.

D. Roadmap and Contributions

While details differ, inferring ¢ under each attack model
consists of the same three stages:

1) Priming: p is executed repeatedly with an input distribu-

tion biased with respect to predicate ¢.

2) Timing: The attacker times the execution of p for a

particular input value.

3) Inference: Based on the observed execution time, the

attacker infers the value of predicate ¢ on unknown input.

Imbalances introduced through biased behavior at runtime
are related to various JIT optimizations. These optimizations
interact in complex and subtle ways. Combined with noisy
timing, this makes the art of leveraging JIT-based timing side
channels an intricate process. We identify several vulnerability
templates, each based on exploitable JIT optimizations. These
templates help us identify which predicates related to paths in
p may be amenable to JIT-based vulnerabilities, and guide us
in finding the right priming parameters or requirements.

While many JIT-based imbalances are small, and thus hard
to separate from the noise of a real-world system, we point
out that most large JIT-based imbalances consist of many small
ones combined. Studying the effects of fine-grained JIT-based
vulnerabilities is the initial step toward understanding their
contribution to coarse-grained, sizable phenomena.

We first apply our approach in a fine-grained analysis of
Java and JavaScript methods. Since the timing distribution
of different execution paths can overlap, we may not always
reach full certainty about the value of the predicate, even
if we induce a strong side channel. We use the conditional
entropy between the timing information and the value of
the predicate to quantify how much information about the
predicate is leaked. We discuss the results and lessons learned
from our most interesting experiments, both successful and
unsuccessful.

We then experiment with the Apache Shiro [10] security
framework and the GraphHopper [11] route planning server
to explore how JIT-based side channels can be induced in
large well-known applications. Our results show that they can
indeed be introduced, and that they can be sizable enough in
magnitude to be observable over the public internet.

Our contributions in this paper are:

o Definition and demonstration of a new class of timing side
channels due to JIT optimizations during runtime.

o Three attack models for learning predicates about secret
inputs using JIT-based side channels.

o Five vulnerability templates to identify code fragments
susceptible to JIT-based timing vulnerabilities.

o A profiling method to gather the statistical information
needed to infer predicate values in noisy environments.

o Experimental evaluation of applying our approach to widely
used Java and JavaScript functions.

o Examples and experimental analysis of multiple JIT-based
side channels in two well-known Java frameworks.

The paper is organized as follows: In Sect. III we review JIT
optimizations and introduce related vulnerability templates.
In Sect. IV we present algorithms to effectively use timing
information arising from JIT-based side channels. In Sect. V
we describe our experiments on built-in Java and JavaScript
functions. In Sect. VI we discuss the experimental results. In
Sect. VII we demonstrate JIT-based side channels in well-
known frameworks. In Sect. VIII we discuss related work. In
Sect. IX we present our conclusions and ideas for future work.

III. VULNERABILITY TEMPLATES FOR JIT-BASED
SIDE-CHANNELS

In this section we review basic characteristics of JIT com-
pilation mechanisms, and then identify vulnerability templates
for timing side channels based on JIT compilation techniques.

A. Just-in-time (JIT) compilation

Just-in-time compilation has been used since 1960 [12] to
improve the performance of interpreted languages. Based on
the observation that a majority of execution time is typically
spent executing a small fraction of the code [13], runtime
profiling can be used to detect “hot” functions or code portions
that are worth feeding into an optimizing compiler. This in-
volves a complex trade-off between initial compilation delays
(“warm-up time”) and subsequent performance benefits.

Modern JIT compiler implementations involve techniques
to dynamically adjust the optimization level (and thus the
compilation overhead) of each method in order to maximize
the return on investment. Aggressive speculative optimizations
may give rise to the need for recurrent assumption checks, and
to deoptimization penalties when such a check fails [14].

JIT compilation has been employed by many languages in-
cluding LISP [15], Smalltalk [16], FORTRAN [17], APL [18],
PHP [19], Java [20], and JavaScript [21].
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Fig. 4: Vulnerability templates for each attack model.

B. Vulnerability Templates and JIT Compilation Techniques

We show vulnerability templates centered on different JIT
compilation techniques. This facilitates identification of code
susceptible to a JIT-based side channel and systematic under-
standing of parameters needed to harness the side channel.

Each vulnerability template has:

o A particular kind of optimization that it exploits.

o A code pattern, e.g., that some method m must be called
when ¢ is satisfied and not when ¢ is not satisfied.

o A recipe that guides the search of suitable parameters
for priming: how biased the input distribution must be,
how many calls to p are needed, etc. This describes the
priming the attacker must be able to induce under IPM
or the natural priming necessary under NPM.

o The attack model(s) for which the template is harnessable.

As we introduce the templates, we provide the necessary
background about the JIT compilation techniques they exploit.
1) Branch prediction (TBRAN): JIT branch prediction uses
counters to track the frequency of each branch of a conditional.
When a method is compiled, this information may be used to
generate native code where the most taken branch appears
first, avoiding a jump instruction. Savings are amplified in the
case of loops. This optimization is independent of CPU-level
branch prediction, but can achieve positive synergy with it.
Code Pattern: TBRAN can be applied for any predicate
directly related to a conditional statement. The imbalance that
it introduces is small, so that it may only be observable in
specific cases. This template works best in situations where the
conditional is enclosed in a loop (which amplifies the small
difference), or in small programs, where the small difference
achieved is significant w.r.t. the cost of the rest of the program.
Recipe: The amount of priming must be sufficiently
high that JIT deems generating the more efficient native code
worthwhile. Also, priming must be sufficiently biased so that
a high-enough fraction of branching decisions favor one side.
Attack Models: |PM, NPM-LTB, NPM-LAB.

2) Optimistic compilation (TOPTI): If, when a method
is aggressively compiled (e.g. elevated to a higher tier of
compilation in HotSpot), the counters shows that one side of
a conditional is very rare, the optimizing compiler may make
the optimistic assumption that the branch will never be taken.
Similarly, if counters show that a potentially polymorphic call
site always calls the same receivers, the optimizing compiler

may assume the rarely-seen dispatches never occur. In either
scenario, if and when the rare case occurs and the optimistic
assumption is broken, the method must be de-optimized and
replaced with a slower, more conservative version.

Code Pattern: TOPTI can be applied for any ¢ where
satisfying or not satisfying ¢ means that some non-empty
branch is never taken or some receiver never called.

Recipe: Priming must ensure that (i) the method contain-
ing the conditional is called enough times to be aggressively
compiled, and that (ii) by the time that happens, the conditional
or dispatch of interest has behaved almost always uniformly.

Attack Models: 1PM, NPM-LTB, NPM-LAB.

3) Method compilation (TMETH): Compilation decisions
are impacted by runtime profiling metrics. One key metric
is method invocation count. When the number of method
invocations reaches a certain threshold [22], the method may
be scheduled for compilation or more aggressive recompila-
tion. Another factor that may promote (re)compilation of a
method are back-edge counters that track how often backward
jumps (typically due to loops) are taken. TMETH exploits
the speed difference between interpreted and compiled (or
between conservatively and aggressively compiled) code.

