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Abstract— In this paper, we study the feedback synthesis
problem for steering the joint state density or ensemble sub-
ject to multi-input state feedback linearizable dynamics. This
problem is of interest to many practical applications including
that of dynamically shaping a robotic swarm. Our results here
show that it is possible to exploit the structural nonlinearities to
derive the feedback controllers steering the joint density from
a prescribed shape to another while minimizing the expected
control effort to do so. The developments herein build on our
previous work, and extend the theory of the Schrödinger bridge
problem subject to feedback linearizable dynamics.

I. INTRODUCTION

We consider the problem of steering the statistics of the
state vector x(t) from a prescribed ensemble or joint density
ρ0(x) to another ρ1(x) over a finite time horizon t ∈ [0, 1],
subject to controlled nonlinear dynamics of the form

ẋ = f(x) +G(x)u, x ∈ X ⊆ Rn, u ∈ Rm, (1)

where f is a smooth vector field on the state space X ⊆ Rn,
and G is an n × m matrix whose columns consist of the
vectors gi ∈ Rn for i = 1, . . . ,m, i.e.,

G(x) = [g1(x)|g2(x)| . . . |gm(x)] . (2)

It is of broad practical interest to solve this finite horizon
density steering problem while minimizing the average total
control effort over the controlled state ensemble ρ(x, t).

This problem is motivated by the growing need across
science and engineering applications to control a large
population of systems. Consider for example, shaping the
bulk magnetization distribution for Nuclear Magnetic Res-
onance spectroscopy, controlling heterogeneous (e.g., aerial
and ground) robotic swarms [1], [2], strategically synchro-
nizing and desynchronizing a neuronal population to regulate
the Parkinsonian tremor [3], and differentially moving the
setpoints of a large population of residential air-conditioners
by a service provider to make their total energy consumption
track the intermittency in supply (e.g., due to stochastic
renewable generation) in a privacy-preserving manner [4],
[5]. These exemplars concern population ensemble or density
whose shape is actively controlled over time while preserving
the physical mass. The conservation of mass allows an alter-
native interpretation of the underlying mathematical problem
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– instead of steering a large number of dynamical systems,
one can think of steering a single system with probabilistic
uncertainty in its initial and terminal state, i.e., ρ0, ρ1 being
joint state probability density functions (PDFs). This too,
arises naturally in practice, e.g., in robot motion planning
[6], where uncertainties in the initial and terminal states are
unavoidable due to process and sensor noise.

From a system-control theoretic viewpoint, finite hori-
zon density steering via feedback is a non-classical stochastic
optimal control problem. The qualifier “non-classical” points
to the fact that finding the feedback policy requires solving
an infinite dimensional two-point boundary value problem
on the manifold of joint state PDFs. This is an emerging
research direction in the systems-control community wherein
recent advances [7]–[11] have uncovered its connections with
the theory of optimal mass transport [12], [13] and the
Schrödinger Bridge Problem (SBP) [14]–[16]. Also, there
have been results on the covariance steering problem [17]–
[21] which concerns steering second order state statistics.
With the exception of [22], [23], almost all works have
focused on steering the state statistics over a linear system.

In this paper, we consider finite horizon density steering
for state feedback linearizable systems of the form (1). The
nonlinearities in (1) induce non-Gaussian statistics even if the
endpoint PDFs are both jointly Gaussian. Thus, finding the
feedback solution of the density steering problem in a non-
parametric sense, is non-trivial. The main contribution of this
paper is to show that it is possible to exploit the feedback
linearizing transformation for density steering. Specifically,
we obtain the optimal state feedback policy in terms of the
solution of certain Hamilton-Jacobi-Bellman (HJB) partial
differential equation (PDE). Furthermore, we show that a
stochastic regularization can be used to derive a system of
boundary-coupled linear PDEs, which we refer to as the
Schrödinger system, whose solutions recover the optimal
state feedback and the optimal controlled joint state PDF.
We envision that the theoretical developments herein will
help design algorithms solving the feedback density steering
over nonlinear dynamical systems.

