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ABSTRACT: Recent advances in theoretical thermochemistry have
allowed the study of small organic and bio-organic molecules with
high accuracy. However, applications to larger molecules are still
impeded by the steep scaling problem of highly accurate quantum
mechanical (QM) methods, forcing the use of approximate, more
cost-effective methods at a greatly reduced accuracy. One of the most
successful strategies to mitigate this error is the use of systematic
error-cancellation schemes, in which highly accurate QM calculations
can be performed on small portions of the molecule to construct
corrections to an approximate method. Herein, we build on ideas
from fragmentation and error-cancellation to introduce a new family
of molecular descriptors for machine learning modeled after the
Connectivity-Based Hierarchy (CBH) of generalized isodesmic
reaction schemes. The best performing descriptor ML(CBH-2) is constructed from fragments preserving only the immediate
connectivity of all heavy (non-H) atoms of a molecule along with overlapping regions of fragments in accordance with the
inclusion−exclusion principle. Our proposed approach offers a simple, chemically intuitive grouping of atoms, tuned with an optimal
amount of error-cancellation, and outperforms previous structure-based descriptors using a much smaller input vector length. For a
wide variety of density functionals, DFT+ΔML(CBH-2) models, trained on a set of small- to medium-sized organic HCNOSCl-
containing molecules, achieved an out-of-sample MAE within 0.5 kcal/mol and 2σ (95%) confidence interval of <1.5 kcal/mol
compared to accurate G4 reference values at DFT cost.

1. INTRODUCTION
Chemical accuracy has been long sought after in theoretical
thermochemistry.1−19 Unfortunately, highly accurate quantum
mechanical (QM) methods to achieve this accuracy, such as
complete basis set CCSD(T) or G4 composite method,6 are too
computationally demanding for most medium- to large-sized
molecules. Despite the new developments in cost-effective
density functional theory (DFT) methods, the accuracy
standards (∼1 kcal/mol) are not close to being met. Alternative
computational strategies have been developed for these
methods, exploiting systematic errors in computational
thermochemistry (viz., error-cancellation schemes),7,18,19 and
are often used to achieve acceptable accuracies from inexpensive
methods (e.g., DFT). Of particular interest are the use of
generalized isodesmic reaction schemes, based around extensions of
the original isodesmic bond separation scheme.18 The central
idea of the bond separation scheme is to calculate the enthalpy of
formation of a larger molecule by first extracting all heavy-atom
bonds into their simplest stable forms and then combining the
corresponding calculated change in energy, in conjunction with
their highly accurate experimental enthalpies of formation,
through Hess’s Law. Isodesmic schemes, particularly used in
their more recent generalizations, have been shown to be
relatively method-independent and can yield high quality

reaction energies from basic methods such as DFT. These
generalized isodesmic schemes are constructed in such a way
that the environment of atoms and bonds is consistent on both
sides of a reaction, effectively canceling out any intrinsic
systematic errors from more approximate methods.19

2. MACHINE LEARNING MODELS IN
THERMOCHEMISTRY

Simultaneously, machine learning (ML) has been added to the
quantum chemical toolbox,8,11,14,16,20−33 leading to a significant
decrease in the computational cost and/or increase in the
accuracy of the corresponding calculated properties. The success
of a given ML model depends on its chosen set of molecular
descriptors, as the representation must fully describe patterns in
the desired output values. Choosing a good representation for a
molecule can be fairly challenging as these patterns are not
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known and may be difficult for humans to recognize.
Nonetheless, a plethora of molecular descriptors has been
previously developed (vide inf ra), and new developments in
models now scan over thousands of available descriptors to find
the best combination for the problem at hand.
2.1. Machine Learning − ΔML Models. Through ideas

somewhat analogous to those from error-cancellation schemes,
neural network-based machine learning correction (ΔML)
models have been developed, combining low cost QM
calculations with the machine learning framework.14 Addition-
ally, these ideas have been generalized into a multilevel
combination technique in the quantum machine learning
realm referred to as CQML.33 In this scheme, any number of
levels of theory can be used together with varying training data,
aiming to learn the patterns between many different levels of
theory.
Almost all currently available molecular descriptors, however,

have been created to represent patterns in the absolute values of
the properties of molecules. In the ΔML model and generalized
CQML models, such patterns are not necessarily present in the
dif ference between two levels of theory. In comparison, recognizing
and correcting these patterns are routinely done with the error-
cancellation of fragmentation-based methods. Thus, well
established techniques in fragmentation can be applied directly
into the ΔML framework.
MLmodels have shown promise for applications in large scale

drug design screening,34−36 retrosynthetic planning,37,38 and
designing new materials,39−41 though large and chemically
diverse data sets are necessary to ensure model generality.
Typically, experimentally derived data sets are either too small or
too sparse, so ML models are often trained to reproduce QM
calculations. With the currently available computing power,
moderately accurate properties of thousands of molecules can be
calculated in a reasonable time frame with DFT. From these
databases, ML models have been developed to predict
properties within a few kcal/mol of DFT. However, the accuracy
of DFT depends on the functional employed, typically ranging
from 3 to 15 kcal/mol for the calculation of thermochemical
properties.42 For many thermochemical applications, such as the
evaluation of combustion processes for the design of new
fuels43,44 or detection of new structure−property relationships
(SAR), this accuracy is often inadequate when “chemical
accuracy” (∼1 kcal/mol) is the ultimate target. Additionally, as
pointed out in ref 14, a high accuracy is often needed for the
determination of reaction rates, for processes such as catalysis,
since they depend exponentially on energy differences.14