Code Pattern: An input satisfying ¢ results in a call to
some method m that is not called when ¢ is unsatisfied.

Recipe: Priming must ensure that m is executed a suf-
ficiently high number of times, so that m is compiled to a
faster version. The speeding up of m thus causes or augments
an observable imbalance in the timing of p.

Attack models: IPM and NPM-LTB. Not exploitable un-
der NPM-LAB, bar extreme conditions. The atypical behavior
must impact the runtime state for the attacker to detect it. For
TMETH, this means that calls to p on an atypical value impact
m’s compilation level. To detect this, the attacker’s probe
needs to execute a path containing m (otherwise the probe’s
timing would be independent of m’s compilation level). But
this means that the attacker needs to ensure her own probes
are not responsible for the compilation of m, requiring a
very nuanced, and generally unrealistic, understanding of the
current profile of m.

4) Method compilation due to back-edges (TMETH-BE):
This template, specific to NPM-LTB, exploits method compi-
lation due to back-edge counters rather than method invocation
counters. A method no longer needs to be called for one
predicate value and not the other. Instead, a method m called
the same number of times in both cases is (or is not) compiled
(or is compiled to a different level of optimization) depending
on whether the back-edge counters are sufficiently high.

Code Pattern: The predicate impacts the number of back
edges (jumps to previous code) traversed in a method m.

Recipe: The priming amount must be in the range to
induce a difference between the optimization level of m
according to the two priming scenarios. The ideal probe value
for this vulnerability template is one for which the method m is
expensive—making the difference in execution time between
its differently compiled versions more apparent.

Attack Models: NPM-LTB.
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5) Method compilation due to imbalanced invocations
(TMETH-11): This template is specific to NPM-LTB.

Code Pattern: This template applies to any predicate that
impacts the frequency of calls to a method m. The case where
m is never called for one predicate value is a specific one.

Recipe: The priming amount must be in the range so
that the level of compilation of m is different across the two
priming scenarios. The ideal probe value for this case is one
in which calls to m are expensive.

Attack Models: NPM-LAB.

IV. STATISTICAL PROFILING FOR ACCURATE INFERENCE

In this section we discuss how an attacker can use the
timing information she collects to correctly infer predicate
values. Though not always necessary, the attacker’s endeavor
can be greatly aided if she builds an informative profile of the
expected timing distribution under different predicate values.

Two key factors about the predicate ¢ impact the attacker’s
profiling strategy. First, how many paths through program
does the satisfaction of the predicate ¢ (or —¢) correspond
to? Second, if the predicate corresponds to a set of program
paths, are there any additional assumptions the attacker can
make about the value of unknown input to p to reduce that set
of paths? The more limited this set of program paths is, the
simpler it will be to produce a reliable statistical model.

A. Learning under IPM

Under IPM, the attacker primes the runtime engine into a
state where the execution time of a subsequent call to p on
an unknown value leaks information about whether that value
satisfies ¢. For accurate inference, the attacker can develop
a statistical profile of the execution times of p on inputs
satisfying ¢ and —¢, respectively, after priming with a chosen
priming value. The more distinguishable the profiles under
the two cases, the more successfully the attacker has booby-
trapped the runtime engine.

Obtaining a statistical profile benefits us twofold. First, time
measurements are affected by nondeterminism from various
sources, from inevitable system noise to minor variations in
runtime decisions made by the JIT compiler as to which
optimizations to apply and in what order. The statistical nature
of the profile accounts for such noise. Second, the assumption
that the attacker has complete control over the runtime is often
unrealistic. When we build a statistical profile, we can simulate
an environment where some proportion of calls to p is outside
the control of the attacker. By priming with an « distribution
(with respect to ¢) we mean priming p with inputs satisfying
¢ with probability «, and —¢ with probability 1 —a. When we
build a statistical profile, we prime with o < 1 to simulate a
context where p is occasionally triggered on inputs satisfying
the opposite value to the one we have chosen to heat up.

The pseudocode in Algorithm 2 outlines the above process.
Here, the two priming input values pg,p-¢ are chosen such
that (a) both satisfy any assumptions the attacker makes over
the input space, and (b) py satisfies ¢ whereas p-, satisfies
—¢. The test values ¢4 and ¢—, are chosen randomly from the

set of possible secret values (T3 and T-4) satisfying ¢ and
—¢ respectively (along with any additional assumptions on the
input space) to generate representative timing information for a
secret value. The priming amount 7 is the total number of calls
to the program p in the Prime algorithm (see Algorithm 1) and
the profiling amount N is the number of times the priming and
then timing subroutine is repeated during profiling in order to
generate a statistical profile robust to noise.

Choice of test values can impact the accuracy of the statis-
tical profile. The more similar the test values ¢4 and ¢t to the
actual unknown value, the more accurate the profile likely is.
Here similarity means that modulo branch decisions correlated
with the predicate, the test input follows a similar program path
as the unknown input. Since this cannot be known beforehand,
the attacker’s best option is to generate and profile for a wide
set of test values. Likewise, choice of priming input can impact
how successful an attacker is in booby-trapping the runtime.
Ideally the attacker would choose priming input following
the same program path as the unknown input. If this is not
possible, an attacker could vary her priming input over a set
of possible paths in an attempt to avoid introducing a timing
channel due to an entirely different predicate.

B. Learning under NPM

In NPM, the runtime engine is primed by a natural bias
in the input distribution to p. The attacker then executes and
times p(7) on a probe value 7 of her choice. The timing is used
to infer either a) (NPM-LTB) whether ¢ or —¢ is sufficiently
dominant among the input to p, or b) (NPM-LAB) if and when
a call to p that is atypical with respect to ¢ has been made.
As in IPM, we develop a statistical profile to reliably perform
inference when presented with the timing of p(7). Unlike IPM,
the attacker is not in control of the priming and so profiling
requires simulating the natural priming of the runtime.

Learning under NPM-LTB: Here the bias of the natural
priming is unknown. The attacker instead generates two sets
of priming inputs (all values of one set satisfying ¢ and
all those of the other satisfying —¢) and primes using those
values. Again, we introduce the ratio «, this time to simulate
differing degrees of bias in the natural priming of p. The
attacker generates statistical profiles for the timing of her probe
7 to p under both possible priming scenarios. The profiling
and subsequent inference specific to NPM-LTB is given in
Algorithm 3. The accuracy of this statistical profile depends
on how closely the set of possible priming input resembles the
input actually used to naturally prime the runtime engine.

