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Abstract

To improve the sample efficiency of policy-gradient based reinforcement learning
algorithms, we propose implicit distributional actor-critic (IDAC) that consists
of a distributional critic, built on two deep generator networks (DGNs), and a
semi-implicit actor (SIA), powered by a flexible policy distribution. We adopt a
distributional perspective on the discounted cumulative return and model it with a
state-action-dependent implicit distribution, which is approximated by the DGNs
that take state-action pairs and random noises as their input. Moreover, we use
the SIA to provide a semi-implicit policy distribution, which mixes the policy
parameters with a reparameterizable distribution that is not constrained by an
analytic density function. In this way, the policy’s marginal distribution is implicit,
providing the potential to model complex properties such as covariance structure
and skewness, but its parameter and entropy can still be estimated. We incorporate
these features with an off-policy algorithm framework to solve problems with
continuous action space and compare IDAC with state-of-the-art algorithms on
representative OpenAI Gym environments. We observe that IDAC outperforms
these baselines in most tasks. Python code is provided1.

1 Introduction

Model-free reinforcement learning (RL) plays an important role in addressing complex real-world
sequential decision making tasks (MacAlpine and Stone, 2017; Silver et al., 2018; OpenAI, 2018).
With the help of deep neural networks, model-free deep RL algorithms have been successfully
implemented in a variety of tasks, including game playing (Silver et al., 2016; Mnih et al., 2013) and
robotic control (Levine et al., 2016). Deep Q-network (DQN) (Mnih et al., 2015) enables RL agent
with human level performance on Atari games (Bellemare et al., 2013), motivating many follow-up
works with further improvements (Wang et al., 2016; Andrychowicz et al., 2017). A novel idea,
proposed by Bellemare et al. (2017a), is to take a distributional perspective for deep RL problems,
which models the full distribution of the discounted cumulative return of a chosen action at a state
rather than just the expectation of it, so that the model can capture its intrinsic randomness instead of
just first-order moment. Specifically, the distributional Bellman operator can help capture skewness
and multimodality in state-action value distributions, which could lead to a more stable learning
process, and approximating the full distribution may also mitigate the challenges of learning from
a non-stationary policy. Under this distributional framework, Bellemare et al. (2017a) propose the
C51 algorithm that outperforms previous state-of-the-art classical Q-learning based algorithms on a
range of Atari games. However, some discrepancies exist between the theory and implementation in
C51, motivating Dabney et al. (2018b) to introduce QR-DQN that borrows Wasserstein distance and
quantile regression related techniques to diminish the theory-practice gap. Later on, the distributional
view is also incorporated into the framework of deep deterministic policy gradient (DDPG) (Lillicrap
et al., 2015) for continuous control tasks, yielding efficient algorithms such as distributed distributional
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DDPG (D4PG) (Barth-Maron et al., 2018) and sample-based distributional policy gradient (SDPG)
(Singh et al., 2020). Due to the deterministic nature of the policy, these algorithms always manually
add random noises to actions during the training process to avoid getting stuck in poor local optimums.
By contrast, stochastic policy takes that randomness as part of the policy, learns it during the training,
and achieves state-of-the-art performance, with the soft actor-critic (SAC) algorithm of Haarnoja et al.
(2018) being a successful case in point.

Motivated by the promising directions from distributional action-value learning and stochastic policy,
this paper integrates these two frameworks in hopes of letting them strengthen each other. We model
the distribution of the discounted cumulative return of an action at a state with a deep generator
network (DGN), whose input consists of a state-action pair and random noise, and applies the
distributional Bellman equation to update its parameters. The DGN plays the role of a distributional
critic, whose output conditioning on a state-action pair follows an implicit distribution. Intuitively,
only modeling the expectation of the cumulative return is inevitably discarding useful information
readily available during the training, and modeling the full distribution of it could capture more useful
information to help better train and stabilize a stochastic policy. In other words, there are considerable
potential gains in guiding the training of a distribution with a distribution rather than its expectation.

For stochastic policy, the default distribution choice under continuous control is diagonal Gaussian.
However, assuming a unimodal and symmetric density at each dimension and independence between
different dimensions make it incapable of capturing complex distributional properties, such as skew-
ness, kurtosis, multimodality, and covariance structure. To fully take advantage of the distributional
return modeled by the DGN, we thereby propose a semi-implicit actor (SIA) as the policy distribution,
which adopts a semi-implicit hierarchical construction (Yin and Zhou, 2018) that can be made as com-
plex as needed while remaining amenable to optimization via stochastic gradient descent (SGD). A
naive combination of the DGN, an implicit distributional critic, and SIA, a semi-implicit actor, within
an actor-critic policy gradient framework, however, only delivers mediocre performance, falling short
of the promise it holds. We attribute its underachievement to the overestimation issue, commonly
existing in classical value-based algorithms (Van Hasselt et al., 2016), that does not automatically go
away under the distributional setting. Inspired by previous work in mitigating the overestimation issue
in deep Q-learning (Fujimoto et al., 2018), we come up with a twin-delayed DGNs based critic, with
which we provide a novel solution that takes the target values as the element-wise minimums of the
sorted output values of these two DGNs, stabilizing the training process and boosting performance.