Achieving the chemical accuracy threshold with ML is a
nontrivial task. First of all, a large enough data set of reliable data
must be collected to cover the scope of the problem. Databases
of highly accurate experimental data have been developed6,15,45

but are currently insufficient for ML models to effectively learn
patterns from the data. Alternatively, these databases could be
purely computational, but gold-standard ab initio methods such
as CCSD(T)/CBS, required to achieve such accuracy, are still
too computationally prohibitive to construct a database of
comparable size to that of DFT.
Herein, we propose a hierarchy of molecular descriptors

tuned for systematic error cancellation, based solely on the local
connectivity within the molecule, and using the generalized
i s o d e s m i c r e a c t i o n f r a m e w o r k f r o m t h e
Connectivity-Based Hierarchy (CBH, vide inf ra).
2.2. Machine Learning − Related Work. ML-based

thermochemical predictions have been of substantial interest in

the past decade.8,27,30−32,46,47 Large data sets for training ML
models are typically required to ensure that a model is general
and not overfitted. Data sets covering all of chemical space have
gained popularity in this context, e.g., the General Database of
every hypothetically feasible HCNOSCl-containing molecules
with up to 13 heavy atoms (GDB-13)46 spanning 977 million
molecules, though no associated properties are included. Two
very popular subsets of this database are the GDB-7 data set of
7k molecules and the GDB-9 data set of 134k molecules,
featuring GDB-13 molecules containing up to seven or nine
heavy atoms, respectively. Later work aimed at standardizing
these data sets for training ML models resulted in a collection
called QM9,32 including a variety of DFT calculated properties
of the GDB-9 set and a more recent expansion to include
G4(MP2) computed thermochemical properties.47 Various
molecular descriptors have been developed based on these
data sets, including Coulomb Matrix (GDB-7 MAE = 10 kcal/
mol),8 Bag of Bonds (GDB-7MAE= 1.5 kcal/mol, GDB-9MAE
= 2.0 kcal/mol),27 Encoded Bonds (GDB-9 MAE = 1.5 kcal/
mol),30 and Bonds in Molecules (GDB-9 MAE = 0.94 kcal/
mol).31 Although these models are seemingly approaching the
“target accuracy” of ±1 kcal/mol, the accuracy of the DFT
calculated the QM9 values was estimated in the original paper,
through a subset of 100 randomly drawn molecules, giving an
average error of 4.9 kcal/mol compared to G4 reference
values.32 Thus, models trained on QM9 values in their current
state only achieve a target 4 to 5 times larger than the chemical
accuracy threshold and are insufficient for experimental quality
thermochemical properties.
One of the top performing approaches for more accurate ML-

based thermochemistry, the Δb
t -ML model, predicts the

difference between two levels of theory referred to as a baseline
(b) and target (t).14 If successful, the target accuracy (typically
that from a more expensive calculation) can be achieved at the
cost of the (cheaper) baseline. For example, the initial
application ΔB3LYP

G4(MP2)-ML employing the Coulomb Matrix
descriptor achieved an average accuracy of <1 kcal/mol for a
set of 6k constitutional isomers of C7H10O2 with a training size
of 1k molecules.14 The similar model ΔPM7

B3LYP-ML improved the
accuracy of the semiempirical method PM7 from 7.2 kcal/mol
to ∼3 kcal/mol for 134k HCNOF molecules with 9 or fewer
heavy atoms. Recently, newer, but more complicated, ΔB3LYP

G4(MP2)-
ML models employing state-of-the-art ML strategies, viz.,
SchNet48 and FCHL,49 have been used to obtain impressive
MAEs (within 0.3 kcal/mol) for molecules containing up to 14
heavy atoms, though only with the use of millions of parameters
trained using the three-dimensional structure of the molecule.50

Our proposed framework strives to more efficiently encode
the chemical environments present in a molecule specifically
designed to perform well in the Δ-ML regime with a much
simpler neural network benef iting f rom the ideas f rom error-
cancellation and fragmentation. The present study could serve as
a starting point for further developments to more complex
models utilizing both advances in cost-effective quantum
chemistry calculations as well as machine learning. Herein, our
models target experimental quality results offering a few
significant improvements over most current thermochemical
ML models:

1. A data set built from experimentally known (HCNOSCl)
molecules

2. More accurate target values (G4 opposed to DFT)
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3. Lower average errors (<0.5 kcal/mol) for a wider set of
density functionals

2.3. Machine Learning − Data Set. The present work
focuses on producing accurate thermochemical values, viz.,
standard enthalpies of formation, ΔHf(298 K), of real, neutral,
organic HCNOSCl-containing molecules for which
experimental values are available. Unfortunately, several of the
largest collections of experimental properties have large or
unknown uncertainties associated with them. The Active
Thermochemical Tables (ATcT)45 has made an effort to
construct an accurate compilation of thermochemical data into a
self-consistent network by means of a critical evaluation of
competing measures and all reaction pathways that interrelate
chemical species. While the ATcT provides the best currently
available enthalpies of formation, in its current version, it only
has 33 neutral organic molecules with 4 heavy atoms or larger.
One of the most popular databases, the NIST Chemistry
WebBook,51 contains information for over 6000 species.
However, it gives an overview of relevant properties found in
the literature rather than recommending a certain value, many
times reporting multiple values from competing sources for the
same molecule.17 Thus, these values cannot be blindly trusted,
and, therefore, in this work, reference values have been
computed using the composite method Gaussian-4 (G4).6

All ΔHf(298 K) were calculated using the atomization
method.1 First the total atomization energy at 0 K (TAE0) is
computed using calculated zero-point-corrected energies of
neutral isolated atoms and the full molecule, as illustrated in eq
1. Note: all atomic properties in eqs 1−3 correspond to neutral
isolated atoms at their ground state multiplicities.

O x y

z

TAE (C H , 0 K) E (C, 0 K) E (H, 0 K)

E (O, 0 K) E (C H O , 0 K)

x y z

x y z

0 0 0

0 0

= +

+ − (1)

Atomization energies can then be converted directly toΔHf(0
K) and ΔHf(298 K) via eqs 2 and 3, using well-known
experimental atomic enthalpies of formation and thermal
corrections H298K−H0K.

H x H H

H

(C H O , 0 K) (C, 0 K) y (H, 0 K)

z (O, 0 K) TAE(C H O , 0 K)

x y z

x y z

f f f

f

Δ = Δ + Δ

+ Δ − (2)

H H

x

y z

(C H O , 298 K) (C H O , 0 K)

H H (C H O ) H H (C)

H H (H) H H (O)

x y z x y z

x y z

f f

298K 0K 298K 0 K

298K 0 K 298K 0 K

Δ = Δ

+ [ − ] − [ − ]

− [ − ] − [ − ] (3)

Atomization energies are the most elementary quantity
computationally as a molecule is broken into the corresponding
isolated atoms. Accurate calculated TAE0 values are challenging
for approximate methods due to the influence of secondary
effects such as core−valence correlation, scalar relativistic
effects, and spin−orbit coupling.3 Highly accurate composite
methods have been developed to capture these effects but are
much more computationally expensive. To overcome these
limitations, alternative strategies to the atomization approach
have been developed, utilizing error-cancellation inherent in the
isodesmic reaction schemes, to achieve a more acceptable
accuracy for enthalpies of formation. In these approaches, the
reaction enthalpy of a given isodesmic reaction is calculated at a
low level of theory, and then the ΔHf of the full molecule is
obtained by using experimental values for all the reactant and

product fragment species. Since this method relies heavily on

accurate experimental fragment ΔHf, only reactions with small

product fragments can be used.