Notations and preliminaries: Throughout the paper, we
will use bold-faced capital letters for matrices and bold-faced
lower-case letters for column vectors. We use the symbol
〈·, ·〉 to denote the Euclidean inner product. In particular,
〈A,B〉 := trace(A>B) denotes Frobenius inner product
between matrices A and B, and 〈a, b〉 := a>b denotes
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the inner product between column vectors a and b. We
use 0 and 1 to denote the vector consisting of all zeros,
and all ones, respectively, and the symbol ek to denote the
kth standard basis vector of appropriate dimension. We use
∇x, ∇x·, and Hess(·) to respectively denote the Euclidean
gradient, divergence and Hessian operators w.r.t. vector x.
The Lie bracket of two vector fields ξ and η at x ∈ Rn is
a new vector field [ξ,η] (x) := (∇xη)ξ(x) − (∇xξ)η(x).
For k ∈ N, the k-fold Lie bracketing of η with the same
vector field ξ is denoted as adkξη :=

[
ξ, adk−1ξ η

]
; by

convention ad0
ξη = η. The Lie derivative of a scalar-

valued function λ(x) w.r.t. the vector field ξ evaluated at
x is Lξλ(x) := 〈∇xλ, ξ〉(x). For k ∈ N, the k-fold Lie
derivative of h w.r.t. the same vector field ξ evaluated at x
is denoted as Lkξλ(x) := 〈∇xLk−1ξ λ, ξ〉(x); by convention
L0
ξλ(x) = λ(x). Given m vectors fields ξ1(x), . . . , ξm(x)

in Rn, we say D(x) := span{ξ1, . . . , ξm}(x) is involutive
at x ∈ Rn, if for all ξi(x), ξj(x) ∈ D(x), we get that the
Lie bracket [ξi, ξj ] (x) ∈ D(x), where i, j = 1, . . . ,m. The
notation x ∼ ρ denotes that the random vector x has joint
PDF ρ. Furthermore, we denote the pushforward of a PDF
by the symbol ]. We use the symbol ◦ to denote function
composition, and spt(·) to denote the support of a function.
The symbol � is used to denote the Hadamard product.

II. MIMO FEEDBACK LINEARIZATION

We consider multiple-input control system of the form
(1), and recall some well-known results on feedback lin-
earization [24] that will be useful in the sequel.

Definition 1: (Full state static feedback linearization)
System (1) is said to be full state static feedback linearizable
around a point x0 ∈ X if there exists a smooth feedback
of the form u = δ(x) + Γ(x)v defined on X , and a
diffeomorphism τ : X 7→ Rn such that the change of
variables z := τ (x) transforms (1) into

ż = Az +Bv, z ∈ Rn, v ∈ Rm, (3)

wherein the pair (A,B) is controllable.

In other words, (1) is full state static feedback linearizable
if there exists a triple (δ(x),Γ(x), τ (x)) such that

(∇τ (f(x) +G(x)δ(x)))x=τ−1(z) = Az,

(∇τ (G(x)Γ(x)))x=τ−1(z) = B,
(4)

where the pair (A,B) satisfies

rank
[
B,AB,A2B, . . .An−1B

]
= n. (5)

Definition 2: [24, p. 220] (Vector relative degree)
Consider the Multi-Input Multi-Output (MIMO) system:

ẋ = f(x) +G(x)u, y = h(x), (6)

where x ∈ X ⊆ Rn,u ∈ Rm as before. Furthermore,
h(x) := (h1(x), h2(x), . . . hm(x)) ∈ Rm, where hj are
smooth scalar-valued functions for all j = 1 . . . ,m. The

input-output system (6) is said to have vector relative degree
π = (π1, π2, . . . , πm) at x0 ∈ X , if

LgjL
k
fhi(x) ≡ 0, 1 ≤ i, j ≤ m, 1 ≤ k < πi − 1, (7)

and the m×m matrix

C(x) :=

 Lg1L
π1−1
f h1(x) . . . LgmL

π1−1
f h1(x)

...
. . .

...
Lg1L

πm−1
f hm(x) . . . LgmL

πm−1
f hm(x)

 (8)

evaluated at x = x0, is non-singular.

