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Abstract

Despite the success of Generative Adversarial Networks

(GANs), their training suffers from several well-known prob-

lems, including mode collapse and difficulties learning a

disconnected set of manifolds. In this paper, we break down

the challenging task of learning complex high dimensional

distributions, supporting diverse data samples, to simpler

sub-tasks. Our solution relies on designing a partitioner that

breaks the space into smaller regions, each having a sim-

pler distribution, and training a different generator for each

partition. This is done in an unsupervised manner without

requiring any labels. We formulate two desired criteria for

the space partitioner that aid the training of our mixture of

generators: 1) to produce connected partitions and 2) pro-

vide a proxy of distance between partitions and data samples,

along with a direction for reducing that distance. These cri-

teria are developed to avoid producing samples from places

with non-existent data density, and also facilitate training by

providing additional direction to the generators. We develop

theoretical constraints for a space partitioner to satisfy the

above criteria. Guided by our theoretical analysis, we design

an effective neural architecture for the space partitioner that

empirically assures these conditions. Experimental results

on various standard benchmarks show that the proposed

unsupervised model outperforms several recent methods.

1. Introduction

Generative adversarial networks (GANs) [20] have gained

remarkable success in learning the underlying distribution

of observed samples. However, their training is still unstable

and challenging, especially when the data distribution of

interest is multimodal. This is particularly important due to

both empirical and theoretical evidence that suggests real

data also conforms to such distributions [57, 71].

Improving the vanilla GAN, both in terms of training

stability and generating high fidelity images, has been the
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Figure 1: Examples of unsupervised partitioning and their corre-

sponding real/generated samples on the CIFAR-10 dataset.

subject of great interest in the machine learning literature [1,

13, 21, 47, 50, 52, 54, 61, 66, 79]. One of the main problems

is mode collapse, where the generator fails to capture the

full diversity of the data. Another problem, which hasn’t

been fully explored, is the mode connecting problem [36,

70]. As we explain in detail in Section 2, this phenomenon

occurs when the GAN generates samples from parts of the

space where the true data is non-existent, caused by using

a continuous generator to approximate a distribution with

disconnected support. Moreover, GANs are also known

to be hard to train due to the unreliable gradient provided

by the discriminator.

Our solution to alleviate the aforementioned problems is

introducing an unsupervised space partitioner and training

a different generator for each partition. Figure 1 illustrates

real and generated samples from several inferred partitions.
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Having multiple generators, which are focused on dif-

ferent parts/modes of the distribution, reduces the chances

of missing a mode. This also mitigates mode connecting

because the mixture of generators is no longer restricted to

be a continuous function responsible for generating from

a data distribution with potentially disconnected manifolds.

In this context, an effective space partitioner should place

disconnected data manifolds in different partitions. There-

fore, assuming semantically similar images are in the same

connected manifold, we use contrastive learning methods to

learn semantic representations of images and partition the

space using these embeddings.

We show that the space partitioner can be utilized to de-

fine a distance between points in the data space and partitions.

The gradient of this distance can be used to encourage each

generator to focus on its corresponding region by providing

a direction to guide it there. In other words, by penalizing

a generator when its samples are far from its partition, the

space partitioner can guide the generator to its designated

region. Our partitioner’s guide is particularly useful where

the discriminator does not provide a reliable gradient, as it

can steer the generator in the right direction.

However, for a reliable guide, the distance function

must follow certain characteristics, which are challenging to

achieve. For example, to avoid misleading the GANs’ train-

ing, the distance should have no local optima outside the

partition. In Section 4.2, we formulate sufficient theoretical

conditions for a desirable metric and attain them by enforc-

ing constraints on the architecture of the space partitioner.

This also guarantees connected partitions in the data space,

which further mitigates mode connecting as a by-product.

We perform comprehensive experiments on StackedM-

NIST [45, 46, 69], CIFAR-10 [39], STL-10 [12] and Ima-

geNet [63] without revealing the class labels to our model.

We show that our method, Partition-Guided Mixture of

GAN (PGMGAN), successfully recovers all the modes and

achieves higher Inception Score (IS) [66] and Frechet Incep-

tion Distance (FID) [26] than a wide range of supervised and

unsupervised methods.

Our contributions can be summarized as:

• Providing a theoretical lower bound on the total varia-

tional distance of the true and estimated densities using

a single generator.