Learning under NPM-LAB: Here the bias of the priming
is known. The attacker can bias in favor of the appropriate
value of ¢ using priming values from the corresponding set.
She then generates a statistical profile of the timing of her
probe 7 to p after a call has been made to p using a randomly
chosen test value 7,. She then does the same for randomly
chosen t-4. Here ty and ¢4 are drawn from the set of possible
test values satisfying ¢ or —¢ as appropriate. The profiling and
inference code for NPM-LTB is given in Algorithm 4.
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input : n (priming amount), « (ratio), Tmore, Tless (Priming inputs)

numltersBothSides < 2(n —n - «);
numlitersRemaining <— (n — numltersBothSides);
for i <— 1 to numlitersBothSides do
if ¢ is odd then
| call p(zmore):
else
‘ call p(zless);
end
end
for i <— 1 to numlitersRemaining do
‘ call p(xmore);
end

Algorithm 1: Prime pseudocode.

input : N (profiling amount), n (priming amount), « (ratio),
Ty, T (priming inputs), Ty, T- 4 (profiling test input sets)
Vg, Vo < tWo empty vectors to store timing profiles;
for i < 1 to N do
ty < random(7y);
Prime(n, o, x4, T );
vg-append( Time(p(ty)) ) // and start

vith a fresh runtime
end

for i < 1 to N do

t—y < random(7T-4);
Prime(n, a, T4, T4 );
vg.append( Time(p(t-e)) )

and start with a fresh runtime

end

Prime(n, 1.0, x4, null);

timingOfSecretlnput < Time(RealCall);

leakageEst < InferPred(vy, v—g, timingOfSecretInput);

Algorithm 2: [PM attack pseudocode

V. LIBRARY EVALUATION: SETUP

We describe our subjects, setup, and decisions. In each case,
the program p under test is a method from the standard library.

A. Source of experimental subjects

We evaluated our approach on the java.math.Biglnteger,
java.lang.Math and java.lang.String classes from the Java
standard library (JDK 8, rev. b132) [23] and on the Math,
String and Array JavaScript objects from Google’s V8 open-
source JavaScript engine (V8 4.5.103.35) [24]. We removed
methods with no conditionals, native methods not written in
Java or JavaScript, duplicates modulo type (e.g., float vs.
double), and those with isomorphic control-flow structures. For
the remaining methods we applied our approach and chose
predicates for conditionals that satisfied the most relevant
templates. In the following sections we show a selection of
our results featuring the cases (successful and unsuccessful)
that we found most interesting and relevant.

B. Computing information leakage via conditional entropy

For each experimental subject we ran 1000 iterations and,
on each iteration, we primed the runtime as described in each
of the next subsections and timed a subsequent call to the
method under test. From this data we computed the conditional
entropy between the value of the predicate and the observed
timing distribution. This tells us how many bits of information
about the value of ¢(s) we can expect to be leaked from a
single time measurement. Since the value of ¢ encodes one

input : N (profiling amount), n (priming amount), « (ratio),
X ¢, X—g (profiling priming sets), 7 (probe)

Vg, Vg < two empty vectors to store timing profiles;
for i < 1 to N do

Ty, Tog < random(Xy), random(X )
Prime(n, o, x4, T-¢ );
vg-append( Time(p(m)) )

and start with a fresh runtime

end

for i < 1 to N do
Ty, Tog < random(Xy), random(X—);
Prime(n, a, Togps Tip )3
vg.append( Time(p()) )

end

RealPrime;

timingOfProbeAfterSecretPriming <— Time(p(r));

leakageEst <+ InferPred(vy, v—g, timingOfProbeAfterSecretPriming);

Algorithm 3: NPM-LTB attack pseudocode

/ and start with a fresh runtime

input : N (profiling amount), n (priming amount), « (ratio),
Xg, Xog Ty, T-4 (profiling priming and test sets), 7 (probe)

Vg, Uog < tWO empty vectors to store timing profiles;
for i < 1 to N do

T, Tog < random(X ), random(X—g);
Prime(n, o, x4, T-¢ );
call p(tg < random(Ty)) ;
vg-append( Time(p()) ) // and start with a fresh runtime
end

for i < 1 to N do

Ty, Tog < random(Xy), random(X—);

Prime(n, a, x4, T )

call p(t—g < random(T-4)) ;

v g-append( Time(p(7)) ) // and start with a fresh runtime

end

RealPrime;

RealCall;

timingOfProbeAfterSecretBehavior <— Time(p());

leakageEst < InferPred(vy, v—g, timingOfProbeAfterSecretBehavior);

Algorithm 4: NPM-LAB attack pseudocode

bit of information, a value of 0.0 means no leakage, while 1.0
means full leakage of ¢’s value from one timing observation.

C. Using priming distributions to simulate noisy triggering

As discussed in Section IV, the « ratio accounts for the fact
that in a realistic scenario, we will not have exclusive control
over the state of the runtime engine and the bias under NPM
may not be absolute. Table I shows the distributions that we
associated with each template under each model for both Java
and JavaScript programs.

D. IPM experiments

For each case under IPM, we chose two values for prim-
ing: one satisfying ¢ and one satisfying —¢, following the
approach given in Algorithm 2. We then generated two sets

TABLE I: Priming distributions used in our experiments

IPM NPM-LTB NPM-LAB
Java JS Java IS Java JS
TOPTI 0.998 1.000  0.998  1.000 0.998 1.000
TMETH 0.950  0.950  0.950  0.950 n/a n/a
TBRAN 0900 0.900 0950 0.950 0.900  0.900
TMETH-BE n/a n/a 0950  0.950 n/a n/a
TMETH-1I n/a n/a 0950  0.950 n/a n/a
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of possible secret inputs satisfying ¢ or —¢ respectively and
both satisfying a set of additional assumptions over the space
of all possible inputs. These assumptions are further discussed
in Section B. We primed the runtime engine with the priming
values using the priming ratio « indicated by the template.

For TMETH and TOPTI cases we determined the number of
priming iterations as follows: Starting with an initial guess,
use the JITWatch tool [25] for Java, or the ——trace—opt
option for JavaScript, to determine whether the optimization
has taken place. If not, increase the number of iterations until it
does. For TBRAN cases we tried priming { 1000, 10000, 50000,
100000} times and kept the value that maximizes leakage.

For evaluation, we repeated the following 1000 times.
We primed the runtime engine using one priming value as
described above, then timed a call to the method on a randomly
chosen secret value satisfying ¢. Then we performed another
1000 iterations of the experiment, now timing a call to the
method on a randomly chosen secret value satisfying —¢. From
this data we computed the leakage as explained in V-B.

In addition, we also re-executed all experiments (and leak-
age computation) for the following three priming scenarios:

1) Reversed priming: We re-ran all experiments with a ratio
@ = (1 — «) instead of «. In other words, if the runtime was
primed more heavily favoring ¢ in the original experiment, it
is now primed more heavily with input satisfying —¢, and vice
versa. This evaluates whether that test subject is reversible.

2) Even priming: We re-ran all experiments with a fixed
ratio o = 0.5, i.e., the amounts of priming satisfying ¢ and
—¢ are equal. This evaluates the importance of the imbalanced
priming ratio in introducing a side channel, as opposed to the
more general, overall heating up of the whole method.