Here, πj ∈ N, j = 1, . . . ,m, is the number of times one
has to differentiate the jth output yj w.r.t. t such that at
least one of the m input components appears explicitly in
the expression for y(πj)

j . In other words, πj is the number
of integrators between the input and the jth output.

Remark 1: It is known [24, p. 230] that given an n-
dimensional vector field f , and a matrix G(x) of rank m,
the system (1) is full state static feedback linearizable if and
only if:
(i) there exist functions h1(x), h2(x), . . . , hm(x), such that
the input-output system (6) has relative degree π at x0 ∈ X ,
and
(ii) the relative degree π is such that π1+π2+ · · ·+πm = n,
where n is the dimension of the state vector x.

The output function h(x) play an important role in trans-
forming (1) into a controllable linear system. If we can find
h(·) satisfying conditions (i)-(ii) in Remark 1, then we can
use the same to construct a state feedback law and a desired
change of coordinates. Explicitly, this feedback law

u = −(C(x))−1d(x)︸ ︷︷ ︸
=:δ(x)

+(C(x))−1︸ ︷︷ ︸
=:Γ(x)

v, (9)

where C(x) is as in (8), and

d(x) :=
(
Lπ1

f h1(x), Lπ2

f h2(x), . . . , Lπm

f hm(x)
)>
, (10)

The linearizing coordinates z := τ (x) are subdivided as

z =


z1

z2

...
zm

 , τ (x) =


τ 1(x)
τ 2(x)

...
τm(x)

 , (11)

where each zi, τ i ∈ Rπi , i = 1, . . . ,m, have components

zik = τ ik(x) := Lk−1f hi(x), k = 1, . . . , πi. (12)

The feedback law (9) and the change of coordinates (11),
together transform (1) which is in state-control pair (x,u),
into the Brunovsky canonical form in the state-control pair
(z,v), given by

ż = Az +Bv, z ∈ Rn, v ∈ Rm, (13)

where A,B are block diagonal matrices

A := diag(A1,A2, . . . ,Am), B := diag(b1, b2, . . . , bm),

wherein for each i = 1, . . . ,m, we have

Ai := [0|e1|e2| . . . |eπi−1 ] ∈ Rπi×πi , bi := eπi ∈ Rπi .
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Remark 2: Since static state feedback linearization is
equivalent to Remark 1, hence the matrix (8) is invertible
at x = x0. This guarantees that Γ(x) and δ(x) in (9) are
well-defined at x0.

As seen above, the existence of the (fictitious) output h(·)
is a necessary and sufficient condition for full state feedback
linearization. The following result allows us to establish the
existence of the h(·) under suitable conditions on the vector
fields f(x), g1(x), . . . , gm(x). Thus, the conditions for full
state feedback linearization can be restated as the following.

Proposition 1: [24, p. 232] Consider the system (1)
where rank(G(x0)) = m, and for i = 0, 1, . . . , n− 1, let

∆i(x) := span{adkfgk : 0 ≤ k ≤ i, 1 ≤ j ≤ m}.

Then, there exist scalar-valued functions h1(x), . . . , hm(x),
defined on X such that (6) has relative degree π at x0, with
π1 + π2 + · · ·+ πm = n, iff:
(i) ∆i has constant dimension near x0 for each i =
0, 1, . . . , n− 1,
(ii) ∆n−1 has dimension n,
(iii) ∆i is involutive for each i = 0, 1, . . . , n− 2.

Proposition 1 helps verify if a given system of the form (1)
is full-state feedback linearizable. For the construction of the
functions hi in Proposition 1, we refer the readers to [24].

Example 1: Let us consider a system of the form (1)
defined on a neighborhood of x0 = 0, given by

ẋ =


x2 + x22

x3 − x1x4 + x4x5
x2x4 + x1x5 − x25

x5
x22


︸ ︷︷ ︸

f(x)

+


0
0

cos(x1 − x5)
0
0


︸ ︷︷ ︸

g1(x)

u1 +


1
0
1
0
1


︸ ︷︷ ︸
g2(x)

u2.