• Introducing a novel differentiable space partitioner

and demonstrating that simply training a mixture

of generators on its partitions alleviates mode col-

lapse/connecting.

• Providing a practical way (with theoretical guaran-

tees) to guide each generator to produce samples from

its designated region, further improving mode col-

lapse/connecting. Our experiments show significant

improvement over relevant baselines in terms of FID

and IS, confirming the efficacy of our model.

• Elaborating on the design of our loss and architecture

by making connection to supervised GANs that em-

ploy a classifier. We explain how PGMGAN avoids

their shortcomings.

2. Mode connecting problem

Suppose the data distribution is supported on a set of dis-

connected manifolds embedded within a higher-dimensional

space. Since continuous functions preserve the space con-

nectivity [35], one can never expect to have an exact ap-

proximation of this distribution by applying a continuous

function (Gθ) to a random variable with a connected support.

Furthermore, if we restrict Gθ to the class of c-Lipschitz

functions, the distance between the true density and approxi-

mated will always remain more than a certain positive value.

In fact, the generator would either have to discard some of

the data manifolds or connect the manifolds. The former can

be considered a form of mode collapse, and we refer to the

latter as the mode connecting problem.

The following theorem formally describes the above state-

ment and provides a lower bound for the total variation dis-

tance between the true and estimated densities.

Theorem 1. Suppose pdata is a distribution supported

on a set of disjoint manifolds M1, . . . ,Mk in R
d, and

[π1, . . . ,πk] are the probabilities of being from each man-

ifold. Let Gθ be a c-Lipschitz function, and pmodel be the

distribution of Gθ(z), where z ⇠ N (0, In), then:

dTV (pdata, pmodel) �
X

|πi � pi|� δ

where dTV is the total variation distance and:

π⇤
i := min(πi, 1� πi)

pi := pmodel(Mi)

δ := max
i

{π⇤
i � Φ(Φ�1(π⇤

i )� di/c)}

di := inf{||x� y|| | x 2 Mi,y 2 Mj , j 6= i}

di is the distance of manifold Mi from the rest, and Φ is the

CDF of the univariate standard normal distribution. Note δ

is strictly larger than zero iff 9i : di,π
⇤
i 6= 0.

According to Theorem 1, the distance between the es-

timated density and the data distribution can not converge

to zero when Gθ is a Lipschitz function. It is worth not-

ing that this assumption holds in practice for most neural

architectures as they are a composition of simple Lipschitz

functions. Furthermore, most of the state-of-the-art GAN ar-

chitectures (e.g., BigGAN [5] or SAGAN [81]) use spectral

normalization in their generator to stabilize their training,

which promotes Lipschitzness.
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3. Related work

Apart from their application in computer vision [28, 29,

30, 31, 33, 77, 82, 85], GANs have also been been employed

in natural language processing [43, 44, 80], medicine [67,

37] and several other fields [16, 51, 60]. Many of recent

research have accordingly focused on providing ways to

avoid the problems discussed in Section 2 [45, 53].

Mode collapse For instance, Metz et al. [53] unroll the

optimization of the discriminator to obtain a better estimate

of the optimal discriminator at each step, which remedies

mode collapse. However, due to high computational com-

plexity, it is not scalable to large datasets. VEEGAN [69]

adds a reconstruction term to bi-directional GANs [15, 14]

objective, which does not depend on the discriminator. This

term can provide a training signal to the generator even when

the discriminator does not. PacGAN [45] changes the dis-

criminator to make decisions based on a pack of samples.

This change mitigates mode collapse by making it easier

for the discriminator to detect lack of diversity and natu-

rally penalize the generator when mode collapse happens.

Lucic et al. [49], motivated by the better performance of

supervised-GANs, propose using a small set of labels and

a semi-supervised method to infer the labels for the entire

data. They further improve the performance by utilizing an

auxiliary rotation loss similar to that of RotNet [17].

Mode connecting Based on Theorem 1, to avoid mode

connecting one has to either use a latent variable z with a

disconnected support, or allow Gθ to be a discontinuous

function [27, 36, 40, 46, 64].

