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Abstract
Estimating the gradients for binary variables is
a task that arises frequently in various domains,
such as training discrete latent variable models.
What has been commonly used is a REINFORCE
based Monte Carlo estimation method that uses
either independent samples or pairs of negatively
correlated samples. To better utilize more than
two samples, we propose ARMS, an Antithetic
REINFORCE-based Multi-Sample gradient esti-
mator. ARMS uses a copula to generate any num-
ber of mutually antithetic samples. It is unbiased,
has low variance, and generalizes both DisARM,
which we show to be ARMS with two samples,
and the leave-one-out REINFORCE (LOORF)
estimator, which is ARMS with uncorrelated sam-
ples. We evaluate ARMS on several datasets for
training generative models, and our experimental
results show that it outperforms competing meth-
ods. We also develop a version of ARMS for
optimizing the multi-sample variational bound,
and show that it outperforms both VIMCO and
DisARM. The code is publicly available1.

1. Introduction
At the heart of many optimization problems is optimizing
an expectation of a function with respect to the parame-
ters of the distribution, such as E(φ) = Eb[f(b)], where
b ∼ pφ(b). There are several approaches to estimate the
gradient ∇φEb[f(b)]. Most commonly used is the repa-
rameterization gradient (Kingma & Welling, 2014; Rezende
et al., 2014). If f is differentiable, and b can be expressed
as a differentiable deterministic transformation b = Tφ(ε)
of a variable ε ∼ p(ε) not dependent on φ, then:

∇φE(φ) = ∇φEε
[
f
(
Tφ(ε)

)]
= Eε

[
∇φf

(
Tφ(ε)

)]
.
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If b is discrete, however, Tφ is not differentiable, and f is not
always differentiable, e.g., if it corresponds to the reward
function in reinforcement learning. This has inspired work
into replacing Tφ (and f ) with a continuous relaxation for
the discrete case, using the Gumbel-Softmax trick (Maddi-
son et al., 2017; Jang et al., 2017). Some are biased (Bengio
et al., 2013; Lorberbom et al., 2019), and others, such as
REBAR (Tucker et al., 2017) and RELAX (Grathwohl et al.,
2018), contain a debiasing term. However, a relaxation
could require much more computation, e.g., in best subset
selection (Yin et al., 2020) where f(b) is the loss function,
and b is a (sparse) binary vector that selects a subset of
features on which to train the model. Evaluating a relaxed
version of f for any input would train the model with all
features at considerable computational cost if the number of
features is large.

A second, less well-known approach, is the measure valued
gradient (Rosca et al., 2019; Mohamed et al., 2020). If
possible, it expresses the dth element of the gradient as
a difference of two measures: ∇φdpφ(b) = cd(pd+(b) −
pd−(b)) This allows us to estimate ∇φdE(φ) using as few
as two f evaluations per dimension:

∇φdE(φ) = cd
(
Eb∼pd+

[
f(b)

]
− Eb′∼pd−

[
f(b)

])
,

but this needs to be done for each dimension separately,
which is not scalable for a large number of dimensions,
requiring twice as many function evaluations as dimensions.

The most widely applicable approach is the score function
estimator (Glynn, 1990; Fu, 2006), also known as REIN-
FORCE (Williams, 1992). Using the log derivative trick
∇φp(b) = p(b)∇φ ln p(b), it expresses the gradient as an
expectation with respect to the original distribution:

∇φE(φ) = ∇φEb
[
f(b)

]
= Eb

[
f(b)∇φ ln p(b)

]
,

which results in a simple form, only requiring the ability to
sample from the original distribution. Unlike the reparame-
terization trick, it is directly applicable to discrete variables,
but usually suffers from high variance in the form presented
above. Recent work has focused on various mechanisms
for variance reduction, applied either to general variational
inference tasks (Paisley et al., 2012; Ranganath et al., 2014;
Ruiz et al., 2016; Kucukelbir et al., 2017) or focusing on dis-
crete (Mnih & Gregor, 2014; Gu et al., 2016) cases. Lever-
aging the specific structure of the distribution pφ(b), while
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preserving its unbiasedness, has also proven useful (Titsias
& Lázaro-Gredilla, 2015).

Antithetic variates (Owen, 2013), which are negatively cor-
related samples, have recently gained popularity as a vari-
ance reduction method (Wu et al., 2019; Ren et al., 2019).
The first estimator to use them for binary variables is the
augment-REINFORCE-merge (ARM) estimator of Yin &
Zhou (2019), which reparameterizes any binary variable
using a uniform distribution that has an antithetic pair. Cou-
pling the estimates for both uniform variables results in
much lower variance. Another approach is the unbiased uni-
form gradient (U2G) estimator of Yin et al. (2020), which is
independently discovered by Dong et al. (2020) and referred
to as DisARM. These two equivalent estimators, which are
derived using different methods, improve upon ARM by
marginalizing out the continuous reparameterization.

Our main contribution is building upon the idea of using
antithetic pairs and extending it to n samples that are jointly
antithetic, resulting in a novel unbiased, low variance gradi-
ent estimator for binary variables, which we denote as the
Antithetic REINFORCE Multi Sample (ARMS) gradient
estimator. We also develop a version of ARMS for opti-
mizing a multi-sample bound (Burda et al., 2016), which
outperforms both VIMCO (Mnih & Rezende, 2016) and
DisARM.