3) No JIT: We re-ran all experiments with JIT disabled.
This evaluates the existence of a static (traditional, source-
code level) side-channel vulnerability, which our use of JIT
could augment or mitigate. We still used a very small, fixed,
balanced amount of priming (50 calls on both sides) to avoid
artificial noise from initial class/method loading delays.

E. NPM experiments

For cases evaluated under NPM, we generated two sets of
possible priming values, one satisfying ¢ and the other —¢.
For each case, we determined the number of priming iterations
in the same way as for IPM (see V-D), using JITWatch or
-—trace-opt to guide the search.

NPM-LTB experiments: For evaluation, we repeated the
following experiment 1000 times. We primed the runtime
engine (with priming parameters obtained as described above)
in favor of priming values satisfying ¢, and then timed a
subsequent call on a chosen probe input 7. We manually
chose m such that the difference between the optimization
levels after the two types of priming would be observable.
We experimented again by priming the runtime engine with
the same parameters as before, but in favor of the priming
inputs satisfying —¢, and then timed a subsequent call on
the same probe 7. Each experiment was repeated 1000 times.
From this data we computed the leakage as explained in V-B.
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Fig. 5: Execution time distributions for JavaScript method
Math.max under (a) IPM and (b) NPM-LAB.

Since NPM-LTB is the most expressive model in terms of
the vulnerability templates applicable under it, we focus our
experiments on methods and predicates satisfying templates
un-harnessable under the other models.

NPM-LAB experiments: We additionally generated two
sets of possible secret inputs satisfying ¢ or —¢ respectively
and both satisfying a set of additional assumptions over
the space of all possible inputs. For evaluation, we did the
following 1000 times. We primed the runtime (with priming
parameters obtained as above) in favor of the priming values
satisfying ¢, then made a call to the method on a randomly
chosen secret value executing the —¢ branch. We then timed a
subsequent call on a chosen probe input 7. Then we performed
another 1000 iterations of the experiment, this time calling the
method on a randomly chosen secret value executing the ¢
branch and timing the subsequent call on the same probe input
7. From this data we computed the leakage as explained in
V-B. We then re-ran all experiments under the reverse priming
model described in V-D. This evaluates whether the natural
priming needs to be more strongly in favor of one particular
value of ¢ for atypical behavior to be detected.

F. Hardware setup

The library experiments were run on an Intel NUC 5i5RYH
computer (Intel 15-6600K CPU at 3.50 GHz, 32 GB RAM)
running Ubuntu Linux 16.04 (kernel 4.4.0-103), the Java 8
Platform Standard Edition version 1.8.0_162 from OpenJDK,
and Node.js v4.2.6.

VI. EXPERIMENTAL RESULTS

Tables II, III, and IV summarize our results for Java and
JavaScript methods under IPM, NPM-LTB, NPM-LAB respec-
tively. For each set of experiments we report the method name,
location of the selected branch instruction in the class source
code [23], [24], the template applied, other templates (if any)
that also arose unexpectedly, and the priming parameters used.
In all cases, we report the amount of information leaked about
the predicate value under all evaluated priming scenarios.

A. Optimistic compilation (TOPTI)

When optimistic compilation could be induced, a siz-
able timing difference arises (e.g., see Fig. 6b), resulting in
very reliable learning of ¢(s) under IPM. Our high-leakage
results for Java methods Biglnteger.min, Math.nextAfter,
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TABLE II: Experimental results for IPM in Java (top) and JavaScript (bottom)

Programming Method Branch Template Priming Priming Leakage Leakage Leakage Leakage
language name instruction  (applied, arisen) amount  ratio (o) under « under@  0.5|0.5 w/o JIT
Java BiglInteger.min line 3477 TOPTI 100,000 0.998 1.00 1.00 0.02 0.06
Java Biglnteger.valueOf line 1085 TBRAN 10,000 0.900 0.52 0.16 0.10 0.03
Java Biglnteger.shiftLeft line 2908 TMETH 10,000 0.950 0.99 0.95 0.75 0.79
Java Math.max line 1316 TBRAN 10,000 0.900 0.28 0.25 0.04 0.03
Java Math.ulp line 1443 TMETH 50,000 0.950 0.05 0.05 0.02 0.25
Java Math.nextAfter line 1926 TOPTI 100,000 0.998 1.00 0.89 0.02 0.03
Java Math.min line 1350 TOPTI 100,000 0.998 0.03 0.01 0.02 0.03
Java String.equals line 976 TopTI, TBRAN 100,000 0.998 0.44 0.04 0.12 0.04
Java String.compareTo line 1151 TOPTI 100,000 0.998 0.99 0.03 0.02 0.20
Java String.startsWith line 1400 TBRAN 1,000 0.900 0.46 0.16 0.21 0.25
JavaScript Math.max line 73 TOPTI 100,000 1.000 1.00 1.00 0.07 0.16
JavaScript Math.trunc line 176 TBRAN 10,000 0.900 0.08 0.07 0.08 0.02
JavaScript Math.aSinh line 199 TOPTI 100,000 1.000 1.00 0.97 0.03 0.06
JavaScript String.charAt line 71 TOPTI 100,000 1.000 1.00 0.14 0.07 0.09
JavaScript String.indexOf line 118 TBRAN 10,000 0.900 0.35 0.05 0.15 0.03
JavaScript Array.toLocaleString  line 224 TOPTI 100,000 1.000 1.00 0.11 0.06 0.49
JavaScript Array.slice line 736 ToPTI 100,000 1.000 0.04 0.04 0.03 0.04
JavaScript Array.lastIndexOf line 1444 TOPTI 100,000 1.000 0.99 0.04 0.05 0.04

TABLE III: Experimental results for NPM-LTB in Java (top) and JavaScript (bottom)

Programming  Method Branch Template Priming Priming  Leakage
language name instruction (applied, arisen) amount  ratio (o) under o
Java Biglnteger.mod line 2402 TMETH 10,000 0.950 0.33
Java Biglnteger.mod line 2402 TMETH 10,000 0.950 1.00
Java Biglnteger.and line 3054 TMETH-BE 500 0.950 1.00
Java Math.scalb line 2287 TMETH-BE 5,000 0.950 0.58
Java String.trim line 2857 TMETH-BE 5,000 0.950 1.00
Java String.replace line 2060 TMETH-BE, TBRAN 2,000 0.950 0.92
Java String.replace line 2060 TBRAN 2,000 0.950 0.66
Java String.Constructor  line 250 TMETH-II 500 0.950 0.08
JavaScript Math.min line 133 TMETH-BE 1,000 0.950 0.96
JavaScript Math.hypot line 231 TMETH-II 100 0.950 0.83
JavaScript String.split line 614 TMETH 1,000 0.950 1.00
JavaScript String.concat line 100 TMETH-BE 1,000 0.950 0.83
JavaScript String.search line 551 TMETH 1,000 0.950 0.93
JavaScript Array.reverse line 622 TMETH 100 0.950 1.00
JavaScript Array.map line 1344 TMETH-BE 1,000 0.950 0.99