Contributions: The main contributions of this paper include: 1) we incorporate the distributional
idea with the stochastic policy setting, and characterize the return distribution with the help of a DGN
under a continuous control setup; 2) we introduce the twin-delayed structure on DGNs to mitigate the
overestimation issue, involving element-wise minimization of two sorted vectors; and 3) we improve
the flexibility of the policy by using a SIA instead of a Gaussian or mixture of Gaussian distribution
to improve exploration, introducing an asymptotic lower bound for entropy estimation.

Related work: Since the successful implementation of RL problems from a distributional perspective
on Atari 2600 games (Bellemare et al., 2017a), there is a number of follow-ups trying to boost existing
deep RL algorithms by directly characterizing the distribution of the random return instead of the
expectation (Dabney et al., 2018a,b; Barth-Maron et al., 2018; Singh et al., 2020). On the value-based
side, C51 (Bellemare et al., 2017a) represents the return distribution with a categorical distribution
defined by attachingC = 51 variable parameterized probabilities atC = 51 fixed locations. QR-DQN
(Dabney et al., 2018b) does so by attaching N variable parameterized locations at N equally-spaced
fixed quantiles, and employs a quantile regression loss for optimization. IQN (Dabney et al., 2018a)
further extends this idea by learning a full quantile function. On the policy-gradient-based side,
D4PG (Barth-Maron et al., 2018) incorporates the distributional perspective into DDPG (Lillicrap
et al., 2015), with the return distribution modeled similarly as in C51. On top of that, SDPG of
Singh et al. (2020) models the quantile function with a generator to overcome the limitation of using
variable probabilities at fixed locations, and the same as D4PG, it models the policy as a deterministic
transformation of the state representation. Though SDPG is applied under a deterministic setting, the
quantile generator idea could be naturally extended to a stochastic policy setting.

There is rich literature aiming to obtain a high-expressive policy to encourage exploration during
the training. When a deterministic policy is applied, a random perturb is always added when
choosing a continuous action (Silver et al., 2014; Lillicrap et al., 2015). In Haarnoja et al. (2017),
the policy is modeled proportional to its action-value function to guarantee flexibility. In Haarnoja
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et al. (2018), SAC is proposed to mitigate the policy’s expressiveness issue while retaining tractable
optimization; with the policy modeled with either a Gaussian or a mixture of Gaussian, SAC adopts a
maximum entropy RL objective function to encourage exploration. The normalizing flow (Rezende
and Mohamed, 2015; Dinh et al., 2016) based techniques have been recently applied to design a
flexible policy in both on-policy (Tang and Agrawal, 2018) and off-policy settings (Ward et al., 2019).
To overcome the shortcomings of parametric policies, Tessler et al. (2019) propose “distributional”
policy optimization that enhances the flexibility of the policy but still estimates the action-value
function under a classical actor-critic setting. By contrast, IDAC estimates the action-value function
under a “distributional” setting that directly models the distribution of the discounted cumulative
return, a state-action dependent random variable whose expectation is the action-value function.

2 Implicit distributional actor-critic

We present implicit distributional actor-critic (IDAC) as a policy gradient based actor-critic algorithm
under the off-policy learning setting, with a semi-implicit actor (SIA) and two deep generator
networks (DGNs) as critics. We will start off with the introduction of distributional RL and DGN.

2.1 Implicit distributional RL with deep generator network (DGN)

We model the agent-environment interaction by a Markov decision process (MDP) denoted by
(S,A, R, P ), where S is the state space, A the action space, R a random reward function, and P
the environmental dynamics describing P (s′ | s,a), where a ∈ A and s, s′ ∈ S . A policy defines a
map from the state space to action space π(a | s) : S → A. Denote the discounted cumulative return
from state-action pair (s,a) following policy π as Zπ(s,a) =

∑∞
t=0 γ

tR(st,at), where γ is the
discount factor, s0 := s, and a0 := a. Under a classic RL setting, an action-value function Q is used
to represent the expected return as Qπ(s,a) = E[Zπ(s,a)], where the expectation takes over all
sources of intrinsic randomness (Goldstein et al., 1981). While under the distributional setup, it is the
random return Zπ(s,a) itself rather than its expectation that is being directly modeled. Similar to the
classical Bellman equation, we have the distributional Bellman equation (Dabney et al., 2018b) as

Zπ(s,a)
D
=R(s,a) + γZπ(s′,a′). (1)

where D
=denotes “equal in distribution” and a′ ∼ π(· | s′), s′ ∼ P (· | s,a).