(14)

Direct computation verifies that (14) satisfies the conditions
(i)-(iii) of Proposition 1, implying the existence of output
functions h1(x), h2(x). Following the constructive steps in
[24, p. 232], these output functions can be obtained as

y1 = h1 = x1 − x5, y2 = h2 = x4. (15)

From (12), we obtain the change of coordinates

τ (x) :=


h1(x)
Lfh1(x)
L2
fh1(x)
h2(x)
Lfh2(x)

 =


x1 − x5
x2

x3 − x1x4 + x4x5
x4
x5

 . (16)

In this case,

d(x) =

(
L3
fh1(x)

L2
fh2(x)

)
=

(
0
x22

)
,

(C(x))−1 =

(
1/ cos(x1 − x5) −1/ cos(x1 − x5)

0 1

)
,

which, following (9), result in the feedback law

u =

− x22
cos(x1 − x5)

x22


︸ ︷︷ ︸

δ(x)

+

 1

cos(x1 − x5)
− 1

cos(x1 − x5)
0 1


︸ ︷︷ ︸

Γ(x)

v.

(17)
Hence, we have constructed a triple (δ(x),Γ(x), τ (x))

given by (16)-(17), that transform (14) into

ż =


0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0


︸ ︷︷ ︸

A

z +


0 0
0 0
1 0
0 0
0 1


︸ ︷︷ ︸

B

v. (18)

III. MINIMUM ENERGY DENSITY CONTROL

A. Stochastic Optimal Control Problem

Given system (1), and two prescribed endpoint PDFs
ρ0(x), ρ1(x), we consider the following minimum energy
finite horizon stochastic optimal control problem:

inf
u∈U

E
{∫ 1

0

1

2
‖u(x, t)‖22 dt

}
, (19a)

subject to ẋ = f(x) +G(x)u, (19b)
x(0) ∼ ρ0(x) x(1) ∼ ρ1(x), (19c)

where the state space is X ⊆ Rn, u ∈ Rm and (19b) is
feedback linearizable. The infimum is taken over the set
of admissible controls with finite energy, i.e., U := {u :
Rn× [0, 1] 7→ Rm|‖u‖22 <∞}, and the expectation operator
E{·} in (19a) is w.r.t. the controlled joint state PDF ρ(x, t)
satisfying endpoint conditions (19c). The objective is to steer
the joint PDF ρ(x, t) from the given initial PDF ρ0 at t = 0
to a terminal PDF ρ1 at t = 1 while minimizing the expected
control effort.

The problem (19) can be recast into a “fluid dynamics”
version [25], which is the following variational problem:

inf
ρ,u

∫ 1

0

∫
X

1

2
‖u(x, t)‖22 ρ(x, t) dx dt, (20a)

subject to
∂ρ

∂t
+∇x · (ρ(f(x) +G(x)u)) = 0, (20b)

ρ(x, t = 0) = ρ0, ρ(x, t = 1) = ρ1. (20c)

Here, the infimum is taken over P(X ) × U , where P(X )
denotes curves taking values in the space of all joint PDFs
supported on X .

B. Reformulation in Feedback Linearized Coordinates

In our recent work [26], we considered the problem (19)
for the single-input case, i.e., the caseG(x) ≡ [g1(x)] ∈ Rn,
and the input u is scalar-valued. The main idea in [26]
was to recast (20), which is in state-control pair (x,u),
into an equivalent formulation in feedback linearized state-
control pair (z,v). This was made possible by using the
diffeomorphism τ : X 7→ Z to pushforward the endpoint
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PDFs ρ0, ρ1 to PDFs σ0, σ1 supported on the feedback
linearized state space Z . Specifically,

σi(z) := τ]ρi =
ρi(τ

−1(z))

|det(∇xτx=τ−1(z))|
, i ∈ {0, 1}, (21)

and Z := {z ∈ Rn|z = τ(x),x ∈ X}.

Since τ is a diffeomorphism, the PDFs {σi}i=0,1 sup-
ported on the feedback linearized state space Z , are well
defined, i.e., spt(σi) ⊆ Z provided that spt(ρi) ⊆ X .