TABLE IV: Experimental results for NPM-LAB in Java (top) and JavaScript (bottom)

Programming  Method Branch Template Priming Priming  Leakage  Leakage
language name instruction (applied, arisen) amount  ratio («) under o under o
Java BiglInteger.min line 3477 ToPTI 100,000 0.998 1.00 1.00
Java BigInteger.valueOf line 1085 TBRAN 10,000 0.900 0.03 0.03
Java Math.max line 1316 TBRAN 10,000 0.900 0.03 0.03
Java Math.nextAfter line 1926 ToPTI 100,000 0.998 1.00 1.00
Java Math.min line 1350 TOPTI 100,000 0.998 0.04 0.03
Java String.equals line 976 ToOPTI, TBRAN 100,000 0.998 0.04 0.03
Java String.compareTo line 1151 TOPTI 100,000 0.998 1.00 0.03
Java String.startsWith line 1400 TBRAN 1,000 0.900 0.05 0.03
JavaScript Math.max line 73 TOPTI 100,000 1.000 0.71 0.14
JavaScript Math.trunc line 176 TBRAN 10,000 0.900 0.04 0.03
JavaScript Math.aSinh line 199 TOPTI 100,000 1.000 0.23 0.22
JavaScript String.charAt line 71 TOPTI 100,000 1.000 0.56 0.10
JavaScript String.indexOf line 118 TBRAN 10,000 0.900 0.04 0.03
JavaScript Array.toLocaleString  line 224 ToPTI 100,000 1.000 0.90 0.04
JavaScript Array.slice line 736 TOPTI 100,000 1.000 0.03 0.02
JavaScript Array.lastindexOf line 1444 ToPTI 100,000 1.000 0.12 0.04
JavaScript Array.lastIndexOf line 1444 ToPTI 100,000 1.000 0.87 0.04
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and String.compareTo and JavaScript methods Math.max,
Math.aSinh, String.charAt, Array.toLocaleString and Ar-
ray.lastindexOf were obtained in this way. Leakage is also
reliably high for these methods under NPM-LAB. When the
call on the unknown value breaks the optimistic assumption,
the runtime engine must revert to a less optimized version of
the method under test. This results in an observable difference
in the timing of the attacker’s probe to the method when com-
pared to the case where the optimistic assumption is not broken
(and the highly optimized code used). This timing difference
can be augmented by choosing a probe value for which the
method is expensive and the difference between versions more
apparent. Nevertheless, the magnitude of the timing difference
is less than in IPM when the actual execution time of the
call breaking the optimistic assumption is measured. Figure 5
demonstrates the relative difference in magnitude across the
two attack models for the JavaScript method Math.max.

Both runtime engines require a strong bias for optimistic
compilation to occur. For all JavaScript cases, we found that
complete bias (o = 1.00) is needed to introduce optimistic
compilation. In contrast, a very small fraction of input could
exercise the uncommon branch before aggressive compilation
of the method in the Java cases and optimistic compilation
would still occur. Because of this, we used different o distri-
butions for the Java and JavaScript cases exercising TOPTI.

For the other two Java cases, Math.min and String.equals
and the JavaScript case Array.slice, our priming did not
succeed in inducing optimistic compilation. In Math.min
and Array.slice, this was because the functions themselves
were not compiled despite their large number of invocations.
String.equals was compiled but we could not induce optimistic
compilation due to a combination of two facts: (i) optimistic
compilation requires an extremely lopsided history at the time
of aggressive compilation, and (ii) String.equals is triggered
too frequently by other parts of our experiment driver. Hence,
this template is suitable for contexts where the attacker has
nearly-exclusive control over the triggering of p. In contrast,
the String.compareTo method, which has an almost identical
structure to String.equals with respect to the selected predicate
and its branches, was much more amenable to leakage from
optimistic compilation due to its less frequent usage elsewhere.

Despite our inability to induce an optimistic compilation of
String.equals, we still achieved sizable leakage in this method
thanks to branch prediction, which does not require a history
as strongly lopsided as optimistic compilation.

There was no notable leakage for the Java methods
Math.min and String.equals or the JavaScript method Ar-
ray.slice under NPM-LAB. This is expected in the cases of
Math.min and Array.slice as no optimistic compilation was
introduced into the compiled code. For String.equals, there
remained the possibility that branch prediction might allow for
a timing channel. However, as we will discuss in the section
on TBRAN, no such side channel was created. For JavaScript
method Math.aSinh, the leakage under NPM-LAB is present,
but small. This is because Math.aSinh is inexpensive, making
the difference from using its deoptimized version minor.
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Fig. 6: Execution time distributions after priming for Java
methods (a) String.equals and (b) String.compareTo.

The two results reported for JavaScript method Ar-
ray.lastindexOf demonstrate the nuances of choosing a good
probe value. Initially, we experimented with a fairly small
probe and obtained a leakage of 0.12. Then we tried probing
with a more expensive value, obtaining the higher leakage of
0.87, but with a curious side effect that the faster case was
actually when optimistic compilation was broken immediately
prior to the probe. This means that the deoptimized version
of the code was actually faster for our expensive probe.
Inspection showed that our expensive probe exercised new
behavior and itself triggered deoptimization. When at least
some deoptimization had already occurred, this had less of an
effect and the execution was faster.

Note that when an attacker succeeds in inducing optimistic
compilation, the first call to p that takes the uncommon branch
will break the optimistic assumption, and de-optimization will
only take place once. Under IPM, this means the attacker must
trigger and time p on the secret input before some other user
triggers and thus “spoils” the optimistic assumption. Under
NPM-LAB, this means that the attacker is only able to observe
the first occurrence of atypical program behavior. Once shown
false, JIT will not make the same optimistic assumption again.

B. Method Compilation (TMETH)

Our high-leakage result for BiglInteger.shiftLeft exemplifies
the potential of TMETH under IPM. In Biglnteger.shiftLeft, a
different method is called depending on the value of ¢. With
JIT disabled, the execution time does leak information about
which branch was taken. This is not surprising, as one can
expect that the unoptimized versions of two different methods
would be distinguishable. What we wish to emphasize is that
any of the two callee methods can be made observably faster
than the other through the appropriate priming. Moreover,
both priming scenarios result in stronger side channels than
those that occur with JIT disabled or with an even priming
distribution. This demonstrates how strongly the execution
time of a path can vary depending on how aggressively the
methods called along that path are optimized.
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In the Java method Math.ulp, a method is called when
input satisfies ¢ but not when it satisfies —¢, motivating us
to apply the TMETH template. We thought that by compiling
that method, we might significantly reduce the execution time
on input satisfying ¢. This was not the case. The method that
we aimed at (and succeeded at) compiling was an extremely
inexpensive, constant-time method. Thus the timing of input
satisfying ¢ did not change significantly with its compilation,
and did not fall below that of input satisfying —¢. The degree
to which an application of TMETH can impact the execution
time is bounded by the degree to which compilation can speed
up the method called in the heated-up branch.

