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Abstract

Incorporating the natural document-sentence-word structure into hierarchical
Bayesian modeling, we propose convolutional Poisson gamma dynamical sys-
tems (PGDS) that introduce not only word-level probabilistic convolutions, but
also sentence-level stochastic temporal transitions. With word-level convolutions
capturing phrase-level topics and sentence-level transitions capturing how the topic
usages evolve over consecutive sentences, we aggregate the topic proportions of
all sentences of a document as its feature representation. To consider not only
forward but also backward sentence-level information transmissions, we further
develop a bidirectional convolutional PGDS to incorporate the full contextual
information to represent each sentence. For efficient inference, we construct a
convolutional-recurrent inference network, which provides both sentence-level
and document-level representations, and introduce a hybrid Bayesian inference
scheme combining stochastic-gradient MCMC and amortized variational inference.
Experimental results on a variety of document corpora demonstrate that the pro-
posed models can extract expressive multi-level latent representations, including
interpretable phrase-level topics and sentence-level temporal transitions as well
as discriminative document-level features, achieving state-of-the-art document
categorization performance while being memory and computation efficient.

1 Introduction

How to represent documents to capture their underlying semantic structures is a key research problem
in text analysis and language modeling [1–4]. It has been a long-standing challenge to capture
long-range dependency in sequential data, especially for the word sequences of long documents that
take discrete values for a large vocabulary. A simple remedy that helps capture long-range word
dependency, but at the expense of sacrificing local structure, is to simplify the representation of
each document as a bag of words (BoW) that ignores word order. Under this simplified BoW text
representation, probabilistic topic models, such as latent Dirichlet allocation (LDA) [5, 6], Poisson

∗Equal Contribution.
†Corresponding Author.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



factor analysis (PFA) [7], and their various generalizations [7–11], have been widely deployed for
text analysis, providing semantically meaningful latent representations. Vanilla topic models usually
assume that each word is generated from a topic, characterized by a specific distribution over the terms
in the vocabulary. Extracting a set of latent topics from a corpus, they characterize each document
with its proportion over these topics. To enhance their modeling power and interpretability of vanilla
topics models, which often have a single stochastic layer, a variety of deep generalizations with
multiple stochastic layers have been proposed [12–19]. Despite providing improvement, their ultimate
potentials have been limited by their use of BoW that completely ignores word local structure.

To remedy the loss of word order, Wang et al. [20] propose convolutional PFA (CPFA) as a
convolutional generalization of PFA [7], extracting phrase-level (i.e., n-gram) rather than word-level
topics, where the number of words in each phrase is determined by the convolutional filter size that is
typically set as n = 3. However, CPFA still ignores sentence order, limiting its power in capturing
longer-range dependency beyond the filter size.

Treating text as word sequences, deep neural networks, such as convolutional neural networks (CNNs)
[21–24] and recurrent neural networks (RNNs) [25–27], are wildly used to learn text representations
[1, 28]. To efficiently capture long-distance relationships and obtain more expressive representations,
there is a recent trend to construct a hierarchical language model [29–33] that models each document
as a sequence of sentences, and each sentence as a sequence of words, achieving promising results
in learning good document representations for down-stream tasks. For example, Tang et al. [31]
employ CNNs/RNNs [34] to extract sentence representations, and summarize them into a document
representation with another temporal architecture that models the sentence-level transitions. Yang et
al. [32] introduce attention mechanism into the hierarchical language structure of Tang et al. [31]
to further improve its classification performance. Moreover, the widely used Bidirectional Encoder
Representations from Transformers (BERT) [35] has been extended in a hierarchical fashion to
hierarchical BERT (HIBERT) for document summarization [29]. However, many of these deep
neural network based methods need pretrain with a large amount of extra text data, followed by
downstream task-specific finetune, to achieve good performance, and it is still often a challenge for
these black-box methods to visualize and explain the semantic meanings learned by them.