The present paper should be considered as an extension
of the research initiated in [26]. To generalize the reformula-
tion in [26, Sec. III.B] for the multi-input case, we proceed
by setting

δτ := δ ◦ τ−1, Γτ := Γ ◦ τ−1, (22)

where δ and Γ are as in (9). Using u(z) = δτ (z)+Γτ (z)v,
we now transcribe (20) into

inf
σ,v

∫ 1

0

∫
Z

1

2
L(z,v) σ(z, t) dz dt, (23a)

subject to
∂σ

∂t
+∇z · ((Az +Bv)σ) = 0, (23b)

σ(z, t = 0) = σ0, σ(z, t = 1) = σ1, (23c)

where
L(z,v) := ‖δτ (z) + Γτ (z)v‖22. (24)

The infimum in (23) is taken over the pair of transformed
PDFs and admissible controls (σ,v) ∈ P(Z) × V where
V := {v : Z × [0, 1] 7→ Rm| ‖v‖22 <∞}.

Remark 3: The solution pair (ρopt,uopt) for (20) can
be recovered from the optimal solution (σopt,vopt) of (23)
via the transformations

ρopt(x, t) = σopt(τ (x), t)|det∇xτx(x)|, (25a)

uopt(x, t) = δ(x) + Γ(x)vopt(τ−1(x), t) (25b)

for x ∈ X , and t ∈ [0, 1].

Example 2: To illustrate the reformulation (23), let us
reconsider the system (14). In this case, the inverse mapping
of (16) is given by

x = τ−1(z) :=
(
z1 + z5 z2 z3 + z1z4 z4 z5

)>
. (26)

Here, the determinant of the Jacobian of (16) is non-zero for
all vectors in Rn, i.e., Z = Rn. From (17) and (22), we have

δτ (z) =

(
−z22/ cos(z1)

z22

)
, (27)

and
Γτ (z) =

(
1/ cos(z1) −1/ cos(z1)

0 1

)
. (28)

The functional L(z,v) in (24) equals

v>
(

2/ cos2(z1) −1/ cos(z1)
−1/ cos(z1) 1

)
v + 〈

(
z22/ cos2(z1),

−z22/ cos(z1) + z22
)>
,v〉+ z42/ cos2(z1) + z42 . (29)

Remark 4: Because feedback linearization guarantees
that the matrix pair (A,B) is controllable, any vector z1 ∈
Z is reachable from any other vector z0 ∈ Z for all t ∈ [0, 1]
via the flow of (13). This ensures that in (23c), the initial
PDF σ0(z) can be steered to σ1(z) via the flow σ(z, t) of
the controlled Liouville PDE (23b). Thus, the constraint set
of (23) is non-empty, and the problem is feasible.

C. Optimality

To formally argue the existence and uniqueness of
minimizer for (23), we setm := σv, and consider the change
of variable (σ,v) 7→ (σ,m), transforming (23) into

inf
σ,m

∫ 1

0

∫
Z
J (σ,m) dz dt, (30a)

subject to
∂σ

∂t
+∇z · (Azσ +Bm) = 0, (30b)

σ(x, t = 0) = σ0, σ(x, t = 1) = σ1, (30c)

where

J (σ,m) :=


1
2
‖δτ (z) + Γτ (z)

m
σ
‖22 σ if σ > 0,

0 if (σ,m) = (0,0),
+∞ otherwise.

(31)
We note that J (σ,m) is the perspective function of the

strictly convex map m 7→ ‖δτ (z)σ+ Γτ (z)m‖22; therefore,
J is jointly strictly convex in (σ,m). The constraints (30b)-
(30c) are linear in (σ,m). Assuming the constraint set is
closed, (30) admits a unique minimizing pair, and equiva-
lently, so does (23). We expect that this argument can be
made rigorous by generalizing the treatment in [12, p. 243–
245], but we will not pursue that in this paper. The following
theorem summarizes how this optimal pair for (23), denoted
hereafter as (σopt,vopt), can be obtained.