Results for the Java String constructor are similarly ex-
plained. Again, we successfully found priming values inducing
different levels of optimization in the callee method m but ob-
served minimal leakage. This is due to m performing efficient
constant-time computation, making the difference in efficiency
between its compiled and un-compiled states indiscernible.

The large majority of function calls made by JavaScript
methods in our evaluated libraries were to built-in functions
implemented in C. The four JavaScript methods evaluated
(Math.hypot, String.split, String.search, and Array.reverse)
are some of the few that do call other JavaScript methods large
enough to not get inlined. We initially wanted to evaluate these
methods under IPM, but in each case, there was a strong side
channel even when JIT was disabled (though enabling JIT did
allow us to augment these existing side channels). Because
of this, we choose to evaluate these methods under NPM-
LTB. For each method, we were able to find priming values
inducing different optimization levels across the potential
secret primings as well as an expensive probe value for which
the difference in execution time between the optimized and
non-optimized code is sizable.

The difference between the two results for Java function
Biglnteger.mod stems from an experiment allowing the at-
tacker stronger timing abilities. The second row gives the
leakage when we do not time p, but rather its callee m whose
compilation we aim to induce. Such refined timing information
substantially increases leakage, but requires more assumptions.

C. Branch Prediction (TBRAN)

Branch prediction introduces considerably smaller timing
differences than other templates (e.g., see Fig. 6a). Never-
theless, it can still sometimes be exploited to great effect.
The Java methods Biglnteger.valueOf, String.startsWith, and
Math.max and JavaScript method String.indexOf are exam-
ples of methods that are small enough that the effect of branch
prediction is observable over the computational noise of the
method. JavaScript method Math.trunc, on the other hand,
is an example where the timing difference is too small to
be reliable. Whether or not the branch condition is looped
over can also impact the observability of the side channel.
In NPM-LTB, where we can choose the test value, a looping
construct may enable the choice of a test value for which
the effects of branch prediction are multiplied, i.e., the branch
prediction is repeatedly correct or incorrect across iterations of

the loop. String.replace (discussed in the next section due to
its interaction with TMETH-BE) is an example of this scenario.

Under NPM-LAB, we hoped that branch prediction might
be harnessed to detect if atypical behavior occurs. This would
occur if executing the method on a secret value that causes
the less-seen branch to be taken makes JIT recompile the
code to favor the other branch. Differing distributions in
the time of the attacker’s probe might result. However, our
experiments on Biglnteger.valueOf, Math.max, String.equals,
and String.startsWith and JavaScript method String.indexOf
showed this to not be the case. In fact, we even ran experiments
were we repeatedly executed the method on test input causing
the hitherto less frequent branch to be taken to determine if a
heavy change in profiling behavior of the branch would cause
JIT to recompile the method. In no cases did this occur, leading
us to conclude that TBRAN is not effective under NPM-LAB.

D. Method Compilation via Back Edges (TMETH-BE)

This template is specific to NPM-LTB. Every time we tried
to apply TMETH-BE, we successfully found priming amounts
such that the method was compiled to different levels of
optimization. In the Java cases Biginteger.and and String.trim
cases and the JavaScript cases Math.min, String.concat, and
Array.map, we were able to find a probe value expensive
enough for differing levels of compilation to be observable.
This is due to the large number of potential loop iterations
within these methods. This was not the case in the Java method
Math.scalb, where the maximum possible number of loop
iterations is four. The strength of a side channel introduced
by TMETH-BE is thus bounded by how expensive the method
in question can be made by suitably chosen probe values.

In the Java method String.replace we show an inter-
esting example of interaction between back-edge-induced-
compilation and branch-prediction side channels. We again
succeed in inducing differing levels of optimization for the
same priming amount. But that priming also induced a branch-
prediction-based side channel. The timing of p(¢) is thus not
only affected by the compilation level of the method, but also
by branch prediction. Since the priming input satisfying ¢
induced a higher level of compilation, we expected that the
timing of the call to p(¢) would be faster under that priming.
When we choose ¢ to benefit from the branch prediction
induced when priming in favor of ¢, this was the case. This
is shown in our first result for String.replace. However, when
we choose a probing value that was hindered by the branch
prediction induced by priming favoring ¢, and aided by branch
prediction induced when priming favoring —¢, the expected
outcome was reversed. The timing of p(t) was actually faster
under the —¢ priming, even though the method had not been
compiled because of the unintended branch prediction. This is
shown in our second result for String.replace.

VII. APPLICATION LEAKAGE EXAMPLES
A. Apache Shiro

Apache Shiro [10] is an easy-to-use, open-source Java
security framework for authentication. It has over 2000 stars
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on Github as of this writing. Developers use Shiro to add per-
missions, roles, and session management to their applications.

1) Shiro Tutorial: The official tutorial shows how to inte-
grate Shiro into your application using a simple user database.
Given a username and password, the example code performs a
Shiro login with the given credentials, checks them against the
database, tests whether the user has a permission, and reports
whether they can perform an action. Even this very simple
example code could leak under NPM-LAB. Let us imagine
that having permission to perform the action, as checked by
the if(currentUser.hasPermission(...)) statement in the code,
is highly unusual. If an attacker probes the system at regular
intervals by timing her own call to the example code, she can
find out when someone passes the hasPermission test.

We experimentally demonstrate. Using the unmodified Shiro
tutorial code inside a loop, we make unprivileged users prime
the system 5000 times by repeatedly logging in and conse-
quently heating up the typical branch; an unprivileged attacker
probe the system 200 times through her own login; and a
privileged user log in between the attacker’s 100°th and 101 st
probes. Due to JIT nondeterminism, we repeat the experiment
100 times. Figure 7ab shows the 100 superimposed traces. The
point at which the atypical event happens is clearly visible:
the attacker’s 101’st probe (first one after the event) takes an
unprecedented amount of time. The following probes are also
more expensive, although the effect soon wears down.

In Figure 7aa we show the null version of the experiment:
same conditions, priming, and probing, but the atypical event
is replaced with a typical one. This aims at confirming that the
phenomenon is caused by the presence of the atypical event,
rather than some other aspect of our experimental setup.

We then wrap the same Shiro tutorial program in a simple
TCP server. A TCP client connects to the server from a dif-
ferent computer and issues login/action/logout commands. The
same priming, probing, and atypical event as before are now
executed on the server at the client’s requests. Response times
are measured on the client side. The LAN setup is described
in Section VII-C. Figure 7ac shows that, even partially fuzzed
by network noise, the phenomenon is still clearly observable
through our LAN. However, it is not strong enough to be
realistically observable through the public Internet.

Optimistic compilation is the enabler of this side channel.
The large majority of users do not have the special priv-
ilege, resulting in highly compiled code with an optimistic
assumption. When the privileged user logs on, the assumption
is broken, forcing the JVM to fall back to less optimized
code. The change in the timing of the probes reflects this.
As recompilation happens, the timing of the probes drops.