Moving beyond the constraints of previous work, we represent each document as a sequence of
sentences, each sentence as a sequence of word tokens, and each word token as a one-hit vector of
dimension V , where V is the vocabulary size. This provides a lossless representation of a corpus
that respects the natural semantic structure of each document. Under such a lossless representation,
we first propose convolutional Poisson gamma dynamical system (conv-PGDS) that adopts proba-
bilistic convolutional structure [7, 20] to extract phrase-level features and models the inter-sentence
dependency by a dynamical network. To exploit the sentence order, we further employ a bidirec-
tional setting on our model and propose bidirectional conv-PGDS (bi-conv-PGDS). For scalable
training and fast out-of-sample prediction, we integrate a stochastic gradient MCMC [36–40] and
a convolutional-recurrent variational inference network to perform posterior inference. We further
propose an attention bi-conv-PGDS (attn-bi-conv-PGDS) for supervised learning, combining the
representation power of bi-conv-PGDS, discriminative power of deep neural networks, and selection
power of the attention mechanism [32, 41, 42] under a principled probabilistic framework. On a
variety of text corpora, we show the proposed models can not only capture long-distance relationships
by exploiting the natural hierarchical structure inside each document, but also inherit various virtues
of probabilistic topic models. The main contributions of this work are summarized as follows:

• Leveraging both word and sentence order, we propose conv-PGDS and its bidirectional generation,
bi-conv-PGDS, to incorporate the document-sentence-word hierarchical structure into Bayesian
hierarchical modeling. They capture both intra-sentence structure with convolution and inter-
sentence dependency with gamma Markov chains. To the best of our knowledge, bi-conv-PGDS is
the first unsupervised bidirectional hierarchical probabilistic model for document modeling.

• To achieve scalable training and fast testing, we perform Bayesian inference by combining stochas-
tic gradient-MCMC (SG-MCMC) and convolutional-recurrent variational inference networks.

• We develop a supervised version of bi-conv-PGDS for document categorization and incorporate
attention mechanism into it to further enhance its performance.

• Without requiring expensive pretrain on huge extra data, our models achieve state-of-the-art results,
with low memory requirement and fast computation, in a variety of document modeling tasks.
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2 Convolutional dynamical systems for document modeling

We first present conv-PGDS that integrates the convolutional components of CPFA [20] to model
intra-sentence structure, dynamic components of PGDS [43] to model inter-sentence dependency, and
a probabilistic pooling operation, which handles sentences of different lengths, into a well-defined
generative model for document analysis. We then add a bidirectional generalization. To help better
understand the hierarchical model, we summarize the notations in Table 4 in Appendix.

2.1 Convolutional Poisson gamma dynamical systems

Denote Dj = {Xj1, ...,XjTj
} as the jth document with Tj sentences andXjt =

[
xjt1, ...,xjtLjt

]
as its tth sentence of length Ljt, where xjtl is the lth word token in this sentence represented with a
one-hot vector as xjtl = (xjtl1, . . . , xjtlV )′ ∈ {0, 1}V , with xjtlv = 1 if and only if token l matches
term v of the vocabulary of size V . Distinct from CPFA that considers word order but ignores
sentence order, we propose conv-PGDS that not only captures the internal temporal structures of
each sentence using convolution, but also models the information transmissions between consecutive
sentences using a gamma Markov chain. The generative process of conv-PGDS is expressed as

wj1k ∼ Gam(τ0vk, 1/τ0) ,wjtk ∼ Gam
(
τ0(Πk:

∑Sj,t−1

s=1
wj,t−1,:s/Sj,t−1)1Sjt , 1/τ0

)
,

Xjt = 1 (M jt > 0) ,M jt ∼ Pois
(
δjt
∑K

k=1
Dk ∗wjtk

)
,Dk (:) ∼ Dir (η1V F ) ,

(1)

as described in detail below. Conv-PGDS factorizes each sentence Xjt =
[
xjt1, . . . ,xjtLjt

]
∈

{0, 1}V×Ljt , represented with Ljt sequential one-hot vectors, under the Bernoulli-Poisson link [44].
It definesXjt by thresholding count matrixM jt ∈ {0, 1, 2, . . .}V×Ljt that is factorized under the
Poisson likelihood. It uses δjt > 0 as a sentence-specific scaling factor andDk = (dk1, . . . ,dkF ) ∈
RV×F+ as the kth convolutional filter (i.e., F -gram phrase-level topic), whose filter size is F and
vectorized form isDk(:) =

(
d′k1, . . . ,d

′
kF

)′ ∈ RV F+ . A Dirichlet prior is used to impose a simplex
constraint on Dk(:). We denote the convolutional representation of sentence t in document j as
W jt = (wjt1, ...,wjtK)′ ∈ RK×Sjt

+ , where wjtk ∈ RSjt

+ is the feature map of sentence t under
topic k, and Sjt := Ljt − F + 1 varies with the sentence length Ljt. To capture the semantic or
syntactic relations between the sentences in a document, which is often a challenging task [31],
we assumewjt to be gamma distributed and factorize its shape parameters using transition matrix
Π ∈ RK×K+ , which captures cross-sentence temporal dependence, and the average pooling of the
feature representation of sentence t− 1, expressed as