We propose using a DGN to model the distribution of random return Zπ as

Zπ(s,a)
D≈Gω(s,a, ε), ε ∼ p(ε), (2)

where D≈ denotes “approximately equal in distribution,” p(ε) is a random noise distribution, and
Gω(s,a, ε) is a neural network based deterministic function parameterized by ω, whose input
consists of s, a, and ε. We can consider Gω(s,a, ε) as a generator that transforms p(ε) into
an implicit distribution, from which random samples can be straightforwardly generated but the
probability density function is in general not analytic (e.g., when Gω(s,a, ε) is not invertible with
respect to ε). If the distributional equality holds in (2), we can approximate the distribution ofZπ(s,a)
in a sample-based manner, which can be empirically represented by K independent, and identically
distributed (iid) random samples as {Gω(s,a, ε1), · · · , Gω(s,a, εK)}, where ε1, . . . , εK

iid∼ p(ε).

2.2 Learning of DGN

Based on (1), we desire the DGN to also satisfy the distributional matching that

Gω(s,a, ε)
D
=R(s,a) + γGω(s

′,a′, ε′), where ε, ε′ iid∼ p(ε). (3)

This requires us to adopt a differential metric to measure the distance between two distributions and
use it to guide the learning of the generator parameter ω. While there exist powerful methods to
learn high-dimensional data generators, such as generative adverserial nets (Goodfellow et al., 2014;
Arjovsky et al., 2017), there is no such need here as there exist simple and stable solutions to estimate
the distance between two one-dimensional distributions given iid random samples from them.

In particular, the p-Wasserstein distance (Villani, 2008) between the distributions of univariate random
variables X,Y ∈ R can be approximated by that between their empirical distributions supported on
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K random samples, expressed as X̂ = 1
K

∑K
k=1 δxk

and Ŷ = 1
K

∑K
k=1 δyk , and we have

Wp(X,Y )p ≈Wp(X̂, Ŷ )p = 1
K

∑K
k=1 ||

−→x k −−→y k||p, (4)
where −→x 1:K is obtained by sorting the K elements in x1:K in increasing order and −→y 1:K is obtained
from y1:K in the same manner (Villani, 2008; Bernton et al., 2019; Deshpande et al., 2018; Kolouri
et al., 2019). Though seems tempting to use Wp(X̂, Ŷ )p as the loss function, it has been shown
(Bellemare et al., 2017b; Dabney et al., 2018b) that such a loss function may not be theoretically
sound when optimized with SGD, motivating the use of a quantile regression loss based on X̂ and Ŷ .
In addition, it is unclear whether the empirical samples based estimation of the Wasserstein distance
shown in (4) remains sound in theory if the Lp norm is replaced by the Huber loss (Huber, 1992). To
this end, we propose to generalize the method in Dabney et al. (2018b) to measure the distributional
distance with a quantile regression Huber loss based on empirical samples; different from Dabney
et al. (2018b) who use a deep NN to estimate the action values at fixed quantile locations for each
(s,a), providing no guarantee that the NN output at a designated higher quantile is larger than that at
a lower quantile, there is no such concern in DGN that simply sorts its iid sampled values to define a
quantile regression Huber loss as

LQR(X,Y ) ≈ LQR(X̂, Ŷ ) = 1
K2

∑K
k=1

∑K
k′=1 ρ

κ
τk
(yk′ −−→x k), (5)

where−→x k that are arranged in increasing order are one-to-one mapped toK equally-spaced increasing
quantiles τk = (k− 0.5)/K, κ is a pre-fixed threshold (set as κ = 1 unless specified otherwise), and

ρκτk(u) = |τk − 1[u<0]|Lκ(u)/κ, Lκ(u) = 1
2u

21[|u|≤κ] + κ(|u| − 1
2κ)1[|u|>κ]. (6)

Note that the reason we map −→x k to quantile τk = (k − 0.5)/K, for k = 1, . . . ,K, is because
P (X ≤ −→x k) ≈ τk, an approximation that becomes increasingly more accurate as K increases.