2) Amplification through computation: The fact that the
previous example leaks is remarkable considering that all it
does is to check a permission. Observability can be amplified
by calling Shiro’s hasPermission method from a function that
actually computes something—thus increasing the difference
between optimized and unoptimized versions of said function.
We tested a simple function that converts an array of points
from spherical to Cartesian coordinates. Before the compu-

tation, the function checks if(currentUser.hasPermission(...)),
as indicated by the Shiro documentation. The code (see
Appendix 9) is written in a completely symmetric way, in an
attempt to avoid any traditional (non-JIT) timing side channel.
It is nevertheless affected by the same JIT-based side channel
leakage seen in the previous example, now more amplified.

We perform a similar experiment as before. We can use
fewer priming iterations (1000) since additional back-edges
cause the function to compile earlier. Figure 7ba shows the null
experiment. Figure 7bb shows the results when the atypical
event occurs after the 100’th probe. Figure 7bc shows that the
effects of reverting to less optimized code are observable over
the public Internet, and last until the method is recompiled.
This increased observability is due to the now larger difference
between the highly optimized and less optimized versions of
the function. While we experimented with a specific non-
trivial, highly-optimizable function, any method involving
computation satisfying similar properties and containing a
Shiro permission check would be similarly susceptible.

It is noteworthy that, to harness side channels under NPM-
LAB, the attacker only needs to time her own probes. In con-
trast to many traditional side channels, the attacker actually in-
fers sensitive information from computation we would expect
to be entirely independent from that information. While this
increases the applicability of NPM-LAB, the non-resetability
of this side channel also deserves note. Once the optimistic
assumption is broken, the compiler will not reintroduce the
same optimistic compilation again. This means the attacker can
detect only the first occurrence of the rare event. Nevertheless,
for highly sensitive events, this kind of vulnerability is critical.
Additionally, if the attacker is able to force the JVM to reset
(should she be a system admin of a company or able to force
a reset through an orthogonal denial-of-service attack), then
she can continue her detection of rare behavior.

B. GraphHopper

GraphHopper [11] (GH) is an open-source framework that
computes directions on city maps. It uses maps from the Open-
StreetMap [26] project. The GH server can answer queries like
“best route from A to B by train in Berlin” issued by clients
through a RESTful API. GraphHopper is a well-known project
with over 1,800 stars on Github as of this writing.

We present two examples of leakage due to optimistic
compilation in GH. One allows an attacker to discover when
someone issues a query in which the origin and destination
points are further than a certain threshold apart. The second
one allows an attacker to find out when someone issues a
query with a certain preference of routing algorithm. Both
side channels ultimately adhere to the TOPTI template, though
their presence in a large application makes their behavior more
intricate. We again evaluate under NPM-LAB since it makes
the fewest assumptions about the attacker’s capabilities.

We did not modify GraphHopper in any way. Our ex-
periments can be replicated using the unmodified current
distribution of the GH server (VII-C) and the map of Berlin.
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Fig. 7: Plots for Apache Shiro and GraphHopper experiments

1) Distance Threshold: GH has a configurable maximum
separation (graph edges) between allowable from and fo points.
We used a limit of 5000 edges. We experimented under the
assumption that the majority of users issued queries within
range. We collected 100 traces of the following experiment.
We primed the JVM with 3000 routing queries between
random locations within range; probed with a routing query
between two fixed locations within range; and made a routing
query between two random locations outside of the range
between the 100’th and 101’st probe. Figure 7cb shows the
results over the LAN. Figure 7ca shows the null version.
Figure 7cc shows the results over the public Internet. Though
not perfectly reliably, this timing channel is observable over
the public Internet and the attacker is likely able to infer if
and when a user makes an atypical routing query.

2) Routing Algorithm: GraphHopper defaults to Dijkstra’s
algorithm for routing computation. The API allows the user to
select a different one, such as the A* algorithm. If the typical
case is Dijkstra, an attacker can probe regularly to detect when
another user atypically asks to use the A* algorithm.

We collected 100 traces of the following experiment. We
primed the JVM with 1000 routing queries between random
locations using Dijkstra’s algorithm; probed with a routing
query between two fixed locations using Dijkstra’s algorithm;
and made a routing query on two random locations using the
A* algorithm between the 100°th and 101’st probe. Figure 7db
shows the results over a LAN. Figure 7da shows the null
version. Figure 7dc shows the results across the public Internet.
The shift in the timing of the probes is observable over the
public Internet. In fact, the probe following the rare behavior
takes much longer than any prior probe (usually by ~15 msec)
due to the less compiled version of the relevant routing-
algorithm-handling code being noticeable more expensive for
probes requiring many iterations of the algorithm. However,
using such an expensive probe means many back edges are
taken, resulting in quick recompilation and a fading effect.

C. Experimental setup

We ran Apache Shiro v1.3.2 and GraphHopper v11.0 on
two Intel NUC 5i5RYH computers. Both machines are on our
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Ethernet LAN via a Netgear GS108Ev3 switch. Another five
computers are on the LAN. Under low load, typical round-trip
time between the client and the server machines through the
LAN was 0.27 msec (min 0.25, mean 0.273, max 0.34).

For the public Internet experiments we ran the server on the
same NUC 5i5SRYH computer in our lab, and the client on a
remote machine located about 2000 miles away. According to
traceroute, the route comprises 10 hops. The remote machine
is a shared webserver that hosts 20+ live websites. Round-trip
time and noise vary depending on load, but typical RTT was
around 55 msec (min 54.1, mean 55.04, max 57.7).

VIII. RELATED WORK

To the best of our knowledge, the idea that JIT could impact
and potentially introduce timing channel vulnerabilities was
first put forth by Page [27]. Noting that compiled code can
differ from source code, he explores the impact of dynamic
compilation through a case study on his own Java imple-
mentation of a double-and-add-based multiplication program.
Because the doubling method is called more frequently than
the addition method, it is compiled sooner. If an attacker
can obtain a timing profile of each method called within the
multiplication code, she can infer the order of the sequence of
doublings and additions performed. Page also proposes some
potential mitigations at both the language level and the virtual
machine level. Our work goes beyond the observation that dy-
namic compilation may introduce side channels by demonstrat-
ing how to systematically induce JIT-based runtime-behavior-
dependent side channels through bias in input distribution.
We actively exploit JIT’s focus on optimization to create side
channels and demonstrate our approach on real applications.