∑Sj,t−1

s=1 wj,t−1,:s/Sj,t−1. We denote Πk: as
the kth row of Π and wj,t−1,:s as the sth column ofW j,t−1. Distinct from traditional deterministic
feedforward pooling operations, which cut off the backward message passing, the probabilistic pooling
layers in conv-PGDS can be trained jointly with the whole network, which enables the inter-sentence
information transitions to influence {wjt}Tt=1, the intra-sentence convolutional representations.
Inspired by related temporal construction [43], which uses a (truncated) gamma process and the
interactions of its atom weights to define a well-regularized transition matrix with tractable inference,
we introduce K factor weights v = (v1, . . . , vK) to model the strength of each component and let

πk ∼ Dir
(
v1vk, . . . , ξvk, . . . , vKl

vk
)
, vk ∼ Gam (γ0/K, 1/β) , (2)

where πk = (π1k, . . . , πKk)
′ is the kth column of Π and πk1k can be interpreted as the strength of

transitioning from topic k to topic k1. To complete the model, we let δjt, ξ, β ∼ Gam(ε0, 1/ε0).

Similar to CPFA [20], conv-PGDS extracts both global cooccurrence patterns and local temporal
structures by forming F -gram phrase-level topics into Dk, such as “how do you” and “microsoft
email address” when F = 3. Distinct from CPFA, it extracts Π to model temporal dependence across
sentences, capturing the transition patterns between the topics exhibited by consecutive sentences
(e.g., if “how do you” is an active topic in a sentence, then it is likely to activate its next sentence
to exhibit topic “I am fine”). In conv-PGDS, embedded into the sentence-level featurewjt are both
phrase-level information of sentence t and transition information of sentences 1 to t− 1.

To summarize, conv-PGDS models both word order, by convolving over sequentially ordered one-hot
word vectors, and sentence order, by adding dependency between the latent features of consecutive
sentences. Note conv-PGDS reduces to CPFA [20] if ignoring its gamma Markov chain that models
sentence order, and to PGDS [43] if removing both the convolution and pooling operations.
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Figure 1: (a): Overview of bi-conv-PGDS with convolutional-recurrent variational inference network.
(b): Detailed structure of bi-conv-PGDS (left) and convolutional-recurrent variational inference
network (right).

2.2 Bidirectional convolutional Poisson gamma dynamical systems

We expand conv-PGDS in (1) to bidirectional conv-PGDS (bi-conv-PGDS), as shown in Fig. 1(b),
which is a bidirectional dynamical model trained using all available input information in both the
past and future of a specific time frame. The generative model of bi-conv-PGDS is expressed as

←
wjtk ∼ Gam

(
τ0(
←
Πk:

∑Sj,t+1

s=1
←
wj,t+1,:s/Sj,t+1)1Sjt , 1/τ0

)
,
←
wjTjk ∼ Gam

(
τ0
←
v k, 1/τ0

)
,

~wjtk ∼ Gam
(
τ0(~Πk:

∑Sj,t−1

s=1 ~wj,t−1,:s/Sj,t−1)1Sjt , 1/τ0
)
, ~wj1k ∼ Gam (τ0~vk, 1/τ0) ,

Xjt = 1 (M jt > 0) , M jt ∼ Pois
(
δt
(∑K

k=1 Dk ∗
(
~wjtk +

←
wjtk

)))
, Dk (:) ∼ Dir (η1V F ) ,

(3)

where ~wjt is the forward hidden feature map and ←wjt is the backward one. We letwjt = ~wjt +
←
wjt

to summarize the neighboring sentences around sentence t. To interpret the bidirectional temporal
relationship of the topicsDk in (3), we list the expected value ofM jt as

E
[
M jt|

{
D, ~wj,t−1,

←
wj,t+1, ~Π,

←
Π
}]

= D ∗
[
~Π
((
~wj,t−1,·

/
Sj,t−1

)
1Sjt

)]
+D ∗

[←
Π
((
←
wj,t+1,·

/
Sj,t+1

)
1Sjt

)]
,

which shows that due to the bidirectional dynamic structure, the expected value ofM jt is divided
into two parts: one from the forward feature representation, while the other from the backward one.