Recall the distributional matching objective in (3). To train the DGN, we first obtain an empirical
distribution X̂ of the generator supported on K iid random samples as

x1:K := {Gω(s,a, ε(k))}1:K , where ε(1), . . . , ε(K) iid∼ p(ε), (7)

and similarly an empirical target distribution Ŷ supported on

y1:K := {R(s,a) + γGω̃(s
′,a′, ε′(k))}1:K , where ε′(1), . . . , ε′(K) iid∼ p(ε), (8)

where a′ ∼ π(· | s′), s′ ∼ P (· | s,a), and ω̃ is the delayed generator parameter, a common practice
to stabilize the learning process as used in Lillicrap et al. (2015) and Fujimoto et al. (2018). Since we
use empirical samples to represent the distributions, we first sort x1:K in increasing order, denoted as

(−→x 1, · · · ,−→x K) = sort(x1, · · · , xK),

and then map them to increasing quantiles ((k − 0.5)/K)1:K . The next step is to minimize the
quantile regression Huber loss as in (5), and the objective function for DGN parameter ω becomes

J(ω) = LQR(X̂, StopGradient{Ŷ }) = 1
K2

∑K
k=1

∑K
k′=1 ρ

κ
τk
(StopGradient{yk′} − −→x k). (9)

2.3 Twin delayed DGNs

Motivated by the significant improvement shown in Fujimoto et al. (2018), we propose the use of
twin DGNs to prevent overestimation of the return distribution. However, it cannot be applied directly.
On value-based algorithm, one can directly take the minimum of two estimated Q-values; on the
other hand, we have empirical samples from a distribution and we try to avoid overestimation on that
distribution which needs to be taken care of. Specifically, we design two DGNs Gω1

(s,a, ε) and
Gω2

(s,a, ε) with independent initialization of ω1 and ω2 and independent input noise. Therefore,
we will have two sets of target values as defined in (8), which are denoted as y1,1:K and y2,1:K ,
respectively. Since they represent empirical distributions now and each element of them is assigned
to one specific quantile, we will need to sort them before taking element-wise minimum so that the
distribution is not distorted before mitigating the overestimation issue. In detail, with

(−→y 1,1, · · · ,−→y 1,K) = sort(y1,1, · · · , y1,K), (−→y 2,1, · · · ,−→y 2,K) = sort(y2,1, · · · , y2,K),

the new target values for twin DGNs become
(−→y 1, · · · ,−→y K) = (min(−→y 1,1,

−→y 2,1), · · · ,min(−→y 1,K ,
−→y 2,K)) ,

and with ε(1), . . . , ε(K) iid∼ p(ε), the objective function for parameter ω1 of twin DGNs becomes

J(ω1) =
1
K2

∑K
k=1

∑K
k′=1 ρ

κ
τk
(StopGradient{−→y k′}−−→x k), x1:K := {Gω1(s,a, ε

(k))}1:K . (10)
The objective function for parameter ω2 is similarly defined under the same set of target values.
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2.4 Semi-implicit actor (SIA)

Since the return distribution is modeled in a continuous action space, it will be challenging to choose
the action that maximizes the critic. We instead turn to finding a flexible stochastic policy that
captures the energy landscape of Eε∼p(ε)[Gω(s,a, ε)]. The default parametric policy for continuous
control problems is modeled as a diagonal Gaussian distribution, where the means and variances of
all dimensions are obtained from some deterministic transformations of state s. Due to the nature
of the diagonal Gaussian distribution, it can not capture the dependencies between different action
dimensions and has a unimodal and symmetric assumption on its density function at each dimension,
limiting its ability to encourage exploration. For example, it may easily get stuck in a bad local mode
simply because of its inability to accomodate multi-modality (Yue et al., 2020).

To this end, we consider a semi-implicit construction (Yin and Zhou, 2018) that enriches the diagonal
Gaussian distribution by randomizing its parameters with another distribution, making the marginal
of the semi-implicit hierarchy, which in general has no analytic density function, become capable
of modeling much more complex distributional properties, such as skewness, multi-modality, and
dependencies between different action dimensions. In addition, its parameters are amenable to SGD
based optimization, making it even more attractive as a plug-in replacement of diagonal Gaussian.
Specifically, we construct a semi-implicit policy with a hierarchical structure as

πθ(a | s) =
∫
ξ
πθ(a | s, ξ)p(ξ)dξ, where πθ(a | s, ξ) = N (a;µθ(s, ξ), diag{σ2

θ(s, ξ)}), (11)

where θ denotes the policy parameter and ξ ∼ p(ξ) denotes a random noise, which concatenated
with state s is transformed by a deep neural network parameterized by θ to define both the mean
and covariance of a diagonal Gaussian policy distribution. Note while we choose πθ(a | s, ξ) to be
diagonal Gaussian, it can take any explicit reparameterizable distribution. There is no constraint
on p(ξ) as long as it is simple to sample from, and is reparameterizable if it contains parameters to
learn. This semi-implicit construction balances the tractability and expressiveness of πθ(a | s), where
we can get a powerful implicit policy while still be capable of sampling from it and estimating its
entropy. Based on previous proofs (Yin and Zhou, 2018; Molchanov et al., 2019), we present the
following Lemma for entropy estimation and defer its proof to the Appendix. The ability of entropy
estimation is crucial when solving problems under the maximum entropy RL framework (Todorov,
2007; Ziebart, 2010; Ziebart et al., 2008), which we adopt below to encourage exploration.
Lemma 1. Assume πθ(a | s) is constructed as in Eq. (11), the following expectation

HL := E
ξ(0),...,ξ(L)iid∼ p(ξ)

Ea∼πθ(a | s,ξ(0))[log
1

L+1

∑L
`=0 πθ(a | s, ξ(`))] (12)

is an asymptotically tight upper bound of the negative entropy, expressed as

H` ≥ H`+1 ≥ H := Ea∼πθ(a | s)[log πθ(a | s)], ∀` ≥ 0.