Figure 1. All possible CBH-0, -1, -2 fragments for the 1k-G4-C9 data
set.
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Reference ΔHf(298 K) values calculated with the G4
composite method have been shown to be within 1 kcal/mol
of experiment on average.6 The data set used in this work was
adapted from the training set used to develop the Atom Pair
Contribution (APC) method,52 which was compiled from
various sources listed in the NIST Chemistry WebBook.51 G4
computed values are an approximation to the “gold standard”
CCSD(T)/CBS level of theory but are significantly more
computationally intensive for larger molecules compared to
DFT. Another key factor is that most previous ML training sets
have typically been truncated based on the number of heavy
atoms. However, in an attempt to group molecules with similar
(carbon) backbone structures, but varying numbers of heavy
atoms (from different functional groups), we have organized the
full APC database52 by the number of carbon atoms rather than
by the number of heavy atoms. This can be beneficial as there
will be more overlap between the molecular descriptors of the
full data set. For demonstrative purposes, the full data set was
made more computationally feasible by creating a subset termed
“1k-G4-C9” consisting of 1051 HCNOSCl-containing mole-
cules with 9 or fewer carbon atoms.

2.4. Machine Learning − Baseline. In the ΔML regime,
the ML model is trained on the difference between a high level
(e.g., G4) and a low level of theory (DFT). The corresponding
ΔML correction should improve the performance of the
baseline (low level of theory), and a correction of zero (null
model) corresponds to the performance of the low level of
theory. Since the molecular descriptors employed here are based
on the connectivity in the molecule, nonbonded interactions are
not represented, and the low level is fully responsible for
modeling these effects. In addition, relative conformer energies
mirror the performance of the low level of theory, i.e., our model
will return the same correction for two conformers with the same
connectivity. Within these limitations, a wide variety of DFT
methods were tested as the baseline using the 6-311+
+G(3df,2p) basis set. All low-level and G4 calculations were
performed with the Gaussian 16 program suite.53

2.5.Machine Learning−Neural NetworkArchitecture.
Since this study is focused on the utility of our molecular
descriptors on a simple architecture, the standard scikit-learn54

implementation of a feed-forward neural network with one
hidden layer was used for all models. Hyperparameter values for
L2-regularization and the initial learning rate for the ADAM
optimizer were chosen through the standard 5-fold cross-
validation after an 80:20 split of the full 1k-G4-C9 data set.
Hyperparameters and number of nodes in the hidden layer were
kept constant across all models using the same input variables for
a direct comparison of various low levels. Further details about
the hyperparameter search, cross-validation, and other calcu-
lations can be found in the Supporting Information.

2.6. Machine Learning − Features. As pointed out in
previous studies on constant size descriptors,30 the length of the
input vector for neural networks employing popular geometry-
basedmolecular descriptors, such as CoulombMatrix (CM) and
Bag of Bonds (BoB), scales with the size of the system, becoming
too prohibitive for large molecules. These molecular descriptors
are training set-dependent, i.e., the largest molecule in the
training set will dictate the size of the input vector, with smaller
molecules appending zeroes to their input vectors tomatch sizes.
Molecular graph-based descriptors have been previously
proposed, such as atom counts (rank-1), bond counts (rank-
2), and larger graph-based connectivity counts (rank-3, rank-4,

Figure 2.CBH-0, -1, and -2 fragmentation schemes for four compositionally similar molecules along with corresponding G4ΔHf(298 K) and baseline
errors for B3LYP and B3LYP-D3(BJ).

Table 1. Comparison of Full 1k-G4-C9Mean Absolute Errors
(MAE) in kcal mol−1 for Both ML and B3LYP+ΔMLModels
with Various Molecular Descriptors

molecular descriptor (length of input vector) ML B3LYP+ΔML

null model 58.47 14.98
geometry-based

Coulomb Matrix (33) 31.87 2.77
Bag of Bonds (896) 3.82 0.81

molecular graph-based
atom counts (5) 16.40 3.69
bond counts (18) 14.53 1.80
rank-3 (92) 10.97 1.43
connectivity counts (92) 7.89 1.19

isodesmic (CBH)-based
CBH-0 (isogyric) (6) 12.63 2.75
CBH-1 (isodesmic) (22) 6.99 1.65
CBH-2 (hypoHD) (103) 4.02 0.62
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rank-5, etc.), where the molecule is broken into fragments and
the corresponding length of the feature vector is every possible
atom, bond, or combination of 3+ connected atoms. The new set
of molecular descriptors introduced here offers a different
approach to these molecular graph-based groupings, wherein
similar amounts of the environment are preserved for each heavy
atom for optimal error-cancellation while maintaining a constant
input length independent of system size.
2.7. Machine Learning − Descriptors from Connectiv-

ity-Based Hierarchy (CBH). Isodesmic bond-separation
schemes and their generalizations have a long history in
quantum chemistry as error-balancing reactions that can be
utilized for theoretical thermochemistry to calculate more
accurate enthalpies of formation from computationally inex-
pensive methods. The idea behind these schemes is to form a
reaction for a given molecule in which the local environment is
preserved on the product and reactant sides. In doing so, the
inherent systematic errors are mostly canceled out, allowing
higher accuracy at a reduced computational cost. The original
isodesmic bond-separation scheme, proposed in the 1970s,18

preserves the numbers of each type of bond on both sides of the

reaction, where the product side is a compilation of fragmented
heavy-atom bonds (rank-2 type groups) in a molecule, and the
reactant side contains the full molecule along with overlapping
fragments of the bonds (rank-1 type groups) to balance the
reaction. For larger molecules, more sophisticated schemes are
required for acceptable accuracies. Many such methods have
subsequently been developed including the homodesmotic,9,55