2. Background
Let b = (b1, ..., bm) be a vector ofm independent Bernoulli
variables with bd ∼ pφd(bd) = Bern(σ(φd)), where
σ(x) = 1/(1 + e−x) is the sigmoid function and φ =
(φ1, ..., φm). This paper is focused on optimizing a fac-
torized Bernoulli expectation with respect to the logits φ:

E(φ) = Eb[f(b)], b ∼ pφ(b) =
m∏
d=1

pφd(bd). (1)

Throughout the paper, we use superscripts to refer to dimen-
sions of the Bernoulli vector and subscripts to refer to partic-
ular samples. This form arises, for example, in variational
inference, where a mean-field approximation is commonly
used for the latent space of a variational autoencoder. Note
that f could depend on φ, but there are no difficulties in
estimating Eb[∇φfφ(b)], so without loss of generality, we
omit this gradient term for notational simplicity.

2.1. LOORF

The Leave One Out REINFORCE (LOORF) estimator (Sal-
imans & Knowles, 2014; Kool et al., 2019) is a simple
REINFORCE baseline that utilizes n independent samples.
If bi

iid∼ pφ(b), i = 1, ..., n, then an unbiased estimate of

the gradient of∇φE(φ) is:

gLOORF(b) =
1

n

n∑
i=1

(
f(bi)−

1

n− 1

∑
j 6=i

f(bj)

)
∇φ ln pφ(bi)

=
1

n− 1

n∑
i=1

(
f(bi)−

1

n

n∑
i=1

f(bj)

)
∇φ ln pφ(bi). (2)

The latter form is simpler to implement because we can
precompute the average once and subtract it for each sam-
ple. The proofs of the unbiasedness and equivalence of
the two forms are known (Kool et al., 2019), but provided
for completeness in Appendix A, along with all subsequent
proofs.

2.2. ARM

The first binary estimator to use antithetic samples is
ARM (Yin & Zhou, 2019), which accomplishes this by repa-
rameterizing the gradient with the antithetic pair (u, 1− u).
We review the univariate case below. Using the observation
that

∫ p
0

(1 − 2u)du = p(1 − p), they rewrite the analyti-
cal univariate gradient into the following form, which they
denote as the augment-REINFORCE (AR) estimator:

∇φE(φ) =
(
f(1)− f(0)

)
p(1− p)

= Eu[f
(
1u<p(1− 2u

)
] = Eu[gAR(u)], u ∼ Unif(0, 1),

where 1a is the indicator function having the value 1 if a is
true and 0 otherwise. Since both u, 1−u ∼ Unif(0, 1), they
average gAR(u) and gAR(1−u), which is still unbiased, and
arrive at the univariate ARM estimator:

Eu[gARM(u)] = Eu[gAR(u) + gAR(1− u)] =

=
1

2
Eu
[
f(1u<p)(1− 2u) + f(1(1−u)<p)(2u− 1)

]
= Eu

[(
f(1u<p)− f(1u>1−p)

)(1

2
− u
)]

.

2.3. DisARM

Dong et al. (2020) observe that although ARM reduces
variance by using an antithetic pair, it also increases the
variance by using a continuous reparameterization. This
leads them to condition on the discretized pair (b, b′) =
(1u<p,11−u<p) and integrate out u to obtain DisARM:

gDisARM(b, b′) = Eu∼p(u|b,b′)[gARM(u)]

= 1
2 (f(b)− f(b′))(b− b′) max(p, 1− p).

This is still unbiased due to the law of total expectation:
Eu[gARM(u)] = Eb,b′

[
Eu|b,b′ [gARM(u)]

]
, and also has lower

or equal variance due to the law of total variance:

Var(gARM(u)) = E
[
Varu|b,b′(gARM(u)

]
+ Var

(
Eu|b,b′ [gARM(u)]

)
≥ Var

(
Eu|b,b′ [gARM(u)]

)
= Var(gDisARM(b, b′)).
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2.4. Copulas

A multivariate distribution u = (u1, ..., un) ∼ Cn, with
marginal distributions ui ∼ Unif(0, 1) ∀i is called a cop-
ula. See Trivedi & Zimmer (2007) for a more detailed
overview. We are interested in the case where there is strong
negative dependence between each pair (ui, uj). The lower
Fréchet–Hoeffding copula bound puts a limit on the negative
dependence:

C(u1, . . . , un) ≥ max
{

1− n+
n∑
i=1

ui, 0
}
.

The lower bound is a CDF only when n = 2, and
C(u1, u2) = max(u1 + u2 − 1, 0) corresponds to the pair
(u, 1− u), u ∼ Unif(0, 1). However for larger n this bound
is not sharp (Trivedi & Zimmer, 2007), so there are no per-
fectly negatively dependent copulas in higher dimensions.
To generate a copula sample, the probability integral trans-
form is frequently used:

P (Fx(X) < u) = P (F−1x (Fx(X)) < F−1x (u))

= P (X < F−1x (u)) = Fx(F−1x (u)) = u, (3)

where we assume Fx is a bijection to simplify the proof.
If for each dimension of a multivariate sample x =
(x1, ..., xn), it is distributed as xi ∼ Fxi

(x), then a cop-
ula sample is obtained by applying the CDF function to
each dimension u =

(
Fx1

(x1), ..., Fxn
(xn)

)
.

3. ARMS
In the univariate case with n = 2 samples, antithetic pair
estimators like (Dis)ARM have lower variance than LOORF,
but we have observed that even on a toy example, they are
outperformed by LOORF as the number of samples rises.
This motivates us to find a way to generate n jointly an-
tithetic samples, and use them to construct an unbiased
estimator. For clarity, we first derive the univariate case of
our jointly antithetic estimator, which is obtained by starting
with two independent samples, extending this to two arbi-
trarily correlated Bernoulli samples, and then generalizing
to n samples.