2.5 Learning of SIA

In IDAC, the action-value function can be expressed as Eε[Gω(s,a, ε)]. Related to SAC (Haarnoja
et al., 2018), we learn the policy towards the Boltzman distribution of the action-value function by
minimizing a Kullback–Leibler (KL) divergence between them as

πnew = argminπ′∈ΠEs∼ρ(s)
[
KL
(
πθ(a | s)

∥∥∥ exp(Eε∼p(ε)[G(s,a,ε)/α])∫
exp(Eε∼p(ε)[G(s,a,ε)/α])da

)]
, (13)

where ρ(s) denotes the state-visitation frequency, α > 0 is a reweard scaling coefficient, and Π is
the semi-implicit distribution family. Therefore, the loss function for policy parameters is

J(θ) = −Es∼ρ(s)Ea∼πθ(· | s){Eε∼p(ε)[Gω(s,a, ε)]− α log πθ(a | s)}. (14)

We cannot optimize (14) directly since as the semi-implicit policy πθ(a | s) does not have an analytic
density function and its entropy is not analytic. With the help of Lemma 1, we turn to minimizing an
asymptotic upper bound of (14) as

J(θ) ≤ Es∼ρ(s)Eξ(1),...,ξ(L)iid∼ p(ξ)
1
J

∑J
j=1 Eξ(0)j ∼p(ξ)

E
a(j)∼πθ

(
· | s, ξ(0)j

)Eε(j)∼p(ε)[Jj(θ)]
Jj(θ) := −

(
1
2

∑2
i=1Gωi(s,a

(j), ε(j))
)
+ α log

(
πθ(a

(j) | s, ξ(0)j )+
∑L

`=1 πθ(a
(j) | s, ξ(`))

L+1

)
, (15)
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Algorithm 1 IDAC: Implicit Distributional Actor-Critic (see Appendix B for more implementation details)

Require: Learning rate λ, smoothing factor τ . Initial policy network parameter θ, distributional generator
network parameters ω1,ω2, entropy coefficient η;
ω̃1 ← ω1, ω̃2 ← ω2, D ← ∅
for Each iteration do

for Each environment step do
ξt ∼ p(ξ), at ∼ πθ(· | st, ξt) {Sample noise and then action}
st+1 ∼ p(· | st,at) {Observe next state}
D ← D ∪ (st,at, rt, st+1) {Store transition tuples}

end for
Sample transitions from the replay buffer
ωi ← ωi − λ∇ωiJ(ωi) for i = 1, 2 {Update DGNs, Eq. (10)}
θ ← θ − λ∇θJ(θ) {Update SIA, Eq. (16)}
η ← η − λ∇ηJ(η), let α = exp(η) {Update entropy coefficient, Eq. (17)}
ω̃i ← τωi + (1− τ)ω̃i for i = 1, 2 {Soft update delayed networks}

end for

where ω1,ω2 are the parameters of twin DGNs, Jj(θ) is a Monte Carlo estimate of this asymptotic
upper bound given a single action, and J is the number of actions that we will use to estimate
the objective function. Note we could set J = 1, but then we will still need to sample multiple
iid ε’s to estimate the action-value function. An alternative choice is to sample J > 1 actions
and sample multiple ε’s for each action, which, given the same amount of computational budget,
is in general found to be less efficient than simply increasing the number of actions in (15). To
estimate the gradient, each a(j) ∼ πθ(a | s, ξ(0)j ) is sampled via the reparametrization trick by letting

a(j) = Tθ(s, ξ(0)j , ej), ej ∼ p(e) to ensure low gradient estimation variance, which means it is

deterministically transformed from s, ξ(0)j , and random noise ej ∼ p(e) with a nueral network
parameterized by θ. To compute the gradient of J(θ) :=

∑J
j=1 Jj(θ) with respect to θ, we notice

that ∇θ log
(πθ(a

(j) | s, ξ(0)j )+
∑L

`=1 πθ(a
(j) | s, ξ(`))

L+1

)
can be rewritten as the summation of two terms:

the first term is obtained by treating a(j) in πθ(a(j) | −) as constants, and the second term by treating
θ in πθ(·) as constants. Since Ea∼πθ(a | s)[∇θ logπθ(a | s)] = 0, the expectation of the first term
becomes zero when L→∞. For this reason, we omit its contribution to the gradient when computing
∇θJ(θ), which can then be expressed as