In work complementary to ours, Cleemput et al. [28]
propose leveraging the profiling information used in dynamic
compilation to mitigate timing side channels. Starting from
a developer-chosen root method, profiling information on the
number of back edges taken or method invocations is collected
for values in a training input set. Based on this process, a
set of methods potentially vulnerable to timing channels is
selected. Control-flow and data-flow transformations are then
applied to reduce their susceptibility to side channels. Control-
flow transformations, such as if-conversion, from their paper
would aid in protecting sensitive functions from JIT-based side
channels. In fact, there is existing work on compiler based
strategies for mitigating side-channel vulnerabilities which
might be germane to that purpose [29]-[31]. However, none
of the solutions they offer have been integrated into the widely
used runtimes explored in our work. Frassetto et al. [32]
propose JITGuard, a guard for JIT compilers against code-
injection, code-reuse and data-only attacks. However, side-
channel vulnerabilities are out of scope of their work. Ahead-
of-time compilation, where a compilation to native machine
code happens before execution rather than during, is a potential
mitigation for JIT-induced side channels. Since compilation
happens before runtime, it is agnostic to input distribution.
Ahead-of-time compilation is an option in some versions of

Java [33], [34] and JavaScript [35], [36], but generally is not
standard or even always available.

Static Side-Channel Analysis: The problem of statically
detecting side channels in software has been widely addressed.
Antopoulos et al. [37], Chen et al. [38] and Brennan et al. [39]
propose techniques to detect imbalanced paths through the
control flow graph of a method. More expensive techniques
requiring symbolic execution and model counting enable
quantifying the amount of information leaked [40] and even
synthesizing input so as to maximize the amount of infor-
mation that can be extracted through the side channel [41],
[42]. These approaches rely on a cost model that statically
approximates observable information (e.g., execution time)
along a program path. What our work demonstrates is that
such a cost model is insufficient. The execution time of a
path depends not only on the instructions along that path
but also, and to a great extent, on the state of the runtime.
The state of the runtime is in turn influenced by all previous
invocations of the code under test. Currently no static approach
to side channel detection even attempts to model this complex
interaction. Some approaches to side-channel analysis include
a dynamic component where runtime information is collected
and statistical inference performed [43], [44]. However, none
consider the space of possible primed runtime environments.

Runtime-based CPU-induced side channels: Branch pre-
diction analysis (BPA) attacks and cache attacks are side-
channel attacks which leverage runtime-dependent behavior of
CPUs. Cache-based side-channel attacks [3], [45]-[49] have
been theorized for years and have increasingly been shown as
a powerful technique for recovering sensitive information in
practical scenarios. Aciligmez et al. first demonstrated that the
CPU’s branch predictor could be leveraged to introduce timing
channels in security-related code [50]-[52]. Since then, the
CPU’s Branch Prediction Unit has been exploited to introduce
various flavors of timing channel vulnerabilities [53]-[55].

IX. CONCLUSIONS AND FUTURE WORK

We presented a new class of runtime-behavior-dependent
timing side channels that fundamentally differ from traditional,
static-code-dependent side channels. JIT compilation intro-
duces these side channels due to non-uniformity in a program’s
input distribution with respect to certain predicates. We pro-
posed three attack models under which these side channels are
harnessable and five vulnerability templates to detect suscepti-
ble code and predicates. We presented a fine-grained analysis
of JIT-based side channels on Java and JavaScript functions
and demonstrated JIT-based timing channels observable over
the public Internet in well-known frameworks.

In the future, we plan to develop a fuzzing strategy over
possible priming and test values to induce and evaluate side
channels automatically. We also plan to develop an online
statistical strategy for detection of atypical behavior under
NPM-LAB. We believe that with robust statistical models and
enough engineering effort, JIT-based side channels can be
used to learn sensitive information in the wild and are worth
continued exploration.
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APPENDIX
A. Other JIT optimizations

We briefly overview other JIT optimization techniques,
which, though not directly exploited in any of our vulnerability
templates, may nevertheless impact the appearance or strength
of a side channel.

If a method is deemed small enough, it may be inlined
into its callers, thus avoiding the overhead of a method call.
This deceptively simple-looking optimization is in fact very
nuanced, as it interacts with other optimizations in nontrivial
ways. For instance, when m calls m/, inlining m’ into m can
impact ulterior optimizations of m, and the same effect may
cascade to deeper levels. While none of our experiments is
based solely on inlining, we do use this optimization in com-
bination with other ones (see Section VI). JIT compilation can
feature many other optimizations, e.g., loop unrolling, escape
analysis, dead code elimination, etc. Some are essentially akin
to those present in modern static optimizing compilers, while
many others are truly adaptive in nature and can only be
performed in a context where they may be de-optimized as
needed. For further details about specific optimizations used
in the HotSpot and V8 runtime engines, we refer the reader
to the documentation [21], [56].

B. Assumptions on Input Space

We evaluate the IPM and NPM-LAB cases with secret test
values that satisfy a certain set of assumptions. In some cases,
there were no assumptions made. In the majority of cases,
the assumptions amounted to ensuring that the input satisfies
certain sanity checks. For example, that the input is not null;
that it is not an extreme value such as NaN, positive or negative
infinity; or that the length of two strings being compared is
equal. This observation also makes more reasonable the NPM-
LTB assumption that the values we choose for priming are
representative of the set of possible priming values satisfying
the assumptions and agreeing on ¢ more reasonable. Even
in the few cases where the assumptions were more nuanced,
such as in Java method String.replace, they were still very
reasonable (the character to be replaced must not be the
same as the one it will be replaced by). The only case
where we used a stronger assumption about the set of secret
values is Biglnteger.shiftLeft where the test set of values was
constrained in a non-trivial way. When a test value was above
a certain threshold, it introduced unexpected behavior into the

program. Thus we placed an upper limit on the magnitude of
the test values. Nevertheless, we had both positve and negative
test values that different by thousands.
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if (currentUser.isPermitted("seeSecretData")) {
log.info ("Secret data being accessed");

} else {
log.info ("Public data being accessed");

}

Fig. 8: Code example of Apache Shiro permissions checking.

public static double[] compute (PointPair[] points, Subject currentUser) {
double x=1, y=1, z=1;
double a=1, b=1, c=1;
double[] result = new double[points.lengthl];

// Use Shiro to check permission as seen in the tutorial.
if (currentUser.isPermitted ("seeSecretData")) {

log.info ("Secret data being accessed");
} else {

log.info ("Public data being accessed");

}

for (int i=0; i<points.length; i++) {
// Convert first point to rectangular coordinates
x = points[i].pl.rxMath.sin(points[i].pl.theta)«Math.cos (points[i].pl.phi);
y = points[i].pl.rxMath.sin(points[i].pl.theta)*Math.sin(points[i].pl.phi);
z = points[i].pl.rxMath.cos(points[i].pl.theta);

// Convert second point to rectangular coordinates

a = points[i].p2.r+«Math.sin(points[i].p2.theta)+«Math.cos (points[i].p2.phi);
b = points[i].p2.r*Math.sin(points[i].p2.theta)+Math.sin(points[i].p2.phi);
c = points[i].p2.r*Math.cos (points[i].p2.theta);

result[1] = Math.sqgrt ((x+a) * (x+a)+ (y+b) » (y+b) + (z+c) x (z+c) ) ;
}

return result;

Fig. 9: Code example from the Apache Shiro Tutorial augmented by performing some computation.

1222

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 09,2021 at 06:51:56 UTC from IEEE Xplore. Restrictions apply.