In addition, ~Π and
←
Π play the role of transiting the latent representations across sentences. Distinct

from conv-PGDS, wjt inferred by bi-conv-PGDS contains transition information of not only past
sentences 1→ t− 1, but also future ones t+ 1← Tj .

3 Bayesian inference and extensions to supervised learning

In this section, we first introduce a Gibbs sampling algorithm for bi-conv-PGDS and a corresponding
stochastic gradient MCMC algorithm for scalable inference. To make our models both fast in out-of-
sample prediction and easy to incorporate extra side information like document labels, we further
construct a novel Weibull distribution based convolutional-recurrent variational inference network. In
addition, we introduce a supervised learning component enhanced with attention modules, which can
be jointly trained with bi-conv-PGDS using a hybrid SG-MCMC and variational inference.

3.1 Gibbs sampling

By generalizing the variable augmentation and marginalization techniques related to the Poisson,
gamma, categorical, and Dirichlet distributions [7, 13], we propose a Gibbs sampling algorithm for
bi-conv-PGDS, with all update equations and their derivations deferred to the Appendix. Here we
note that the local variables of documents can be updated in parallel in each iteration, and the variable
augmentation operations for sentence representation learning can also be parallelized at the sentence
level. Thus the time cost of each Gibbs sampling iteration can be greatly reduced with Graphical
Process Units (GPUs). While the computation of the Gibbs sampler can be accelerated inside each
iteration, it requires processing all documents in each iteration and hence has limited scalability.
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For scalable inference, we update our global parameters by generalizing TLASGR-MCMC [17, 18],
a SG-MCMC algorithm that is developed to sample simplex-constrained global parameters in a
mini-batch learning setting and provide high sampling efficiency by preconditioning its gradient with
the Fisher information matrix. We defer the details to the Appendix.

3.2 Hybrid SG-MCMC and convolutional-recurrent autoencoding variational inference

Regardless of whether Gibbs sampling or TLASGR-MCMC is used, the need to perform a sampling
based iterative procedure at the testing time limits the efficiency of the model for out-of-sample predic-
tion. For the current model and inference, it is also difficult to incorporate the label information. As
in Fig. 1(a), to make our model fast in out-of-sample prediction, we develop a convolutional-recurrent
variational inference network to map the observation directly to its latent representations. Following
Zhang et al. [18], the Weibull distribution is used to approximate the gamma distributed conditional
posterior of ~wjt,

←
wjt. As illustrated in Fig. 1(b), we first introduce an autoencoding variational

distribution as q({~wjt,
←
wjt}

N,Tj

j=1,t=1) =
∏N
j=1

∏Tj

t=1 q (~wjt)
∏N
j=1

∏1
t=Tj

q
(
←
wjtjt

)
, specifically

q (~wjtk|−) = Weibull
(
~Σjtk + (~Πk:

∑Sj,t−1

s=1
~wj,t−1,:s

/
Sj,t−1)1Sjt ,

~Λjtk

)
,

q
(
←
wjtk|−

)
= Weibull

(←
Σjtk + (

←
Πk:

∑Sj,t+1

s=1
←
wj,t+1,:s

/
Sj,t+1)1Sjt ,

←
Λjtk

)
,

(4)

where ~Σjt,
←
Σjt,

~Λjt,
←
Λjt ∈ K×Sjt are the parameters of q(~wjt), q(←wjt). To exploit both intra-

sentence phrase-level structure and inter-sentence temporal dependencies, we generalize related
constructions in Guo et al. [27, 45] to develop a convolutional-recurrent variational inference
network, as shown in Fig. 1(b). The parameters above are deterministically transformed from the
observationXjt as

Hjt = relu (C1 ∗Xjt + b1) , ~hjt =
−−−→
GRU

(
pool

(
Hjt

))
,
←
hjt =

←−−−
GRU

(
pool

(
Hjt

))
,

~Σjt = exp
(
~C2 ∗ pad

(
Hjt + ~h

∗
jt

)
+ ~b2

)
,
←
Σjt = exp

(
←
C2 ∗ pad

(
Hjt +

←
h
∗

jt

)
+
←
b2

)
~Λjt = exp

(
~C3 ∗ pad

(
Hjt + ~h

∗
jt

)
+ ~b3

)
,
←
Λjt = exp

(
←
C3 ∗ pad

(
Hjt +

←
h
∗

jt

)
+
←
b3

) (5)

where b1,~b2,
←
b2,~b3,

←
b3 ∈ RK , C1 ∈ RK×V×F , ~C2,

←
C2, ~C3,

←
C3 ∈ RK×K×F . Hjt ∈ RK×Sjt ,

pad(·) denotes zero-padding, and pool(Hjt) ∈ RK denotes sentence-level average-pooling as
defined before. We denote