To obtain a disconnected latent space, DeLiGAN [22]

samples z from a mixture of Gaussian, while Odena et

al. [59] add a discreet dimension to the latent variable. Other

methods dissect the latent space post-training using some

variant of rejection sampling, for example, Azadi et al. [2]

perform rejection sampling based on the discriminator’s

score, and Tanielian et al. [70] reject the samples where

the generator’s Jacobian is higher than a certain threshold.

The discontinuous generator method is mostly achieved

by learning multiple generators, with the primary motivation

being to remedy mode-collapse, which also reduces mode

connecting. Both MGAN [27] and DMWGAN [36] employ

K different generators while penalizing them from overlap-

ping with each other. However, these works do not explicitly

address the issue when some of the data modes are not being

captured. Also, as shown in Liu et al. [46], MGAN is quite

sensitive to the choice of K. By contrast, Self-Conditioned

GAN [46] clusters the space using the discriminator’s fi-

nal layer and uses the labels as self-supervised conditions.

However, in practice, their clustering does not seem to be

reliable (e.g., in terms of NMI for labeled datasets), and the

features highly depend on the choice of the discriminator’s

architecture. In addition, there is no guarantee that the gener-

ators will be guided to generate from their assigned clusters.

GAN-Tree [40] uses hierarchical clustering to address con-

tinuous multi-modal data, with the number of parameters

increasing linearly with the number of clusters. Thus it is

limited to very few cluster numbers (e.g., 5) and can only

capture a few modes.

Another recently expanding direction explores the benefit

of using image augmentation techniques for generative mod-

eling. Some works simply augment the data using various

perturbations (e.g., random crop, horizontal flipping) [34].

Others [9, 49, 84] incorporated regularization on top of the

augmentations, for example CRGAN [83] enforces consis-

tency for different image perturbations. ADA [32] processes

each image using non-leaking augmentations and adaptively

tunes the augmentation strength while training. These works

are orthogonal to ours and can be combined with our method.

4. Method

This section first describes how GANs are trained on a par-

titioned space using a mixture of generators/discriminators

and the unified objective function required for this goal. We

then explain our differentiable space partitioner and how we

guide the generators towards the right region. We conclude

the section by making connections to supervised GANs,

which use an auxiliary classifier [56, 59].

Multi-generator/discriminator objective: Given a par-

titioning of the space, we train a generator (Gi) and a discrim-

inator (Di) for each region. To avoid over-parameterization

and allow information sharing across different regions, we

employ parameter sharing across different Gi (Di)’s by tying

their parameters except the input (last) layer. The mixture of

these generators serves as our main generator G. We use the

following objective function to train our GANs:

kX

i

πi



min
Gi

max
Di

V (Di, Gi, Ai)

�

(1)

where A1, A2, ..., Ak be a partitioning of the space, πi :=
pdata(x 2 Ai) and:

V (D,G,A) =E
x⇠pdata(x|x2A)[logD(x)] +

E
z⇠pz(z|G(z)2A)[log(1�D(G(z)))] (2)

We motivate this objective by making connection to the

Jensen–Shannon distance (JSD) between the distribution of

our mixture of generators and the data distribution in the

following Theorem.

Theorem 2. Let P =
Pk

i πipi , Q =
Pk

i πiqi , and

A1, A2, ..., AK be a partitioning of the space, such that the

support of each distribution pi and qi is Ai. Then:

JSD(P k Q) =
X

i

πiJSD(pi k qi) (3)
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4.1. Partition GAN

Space Partitioner: Based on Theorem 1, an ideal space

partitioner should place disjoint data manifolds in different

partitions to avoid mode connecting (and consequently mode

collapse). It is also reasonable to assume that semantically

similar data points lay on the same manifold. Hence, we

train our space partitioner using semantic embeddings.

We achieve this goal in two steps: 1) Learning an

unsupervised representation for each data point, which is

invariant to transformations that do not change the semantic

meaning. 2) Training a partitioner based on these features,

where data points with similar embeddings are placed in

the same partition.

Learning representations: We follow the self-supervised

literature [7, 8, 24] to construct image representations.

These methods generally train the networks via maximiz-

ing the agreement between augmented views (e.g., random

crop, color distortion, rotation, etc.) of the same scene, while

minimizing the agreement of views from different scenes.