semihomodesmotic,56 isogeitonic,5 and homoplesitoic57

schemes. Each of these reactions were developed by manually
matching of bond and hybridization types and have varying
amounts of chemical environment preservation on the product
and reactant sides of the reaction. However, these developments
did not include a generalizable method for all functional groups
nor an automated way to generate the reactions. To overcome
such limitations and to make such schemes applicable for all
organic species, Raghavachari and co-workers developed the
Generalized Connectivity-Based Hierarchy (CBH) of
error-cancellation schemes.7,19 The hierarchy overcomes the
disadvantages of other related schemes by providing a simple,
yet reliable approach, bypassing any manual balancing of bond
and hybridization types. CBH organizes these types of reactions
into rungs (referred as CBH-n) of alternating atom- and bond-
centered reactions starting from the isogyric (CBH-0) and
isodesmic (CBH-1) reaction schemes, preserving the number of
each atom and the number of each bond, respectively.
Subsequent CBH-n rungs include immediate connectivity to
all CBH-(n−2) type fragments, e.g., CBH-2 (hypohomodes-
motic) includes all connectivity to each heavy atom (CBH-0
fragments), and CBH-3 (hyperhomodesmotic) includes all
connectivity to all heavy-atom bonds (CBH-1 fragments).
Additionally, the overlapping fragments on the reactant side are
fragments from the previous rung, establishing an extended
relationship between the rungs and allowing for easy automation
of the hierarchical reactions.
The proposed hierarchy of molecular descriptors is based on

the rungs of CBH, including both revised versions of the
molecular graph-based counts stemming from the connectivity
(corresponding to CBH product fragment coefficients) as well
as the full CBH coefficients (both product and reactant
fragments). Product counts are similar to previously used
molecular graph-based representations and called atom (rank-
1), bond (rank-2), and connectivity (mix of rank-3, rank-4, and
rank-5) counts. Atom and bond counts are identical to the
previous connectivity-based molecular descriptors, without
including bonds to hydrogen. However, in connectivity counts,
the immediate connectivity of each nonterminal heavy (non-H)
atom is preserved and collected as a group. Groups of this type
can be as small as 3 heavy atoms (e.g., propane) or as large as 5
heavy atoms (e.g., neopentane) but with a maximum chain
length of 3. In contrast, in the rank-n approach, every
combination of n atoms is included, losing information about
the immediate connectivity.
Full CBH reaction molecular descriptors are the fragment

coefficients from the product and reactant sides of the CBH-0,
CBH-1, and CBH-2 reactions. Compared to the rank-n
nomenclature, CBH-0 is a rank-1 type descriptor along with
information about the total number of heavy atom bonds (from
capped hydrogens balanced in the form of H2), CBH-1 is a
combination of rank-1 and rank-2 type descriptors, and CBH-2
is a combination of specif ic ranks -2, -3, -4, and -5. Each parent
molecule is represented by an input vector with the length of
every possible fragment of a given CBH rung for the whole data
set. Each unique fragment type is one-hot encoded and then

Figure 3. Performance of traditional ΔCBH-1 and ΔCBH-2
corrections on the full 1k-G4-C9 data set in kcal mol−1.
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combined based on the CBH reaction of the parent molecule
resulting in a sparse vector of mostly zeroes except for the
coefficients of fragments present in the reaction. These
fragments are given in Figure 1 for all CBH rungs used here.
The uniqueness of input vectors dictates a model’s best possible
performance (irreducible error). For representations such as the
sorted eigenvalues of the Coulomb Matrix or Bag of Bonds, this
irreducible error is only nonzero in special cases, e.g.,
homometric molecules.8 Conversely, all graph-based descriptors

and the coefficients of the CBH reactions are encoded as discrete
values and are not completely unique among molecules,
especially at lower rungs of CBH.
As an illustration, the CBH-0, -1, and -2 reactions for four

molecules are given in Figure 2 along with their enthalpy of
formation (ΔHf) and G4-baseline null error. These molecules
have the same number of each heavy atom, as well as the same
number of bonds, causing the CBH-0 representations to be
identical. Any model will produce identical outputs for identical
inputs meaning using the CBH-0 representation introduces
some unavoidable error. The predicted ΔHf for ML models
(without a baseline) which will minimize the error is simply the
average of the four values (−120.2 kcal/mol), giving >10 kcal/
mol deviation for two of the molecules. Moving up one rung,
CBH-1 provides uniqueness into two groups, while moving to
CBH-2 uniquely identifies all four molecules, decreasing the
error further. Additionally, to further point out the utility of the
ΔML model, ΔΔHf (G4−baseline) deviations included in
Figure 2 are much closer to each other than the corresponding
absolute formation enthalpies. For the B3LYP baseline, the
CBH-0 has a maximum deviation of just under 5 kcal/mol from
the average value, while the maximum for B3LYP-D3(BJ) is
around 2 kcal/mol. Since molecular descriptors are constant
between baselines, irreducible errors are a direct representation

Table 2. Out-of-Sample Performance of ΔML(CBH) Models Using the Original 80:20 Train−Test Split Compared to
Traditional ΔCBH-2 on the Full 1051 Molecule Seta

mean absolute error in kcal mol−1

baseline ΔCBH-2 ΔML(CBH-0) ΔML(CBH-1) ΔML(CBH-2)

B2PLYP-D3(BJ) 1.42 1.34 0.76 0.78
B2PLYP 1.88 1.56 1.01 1.04
BPBE-D3(BJ) 1.67 1.71 0.96 0.87
BPBE 3.22 2.33 1.76 1.20
BP86-D3(BJ) 1.68 1.59 0.93 1.81
BP86 2.81 2.20 1.49 1.68
TPSSTPSS-D3(BJ) 1.78 2.06 1.15 0.90
TPSSTPSS 2.79 2.59 1.68 0.99
B3PW91-D3(0) 1.85 1.67 0.87 0.63
B3PW91 2.67 2.24 1.53 0.90
B97-D3(BJ) 1.87 2.30 1.14 0.90
B97-D 2.34 2.12 1.22 1.06
B3LYP-D3(BJ) 1.88 1.99 0.83 0.67
B3LYP 2.71 2.61 1.61 1.04
BLYP-D3(BJ) 1.98 2.56 1.12 1.02
BLYP 3.25 3.66 1.93 1.56
mPW2PLYP-D2 2.10 1.20 0.67 0.90
mPW2PLYP 2.02 1.55 0.97 0.90
LC-ωPBE-D3(BJ) 2.15 2.51 0.80 0.54
LC-ωPBE 2.86 2.68 1.09 0.89
PBE-D3(BJ) 2.24 2.02 1.07 1.39
PBE 2.79 2.20 1.49 1.70
ωB97X-D 2.29 1.45 0.83 0.54
ωB97X 3.46 1.49 0.99 0.60
BMK-D3(0) 2.47 1.79 0.75 0.98
BMK 2.24 1.71 1.04 0.71
CAM-B3LYP-D3(BJ) 2.51 1.53 0.89 0.64
CAM-B3LYP 3.01 1.86 1.19 0.75
M06-2X-D3(0) 2.83 1.30 0.81 0.56
M06-2X 2.96 1.34 0.80 0.56

aBolded values highlight models which do not follow expected performance trends from the traditional CBH-0 to CBH-2 correction schemes; see
text for details.