−−−→
GRU and

←−−−
GRU are the forward and backward part of the bidirectional

gated recurrent unit (GRU) [46] and ~hjt,
←
hjt ∈ RK . With Hjt + ~hjt and Hjt +

←
hjt, realize by

first broadcasting ~hjt and
←
hjt to match the dimension ofHjt, we fuse the intra-sentence structural

information and inter-sentence temporal dependencies, enabling the proposed convolutional-recurrent
variational inference network to learn rich latent representations for bi-conv-PGDS.

To train bi-conv-PGDS, we develop a hybrid SG-MCMC/autoencoding variational inference algorithm
by combining TLASGR-MCMC and our proposed convolutional-recurrent variational inference

network. Specifically, the global parameters {Dk}Kk=1, ~Π ,
←
Π will be sampled with TLASGR-

MCMC, while the parameters of the convolutional-recurrrent variational inference network, denoted
by Ω, will be updated via stochastic gradient descent (SGD) by maximizing the evidence lower
bound (ELBO) [47, 48]. The details are deferred to the Appendix.

3.3 Supervised attention bidirectional convolutional PGDS

To handle the document categorization task, we incorporate label supervision to extend bi-conv-PGDS
into supervised bi-conv-PGDS (su-bi-conv-PGDS). To further improve its categorization performance,
we combine it with the attention mechanism to develop supervised attention bi-conv-PGDS (attn-bi-
conv-PGDS). Specifically, similar to Long et al. [49], to extract phrases important to the meaning of
a sentence, we apply channel-wise attention in our latent feature representation of each sentence as

ujts = tanh (Wwwjt:s + bw) , αjts =
exp(uT

jtsuw)∑
t exp(uT

jtsuw)
, sjt =

∑
s αjtswjt:s (6)
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Table 1: Comparison of classification accuracy on unsupervisedly extracted features and runtime per iteration.

Methods Size Accuracy Time in seconds

Reuters ELEC IMDB-2 IMDB-10 Reuters ELEC IMDB-2 IMDB-10

LDA [5] 1000 69.2±1.8 75.7±1.8 78.5±1.7 28.6±1.3 18.06 16.91 28.94 29.61

DocNADE [50] 1000 74.6±0.9 80.4±1.2 81.2±1.3 30.0±0.7 10.17 10.36 14.02 14.73

DPFA [12] 1000 71.1±1.8 77.2±1.9 78.8±1.9 28.6±1.0 40.34 38.51 56.87 60.25
DPFA [12] 1000-500 71.1±1.7 77.8±1.8 79.0±1.7 28.9±0.9 41.68 40.01 58.14 62.31
DPFA [12] 1000-500-200 71.2±1.7 78.4±1.6 79.3±1.7 29.0±0.9 43.19 41.25 59.02 64.03

PGBN [13] 1000 72.0±1.4 78.5±1.5 79.7±1.6 29.2±0.8 19.89 18.45 30.72 31.47
PGBN [13] 1000-500 73.7±1.3 80.1±1.5 80.9±1.4 30.1±0.6 29.84 25.83 43.01 45.24
PGBN [13] 1000-500-200 74.8±1.2 80.9±1.3 81.2±1.4 31.0±0.6 33.81 31.45 49.15 52.50

WHAI [18] 1000 71.2±1.6 78.0±1.7 78.9±1.7 28.9±0.9 9.61 9.71 12.35 13.02
WHAI [18] 1000-500 72.7±1.5 79.5±1.6 79.8±1.5 29.7±0.9 12.23 12.58 17.03 17.69
WHAI [18] 1000-500-200 73.9±1.3 80.1±1.6 80.4±1.4 30.4±1.0 14.12 14.71 20.51 21.49

DPGDS [20] 1000 73.6±1.0 79.2±0.9 80.2±0.8 31.2±0.6 26.34 23.58 41.26 43.08
DPGDS [20] 1000-500 74.5±1.0 79.9±0.8 81.0±0.8 32.0±0.6 39.62 34.83 60.11 64.22
DPGDS [20] 1000-500-200 75.4±0.9 81.4±0.8 81.7±0.8 32.5±0.5 47.75 41.62 71.86 77.64