∇θJ(θ) = −
∑J
j=1

{[(
1
2J

∑2
i=1∇a(j)Gωi

(s,a(j), ε(j)))
)

− 1
Jα
∑L
`=0

πθ(a
(j) | s,ξ(`)j )∑L

`′=0
πθ(a(j) | s,ξ(`

′)
j )
∇a(j) log πθ(a

(j) | s, ξ(`)j )
]∣∣∣
a(j)=Tθ(s,ξ(0)j ,ej)

∇θTθ(s, ξ(0)j , ej)
}
, (16)

where with a slight abuse of notation, we denote ξ(`)j = ξ(`) when ` > 0.

We follow Haarnoja et al. (2018) to adaptively adjust the reward scaling coefficient α. Denote Htarget
as a fixed target entropy, heuristically chosen as Htarget = −dim(A). We update α by performing
gradient descent on η := log(α) under the loss

J(η) = Es∼ρ(s)[η(− log πθ(a | s)−Htarget)], (17)

where the marginal log-likelihood is estimated by log πθ(a | s) = log
∑L

`=0 πθ(a | s,ξ(`))
L+1 , where

a ∼ πθ(· | s, ξ(0)) and ξ(0), ξ(1), . . . , ξ(L) iid∼ p(ξ).

2.6 Off policy learning with IDAC

We incorporate the proposed twin-delayed DGNs and SIA into the off-policy framework. Specifically,
the samples are gathered with a SIA based behavior policy and stored in a replay buffer. For
each state st, the agent will first sample a random noise ξt ∼ p(ξ), then generate an action by
at ∼ πθ(at | st, ξt), and observe a reward rt and next state st+1 returned by the environment. We
save the tuples (st,at, rt, st+1) in a replay buffer and sample them uniformly when training the
DGNs based implicit distributional critics and the SIA based semi-implicit policy. We provide an
overview of the algorithm here and defer a pseudo code with all implementation details to Appendix B.
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3 Experiments

Our experiments serve to answer the following questions: (a) How does IDAC perform when
compared to state-of-the-art baselines, including SAC (Haarnoja et al., 2018), TD3 (Fujimoto
et al., 2018), and PPO (Schulman et al., 2017)? (b) Can a semi-implicit policy capture complex
distributional properties such as skewness, multi-modality, and covariance structure? (c) How well is
the distributional matching when minimizing the quantile regression Huber loss? (d) How important
is the type of policy distribution, such as a semi-implicit policy, a diagonal Gaussian policy, or a
deterministic policy under this framework? (e) How much improvement does using distributional
critics bring? (f) How critical is the twin-delayed network? (g) Will other baselines (such as SAC)
benefit from using multiple actions (J > 1) for policy gradient estimation?

We will show two sets of experiments, one for evaluation study and the other for ablation study, to
answer the aforementioned questions. The evaluation study will be addressing questions (a)-(c) and
ablation study will be addressing (d)-(g). In addition, we would like to emphasize the importance of
the interaction between SIA and DGNs by comparisons between IDAC and its variants excluding
either SIA or DGNs; we defer the results to Fig. 4 (b) in the Appendix.

As shown in Engstrom et al. (2019), the code-level implementation of different RL algorithms can
lead to significant differences in their empirical performances and hence a fair comparison needs to
be run on the same codebase. Thus all compared algorithms are either from, or built upon the stable
baselines codebase (https://github.com/hill-a/stable-baselines) of Hill et al. (2018) to
minimize the potential gaps caused by the differences of code-level implementations.

IDAC is implemented with a uniform set of hyperparameters to guarantee fair comparisons. Specif-
ically, we use three separate fully-connected multilayer perceptrons (MLPs), which all have two
256-unit hidden layers and ReLU nonlinearities, to define the proposed SIA and two DGNs, respec-
tively. Both p(ξ) and p(ε) are N (0, I5) and such a random noise, concatenated with the state s, will
be used as the input of its corresponding network. Note a similar semi-implicit construction has
also been successfully applied in Wang and Zhou (2020) to address the multi-armed bandit problem,
where there is no dependence between different states. We fix for all experiments the number of noise
ξ(`) as L = 21. We set the number of equally-spaced quantiles (the same as the number of ε(k)) as
K = 51 and number of auxiliary actions as J = 51 by default. A more detailed parameter setting
can be found in Appendix C. We conduct empirical comparisons on the benchmark tasks provided by
OpenAI Gym (Brockman et al., 2016) and MuJoCo simulators (Todorov et al., 2012).