Figure 4. Effect of sparse fragments and unbalanced data on the
increase in performance between ΔML(CBH-1) and ΔML(CBH-2).
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of how systematic the errors are between a given baseline and the
target values.

3. RESULTS AND DISCUSSION
For a simplified overview of the performance of various
molecular descriptors, the mean absolute errors of the full
1051 molecule data set will briefly be compared, while all further
error comparisons in this report will be out-of-sample (test set)
mean absolute errors (OOS-MAE) in kcal/mol.
Table 1 compares the performance of both ML and B3LYP

+ΔML type models for the full 1051 molecule data set.
Previously used descriptors Coulomb Matrix (CM),8 Bag of
Bonds (BoB),27 and rank-3 graph counts were generated using
MolML30 and are included for comparison against the proposed
molecular descriptors. Bag of Bonds was the top overall
performing standard machine learning model (no baseline)
with an MAE of 3.82 kcal/mol, followed by ML(CBH-2), MAE
of 4.02 kcal/mol. However, in out-of-sample molecules, BoB
had an MAE of 8.48 kcal/mol compared to 5.02 kcal/mol for
ML(CBH-2). This increase in variance could be due to the
increased length of the input vector, perhaps indicating some
amount of overfitting has occurred. Adding a DFT baseline
(ΔML) significantly improves the model performance, indicat-
ing certain molecular descriptors tested are a function of the

systematic errors present in DFT rather than a pure
representation of the enthalpy of formation. Significant
improvements are also seen on going from graph-based counts
to their corresponding CBH-basedmolecular descriptors (Table
1), though the input vector length is only slightly increased.
Since isodesmic reactions are inherently designed to cancel
structure-based systematic errors in low levels of theory, namely
DFT, the best performing models for ΔML are expected to be
the CBH-based ones. Connectivity counts provide the lowest
error out of any count-based molecular descriptor with an
overall MAE of 1.19 for B3LYP+ΔML. Coincidentally, the rank-
3 and connectivity counts descriptors have the same input vector
length. The rank-3 descriptor here enumerates all 3 heavy atom
combinations taking bond orders (single, double, aromatic, and
triple) into account. However, since connectivity counts are
based on a cut-and-cap fragmentation scheme, there cannot be a
bond order of 1.5, thus all CBH-based approaches are from an
aromatic resonance structure of alternating single and double
bonds.
Overall, the descriptors based on the isodesmic reactions

outperformed their molecular graph-based counterparts, with
theΔML(CBH-2) approach performing best forΔML (MAE =
0.62 kcal/mol). CBH-based descriptors have the benefit of being
derived directly from the heavy-atom connectivity rather than
number of atoms in a group and also encode the relationship
between heavy-atom fragments through the smaller overlapping
fragments, leading to an overall better description of the
chemical environments present in a molecule. The CBH-2
approach also benefits from including certain rank-4 and -5
groups. Since full rank-4 and -5 representations are based on
every grouping of 4 and 5 atoms, these descriptors scale more
harshly, having an input vector size of 238 and 506, respectively,
for this 1051molecule data set. Thus, the improved performance
using our proposed isodesmic-based molecular descriptors is
due to the more chemically intuitive grouping of atoms based on
the structure rather than all possible groupings.

3.1. Traditional Fragmentation through CBH. Tradi-
tionally, the Connectivity-Based Hierarchy has been used as a
fragmentation-based correction scheme for theoretical
thermochemistry. CBH has been applied to achieve accurate
thermochemical values of neutral,7,58 radical,12 and cationic59

organic molecules as well as biomolecular13,60 systems. Addi-
tionally, the method has been applied to reaction energies,61

bond dissociation energies,62 pKa calculations,63 and redox
potentials.64 The correction method works by first constructing
the reaction of a given rung of CBH and then calculating the
energy of each of the fragments at a low level baseline (b) and
the higher target (t) level of theory.ΔCBH correction terms are
then constructed as a sum of the differences in the isodesmic
reaction energies (i.e., target−baseline) and added to the full
molecule calculation at the low level of theory.

E E E E ECBH ( )nFull
t

Full
b

Full
b

frag
t

frag
b∑≈ + Δ = + − (4)

One of the major benefits of traditional CBH is the ability to
construct corrections to a wide range of density functionals.
Explicit G4 and DFT fragment calculations were performed to
construct CBH-0, CBH-1, and CBH-2 corrections for the full
1k-G4-C9 data set and then added to the enthalpy of formation
calculated with the corresponding density functional according
to eq 4. CBH-0-corrected enthalpies are conceptually similar to
the atomization method as both methods extract all heavy atoms
of a molecule with the only difference being the open valence of

Figure 5. Final out-of-sample performance for all DFT+ΔML(CBH)
models across 30 DFT baselines.
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heavy atom fragments in CBH-0 is terminated with hydrogens.
Thus, CBH-0 provides only a slight improvement over the
baseline and is not reported herein. Mean absolute errors for all
CBH-1- and CBH-2-corrected enthalpies of formation are
summarized in Figure 3.
Dispersion-corrected functionals are grouped with their

nondispersion-corrected counterparts and then sorted based
on CBH-2 performance of the dispersion-corrected functional.
This is the largest CBH benchmark to date, in both number of
functionals and number of data points; however, all trends
previously reported hold true.
The most prominent trend, seen even before the introduction

of the Connectivity-Based Hierarchy correction method, is that
excellent performance occurs starting at the hypohomodesmotic
(CBH-2) reaction, providing a significant improvement over the
isodesmic (CBH-1) reaction scheme. The top performing

method using CBH-2 corrections is B2PLYP-D3(BJ) giving an
average error below 1.5 kcal/mol, followed by 8 other density
functionals with errors under 2 kcal/mol. CBH-1 fragments are
at maximum two heavy atoms in size and can cause a severe
mismatch of bond types for aromatic systems or in molecules
containing nonlocal effects such as hyperconjugation, proto-
branching,65 or charge delocalization.59 Additionally, increasing
the fragment size should cause the extrapolated energy to
monotonically converge toward the high level of theory. Thus,
cases where CBH-1 outperforms CBH-2 are likely due to
fortuitous cancellation of errors at the CBH-1 rung. Moreover,
results here confirm the recently highlighted importance of the
treatment of dispersion in computational thermochemistry.
Since CBH provides a local correction based on bonded
interactions, long-range effects and intramolecular interactions