CPGBN [20] 1000 75.6±0.8 81.4±0.9 81.8±0.9 34.2±0.5 20.10 18.76 30.92 31.68
CPGBN [20] 1000-500 76.9±0.7 82.1±0.9 82.3±0.8 35.0±0.6 39.86 34.59 60.19 65.22
CPGBN [20] 1000-500-200 77.3±0.7 82.5±0.8 82.6±0.7 35.3±0.5 47.54 41.28 71.31 76.86

conv-PGDS 1000 77.4±0.8 83.1±0.9 83.3±0.9 37.2±0.4 27.50 24.09 41.47 43.21
bi-conv-PGDS 1000 78.0±0.7 84.5±0.8 84.0±0.8 37.9±0.4 28.99 25.16 43.41 45.80

To reward the sentences that provide important clues to correctly classify a document, we again use
attention mechanism to measure the importance of different sentences. This yields

ujt = tanh (W ssjt + bs) , αjt =
exp(uT

jtus)∑
t exp(uT

jtus)
, tj =

∑
t αjtsjt, (7)

where tj is a document-level feature vector that summarizes all the sentences of a document. Setting
the label probability vector as pj = (p1, ..., pC) = softmax(W ctj + bc), we adopt the cross-entropy
loss between the ground truth label distribution pgj and predicted label distribution pj as the training
loss: Lg = −

∑M
j=1

∑C
c=1 p

g
jc · log (pjc). Thus the loss function of the entire framework is modified

as L = −Lg + λLs, where Lg refers to the negative ELBO of the generative model, and λ > 0 is a
regularization hyper-parameter to balance data generation and label supervision and we set λ = 0.1
in our experiment.

4 Experiments

We evaluate the effectiveness of our model on five large corpora, including ELEC, IMDB-2, Reuters,
Yelp 2014, and IMDB-10, which are described in detail in the Appendix. We fix the hyperparameters
of our models as τ0 = 1, ε0 = 0.1, γ0 = 0.1, η = 0.05 for all experiments. Python (PyTorch) code is
provided at https://github.com/BoChenGroup/BCPGDS.

4.1 Unsupervised models

We first evaluate various models by extracting document representations in an unsupervised manner
and training a linear classifier on these unsupervisedly extracted document features. We compare
to a wide variety of topic models, including LDA [5], DocNADE [50], DPFA [12], PGBN [13],
WHAI [18] , DPGDS [51], and CPGBN [20], where only CPGBN takes one-hot word sequences
as its input, while all the others directly operate on BoW vectors that ignore word order. To make
a fair comparison, we adopt comparable multilayer structures across all methods and set the same
convolutional filter width F = 3 for both CPGBN and our models.

We list in Table 3 the network structures of various methods and their corresponding results, which
are either quoted from the original papers or reproduced with the code provided by the authors. Given
the same network structure, models with BoW input are shown to underperform those with one-hot
vector input, suggesting the importance of the convolutional operation that helps leverage the word
order information. Conv-PGDS and bi-conv-PGDS both provide clear improvement over CPGBN,
suggesting the importance of capturing inter-sentence dependencies. Incorporating the contextual
information into sentence representations that are then aggregated, bi-conv-PGDS extracts more ex-
pressive document-level features, as suggested by its consistent improvement over conv-PGDS and all
basline methods. For computational complexity, we also report the average run time of each iteration
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Figure 2: Three example transition relations between topics from ELEC learned by conv-PGDS (better
understood together with Fig. 3). Representative phrases are highlighted in bold.

for all methods. Handling each document parallelly and accelerating Gibbs sampling procedure with
GPU, our models outperform other non-dynamic models with a comparable, or even less, computa-
tional burden. In addition to quantitative evaluation, we also visualize the inferred convolutional filters
and transition matrices of conv-PGDS, showing the advantages of the proposed Bayesian models
over existing “black-box” deep neural networks in terms of having interpretable latent structures.
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Figure 3: Transition matrix Π
for top 15 topics from ELEC
learned by conv-PGDS.