3.1 Evaluation study to answer questions (a)-(c)

(a): We compare IDAC with SAC, TD3, and PPO on challenging continuous control tasks; each task
is evaluated across 4 random seeds and the evaluation is done per 2000 steps with 5 independent
rollouts using the most recent policy (to evaluate IDAC, we first sample ξ ∼ p(ξ) and then use the
mean of πθ(a | s, ξ) as action output). As shown in Fig. 1, IDAC outperforms all baseline algorithms
with a clear margin across almost all tasks. More detailed numerical comparisons can be found in
Table 1. We also provide in the Appendix performance comparison with SDPG. For all baselines,
we use their default hyperparameter settings from the original papers. Notice that J , K, and L are
hyperparameters to set, and making them too small might prevent IDAC from taking full advantage
of its distributional settings and hence lead to clearly degraded performance for some tasks. In this
paper, to balance the performance and computational complexity, we choose moderate values of
J = 51, K = 51, and L = 21 for all evaluations.

(b): We also check how well is semi-implicit policy and whether it can capture complex distributional
properties. We defer the empirical improvement that semi-implicit policy brings to the ablation study
part and only show the flexible distribution it supports here. Specifically, we generate this plot by
sampling ai ∼ πθ(· | s) for i = 1, . . . , 1000, and use these 1000 random actions samples (where
θ is the policy parameters at 104 timestep while the total training steps is 106), generated given a
state s, to visualize the empirical joint distribution of two selected dimensions of the action, and
the marginal distributions at both dimensions. We have examined the policy distributions from both
early and late stages to validate the effectiveness of SIA. An example result from an early stage is
illustrated in Fig. 2 and that from a late stage is deferred to Fig. 6 in Appendix F. As shown in the left
two panels of Fig. 2, the semi-implicit policy is capable of capturing sknewness, multi-modality, and
dependencies between different dimensions, none of which are captured by the diagonal Gaussian
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Figure 1: Training curves on continuous control benchmarks. The solid line is the average performance over 4
random seeds with ± 1 std shaded, and with a smoothing window of length 100.

(a) Gaussian (b) SIA (c) G distributional matching

Figure 2: Visualization of Gaussian policy, SIA, and distributional matching for critic generators on Walker2d-
v2 under SIA. Panels (a) and (b) show the density contour of 1000 randomly sampled actions at an early training
stage, where x- and y-axis correspond to dimensions 1 and 4, respectively; Panel (c) shows the empirical density
of 10000 DGN samples at an early training stage and the final one, where (target) G samples are in (red) blue.

Table 1: Comparison of max average returns ± 1 std over 4 different random seeds.

BipedalWalker Walker2d Hopper HalfCheetah Ant Humanoid

PPO 241.79 ± 36.7 1679.39 ± 942.49 1380.68 ± 899.70 1350.37 ± 128.79 141.79 ± 451.10 498.88 ± 20.10
TD3 182.80 ± 135.76 3689.48 ± 434.03 1799.78 ± 1242.63 10209.65 ± 548.14 4905.74 ± 203.09 105.76 ± 53.65
SAC 312.48 ± 2.81 4328.95 ± 249.27 3138.93 ± 299.62 10626.34 ± 73.78 3732.23 ± 602.83 5055.64 ± 62.96
IDAC 328.44±1.23 5107.07 ± 351.37 3497.86 ± 93.30 12222.80±157.15 4930.73 ± 242.78 5233.43±85.87

policy. Moreover, with both a normality test on the marginal of each dimension of the SIA policy
and the Pearson correlation test on many randomly selected action dimension pairs, we verify that
the SIA policy is significantly non-normal in its univariate marginals and captures the correlations
between different action dimensions; see Appendix F for more details.

This flexible policy of SIA can be beneficial to exploration especially during the early training stages.
Furthermore, capturing the correlation between action dimensions intuitively will lead to a better
policy, e.g., a robot learning to move needs to coordinate the movements of different legs.

(c): Similar to Singh et al. (2020), we check the matching situation of minimizing the quantile
regression Huber loss. In detail, we generate 10000 random noises εk, ε

′
k ∼ p(ε) to obtain

{Gω̃1
(s,a, εk)}10000k=1 and {r(s,a) + γGω̃1

(s′,a′, ε′k)}10000k=1 , and then compare their histograms
to check if the empirical distributions are similar to each other. We list the distributions on both early
and late stages to demonstrate the evolvement of the DGN. On an early stage, both the magnitude
and shape of two distributions are very different, while their differences diminish at a fast pace along
with the training process. It illustrates that the DGN is able to represent the distribution well defined
by the distributional Bellman equation.

2SAC-J refers to SAC with J actions to estimate its objective function.
3Note that the SDPG paper (Singh et al., 2020) is using a different codebase; the implementation-level

differences make their reported results not directly comparable; we use this variant to illustrate how each
component works.
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Table 2: Variants for ablation study.