Figure 6. Performance of ΔCBH-corrected and ΔML-corrected ΔHf(298 K) compared to reference G4 (all values are given in kcal/mol).
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must be treated fully at the low level of theory, e.g., with
dispersion-corrected DFT.
3.2. Machine LearningModels through CBH. Since both

traditional ΔCBH corrections and ΔML(CBH) corrections are
based on the same underlying isodesmic reactions, traditional
trends are assumed to be carried over in their use as molecular
descriptors, i.e., an increase in rungs of CBH should improve
overall performance, and density functionals which model
dispersion effects should outperform nondispersion counter-
parts. Out-of-sample errors for ΔML(CBH-0, CBH-1, and
CBH-2)models for each of the 30 density functionals along with
traditional ΔCBH-2 MAEs are summarized in Table 2. The
smallest network class ΔML(CBH-0), where the model is only
providedwith information about the number of each heavy atom
and number of total heavy atom bonds (6 input features),
outperforms the traditionalΔCBH-2-corrected values in almost
all cases, showcasing the utility of machine learning for
recognizing patterns in the systematic errors.
3.3. Effect of Train−Test Split for Sparse Fragments.

TheΔMLmodels do not always follow the expected trends from
fragmentation methods; such errors are shown in bold in Table
2. One potential issue that could be responsible for this behavior
is a byproduct of restricting our data set to real, experimentally

known molecules. In other data sets, aimed at covering all of
chemical space, every combination of atoms and bonds can be
included evenly, allowing for a more general predictive model.
Since our molecular descriptors are based solely on the

structure of the molecule, a possible issue could arise from an
unbalanced distribution of the fragments. For example, the most
common CBH-2 fragment C3H8 appears at least once in 54% of
the data set, while some uncommon fragments, e.g., SHCH
NH, occur in less than 0.5% of the data set. Due to the nature of
the random train−test split, some fragments may only be present
in the test set, causing large errors since no information about
these structural features has ever been given to the model. The
performance of the models in predicting these molecules is then
dependent on the magnitude of the error in the null model
(uncorrected baseline) and the initialized random state for those
weights. To test how large of an effect the unevenness has on the
out-of-sample performance, two variations of the original train−
test split were evaluated. Fragments which only appear in 5 or
fewer molecules were labeled as “sparse fragments”, and all
molecules containing these fragments (85 in total in this case)
were either forced to be in the training set or removed from the
training and test sets completely. The difference between the
performance of ΔML(CBH-2) and ΔML(CBH-1) for the new
splits are shown in Figure 4 for all models which did not follow
the correct trends. Here, positive values indicateΔML(CBH-1)
outperformsΔML(CBH-2), while negative values represent the
expected trend.
Upon restricting sparse-fragment molecules to the training

set, the difference between the out-of-sample errors for
ΔML(CBH-1) and ΔML(CBH-2) decreased significantly and,
in all but two cases, now followed the expected performance
trends. Removal of the sparse fragment-containing molecules
altogether changes the performance to the expected trends even
further. Although the overall averaged errors only varied slightly
upon removal of the 85 molecules, the performance of the
models with the new train−test splits indicates the sparse
fragments are contributing significantly to the final trained
model, particularly for ΔML(CBH-2) descriptors. Ideally, for a
more general model, a larger degree of overlap between input
vectors of molecules may be required. Unfortunately, with the
unavailability of such experimental data, this is not possible with
the current data set. In order to not artificially exclude certain
molecule types, these 85 molecules are restricted to the training
set for the final trained models.

3.4. Final DFT+ΔML(CBH) Model Performance. Final
out-of-sample MAEs for all combinations of functionals and

Table 3. Error Statistics (kcal/mol) for ΔML(CBH) Models
for Validation, Training Set, and Test Set

mean absolute
error

baseline and molecular
descriptor

irreducible
error bias variance validation

test
set

B3LYP
ΔML(CBH-0) 1.59 1.12 0.25 2.80 2.46
ΔML(CBH-1) 0.75 0.74 0.01 1.85 1.48
ΔML(CBH-2) 0.10 0.44 0.27 1.17 0.81

B3LYP-D3(BJ)
ΔML(CBH-0) 1.03 0.94 0.27 2.00 1.70
ΔML(CBH-1) 0.37 0.52 0.05 1.08 0.83
ΔML(CBH-2) 0.04 0.30 0.11 0.80 0.46

ωB97X-D
ΔML(CBH-0) 0.77 0.58 0.03 1.56 1.31
ΔML(CBH-1) 0.40 0.45 0.04 0.97 0.80
ΔML(CBH-2) 0.05 0.33 0.06 0.58 0.44

B2PLYP-D3(BJ)
ΔML(CBH-0) 0.66 0.66 0.15 1.35 1.16
ΔML(CBH-1) 0.25 0.50 0.06 0.84 0.68
ΔML(CBH-2) 0.03 0.37 0.13 1.19 0.53

Table 4. Mean Absolute Errors (kcal/mol) Comparison forΔCBH-2 andΔML(CBH-2) for Various Structural Groups of the 1k-
G4-C9 Data Set