As shown in Fig .3, from the full transition matrix Π learned from
ELEC, we visualize the transitions between the 15 most frequently
used convolutional filters. We visualize some example filters and
how they transit to each other in Fig .2. We provide in the Appendix
the visualizations of each of these 15 filters. For each column of
convolutional filter Dk ∈ RV×3

+ , the top three terms that have the
highest weights and their corresponding weights are exhibited. It is
particularly interesting to notice that the top terms at different columns
can be combined into a variety of interpretable phrases with related
semantics. Taking the 11th filter as an example, its corresponding
phrase-level topic and transition relationships are visualized in Fig .2
(a), which shows that filter 11 on “i bought this/an” is more likely to
activate a transition to filter 5 on “i thought/used/ordered it”, filter 7 on
“it ’s a”, and filter 14 on “have found problem”. In addition, as shown
in Fig .2 (b), filter 20 on "this/these product/thing is/range" is the phrase describing “product” and it is
more likely to activate a transition to filters 4, 6, 30 that are mainly about “ product evaluations”. The
transition links shown in Fig .2 (a) and (c) correspond to column 11 and row 2 in Fig. 3, respectively.
Capturing phrase-level topics and inter-sentence information transitions, the document representations
of our models are embedded with rich semantic information, making them well suited for downstream
tasks.

To verify the efficiency of our generative model in capturing the word order information, we estimate
the likelihood of a sentence with shuffled word order. Fig. 4 (left) shows the likelihood decreases as
the shuffling rate increases, indicating CPGDS provides a higher confidence on real sentences than
orderless ones. Moreover, we further estimate the likelihood of document with shuffled sentence
order and observe similar behaviors in Fig. 4 (right), which illustrate that our generative model can
also capture the sentence order information in a document.

4.2 Supervised models

To evaluate the effectiveness of attn-bi-conv-PGDS, which incorporates the label information and
attention mechanism into bi-conv-PGDS, we compare it with various supervised methods on four pop-
ular benchmarks and list the results in Table 2. For comparison, we include BoW-based methods: sAV-
ITM [52], MedLDA [10], sWHAI [18]; bag-of-n-gram models [53]: SVM-unigrams, SVM-bigrams,
SVM-trigrams; CNN/RNN based methods: SVM-wv [54], LSTM-wv [55], CNN-wv [22], CNN-one-
hot [56]; methods leveraging the document-sentence-word hierarchical structure: Conv-GRNN [31],
LSTM-GRNN[31], HAN-AVE, HAN-ATT [32]; and convolutional probabilistic model: sCPGBN
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Table 2: Comparison of classification accuracy and number of model parameters between supervised
models

Methods Model size ELEC IMDB-2 IMDB-10 yelp14 #Param

sAVITM [52] 200 83.7 84.9 30.1 50.4 4.10M
MedLDA [10] 200 84.6 85.7 30.7 51.0 2.10M

sWHAI-layer1 [18] 200 86.8 87.2 32.0 52.7 4.10M
sWHAI-layer2 [18] 200-100 87.5 88.0 33.5 53.4 4.14M
sWHAI-layer3 [18] 200-100-50 87.8 88.2 34.2 54.3 4.15M

SVM-unigrams [53] - 86.3 87.7 39.9 58.9 -
SVM-bigrams [53] - 87.2 88.2 40.9 57.6 -
SVM-trigrams [53] - 87.4 88.5 41.3 59.8 -

SVM-wv [54] - 85.9 86.5 42.4 59.6 -
LSTM-wv [55] 200 88.3 89.0 43.6 62.5 5.30M
CNN-wv [22] 200 88.6 89.5 42.5 59.7 4.94M

CNN-one-hot [56] 200 91.3 91.6 43.2 62.4 6.08M
LSTM-one-hot [55] 200 91.6 91.8 44.1 63.2 8.16M

Conv-GRNN [31] 200-100 91.4 91.5 44.5 63.7 4.94M
HAN-AVE [32] 200-100 91.5 91.6 47.8 67.0 5.56M
HAN-ATT [32] 200-100 91.7 91.8 49.4 68.2 5.68M

sCPGBN-layer1 [20] 200 91.6±0.3 91.8±0.3 43.9±0.3 63.1±0.3 12.00M
sCPGBN-layer2 [20] 200-100 92.0±0.2 92.4±0.2 45.0±0.3 64.2±0.3 12.04M
sCPGBN-layer3 [20] 200-100-50 92.2±0.2 92.6±0.2 45.8±0.3 64.9±0.3 12.05M

DocBERT [57] - 93.4 94.1 54.2 72.0 110.0M

sconv-PGDS 200 91.9±0.2 92.0±0.2 48.9±0.2 68.0±0.3 12.20M
su-bi-conv-PGDS 200 92.5±0.2 92.6±0.2 51.2±0.2 70.5±0.3 12.24M

attn-bi-conv-PGDS 200 93.0±0.3 93.4±0.3 53.8±0.2 71.2±0.3 12.28M
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Figure 4: left: likelihood of shuffled sentence; right: likelihood of shuffled document