Theorem 1: (Optimal control for (23)) The optimal
control vopt for the problem (23), is given by

vopt(z, t) = (Γ>τ Γτ (z))
−1B>∇zψ − Γ−1

τ (z)δτ (z), (32)

where ψ solves the Hamilton-Jacobi-Bellman (HJB) PDE

∂ψ

∂t
+ 〈∇zψ,Az〉 − 〈∇zψ,BΓ−1

τ (z)δτ (z)〉

+
1

2
〈∇zψ,B

(
Γ>τ (z)Γτ (z)

)−1

B>∇zψ〉 = 0. (33)

Furthermore, if the optimal joint state PDF σopt is a solution
to the Liouville PDE

∂σopt

∂t
+∇z ·

((
Az +Bvopt)) = 0, (34)

with boundary conditions σopt(z, 0) = σopt
0 (z), and

σopt(z, 1) = σopt
1 (z), then the pair (σopt,vopt) solves (23).

Proof: The Lagrangian associated with (23) is

L (σ, ψ,v) =

∫ 1

0

∫
Z

1

2
L(z,v)σ(z, t) dzdt+

∫
Z

∫ 1

0

ψ(z, t)
∂σ

∂t
dt dz︸ ︷︷ ︸

term 1
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+

∫ 1

0

∫
Z
ψ(z, t)∇z · ((Az +Bv)σ) dzdt︸ ︷︷ ︸

term 2

. (35)

In (35), we interchange the order of integration and perform
integration by parts w.r.t. t in term 1, and w.r.t. z in term 2.
Since σ(z, t)→ 0 as z → ∂Z , we can express L as∫ 1

0

∫
Z

{
1

2
L(z,v)− ∂ψ

∂t
− 〈∇zψ,Az +Bv〉

}
σ(z, t)dzdt.

(36)
Performing pointwise minimization of the above w.r.t. v

while fixing σ, we obtain

Γ>τ Γτv
opt(z, t) = B>∇zψ(z, t)− Γ>τ (z)δτ (z). (37)

Taking the matrix inverse on both sides yield (32). Substi-
tuting vopt back into (36) and equating to zero, we then get∫ 1

0

∫
Z

{
− ∂ψ

∂t
− 〈∇zψ,Az〉+ 〈∇zψ,BΓ−1

τ (z)δτ (z)〉

− 1

2
〈∇zψ,B

(
Γ>τ (z)Γτ (z)

)−1

B>∇zψ〉
}
σ(z, t)dzdt = 0.

(38)
Since (38) holds for arbitrary σ, we arrive at (33).

Example 3: (HJB for (29)) From (27)-(28), we have

(Γ>τ (z)Γτ (z))
−1 =

(
cos2(z1) cos(z1)
cos(z1) 2

)
, (39)

and
Γ−1
τ (z)δτ (z) =

(
0
z22

)
. (40)

Substituting (39)-(40) into (33), and using the pair (A,B)
from (18), gives the HJB PDE

∂ψ

∂t
+ z2

∂ψ

∂z1
+ z3

∂ψ

∂z2
+ z5

∂ψ

∂z4
− z22

∂ψ

∂z5

+
1

2

[
cos2(z1)

(
∂ψ

∂z3

)2
+ cos(z1)

∂ψ

∂z3

∂ψ

∂z5
+ 2

(
∂ψ

∂z5

)2]
= 0.

(41)

Remark 5: Computing the pair (σopt,vopt) in Theorem
1 is challenging in general since it calls for solving a system
of coupled nonlinear PDEs (33)-(34) with atypical boundary
conditions. In the following Sections, we will provide further
reformulations of (23) to make it computationally amenable.

IV. DYNAMIC STOCHASTIC REGULARIZATION:
REFORMULATION INTO SCHRÖDINGER SYSTEM

Motivated by [9], we consider a generalized version of
(23) by adding a diffusion term to (23b):

inf
σ,v

∫ 1

0

∫
Z

1

2
L(z,v)σ(z, t) dz dt, (42a)

subject to
∂σ

∂t
+∇z · ((Az +Bv)σ)=ε1>(D(z)�Hess(σ))1,

(42b)
σ(z, t = 0) = σ0, σ(z, t = 1) = σ1, (42c)

where D(z) := BΓ−1τ (z)(BΓ−1τ (z))>. In particular, the
controlled Liouville PDE in (23b) is now replaced by a