B3LYP B3LYP-D3(BJ) ωB97X-D B2PLYP-D3(BJ)

category ΔCBH-2 ΔML ΔCBH-2 ΔML ΔCBH-2 ΔML ΔCBH-2 ΔML

all (1051) 2.71 0.59 1.88 0.36 2.29 0.40 1.42 0.43
acyclic (535) 2.54 0.46 1.28 0.23 1.44 0.26 1.03 0.36
conjugated (241) 2.84 0.49 2.91 0.35 4.08 0.31 1.94 0.50
heterocyclic (203) 2.16 0.50 2.50 0.43 2.88 0.28 1.62 0.36
alicyclic (313) 3.28 0.88 2.48 0.56 3.37 0.70 1.95 0.60
hydrocarbon (232) 3.59 0.99 2.33 0.61 2.59 0.78 1.88 0.58
N-containing (270) 2.75 0.47 2.43 0.38 2.92 0.31 1.83 0.38
O-containing (578) 2.56 0.48 1.70 0.28 2.16 0.29 1.27 0.35
S-containing (82) 1.99 0.46 1.31 0.26 1.51 0.21 0.80 0.60
Cl-containing (74) 2.24 0.37 1.28 0.16 2.23 0.24 1.06 0.46
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CBH-based descriptors are presented in Figure 5. All but two
functionals, BP86 and BP86-D3(BJ), had test set mean absolute
errors under 1 kcal/mol usingΔML(CBH-2), with 6 functionals
achieving MAEs under 0.5 kcal/mol. The best performing
functionals were ωB97XD (OOS-MAE = 0.444), B3LYP-
D3(BJ) (OOS-MAE = 0.457), and M06-2X (OOS-MAE =
0.462). In general, more advanced density functionals such as
double-hybrid density functionals, e.g., B2PLYP-D3(BJ) (OOS-
MAE = 0.533) and mPW2PLYP-D2 (OOS-MAE = 0.551), and
long-range-corrected hybrids, e.g., LC-ωPBE-D3(BJ) (OOS-
MAE = 0.527) and CAM-B3LYP-D3(BJ) (OOS-MAE = 0.528),
outperformed the GGA functionals, e.g., BPBE (OOS-MAE =
0.907), TPSS (OOS-MAE = 0.809), or BLYP (OOS-MAE =
0.995). As is well-known, density functionals can be grouped
together and organized into the so-called “Jacob’s Ladder” based
on the complexity of the underlying physics that is included.66

Errors from functionals higher up on the ladder (double-
hybrids) seem to be more systematic with respect to the
structure of the molecule. Many of the null errors from double-
hybrid models are larger than those of functionals lower on the
ladder. Once the corrections are applied from the trained
models, the expected trends are now present, indicating a more
systematic behavior. In the original train−test split,
ωB97X-D+ΔML(CBH-2) significantly outperformed corre-
sponding models with double hybrid functional baselines, due
to a smaller null model error (2.08 kcal/mol for ωB97X-D
compared to 12.83 and 11.91 kcal/mol for B2PLYP-D3(BJ) and
mPW2PLYP-D2, respectively). Upon removal of the 85
molecules, the OOS-MAE for both double-hybrid models
decreased by ∼0.35 kcal/mol, while ωB97X-D+ΔML(CBH-2)
increased slightly by 0.12 kcal/mol suggesting the original split
errors are coming from the magnitude of the null error.
Unsigned average errors (MAE or RMSE), although

commonly reported and compared when discussing model
performance, can sometimes underrepresent the actual errors
during applications using the model.17 A better indication of the
expected error (and the accepted convention) for the
uncertainty in thermochemistry is given by its 95% confidence
interval (u95%), or twice the standard deviation (2σ), meaning
only one out of every 20 values should be expected outside of the
given uncertainty.67 Therefore, three main error statistics are
needed to describe the spread of the errors of a method, mean
absolute error (MAE), mean signed error (MSE), and 95%
confidence interval (u95%). MAE is a pure average of the
magnitude of the difference between the measured (or
calculated) value and its corresponding benchmark and is not
easily skewed by outliers. MSE is an indication of the systematic
error and is commonly reported as MSE ± 2σ since MSE is
associated with the center of the 95% confidence interval. All
three error statistics for the full 1051 molecule data set are given
along with plots comparing traditional CBH corrections with the
CBH-based ΔML corrections in Figure 6.
One major benefit of using a regression-based correction

method, such as machine learning, is statistical systematic errors
will be effectively canceled out. For example, the simplest model
ΔML(CBH-0) features an MSE of 0.11 kcal/mol, while the
corresponding value for ΔCBH-0 is −16.06 kcal/mol.
Fragmentation-based corrections derived from quantum chem-
ical calculations have no reason to minimize the MSE. Similar
MSEs are present for all three ΔML models shown here. Of
particular interest is the sharp decrease in the spread of the errors
by increasing size of the fragments (both in traditional CBH and
ML-CBH). Note: B3LYP+ΔCBH-0 is statistically identical to

the baseline of B3LYP calculated ΔHf(298 K). The difference
between the two is the difference in performance of the
atomization method of calculating the ΔHf and an isogyric-
based approach (vide supra). The uncertainty (u95%) associated
with the B3LYP+ΔML(CBH-2) model is −0.10 ± 1.88 kcal/
mol with a standard deviation of σ = 0.94 approaching the
chemical accuracy threshold. Top performingmodels in terms of
OOS-MAE B2PLYP-D3(BJ), ωB97X-D, and M06-2X have
uncertainties of 0.15 ± 1.34, −0.04 ± 2.05, and −0.03 ± 2.28
kcal mol−1, respectively. ωB97X-D and M06-2X gave signifi-
cantly larger standard deviations (σ = 1.03 and σ = 1.14)
compared to B2PLYP-D3(BJ) (σ = 0.67) suggesting double
hybrid models are more robust even though they feature a
slightly larger MAE.
Typically in machine learning, a trade-off between bias and

variance is observed, i.e., as the error on the training set (bias)
decreases toward the irreducible error, the overall error on the
test set (variance) increases. Additionally, models with a low bias
and high variance are thought to be overfitted to the training
data, since they feature low errors on the training data but high
errors on the test set, while large biases indicate underfitting. An
ideal model, neither under- nor overfit, will produce low errors
for both the training and test sets, though minimizing these two
errors simultaneously is not a simple task. The test set error is
only calculated once, after the model is completely trained on
the training data, and model hyperparameters cannot be tuned
based on the performance of the test set. Cross-validation helps
mitigate this problem by choosing the hyperparameters which
minimize the overall validation set errors. If the data is balanced,
and both the test and validation sets are representations of the
full data set, this will minimize the error on the unseen test set.
Analysis of these errors, shown in Table 3, gives more insight
into model performance than the final out-of-sample MAE. The
irreducible error is defined as the best possible performance a
network can attain. This is calculated from the nonunique input
representations. For many molecules, more noticeably at lower
rungs of CBH, their reaction is not unique from similar
molecules, as shown in Figure 2. Thus, the irreducible error is a
hypothetical quantity calculated from minimizing the error a
model would produce when trained on each group of nonunique
inputs with different outputs.
Bias is calculated as the difference between the mean absolute