To that end, they optimize the following contrastive loss:

X

(i,j)2P

log
exp(sim(hi,hj)/τ)

P2N
k=1 1k 6=i exp(sim(hi,hk)/τ)

(4)

where h is the embedding for image x, (i, j) is a positive

pair (i.e., two views of the same image) and (i, k) refers to

negative pairs related to two different images. We refer to

this network as pretext, implying the task being solved is

not of real interest but is solved only for the true purpose of

learning a suitable data representation.

Learning partitions: To perform the partitioning step, one

can directly apply K-means on these semantic representa-

tions. However, this may result in degenerated clusters where

one partition contains most of the data [6, 74]. Inspired by

Van Gansbek et al. [74], to mitigate this challenge, we first

make a k-nearest neighbor graph G = (V, E) based on the

representations h of the data points. We then train an un-

supervised model that motivates connected points to reside

in the same cluster and disconnected points to reside in dis-

tinct clusters. More specifically, we train a space partitioner

S : Rd ! [0, 1]k to maximize:

X

(i,j)2E

log
�
S(xi)

T · S(xj)
�
�

α
X

i2V

HC(S(xi))) + βHC(
X

i2V

S(xi)

N
) (5)

where HC(.) is the entropy function of the categorical dis-

tribution based on its probability vector. The first term in

Equation 5 motivates the neighbors in G to have similar class

probability vectors, with the log function used to signifi-

cantly penalize the classifier if it assigns dissimilar prob-

ability vector to two neighboring points. The last term is

designed to avoid placing all the data points in the same

category by motivating the average cluster probability vector

to be similar to the uniform distribution. The middle term

is intended to promote the probability vector for each data

point to significantly favor one class over the other. This way,

we can be more confident about the cluster id of each data

point. Furthermore, if the average probability of classes has a

homogeneous mean (because of the last term), we can expect

the number of data points in each class to not degenerate.

To train S efficiently, both in term of accuracy and compu-

tational complexity, we initialize S using the already trained

network of unsupervised features. More specifically, for:

h = W pretext
2 σ(W pretext

1 φ0(x))

we initialize S as follows:

Sinit(x) = softmax(W partitioner
0 φ0(x))

where σ is an activation function, and W partitioner
0 is a ran-

domly initialized matrix; we ignore the bias term here for

brevity. We drop the sub index 0, from W partitioner
0 and φ0 to

refer to their post-training versions. Given a fully trained S,

each point x is assigned to partition Ai, based on the argmax

of the probability vector of S(x).

4.2. Partition-Guided GAN

In this section we describe the design of guide and its

properties. As stated previously, we want to guide each

generator Gi to its designated region Ai by penalizing it the

farther its current generated samples are from Ai.

A simple, yet effective proxy of measuring this distance

can be attained using the already trained space partitioner.

Let fis denote the partitioner’s last layer logits, expressed as

[f1(x), . . . , fk(x)]
T := W partitionerφ(x).

and define the desired distance as:

Ri(x) :=
X

c

(fc(x)� fi(x))+ (6)

Property 1. It is easy to show that for any generated

sample x, Ri(x) achieves a larger value, the less likely S
believes x to be from partition Ai. This is clear from how

we defined Ri, the more probability mass S(x) assigns any

class c 6= i, the larger the value of Ri(x).
Property 2. It is also straightforward to see that Ri(x) is

always non-negative and obtains its minimum (zero) only on

the Ai
th partition:

x 2 Ai () fi(x) � fc(x); 8c 2 [1 : k]

() Ri(x) =
X

c

(fc(x)� fi(x))+ = 0 (7)
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Therefore, we guide each generator Gi to produce sam-

ples from its region by adding a penalization term to its

canonical objective function:

min
Gi

nX

j=1

log(1�Di(Gi(z
(j)))))

+λ
X

j

Ri(Gi(z
(j)))/n. (8)

Intuitionally, Gi needs to move its samples towards parti-

tion Ai in order to minimize the newly added term. Fortu-

nately, given the differentiability of Ri(.) with respect to its

inputs and Property 1, Ri can provide the direction for Gi

to achieve that goal.

It is also worth noting that Ri should not interfere with the

generator/discriminator as long as Gi’s samples are within

Ai. Otherwise, this may lead to the second term favoring

parts of Ai over others and conflicting with the discriminator.

Property 2 assures that learning the distribution of pdata over

Ai remains the responsibility of Di. We also use this metric

to ensure each trained generator Gi only draws samples from

within its region by only accepting samples with Ri(x) being

equal to zero.