Fokker-Planck-Kolmogorov PDE in (42b), having an addi-
tional diffusion term

√
2εBΓ−1τ (z), where the parameter

ε > 0 (not necessarily small). Formally, this generalization
is equivalent to adding a stochastic perturbation to the
controlled sample path ODE ż = Az + Bv, resulting in
the Itô SDE

dz = (Az +Bv) dt+
√
2εBΓ−1

τ (z) dw, (43)

where w(t) ∈ Rm is standard Wiener process. In the special
case δτ (z) ≡ 0 and Γτ (z) ≡ I , problem (42) reduces to
the Schrödinger bridge problem with linear prior dynamics
[9, equation (49)]. Thus, (42) is a Schrödinger bridge-
like problem with a prior dynamics that has linear drift
and nonlinear diffusion coefficient. The following Theorem
characterizes the minimizing pair (σopt,vopt) for (42).

Theorem 2: (Optimal control for (42)) The optimal
control vopt(z, t) for (42) is given by (32), where ψ solves
the HJB PDE

∂ψ

∂t
+ 〈∇zψ,Az〉 − 〈∇zψ,BΓ−1

τ (z)δτ (z)〉

+
1

2
〈∇zψ,D(z)∇zψ〉+ ε〈D(z),Hess(ψ)〉 = 0, (44)

and the optimal joint state PDF σopt(z, t) solves the
controlled Fokker-Planck-Kolmogorov PDE

∂σopt

∂t
+∇z · ((Az +Bvopt)σopt)

− ε1>
(
D(z)�Hess(σopt)

)
1 = 0, (45)

with boundary conditions

σopt(z, t = 0) = σopt
0 , σopt(z, t = 1) = σopt

1 . (46)

Proof: The proof proceeds similarly as in Theorem 1
except that we now have an additional term in the Lagrangian
(35) which we refer to as “term 3”, given by

− ε
∫ 1

0

∫
Z
ψ(z, t)1>

(
D(z)�Hess(σopt)

)
1dzdt.︸ ︷︷ ︸

term 3

(47)

From the following chain of equalities:∫
Z
〈D(z),Hess(ψ)〉σopt(z, t)dz

=

∫
Z

n∑
i,j=1

Dij(z)
∂ψ(z, t)

∂zi∂zj
σopt(z, t)dz

=

n∑
i,j=1

∫
Z
Dij(z)

∂ψ(z, t)

∂zi∂zj
σopt(z, t)dz

= −
n∑

i,j=1

∫
Z

∂ψ(z, t)

∂zj

∂(Dijσ
opt(z, t))

∂zi
dz

=

∫
Z
ψ(z, t)

n∑
i,j=1

∂(D(z)ijσ
opt(z, t))

∂zj∂zi
dz

=

∫
Z
ψ(z, t)1>

(
D(z)�Hess(σopt)

)
1dz, (48)

we deduce that (47) is equal to

−ε
∫ 1

0

∫
Z
〈D(z),Hess(ψ)〉σopt(z, t)dzdt. (49)
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So, the expression inside the curly braces in (36), now
will have an additional term −ε〈D(z),Hess(ψ)〉 that is
independent of v. Therefore, pointwise minimization of
(36) with this additional term w.r.t. v, gives (32), and the
associated HJB PDE becomes (44).

Next, we show that the Hopf-Cole transform [27], [28] allows
to reduce the system of nonlinear PDEs (44)-(45) with
boundary conditions (46), into a system of boundary-coupled
linear PDEs, referred to as the “Schrödinger System”.

Theorem 3: (Schrödinger System) Consider the Hopf-
Cole transformation (σopt, ψ) 7→ (ϕ, ϕ̂):

ϕ(z, t) := exp(ψ(z, t)/2ε), (50a)

ϕ̂(z, t) := σopt(z, t) exp(−ψ(z, t)/2ε), (50b)

applied to the system of coupled nonlinear PDEs (44)-(45).
The pair (ϕ, ϕ̂) satisfies the following system of linear PDEs:

∂ϕ

∂t
+ 〈∇zϕ,Az −BΓ−1

τ δτ (z)〉+ ε〈D,Hess(ϕ)〉 = 0, (51a)

∂ϕ̂

∂t
+∇z ·

((
Az −BΓ−1

τ δτ (z)
)
ϕ̂
)

− ε1> (D(z)�Hess(ϕ̂))1 = 0, (51b)

with coupled boundary conditions

ϕ0(z)ϕ̂0(z) = σopt
0 (z), ϕ1(z)ϕ̂1(z) = σopt

1 (z). (52)

Proof: Omitted due to space limitations; see p. 6–7 in
https://arxiv.org/pdf/1909.12511.pdf.