For two samples, LOORF has the following equivalent sim-
ple form, which we denote as the Product of Differences
(PoD) estimator:

gPoD(b, b′) =
1

2

(
f(b)− f(b′)

)(
∇φ ln pφ(b)−∇φ ln pφ(b′)

)
. (4)

Unless b and b′ are independent, this estimator will be biased.
However, when b and b′ are both Bernoulli variables, we can
obtain an unbiased estimator for any bivariate distribution,
by using a multiplicative debiasing term. Let (b, b′) ∼ B2(p)
denote a sample from a bivariate Bernoulli distribution with

marginals b, b′ ∼ Bern(p) and Corr(b, b′) = ρ. In this case,
gPoD(b, b′) = (f(b)− f(b′)(b− b′)/2, whose expectation is
expressed as:

Eb,b′
[
gPoD(b, b′)

]
=
(
f(1)− f(0)

)
P (b = 1, b′ = 0),

with the analytical gradient being ∇φE(φ) = (f(1) −
f(0))p(1 − p). Therefore, multiplying the above expres-
sion with p(1− p)/P (b = 1, b′ = 0) results in an unbiased
estimator for any dependence structure:

Eb,b′
[

p(1− p)
P (b = 1, b′ = 0)

gPoD(b, b′)

]

=
p(1− p)

P (b = 1, b′ = 0)

(
f(1)− f(0)

)
P (b = 1, b′ = 0)

=
(
f(1)− f(0)

)
p(1− p) = ∇φE(φ).

Lastly, note that:

P (b = 1, b′ = 0) = p− P (b = 1, b′ = 1)

= 2(p− p(1− p)ρ− p2) = p(1− p)(1− ρ),

which simplifies the multiplicative term to 1/(1− ρ). We
summarize the derivation with the following theorem, de-
noting it the Antithetic-REINFORCE-Two-Sample (ARTS)
gradient estimator.

Theorem 1. Let (b, b′) ∼ B2(σ(φ)) be a sample from a
bivariate Bernoulli distribution with marginal distributions
b, b′ ∼ Bern(σ(φ)) and correlation ρ = Corr(b, b′). An
unbiased estimator of∇φEb[f(b)] is:

gARTS(b, b′, ρ) =
(
f(b)− f(b′)

) b− b′

2(1− ρ)
. (5)

Using Theorem 1, we can easily derive DisARM/U2G, since
it is just ARTS with a specific correlation. The antithetic
pair used is:

(b, b′) = (1u<p,1(1−u)<p), u ∼ Unif(0, 1),

in which case:

P (b = 1,b′ = 0) = P (u < p, 1− u > p)

= P (u < min(p, 1− p)) = min(p, 1− p).

The multiplicative term is p(1 − p)/min(p, 1 − p) =
max(p, 1−p), which results in the DisARM/U2G estimator:

gDisARM(b, b′) =
1

2

(
f(b)− f(b′)

)
(b− b′) max(p, 1− p).

The next theorem shows that in the two sample case, the
bivariate distribution with the lowest gradient variance uses
the same pair of antithetic variables. The proof is given in
Appendix A.
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Theorem 2. Let b, b′ iid∼ Bern(p), and (b̃, b̃′) ∼ B(p).
Then:

ρ < 0 =⇒ Var(gARTS(b̃, b̃′, ρ)) < Var(gPoD(b, b′)).

Furthermore, Var(gARTS(b̃, b̃′, ρ)) is a decreasing function
of ρ and achieves its minimum at:

ρmin = −min

(
p

1− p
,

1− p
p

)
,

with a corresponding debiasing term 1/(1 − ρmin) =
max(p, 1 − p). If (b, b′) = (1u<p,11−u<p), where u ∼
Unif(0, 1), then Corr(b, b′) = ρmin.

We now extend ARTS to n samples. Let b = (b1, ..., bn) ∼
Bn(p) with marginals bi ∼ Bern(p) and correlations ρij =
Corr(bi, bj). If we compute gARTS(bi, bj , ρij) for all

(
n
2

)
pairs and take the average, we obtain an unbiased estimator
because of the linearity of expectations:

Eb1,...,bn

[
1

n(n− 1)

∑
i6=j

gARTS(bi, bj , ρ)

]

=
1

n(n− 1)

∑
i6=j

E
[
gARTS(bi, bj , ρ)

]
=

1

n(n− 1)

∑
i6=j

∇φE(φ) = ∇φE(φ).

However the computational effort required is O(n2), as
opposed to LOORF, which is O(n). But if we restrict our-
selves to a symmetric correlation structure, i.e., ρij = ρ
for i 6= j, we can compute the above average in O(n). To
show this, we will make use of the following, proved in
Appendix A:

gLOORF(b) =
1

n

n∑
i=1

(
f(bi)−

1

n

n∑
j=1

f(bj)

)
∇φ ln p(bi)

=
1

n(n− 1)

∑
i6=j

1

2

(
f(bi)− f(bj)

)(
∇φ ln p(bi)−∇φ ln p(bj)

)
=

1

n(n− 1)

∑
i6=j

gPoD(bi, bj), (6)

as well as the fact that gARTS(bi, bj , ρ) = gPoD(bi, bj)/(1−
ρ), to obtain the ARMS estimator:

gARMS(b, φ, ρ) =
1

n(n− 1)

∑
i6=j

gARTS(bi, bj , ρ)

=
1

n(n− 1)

∑
i6=j

gPoD(bi, bj)

1− ρ
=
gLOORF(b)

1− ρ

where b = (b1, ..., bn). We summarize the derivation in
Theorem 3. It is clear from Eq. 6 why LOORF outperforms

(Dis)ARM when the number of samples increases. It is
because computing LOORF for n samples is equivalent to
averaging n(n−1)/2 independent pairs, whereas (Dis)ARM
uses only n/2 antithetic pairs, and the antithetic variance
reduction does not make up for using n − 1 times fewer
pairs.