A critical point left to consider is the possibility of Gi

getting fooled to generate samples from outside Ai, by

falling in local optima of Ri(x). In the remaining part of

this section, we will explain how the architecture design of

the space partitioner S avoids this issue. In addition, it will

also guarantee the norm of the gradient provided by Ri to

always be above a certain threshold.

Avoiding local optima: We can easily obtain a guide Ri

with no local optima, if achieving a good performance for the

partitioner was not important. For instance, a simple single-

linear-layer neural network as S would do the trick. The

main challenge comes from the fact that we need to perform

well on partitioning 1, which usually requires deep neural

networks while avoiding local optima. We fulfill this goal

by first finding a sufficient condition to have no local optima

and then trying to enforce that condition by modifying the

ResNet [25] architecture.

The following theorem states the sufficient condition:

Theorem 3. Let φ(x) : Rd ! R
d be a C1 (differentiable

with continuous derivative) function, W partitioner 2 R
k⇥d,

and Ri as defined in Eq 6. If there exists c0 > 0, such that:

8x,y 2 R
d, c0||x� y|| ||φ(x)� φ(y)||,

then for every i 2 [1 : k], every local optima of Ri is a

global optima, and there exists a positive constant b0 > 0
such that:

8x 2 R
d \Ai, b0  ||rRi(x)||

1Accuratly put different manifolds in different partitions.

LeakyReLU

Partition
Guide

Softmax

Partition ID
ELU

ELU

Reshape

Figure 2: Diagram of proposed partitioner and guide. We employ

spectral normalization for each convolutional layer to make each

layer (as a function) have Lipschitz constant of less than one. The

details of our architecture is provided in the Appendix.

where Ai = {x|x 2 R
d, Ri(x) = 0}. Furthermore Ai is a

connected set for all i’s.

The proof is provided in the Appendix. Next we describe

how to satisfy this constraint in practice.

Motivated by the work of Behrmann et al. [3] who design

an invertible network without significantly sacrificing their

classification accuracy, we implement φ by stacking several

residual blocks, φ(x) = BT �BT�1 � · · · �B1(x), where:

Bt+1(x
(t)) = x(t+1) := x(t) + ψt(x

(t))

and x(t) refers to the out of the tth residual block. Figure 2,

gives an overview of the proposed architecture.

We model each ψt as a series of m convolutional layers,

each having spectral norm L < 1 intertwined by 1-Lipschitz

activation functions (e.g., ELU, ReLU, LeakyReLU). Thus

it can be easily shown for all x(t),y(t) 2 R
d:

(1� Lm)||x(t) � y(t)|| ||Bt(x
(t))�Bt(y

(t))||.

This immediately results in the condition required in Theo-

rem 3 by letting c0 := (1� Lm).

4.3. Connection to supervised GANs

In this section, we make a connection between our unsu-

pervised GAN and some important work in the supervised

regime. This will help provide better insight into why the

mentioned properties of guide are important. Auxiliary Clas-

sifier GAN [59] has been one of the well-known supervised

GAN methods which uses the following objective function:

min
G,C

max
D

LAC(G,D,C) =

E
X⇠PX

[logD(X)] + E
Z⇠PZ ,Y⇠PY

[log(1�D(G(Z, Y )))]

| {z }

a�

� λc E
(X,Y )⇠PXY

[logC(X,Y )]

| {z }

b�

�λc E
Z⇠PZ ,Y⇠PY

[log(C(G(Z, Y ), Y ))]

| {z }

c�
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It simultaneously learns an auxiliary classifier C as well

as D/G. Other works have also tried fine-tuning the genera-

tor using a pre-trained classifier [56]. The term a is related

to the typical supervised conditional GAN, term b motivates

the classifier to better classify the real data. The term c
encourages G to generate images for each class such that

the classifier considers them to belong to that class with

a high probability.

The authors motivate adding this term as it can provide

further gradient to the generator G(·|Y ) to generate samples

from the correct region PX(·|Y ). However, recent works [18,

68] show this tends to motivate G to down-sample data

points near the decision boundary of the classifier. It has also

been shown to reduce sample diversity and does not behave

well when the classes share overlapping regions [18].