Theorem 3 in principle allows solving problem
(42) in the following manner. Let (ϕ1, ϕ̂0) :=
(ϕ (z, t = 1) , ϕ̂ (z, t = 0)) denote the terminal-initial
condition pair for the system (51a)-(51b). By making an
arbitrary guess for the pair (ϕ1, ϕ̂0), one can perform a fixed
point recursion on the Schrödinger system (51)-(52), and
the converged pair (ϕ1, ϕ̂0) can then be used to compute the
transient pair (ϕ (z, t) , ϕ̂ (z, t)). Then, by (50), we recover
(σopt, ψ), and thus (σopt,vopt) from (32). Notice that this
procedure with small ε > 0 will yield the pair (σopt,vopt)
solving problem (23). Finally, the mapping (25) in Remark
3 recovers the solution (ρopt,uopt) for problem (20). This
algorithmic framework and its convergence will be the topic
of our future research.

REFERENCES

[1] S. Bandyopadhyay, S.-J. Chung, and F. Y. Hadaegh, “Probabilistic
and distributed control of a large-scale swarm of autonomous agents,”
IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1103–1123, 2017.

[2] V. Deshmukh, K. Elamvazhuthi, S. Biswal, Z. Kakish, and S. Berman,
“Mean-field stabilization of markov chain models for robotic swarms:
Computational approaches and experimental results,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1985–1992, 2018.

[3] B. Monga, G. Froyland, and J. Moehlis, “Synchronizing and desyn-
chronizing neural populations through phase distribution control,” in
2018 Annual American Control Conference (ACC). IEEE, 2018, pp.
2808–2813.

[4] M. Chertkov and V. Chernyak, “Ensemble of thermostatically con-
trolled loads: Statistical physics approach,” Scientific reports, vol. 7,
no. 1, p. 8673, 2017.

[5] A. Halder, X. Geng, P. Kumar, and L. Xie, “Architecture and algo-
rithms for privacy preserving thermal inertial load management by a
load serving entity,” IEEE Transactions on Power Systems, vol. 32,
no. 4, pp. 3275–3286, 2016.

[6] K. Okamoto and P. Tsiotras, “Optimal stochastic vehicle path planning
using covariance steering,” IEEE Robotics and Automation Letters,
vol. 4, no. 3, pp. 2276–2281, 2019.

[7] Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal steering of a linear
stochastic system to a final probability distribution, part i,” IEEE
Transactions on Automatic Control, vol. 61, no. 5, pp. 1158–1169,
2015.

[8] ——, “Optimal steering of a linear stochastic system to a final
probability distribution, part ii,” IEEE Transactions on Automatic
Control, vol. 61, no. 5, pp. 1170–1180, 2015.

[9] ——, “Optimal transport over a linear dynamical system,” IEEE
Transactions on Automatic Control, vol. 62, no. 5, pp. 2137–2152,
2017.

[10] ——, “On the relation between optimal transport and Schrödinger
bridges: A stochastic control viewpoint,” Journal of Optimization
Theory and Applications, vol. 169, no. 2, pp. 671–691, 2016.

[11] A. Halder and E. D. Wendel, “Finite horizon linear quadratic Gaussian
density regulator with Wasserstein terminal cost,” in 2016 American
Control Conference (ACC). IEEE, 2016, pp. 7249–7254.

[12] C. Villani, Topics in optimal transportation. American Mathematical
Soc., 2003, no. 58.

[13] ——, Optimal transport: old and new. Springer Science & Business
Media, 2008, vol. 338.

[14] E. Schrödinger, “Über die ümkehrung der naturgesetze,” Verlag der
Akademie der Wissenschaften, in Kommission bei Walter de Gruyter,
1931.
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