Theorem 3. Let b̃ = (b̃1, ..., b̃n) ∼ Bn(σ(φ)) be a sam-
ple from an n-variate Bernoulli distribution with marginal
distributions b̃1, ..., b̃n ∼ Bern(σ(φ)) and pairwise corre-
lation ρ = Corr(b̃i, b̃j), i 6= j. An unbiased estimator of
∇φEb∼Bern(σ(φ)) [f(b)] is:

gARMS(b̃, φ, ρ)

=
1

n− 1

n∑
i=1

f(b̃i)−
1

n

n∑
j=1

f(b̃j)

 b̃i − σ(φ)

1− ρ
. (7)

It is simple to show that ARMS generalizes both LOORF
and DisARM. For n independent samples ρ = 0, so the
debiasing term becomes 1/(1 − ρ) = 1 and the estimator
reduces to LOORF. For n = 2 samples, it reduces to Dis-
ARM/U2G if we use an antithetic uniform pair as shown in
Theorem 2.

Although Theorem 3 shows us how to form an unbiased
estimator, it does so assuming we can sample n correlated
Bernoulli variables, and that we know their common cor-
relation ρ. Therefore, to use ARMS in practice, we must
find a way to sample (b1, ..., bn) ∼ Bn(p), and also be able
to calculate ρ = Corr(bi, bj). The next section outlines
two copula based approaches that satisfy both conditions,
although there are other ways, the exploration of which we
leave for future work.

3.1. Copula Sampling for Multivariate Bernoulli

A copula sample can be transformed into a multivariate
Bernoulli using the reparameterization b ∼ Bern(p) ⇐⇒
b = 1u<p, u ∼ Unif(0, 1). Furthermore, symmetry in the
bivariate copula CDFs:

P (ui < p, uj < p) = P (uk < p, ul < p), ∀i 6= j, k 6= l,

implies symmetry for the Bernoulli correlations ρij = ρkl,
because E[bibj ] = P (bi = 1, bj = 1) = P (ui < p, uj <
p). As a consequence, if we use a copula for sampling,
evaluating the bivariate CDF will be required to calculate ρ
and different copulas will produce different correlations
for each p ∈ [0, 1]. Ideally, we want this correlation to
be as low as possible for all p. For any distribution, the
lower limit for a common correlation between n identically
distributed variables is ρ = −1/(n − 1), which follows
from rearranging the non-negativity of the variance equa-
tion: Var(

∑n
i=1 bi) = nVar(b1) + n(n − 1)ρVar(b1) ≥ 0.

We propose two different copulas, both of which start with
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Algorithm 1 Antithetic Dirichlet copula sampling

Input: Copula dimension n
Sample vi ∼ Unif(0, 1), i = 1 . . . n
Set: di = ln(vi)/

∑n
j=1 ln(vj)

Invert back to uniform: ũi = 1− (1− di)
n−1

return: (ũ1, ..., ũn), (1− ũ1, ..., 1− ũn)

maximally negatively correlated variables, and preserve

most of the correlation when transformed to uniform vari-

ables.

3.1.1. DIRICHLET COPULA

The first of two sampling approaches for ARMS is a Dirich-

let copula, since a sample from the Dirichlet distribution

exhibits perfect negative dependence, which means the cor-

relation between any pair of elements in the vector is the

lower bound 1/(n − 1). This makes it a suitable can-

didate, provided we can transform the marginal distribu-

tions to uniform, and can compute the bivariate CDF. Both

conditions are possible if we restrict ourselves to the uni-

form Dirichlet density d ∼ Dir(1n). In this case, the

marginal CDFs of d and 1− d have closed-form solutions

Fdi
(x) = 1 − (1 − x)n−1 and F1−di

(x) = (1 − x)n−1,

respectively (Ng et al., 2011). Applying Eq. 3 results in two

different copula samples:

ũ = (ũ1, ..., ũn), ũi = 1− (1− di)
n−1

ũ′ = (ũ′1, ..., ũ
′
n), ũ′i = (1− di)

n−1 = 1− ũi,

with the full procedure summarized in Algorithm 1. This

satisfies the sampling requirement, since given ũ, a mul-

tivariate Bernoulli sample is b̃ = (b̃1, ..., b̃n), where b̃i =
1ũi<p. The bivariate CDF, necessary for calculating ρ =

Corr(b̃i, b̃j), also has a closed-form solution:

P (ũi < p, ũj < p) = P (di < q, dj < q)

= 2p− 1+max(0, 2(1− p)1/(n−1) − 1)n−1

P (ũ′i < p, ũ′j < p) = max(0, 2p1/(n−1) − 1)n−1, (8)

where q = 1− (1− p)1/(n−1). We summarize the Dirichlet

copula approach with the following theorem, with the full

derivation given in Appendix B.