Our space partitioner acts similar to the classifier in these

GANs, with the term c sharing some similarity with our pro-

posed guide. In contrast, our novel design of Ri(·) enjoys

the benefits of the classifier based methods (providing gra-

dient for the generator) but alleviates its problems. Mainly

because 1) It provides gradient to the generator to generate

samples from its region. At the same time, due to having

no local optima (only global optima), it does not risk the

generator getting stuck where it is not supposed to. 2) Within

regions, our guide does not mislead the generator to favor

some samples over others. 3) Since the space partitioner

uses the partition labels as “class” id, it does not suffer from

the overlapping classes problem, and naturally, it does not

require supervised labels.

We believe our construction of the modified loss can also

be applied to the supervised regime to avoid putting the data

samples far from the boundary. In addition, combining our

method with the supervised one, each label itself can be

partitioned into several segments. We leave the investigation

of this modification to future research.

5. Experiments

This section provides an empirical analysis of our

method on various datasets2. We adopt the architecture of

SN-GAN [55] for our generators and discriminators. We

use a Lipschitz constant of 0.9 for our space partitioner that

consists of 20 residual blocks, resulting in 60 convolutional

layers. We use Adam optimizer [38] to train the proposed

generators, discriminators, and space partitioner, and use

SGD for training the pretext model. Please refer to the

Appendix for complete details of hyper-parameters and

architectures used for each component of our model.

Datasets and evaluation metrics We conduct extensive

experiments on CIFAR-10 [39] and STL-10 [12] (48⇥48),

2 The code to reproduce experiments is available at https://

github.com/alisadeghian/PGMGAN

Figure 3: Left/right: the graph of −Ri(x) with/without assumption

on the architecture, where the data points of the i
th partition are

shown in red.

Figure 4: Left/right: visual comparison of generated samples on

the 2D-grid dataset using PGMGAN, with/without architecture

restriction for the space partitioner. The red/blue points illustrate

the real/generated data samples. In the right plot, some modes are

missed and their corresponding generators focus on the wrong area.

two real image datasets widely used as benchmarks for im-

age generation. To see how our method fares against large

dataset, we also applied our method on ILSVRC2012 dataset

(ImageNet) [63] which were downsampled to 128⇥128⇥3.

To evaluate and compare our results, we use Inception Score

(IS) [66] and Frechet Inception Distance (FID) [26]. It has

been shown that IS may have many shortcomings, especially

on non-ImageNet datasets. FID can detect mode collapse to

some extent for larger datasets [4, 48, 65]. However, since

FID is not still a perfect metric, we also evaluate our models

using reverse-KL which reflects both mode dropping and

spurious modes [48]. All FIDs and Inception Scores (IS) are

reported using 50k samples. No truncation trick is used to

sample from the generator.

We also conduct experiments on three synthetic datasets:

Stacked-MNIST [45, 46, 69] that has up to 1000 modes,

produced by stacking three randomly sampled MNIST [41]

digits into the three channels of an RGB image, and the

2D-grid dataset described in Section 5.1 as well as 2D-ring

dataset. The empirical results of the two later datasets are

presented in the Appendix.

5.1. Toy dataset

This section aims to illustrate the importance of having a

proper guide with no local optima. We also provide intuition

about how our method helps GAN training. To that end, we

use the canonical 2D-grid dataset, a mixture of 25 bivariate

Gaussian with identical variance, and means covering the

vertices of a square lattice.
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Stacked MNIST CIFAR-10

Modes

(Max 1000)
" Reverse KL # FID # IS " Reverse KL #

GAN [20] 133.4± 17.70 2.97± 0.216 28.08± 0.47 6.98± 0.062 0.0150± 0.0026
PacGAN2 [45] 1000.0 ± 0.00 0.06± 0.003 27.97± 0.63 7.12± 0.062 0.0126± 0.0012
PacGAN3 [45] 1000.0 ± 0.00 0.06± 0.003 32.55± 0.92 6.77± 0.064 0.0109± 0.0011
PacGAN4 [45] 1000.0 ± 0.00 0.07± 0.005 34.16± 0.94 6.77± 0.079 0.0150± 0.0005
Logo-GAN-AE [64] 1000.0 ± 0.00 0.09± 0.005 32.49± 1.37 7.05± 0.073 0.0106± 0.0005
Self-Cond-GAN [46] 1000.0 ± 0.00 0.08± 0.009 18.03± 0.55 7.72± 0.034 0.0015± 0.0004
Random Partition ID 570± 14.05 1.23± 0.352 22.57± 0.59 7.47± 0.051 0.0074± 0.0008
Partition GAN (Ours) 1000.0 ± 0.00 0.02 ± 0.005 10.69± 0.33 8.52± 0.075 0.0005± 0.0002
PGMGAN (Ours) 1000.0 ± 0.00 0.02 ± 0.003 8.93 ± 0.38 8.81 ± 0.101 0.0004 ± 0.0001