error of the training set and the irreducible error. Variance is
taken as the difference between the test set and training set
errors. Each validation MAE is an average of five validation
MAEs, where the model is trained on four of the k-fold groups
and tested on one group. Due to the sparse fragment molecules
now being involved in cross-validation, the validation set errors
are larger than the final test set errors in some cases. For the
original train−test split, validation errors matched test set errors
almost exactly due to sparse fragment molecules being present in
both the validation and test sets. However, upon the new split,
some of the CV folds now contain many of these molecules,
returning a large validation error and skewing the average
validation error. This is not necessarily problematic since
hyperparameters were chosen from the minimization of the
averaged validationMAE over all functionals and folds. A higher
variance is observed in ΔML(CBH-2) models compared to
ΔML(CBH-1); however, the magnitude of the variance is <0.20
kcal/mol for the best performing models, indicating the models
are not overfit.
In order to assess the generality of the models with respect to

molecule type, the full data set was split into 8 groups based on
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structural features (acyclic, conjugated, heterocyclic, and
alicyclic) and chemical composition (hydrocarbons, N-, O-, S-,
and Cl-containing) and compared to traditional ΔCBH-2
corrections, all shown in Table 4.
Certain medium- to long-range structural features, e.g.,

conjugation, are not fully represented by calculated corrections
based on CBH-2 fragments; however, since the ΔML(CBH-2)
model is not based on a fragment energy calculation, systematic
errors can be learned, and the model can overcome this
deficiency. Conversely, the largest errors were present in
hydrocarbons and alicyclic molecules (containing carbon-only
rings) for bothΔCBH-2 andΔML(CBH-2). This trend is most
likely due to the noncovalent intramolecular interactions in
cyclic molecules. Some CBH-2 fragments, more specifically
propane (C3H8), are common between both acyclic and alicyclic
molecules. For example, the hypohomodesmotic (CBH-2)
reactions for both cyclohexane and hexane are comprised solely
of propane and ethane fragments, causing a mismatch of
systematic error if acyclic and alicyclic molecules require vastly
different corrections to the low-level treatment of the full
molecule. The final correction given to these molecules will be
closer to that of the acyclic molecule, as there are simply more of
this group than alicyclic molecules in the full data set (535
compared to 313). Ideally, the low-level would capture all
important noncovalent interactions, but this is not always the
case. Dispersion-corrected density functionals perform better in
this aspect as the gap between acyclic and alicyclic is slightly
smaller for B3LYP-D3(BJ) compared to B3LYP.

4. COMPARISON TO OTHER CONNECTIVITY-BASED
REPRESENTATIONS

As stated earlier, the molecular descriptors most similar to the
isodesmic-based ones developed in this work are of the rank-
based family. A brief comparison was done previously, showing
connectivity counts outperforming rank-3 descriptors with a
similar input vector size. This improvement can at first glance be
attributed to the inclusion of certain rank-4 and rank-5 type
fragments in the CBH-2 representation. The number of rank-4
and rank-5 descriptors grows much faster than the rungs of
CBH, since n-atom groups are formed for rank-n, compared to
the CBH-n rungs which preserve a max chain length of n+1. The
chain length constraint allows a more chemically intuitive
representation of the molecular structure. To show this, the
layers of rank-based descriptors were concatenated and trained
to produce 1k-G4-C9. Since the best performing model, CBH-2,
is comprised of fragments of comparable size to rank-2 through
rank-5 groups, these rank counts were all used together as the
input vector, referred to as rank-2:5. These descriptors lead to an
input vector of size N = 854 compared to CBH-2 of N = 103.
DFT+ΔML(Rank-2:5) models did not outperform correspond-
ing CBH-2 models, giving OOS-MAEs of 0.83, 0.52, and 0.82
kcal/mol compared to 0.81, 0.44, and 0.53 kcal/mol for DFT =
B3LYP, ωB97X-D, and B2PLYP-D3(BJ), some of the top
performing combinations found in this study. Associated 2σ
uncertainties (u95%) were also larger with the rank-2:5 for the
three low levels mentioned above giving 2.41, 2.08, and 1.91
kcal/mol compared to 1.88, 2.05, and 1.34 kcal/mol,
respectively. Additionally, the size of the input vector for rank-
2:5, N = 854, is much larger than CBH-2, N = 103, implying
CBH-2 more efficiently encodes the structure of the molecule.
The good performance of CBH-2 is most likely from the
satisfaction of the inclusion−exclusion principle, by which, the

overlap of different groups of atoms is subtracted out, such that
every atom of the molecule gets counted only once.

5. CONCLUSIONS
A new hierarchy of molecular descriptors has been presented
based on the ideas from the fragmentation-based methodology
and the error cancellation nature of isodesmic reactions along
with theΔMLmodel in computational thermochemistry. These
molecular descriptors provide a significant improvement over
commonly used geometry- and molecular graph-based
descriptors such as Coulomb Matrix, Bag of Bonds, and
Rank-n connectivity representations as the isodesmic-based
descriptors are constant size for large and small molecules and
relatively small in input length, minimizing the number of
degrees of freedom. The framework laid out herein provides a
foundation for a newly developed series of molecular
representations based around the ΔML regime. Corrections
obtained using these models are analogous to the Connectivity-
Based Hierarchy (CBH) correction method offering local,
fragment-based corrections to the energy of a molecule. Unlike
other fragmentation-based correction approaches, CBH com-
bines fragments with the same connectivity allowing the use of
one-hot encoding based on reaction coefficients. This procedure
could be expanded to larger fragments, such as amino acids, or
based on similarity of fragments. The ΔML corrections achieve
an averaged out-of-sample error within 0.5 kcal/mol and u95% <
1.5 kcal/mol for a wide variety of density functionals. This
approach can be used to correct for the overall intrinsic errors of
DFT in thermochemistry with no expensive calculations
required. Further developments that use the detailed structure
of the molecule (e.g., bond lengths, etc.) in addition to
connectivity-based representations could potentially offer addi-
tional improvements and will be pursued in the future.
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