Theorem 4. Let ũ, ũ′ be the samples produced by the
Dirichlet copula in Algorithm 1. If:

b̃ = (b̃1, ..., b̃n), b̃i = 1ũi<p

b̃′ = (b̃′1, ..., b̃
′
n), b̃′i = 1ũ′i<p,

then b̃, b̃′ ∼ Bn(p) are samples from an n-variate Bernoulli

0.00 0.25 0.50 0.75 1.00
p

−0.2

−0.1

0.0

ρ

Dirichlet
Inverted
Dirichlet
Gaussian
Lower
bound

Figure 1. Correlations ρ = Corr(bi, bj) for p ∈ [0, 1], when us-

ing different copulas to sample a five dimensional multivariate

Bernoulli b ∼ B5(p), along with the bound in (Hoernig, 2018).

Algorithm 2 Antithetic Gaussian copula sampling

Input: copula dimension n
For i, j = 1, ..., n, set:

(ρ)ij =

{
−1/(n− 1) , i �= j

1 , otherwise

Sample x ∼ N (0,ρ)
Invert back to uniform: ũi = Φ(xi) i = 1 . . . n
return: ũ1, ..., ũn

distribution with common pairwise correlations:

ρ =
max(0, 2(1− p)

1
n−1 − 1)n−1 − (1− p)2

p(1− p)

ρ′ =
max(0, 2p1/(n−1) − 1)n−1 − p2

p(1− p)
.

Lastly, although Corr(ũi, ũj) = Corr(ũ′i, ũ
′
j), their bivari-

ate CDFs are different, and we observed that if p > 0.5,

then Corr(b̃i, b̃j) < Corr(b̃′i, b̃
′
j) (and vice versa). Therefore,

in our experiments we use ũ when p > 0.5 and ũ′ when

p < 0.5. We illustrate the different Bernoulli correlations

of each copula as a function of p in Fig. 1, along with a

lower bound of the lower bound for symmetric Bernoulli

variables (Hoernig, 2018).

3.1.2. ANTITHETIC GAUSSIAN COPULA

An alternative sampling method for n dependent uniform

variables is the widely used Gaussian copula, Let x ∼
N (0,ρ) denote a sample from an n-variate Gaussian, and

denote Φ(x) to be the univariate Gaussian CDF. From Eq 3,

by applying the CDF to each dimension of x, the result is

a Gaussian copula sample: u = (Φ(x1), ...Φ(xn)). Since

we are interested in mutually antithetic samples, we use the

correlation matrix ρij = −1/(n − 1), i �= j. We summa-

rize the sampling procedure in Algorithm 2. The antithetic
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Gaussian copula can also be recovered from the Dirichlet
copula, where ∀i, αi = α, and α → ∞, in which case the
distribution becomes a multivariate Gaussian with the same
common negative correlation. Although neither the univari-
ate nor bivariate CDF have a closed form, all commonly
used deep learning packages contain numerical approxima-
tions for both, which we make use of in our experiments.

3.2. ARMS for the Multivariate Case

Let b ∼ p(b |φ) =
∏m
d=1 pφd(bd) denote a m-dimensional

factorized Bernoulli sample with probabilities σ(φ) =
(σ(φ1), ..., σ(φm)), such that bd ∼ Bern(σ(φd)) =
pφd(b), and let b−d = (b1, ..., bd−1, bd+1, ..., bm). We sam-
ple n correlated Bernoulli variables for each dimension:

b̃d = (b̃d1, ..., b̃
d
n) ∼ Bn(σ(φd)), d = 1, ...,m,

with ρd = Corr(b̃di , b̃
d
j ), i 6= j being the pairwise correla-

tions. Focusing on the dth dimension, we have:

∇φdEpφ(b) [f(b)] = Eb−d

[
∇φdEbd

[
f(b−d, bd)

]]
= Eb−d

[
Eb̃d

[
1

n− 1

n∑
i=1

(
f(b−d, b̃di )

− 1

n

n∑
j=1

f(b−d, b̃dj )

)
b̃di − σ(φd)

1− ρd

]]
.

Replacing b−d by the already sampled b̃−di , we have:

Eb̃1,...,b̃m

[
1

n− 1

n∑
i=1

(
f(b̃−di , b̃di )

− 1

n

n∑
j=1

f(b̃−dj , b̃dj )

)
b̃di − σ(φd)

1− ρd

]

= Eb̃1,...,b̃m

[
1

n− 1

n∑
i=1

(
f(b̃i)

− 1

n

n∑
j=1

f(b̃j)

)
b̃di − σ(φd)

1− ρd

]
,

where b̃i = (b̃1i , ..., b̃
m
i ), i.e., the ith sample from each

dimension. The multivariate ARMS estimator is then:

gARMS(b̃1, ..., b̃n,φ,ρ)

=
1

n− 1

n∑
i=1

(
f(b̃i)−

1

n

n∑
j=1

f(b̃j)

)
b̃i − σ(φ)

1− ρ
,

where just like the univariate case, we only need n evalua-
tions of f regardless of the number of dimensions m.

3.3. ARMS for the Multi Sample Variational Bound

In variational inference, a commonly optimized objective
of the form of Eq. 1 is the ELBO (Jordan et al., 1998), a

tractable lower bound of the marginal likelihood:

LELBO = Eqφ(b |x)[ln pθ(b,x)− ln qφ(b |x)] ≤ ln p(x).