Logo-GAN-RC [64] 1000.0 ± 0.00 0.08± 0.006 28.83± 0.43 7.12± 0.047 0.0091± 0.0001
Class-conditional GAN [54] 1000.0 ± 0.00 0.08± 0.003 23.56± 2.24 7.44± 0.080 0.0019± 0.0001

Table 1: Performance comparison of the unsupervised (above midline)/supervised (below midline) image generation methods on the Stacked

MNIST and CIFAR-10 datasets. The number of recovered modes, reverse KL, FID, and IS are used as the evaluation metrics. We report the

means and standard deviations over five random initializations. For CIFAR-10, all methods recover all 10 modes. Results of the compared

models are quoted from Liu et al. [46]

For this toy example the data points are low dimensional,

thus we skip the feature learning step and directly train the

space partitioner S. We train our space partitioner using two

different architectures: one sets its neural network architec-

ture to a multi-layer fully connected network with ReLU

activations, while the other follows the properties of architec-

ture construction in Section 4.2. Once the two networks are

trained, both successfully learn to put each Gaussian com-

ponent in a different cluster, i.e., both get perfect clustering

accuracy. Nonetheless, the guide functions obtained from

each architecture behave significantly different.

Figure 3 provides the graph of �Ri(x) for the two space

partitioners, where i is the partition ID for the red Gaussian

data samples in the corner. The right plot shows that �Ri(x)
can have undesired local optima when the conditions of

Section 4.2 are not enforced. Therefore, a universal reliable

gradient is not provided to move the data samples toward

the partition of interest. On the other hand, when the guide’s

architecture follows these conditions (left plot), taking the

direction of r�Ri(x) guarantees reaching to partition i.

Figure 4 shows the effect of both these guides in the

training of our mixture of generators using Equation 8. As

shown, when Ri has local optima, the generator of that re-

gion may get stuck in those local optima and miss the desired

mode. As shown in Liu et al. [46] and the Appendix, GANs

trained with no guide also fail to generate all the modes in

this dataset. Furthermore, in contrast to standard GANs, we

don’t generate samples from the space between different

modes due to our partitioning and mixture of generators, mit-

igating the mode connecting problem. We provide empirical

results for this dataset in the Appendix.

5.2. Stacked-MNIST, CIFAR-10 and STL-10

In this section, we conduct extensive experiments to eval-

uate the proposed Partition-Guided Mixture of Generators

(PGMGAN) model. We also quantify the performance gains

for the different parts of our method through an ablation

study. We randomly generated the partition labels in one

baseline to isolate the effect of proper partitioning from the

architecture choice of Gi/Di’s. We also ablate the benefits

of the guide function by making a baseline where λ = 0. For

all experiments, we use k = 200 unless specified otherwise.

Tables 1 and 2 presents our results on Stacked MNIST,

CIFAR-10 and STL-10 respectively. From these tables, it

is evident how training multiple generators using the space

partitioner allows us to significantly outperform the other

benchmark algorithms in terms of all metrics. Comparing

Random Partition ID to Partition+GAN clearly shows the

importance of having an effective partitioning in terms of

performance and mode covering. Furthermore, the substan-

tial gap between PGMGAN and Partition+GAN empirically

demonstrates the value of utilizing the guide term.