Ablations IDAC SAC SAC-J2 SDPG3 SDPG-Twin IDAC-Gaussian IDAC-Implicit IDAC-Single

Policy dist. semi-implicit Gaussian Gaussian deterministic deterministic Gaussian implicit semi-implicit
Distributional yes no no yes yes yes yes yes
Twin or single twin twin twin single twin twin twin single

Figure 3: Training curves of ablation study.

3.2 Ablation study to answer questions (d)-(g)

We run a comprehensive set of ablation study to demonstrate the effectiveness of the SIA and DGNs on
enhancing the performance. In general, there are three parts that we can control to see the differences
they contribute: (i): policy distribution {deterministic policy, Gaussian policy, semi-implicit policy,
implicit policy}; (ii): distributional aspect {no: action-value function, yes: distributional critic
generator}; (iii): prevent overestimation bias trick {single-delayed network, twin-delayed network}.
Among those possible combinations, we choose a representative subset of them to show that the
structure of IDAC is sound and brings notable improvement. They also answer the questions (d)-(g)
outlined in the beginning. An implicit policy is constructed by deterministically transforming the
concatenation of a random noise vector with state. In this way, the policy itself is still stochastic, but
the log-likelihood is intractable and hence is not amenable to entropy regularization. We list all the 8
representative variants in Table 2, and evaluate their performances on HalfCheetah, Walker2d, and
Ant environments with the same evaluation process described in Section 3.1.

(d): We make comparisons between IDAC, SDPG-Twin, IDAC-Gaussian, and IDAC-Implicit to
demonstrate the superiority of using a semi-implicit policy. As shown in Fig. 3, we have IDAC >
IDAC-Gaussian > SDPG-Twin > IDAC-Implicit, which not only demonstrates the improvement from
the semi-implicit policy, but also implies the importance of using a stochastic policy with entropy
regularization as shown in Haarnoja et al. (2018).

(e): The effect of the DGNs can be directly observed by comparing between IDAC-Gaussian and
SAC, where IDAC-Gaussian is better than SAC on both tasks as shown in Fig. 3.

(f): To understand the importance of twin-delayed network structure, we make comparisons between
SDPG with SDPG-Twin, and IDAC-Single with IDAC. As shown in Fig. 3, the one with the twin
structure significantly outperform its counterpart without the twin structure in both cases, which
demonstrate the effectiveness of the twin-delayed networks.

(g): Eventually, we want to demonstrate that the improvement of IDAC is not simply by sampling
multiple actions for objective function estimation. As shown in the right panel of Fig. 3, the
implementation of multiple actions on SAC does not boost the performance of SAC.

4 Conclusion

In this paper, we present implicit distributional actor-critic (IDAC), an off-policy based actor-critic
algorithm incorporated with distributional learning. We model the return distribution with a deep
generative network (DGN) and the policy with a semi-implicit actor (SIA), and mitigate the overesti-
mation issue with a twin-delayed DGNs structure. We validate the critical roles of these components
with a detailed ablation study, and demonstrate that IDAC is capable of the state-of-the-art perfor-
mance on a number of challenging continuous control problems.
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Broader Impact

This work proposes a high sample-efficient algorithm to solve challenging continuous control rein-
forcement learning (RL) problems. RL could be applied to a wide range of applications, including
resources management (Mao et al., 2016), traffic light control (Arel et al., 2010), optimizing chemistry
reactions (Zhou et al., 2017), to name a few. Under the RL framework, sample efficiency is one of the
top concerns for practicality, because the interactions between the agent and environment in reality is
costly and the algorithm will be impractical if the number of interactions is demanding. Though there
have been successfully cases of implementing RL algorithms to solve real-life problems, most of
them need to be simulatable in nature to meet the demand of enough samples. Fortunately, lots of
great works have focused on overcoming this challenge, and significant improvement has been made.

Ever since the birth of Q-learning algorithm in 1992 (Watkins and Dayan, 1992), the functionality
of RL algorithms has grow rapidly. When Q-learning is first proposed, it can only be applied to
toy examples such as “route finding” problems, and now it can even be applied to play Go (David
et al., 2017) and defeat top human players. Moreover, with the help of deep learning, RL algorithms
have shown promising performances on complicated computer games such as Dota (OpenAI, 2018)
and StarCraft (Vinyals et al., 2019). All this accomplishments cannot be achieved without the
consecutive effort put on improving the sample efficiency. In our new algorithm IDAC, we incorporate
the advanced distributional idea with the off-policy stochastic policy setting, and obtain notable
improvement over a number of state-of-the-art algorithms. This result is very promising and has huge
potential to be applied or further improved to facilitate RL algorithm being implemented in more
complicated real-life tasks such as self-driving cars and automation. However, such implementations
need taking special care because it involves human beings, and the risk sensitivity is not part of
the research of our work. We encourage further research taking risk into account so that it can be
combined with IDAC to be applicable to a broader range of settings.
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