If we use multiple independent samples b1, ..., bn, with
qφ(b |x) =

∏n
k=1 qφ(bk |x), Burda et al. (2016) show that

we can form a tighter bound:

Ln = Eqφ(b |x)

[
ln

(
1

n

n∑
k=1

r(bk)

)]
, r(bk) =

pθ(bk,x)

qφ(bk |x)
,

and proved that LELBO ≤ Ln ≤ Ln+1 ≤ ln p(x). The
multi sample bound depends non-linearly on each sample
due to the logarithm inside the expectation, which means
replacing the n i.i.d. samples with dependent ones changes
the objective. For example, if we let b1 = ... = bn = b,
then instead of Ln, we obtain:

Eb∼qφ(b |x)

[
ln

1

n

n∑
i=1

r(b)

]
= Eb∼qφ(b |x)

[
ln r(b)

]
= L1.

However, we can still use ARMS to create a local baseline
for each sample if we draw n additional correlated samples.
Let b1, .., bn denote the i.i.d. samples and b̃1, .., b̃n the
correlated samples. Define f(b) = ln

(
1
n

∑n
k=1 r(bk)

)
,

and fb−k
(bk) = ln

(
1
n

(∑
l 6=k r(bl) + r(bk)

))
. Because

the samples are i.i.d., the gradient can be written as:

∇φEb[f(b)] = Eb
[
f(b)∇φ ln

n∏
k=1

qφ(bk|x)
]

=

=
n∑
k=1

Eb
[
f(b)∇φ ln qφ(bk|x)

]
=

=
n∑
k=1

Eb−k

[
Ebk
[
fb−k

(bk)∇φ ln qφ(bk|x)
]]

=
n∑
k=1

Eb−k

[
Eb̃1,..,b̃n

[
1

n− 1

n∑
i=1

(
fb−k

(b̃i)

− 1

n

n∑
j=1

fb−k
(b̃j)

) b̃i − σ(φ)

1− ρ

]]
,

where in the last line we replaced the inner expectation,
which is just REINFORCE w.r.t. bk, with the ARMS esti-
mator. Note that we can precompute r(b1), ..., r(bn) and
r(b̃1), ..., r(b̃n) for a total of 2n function evaluations, which
is the same number required by DisARM for optimizing the
same n sample bound, and the number required by VIMCO
for the 2n sample bound, which is the what we compare to
in the experiments.

4. Experimental Results
First, to illustrate the benefit of jointly antithetic samples,
we compare ARMS, using either a Dirichlet (ARMS-D)
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Figure 2. Variance of the gradients of each estimator for the toy problem across a range of values of φ. The top and bottom row correspond

to using n ∈ {2, 4, 6, 8} and n ∈ {10, 20, 50, 100} samples, respectively, at each gradient step. The variance is estimated using 1000

Monte Carlo samples per step.
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per step, respectively. Rows correspond to the training ELBO, test log likelihood, and the variance of the gradient updates averaged over

all parameters. Results for different datasets and other networks can be found in Appendix D.
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Figure 4. Training a linear discrete VAE on Dynamic MNIST using the multi sample bound. Columns correspond to n ∈ {4, 6, 8, 10}
samples used per step, respectively. Rows correspond to the training multi sample bound, test log likelihood, and the variance of the

gradient updates averaged over all parameters. Results for different datasets and other networks can be found in Appendix D.

or Gaussian copula (ARMS-N), to ARM, DisARM, and

LOORF on the following toy problem (Tucker et al., 2017),

where the task is to maximize:

E(φ) = Eb[(b− 0.499)2], b ∼ Bern(σ(φ)),

with the optimal solution being σ(φ) = 1. We run the analy-

sis for n ∈ {2, 4, 6, 8, 10, 20, 50, 100} samples per gradient

step, using an even number to ensure a fair comparison to

methods that can only use pairs. Figure 2 shows the vari-
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Table 1. Final training ELBO of VAEs using different estimators. Results are reported on three datasets: Dynamic MNIST, Fashion
MNIST, and Omniglot, and for 4, 6, 8, and 10 samples, with the best performing methods in bold.

SAMPLES ARMS-D ARMS-N LOORF DISARM RELAX
D

Y
N

A
M

IC
M

N
IS

T

L
I N

E
A

R 4 -112.13 ± 0.10 -111.96 ± 0.09 -112.32 ± 0.04 -113.26 ± 0.05 -112.98 ± 0.25
6 -111.03 ± 0.02 -110.89 ± 0.07 -110.99 ± 0.07 -112.11 ± 0.03 -111.46 ± 0.06
8 -110.30 ± 0.04 -110.62 ± 0.06 -110.42 ± 0.04 -111.78 ± 0.07 -110.58 ± 0.01

10 -110.08 ± 0.05 -110.14 ± 0.09 -110.17 ± 0.04 -111.08 ± 0.11 -110.17 ± 0.09

N
O

N
L

IN
R 4 -98.65 ± 0.16 -98.97 ± 0.13 -98.62 ± 0.05 -100.45 ± 0.16 -100.52 ± 0.08

6 -98.53 ± 0.13 -97.87 ± 0.01 -98.14 ± 0.18 -99.28 ± 0.11 -99.17 ± 0.17
8 -97.90 ± 0.12 -97.89 ± 0.10 -98.14 ± 0.21 -98.69 ± 0.21 -98.80 ± 0.02