Table 2: Unsupervised image generation results on STL-10. The

results of all compared method are taken from Tian et al. [72]

STL-10

FID # IS "

D2GAN [58] - 7.98

DFM [78] - 8.51

ProbGAN [23] 46.74 8.87

SN-GAN [55] 40.15 9.10

Dist-GAN [73] 36.19 -

MGAN [27] - 9.22

Improved MMD [76] 37.63 9.34

AGAN [75] 52.75 9.23

AutoGAN [19] 31.01 9.16

E2GAN [72] 25.35 9.51

Partition GAN (Ours) 26.28 10.35

PGMGAN (Ours) 19.52 11.16
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We first perform overall comparisons against other recent

GANs. As shown in Table 2, PGMGAN achieves state-of-

the-art FID and IS on the STL-10 dataset. Furthermore,

PGMGAN outperforms several other baseline models, even

over supervised class-conditional GANs, on both CIFAR-10

and Stacked-MNIST, as shown in Table 1. The significant

improvements of FID and IS reflect the large gains in diver-

sity and image quality on these datasets.

Following Liu et al. [46], we calculate the reverse KL

metric using pre-trained classifiers to classify and count the

occurrences of each mode for both Stacked-MNIST and

CIFAR-10. These experiments and comparisons demon-

strate that our proposed guide model effectively improves

the performance of GANs in terms of mode collapse.

5.3. Image generation on unsupervised ImageNet

To show that our method remains effective on a larger

more complex dataset, we also evaluated our model on unsu-

pervised ILRSVRC2012 (ImageNet) dataset which contains

roughly 1.2 million images with 1000 distinct categories;

we down-sample the images to 128⇥128 resolution for the

experiment. We use k = 1000 and adopt the architecture of

BigGAN [5] for our generators and discriminators. Please

see the Appendix for the details of experimental settings.

Our results are presented in Table 3. To the best of our

knowledge, we achieve a new state of the art (SOTA) in

unsupervised generation on ImagNet.

Table 3: FID and Inception Score (IS) metrics for unsupervised

image generation on ImageNet at resolution 128×128. The results

of all compared methods are taken from Liu et al. [46]

ImageNet

FID # IS "

GAN [20] 54.17 14.01

PacGAN2 [45] 57.51 13.50

PacGAN3 [45] 66.97 12.34

MGAN [27] 58.88 13.22

RotNet Feature Clustering 53.75 13.76

Logo-GAN-AE [64] 50.90 14.44

Self-Cond-GAN [46] 40.30 15.82

PGMGAN (Ours) 21.73 23.31

5.4. Parameter sensitivity

Additionally, we study the sensitivity of our overall

PGMGAN method to the choice of guide’s weight λ (Eq. 8),

and number of clusters k. Figure 5 shows the results with

varying initial value of λ, demonstrating that our method

is relatively robust to the choice of this hyper-parameter.

Linear annealing has been done during training. Next, we

change k for a initial λ = 6.0 and report the results in

Table 4. we observe that our method performs well for a

wide range of k.

Table 4: Effect of number of partitions (k) on PGMGAN perfor-

mance. Results are averaged over five random trials, with standard

error reported.

CIFAR-10

FID # IS "

GAN [20] 28.08± 0.47 6.98± 0.06
PGMGAN (k = 50) 9.27± 0.45 8.69± 0.07
PGMGAN (k = 100) 8.97± 0.33 8.75± 0.05
PGMGAN (k = 200) 8.93± 0.38 8.81± 0.10

Class Conditional GAN [54] 23.56± 2.24 7.44± 0.08

Figure 5: Effect of changing the guide’s weight λ in equation 8 on

PGMGAN performance. λ = 0 corresponds to the partition+GAN.

6. Conclusion

We introduce a differentiable space partitioner to allevi-

ate the GAN training problems, including mode connecting

and mode collapse. The intuition behind how this works

is twofold. The first reason is that an efficient partitioning

makes the distribution on each region simpler, making its

approximation easier. Thus, we can have a better approxi-

mation as a whole, which can alleviate both mode collapse

and connecting problems. The second intuition is that the

space partitioner can provide extra gradient, assisting the

discriminator in training the mixture of generators. This is

especially helpful when the discriminator’s gradient is unre-

liable. However, it is crucial to have theoretical guarantees

that this extra gradient does not deteriorate the GAN training

convergence in any way. We identify a sufficient theoretical

condition for the space partitioner (in the functional space),

and we realize that condition empirically by an architecture

design for the space partitioner. Our experiments on natural

images show the proposed method improves existing ones

in terms of both FID and IS. For future work, we would like

to investigate using the space partitioner for the supervised

regime, where each data label has its own partitioning. De-

signing a more flexible architecture for the space partitioner

such that its guide function does not have local optima is

another direction we hope to explore.
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