10 -97.64 ± 0.06 -97.32 ± 0.11 -97.50 ± 0.29 -98.62 ± 0.12 -98.69 ± 0.07

FA
SH

IO
N

M
N

IS
T

L
I N

E
A

R 4 -252.56 ± 0.11 -252.69 ± 0.06 -252.71 ± 0.09 -254.02 ± 0.05 -253.53 ± 0.06
6 -251.94 ± 0.13 -251.73 ± 0.05 -252.03 ± 0.08 -252.97 ± 0.06 -252.31 ± 0.14
8 -251.32 ± 0.11 -251.11 ± 0.23 -251.41 ± 0.10 -252.57 ± 0.05 -251.36 ± 0.08

10 -251.29 ± 0.02 -251.08 ± 0.08 -251.26 ± 0.03 -251.75 ± 0.21 -251.16 ± 0.06

N
O

N
L

IN
R 4 -235.65 ± 0.12 -235.75 ± 0.06 -235.80 ± 0.07 -236.54 ± 0.06 -236.77 ± 0.03

6 -235.47 ± 0.19 -235.36 ± 0.08 -235.70 ± 0.13 -235.94 ± 0.05 -236.20 ± 0.25
8 -235.41 ± 0.10 -235.19 ± 0.14 -235.40 ± 0.13 -235.62 ± 0.16 -235.70 ± 0.14

10 -235.18 ± 0.11 -235.32 ± 0.05 -235.59 ± 0.01 -235.60 ± 0.09 -235.46 ± 0.19

O
M

N
IG

L
O

T

L
I N

E
A

R 4 -118.25 ± 0.08 -118.27 ± 0.05 -118.41 ± 0.07 -119.24 ± 0.17 -118.75 ± 0.08
6 -117.62 ± 0.01 -117.62 ± 0.04 -117.75 ± 0.08 -118.47 ± 0.12 -117.90 ± 0.03
8 -117.60 ± 0.05 -117.66 ± 0.12 -117.74 ± 0.10 -118.41 ± 0.10 -117.71 ± 0.02

10 -117.03 ± 0.09 -116.99 ± 0.04 -117.21 ± 0.08 -117.70 ± 0.01 -117.13 ± 0.05

N
O

N
L

IN
R 4 -112.09 ± 0.27 -112.03 ± 0.12 -112.20 ± 0.26 -113.24 ± 0.16 -114.08 ± 0.35

6 -111.50 ± 0.06 -111.39 ± 0.10 -111.26 ± 0.15 -112.30 ± 0.05 -113.71 ± 0.13
8 -110.91 ± 0.04 -111.01 ± 0.06 -110.85 ± 0.35 -111.82 ± 0.09 -113.64 ± 0.10

10 -110.66 ± 0.05 -110.79 ± 0.26 -110.79 ± 0.20 -111.33 ± 0.19 -114.00 ± 0.10

ance of the gradient of each estimator as the optimization
progresses from σ(φ) = 0.1 to σ(φ) = 0.9, which takes
approximately 20,000 steps. Both ARMS-D and ARMS-N
have significantly lower variance for almost all values of
φ, but the Dirichlet copula appears to have lower variance,
except for a narrow range near σ(φ) = 0.5. Interestingly,
the variance reduction for both is still large even for n = 10
samples, when the correlation between each Bernoulli pair
in the sample cannot be larger than −1/9.

4.1. ELBO Based Discrete VAE

Our experimental setup follows the one in Yin & Zhou
(2019) and Dong et al. (2020), and all VAE experiments
are built on top of the available DisARM code. For this
task, we compare ARMS-D and ARMS-N to DisARM/U2G,
LOORF, and RELAX. We omit ARM, since it is outper-
formed by DisARM/U2G, as shown in both Yin et al. (2020)
and Dong et al. (2020). All estimators optimize the ELBO of
a variational autoencoder (VAE) (Kingma & Welling, 2014),
a commonly used method for generative modelling. The
comparison is done on three different benchmark datasets:
dynamically binarized MNIST, Fashion MNIST, and Om-
niglot, with each dataset split into the training, validation,
and test sets. For each dataset we use either a linear or non-
linear encoder decoder pairs, with n ∈ {4, 6, 8, 10} samples

per gradient step. When n = 2, both copulas reduce to Dis-
ARM/U2G, for which our experiments mirrored the results
found in Dong et al. (2020), so we omit this case. All results
are reported based on five independent runs.

The implementation details are the following: each VAE
contains a stochastic binary layer with 200 units, with two
types of encoder-decoder pairs used: linear or nonlinear.
The nonlinear network has two hidden layers of 200 units
each, using LeakyReLU (Maas et al., 2013) activations with
a coefficient of 0.3. Adam (Kingma & Ba, 2015) with
a learning rate of 1e−4 is used to optimize the network
parameters, and SGD with learning rate 1e−2 for the prior
distribution logits. The optimization is run for 106 steps
with mini batches of size 50. For RELAX, the scaling factor
is initialized to 1, the temperature to 0.1, and the control
variate is a neural network with one hidden layer of 137 units
using LeakyReLU activations. The only data preprocessing
involves subtracting the global mean of the dataset from
each image before it is input to the encoder. All the models
were trained on a K40 Nvidia GPU and Intel Xeon E5-2680
processor.

In Fig. 3, we plot the train ELBO, test log likelihood, and
variance, for a nonlinear network trained on Fashion MNIST.
The variance at each step is an average of the gradient vari-
ance of all networks parameters. The same visualization
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Table 2. Final train multi sample bound of a Discrete VAE trained
with different estimators. Results are averaged over five runs, with
the best performing methods in bold.

SAMPLES ARMS DISARM VIMCO

D
Y

N
A

M
IC

M
N

IS
T

L
I N

E
A

R 4 -112.31 ± 0.05 -113.26 ± 0.05 -113.07 ± 0.14
6 -111.73 ± 0.04 -112.11 ± 0.03 -112.23 ± 0.27
8 -110.62 ± 0.13 -111.78 ± 0.07 -111.10 ± 0.27

10 -110.30 ± 0.07 -111.08 ± 0.11 -110.69 ± 0.20

N
O

N
L

IN
R 4 -98.00 ± 0.02 -100.45 ± 0.16 -98.07 ± 0.06

6 -96.63 ± 0.15 -99.28 ± 0.11 -96.91 ± 0.12
8 -96.17 ± 0.09 -98.69 ± 0.21 -96.49 ± 0.04

10 -95.27 ± 0.10 -98.62 ± 0.12 -95.77 ± 0.03

FA
SH

IO
N

M
N

IS
T

L
I N

E
A

R 4 -252.24 ± 0.18 -254.02 ± 0.05 -252.75 ± 0.06
6 -251.40 ± 0.01 -252.97 ± 0.06 -251.64 ± 0.19
8 -250.68 ± 0.15 -252.57 ± 0.05 -250.78 ± 0.04

10 -250.54 ± 0.04 -251.75 ± 0.21 -250.67 ± 0.12

N
O

N
L

IN
R 4 -234.69 ± 0.10 -236.54 ± 0.06 -234.71 ± 0.20

6 -233.68 ± 0.15 -235.94 ± 0.05 -233.72 ± 0.45
8 -233.05 ± 0.02 -235.62 ± 0.16 -233.40 ± 0.08

10 -232.74 ± 0.05 -235.60 ± 0.09 -233.21 ± 0.07

O
M

N
IG

L
O

T

L
I N

E
A

R 4 -119.23 ± 0.04 -119.24 ± 0.17 -120.16 ± 0.06
6 -118.50 ± 0.23 -118.47 ± 0.12 -119.07 ± 0.08
8 -118.40 ± 0.09 -118.02 ± 0.08 -118.49 ± 0.11

10 -118.19 ± 0.03 -117.70 ± 0.01 -118.35 ± 0.14

N
O

N
L

IN
R 4 -111.56 ± 0.10 -113.24 ± 0.16 -111.72 ± 0.18

6 -110.51 ± 0.06 -112.30 ± 0.05 -110.62 ± 0.08
8 -109.76 ± 0.10 -111.82 ± 0.09 -109.84 ± 0.01

10 -109.35 ± 0.01 -111.33 ± 0.19 -109.53 ± 0.06

for the other datasets and linear networks can be found in
Appendix D. In Table 1, we report the average of five fi-
nal training ELBO results for all estimators on the three
datasets, both types of networks, and different number of
samples. The corresponding test log likelihood table can be
found in Appendix D, with the performance gaps between
methods being similar. ARMS consistently outperforms the
state of the art and using either the Dirichlet and Gaussian
copula appears to have no discernible difference. For linear
networks, RELAX is competitive, thought not for nonlin-
ear networks. LOORF generally appears to be a strong
overlooked estimator that closely tails the performance of
ARMS, indicating that it is beneficial to use all samples
when creating a baseline, unlike pair based methods.

4.2. Multi Sample Bound Based Discrete VAE

For the multi sample bound objective, we compare the
multi sample version of ARMS using a Dirichlet copula
to VIMCO (Mnih & Rezende, 2016), an estimator tai-
lored to this objective, and the multi sample version of
DisARM (Dong et al., 2020). To ensure a fair comparison,
all three estimators use the same number of function evalua-
tions, which means VIMCO optimizes the n-sample bound,
whereas ARMS and DisARM optimize the n

2 -sample bound.
All the experimental details are otherwise identical to Sec-
tion 4.1. We show training plots over time in Fig. 4. To
be able to compare the variance, we average two n-sample

bound VIMCO estimates instead, so that the objective op-
timized is the same. The average of five final train multi
sample bounds are shown in Table 2, for each dataset, both
types of networks and different number of samples. Simi-
larly to the ELBO case, ARMS outperforms both VIMCO
and DisARM, regardless of the dataset, the type of network,
or the number of samples.

5. Conclusion
To optimize the parameters of Bernoulli variables in
expectation-based objectives, we proposed ARMS, an un-
biased, low-variance gradient estimator based on n jointly
antithetic samples. Also presented are two ways of gen-
erating n jointly antithetic Bernoulli samples, based on a
Dirichlet copula and a Gaussian copula, respectively. For
n = 2 samples, both copulas produce the same antithetic
used by DisARM/U2G. ARMS also generalizes LOORF,
which can be obtained by using n independent samples.
As shown by the experiments, when training a variational
autoencoder using either the ELBO or the multi-sample
bound, ARMS outperforms both estimators based on mul-
tiple independent samples, and the ones based on pairs of
antithetic samples. There are several potential avenues of
future work. We showcase two different ways of sampling
n jointly antithetic Bernoulli variables using either a Dirich-
let or Gaussian copula, but there could be better ways, not
necessarily based on copulas. Another promising direction
is extending ARMS to categorical variables, which has been
done for ARM to arrive at ARSM (Yin et al., 2019). Lastly,
we optimized the multi sample bound with i.i.d. samples for
fair comparison, but using antithetic samples is also a lower
bound of the marginal likelihood, albeit a different bound.
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