[20] and Transformer based pre-trained language models: DocBERT [57]. As shown in Table 2,
BoW-based methods in general underperform the methods that take word order into consideration.
Traditional methods based on hand-crafted features like SVM-unigrams/bigrams/trigrams typically
underperform CNN/RNN based methods, such as CNN-wv, LSTM-wv, that learn local dependence
structure from the data. CNN/RNN based methods, which do not exploit the hierarchical document
structure, clearly underperform the methods that exploit these structures to capture long-term temporal
dependence and cross-sentence information transmission, especially for large-scale datasets with
many categories. Pretrained on huge extra text data, DocBERT with large memory requirement and
high computational complexity recently achieves state-of-the-art document classification performance.

Dataset BERT attn-bi-conv-PGDS

ELEC 145.2 8.1(94% ↓)
IMDB-2 175.1 13.0(93% ↓)

IMDB-10 241.3 19.0(92% ↓)
Yelp’14 1810.6 102.3(94% ↓)

Table 3: Comparison of testing
times (seconds) with batch-size
128 on two RTX 2080 Ti GPUs.

By incorporating hierarchical document structure into probabilistic
generative models and the attention mechanism, attn-bi-conv-PGDS
achieves comparable results with DocBERT but with significantly
fewer parameters (about 90% reduction) and faster test speed (more
than 92% reduction in testing time, as shown in Table 2.). Moreover,
in order to validate that our model is able to attend to informative
sentences and phrases in a document given the context, we provide
two example visualizations of the hierarchical attention of our model
and compare them with CPFA equipped with attention in Fig. 5. We
select three most prominent sentences in a document for visualization.
Blue and red denote the phrase weight and sentence weight, respectively. Darker color represents
greater weight (the sentence weight is listed on its left-side). Due to the hierarchical structure,
we normalize the word weight by the sentence weight to make sure that only important words in
important sentence are emphasized. As we can see, attn-CPFA can only select the phrases carrying
strong sentiments, but cannot deal with complex across-sentence context. Taking the document in
Fig. 5 (b) as an example, attn-CPFA only focuses on phrase “the worst movie”, thus to classify it into
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I felt that parts of the film should have been more 
emotional than they were.

Quite sure that many other people will get very 
emotional watching the film and will really enjoy it.

I just wasn't one of them.

I felt that parts of the film should have been more 
emotional than they were.

Quite sure that many other people will get very 
emotional watching the film and will really enjoy it.

I just wasn't one of them.

attn-CPFA   GT:5 Prediction: 9 attn-bi-conv-PGDS   GT:5 Prediction: 5

This movie is the worst of the 4 current Star Wars 
movies.
However, I have seen some comments here saying it is 
the worst movie EVER.

That is certainly NOT the case.

This movie is the worst of the 4 current Star Wars 
movies.

However, I have seen some comments here saying it is 
the worst movie EVER.

That is certainly NOT the case.

attn-CPFA   GT:1 Prediction: 0 attn-bi-conv-PGDS   GT:1 Prediction: 1
(a)

(b)

0.58

0.56

0.12

0.32

0.26

0.16

Figure 5: Two examples of attention from IMDB-10 (a) and IMDB-2 (b) learned by sCPFA and attn-bi-conv-
PGDS.

the “negative” class. Our model captures the transition between sentences and deduces it as a positive
review given its higher attention weight placed on the last sentence.
Our recurrent-convolutional variational autoencoder can be trained in a semi-supervised setting
by modifying our supervised loss into Lsemi =

∑
d∈{Dl+Du} Lg(d) + ξ

∑
d∈Dl

Ls(d), where Dl

denotes the set of labeled data and Du unlabeled data. In this way, our attn-bi-conv-PGDS can
improve upon supervised natural language tasks by leveraging features learned from unlabeled
documents. In principle, a good unsupervised feature extractor will improve the generalization
ability in semi-supervised learning setting. To demonstrate the advantage of incorporating the
reconstruction objective into the training of document classifier, we evaluate our model with different
amount of labeled data (5%, 10%, 25%, or 50%), besides the whole training set being unlabeled data.

Figure 6: Semi-supervised classifica-
tion accuracy on IMDB-10.

We compare our model with LSTM-one-hot and HAN-ATT,
which are purely supervised models, sCPGBN, which is a VAE
structured model, and DocBERT, which can be pre-trained
with unlabeled data using Masked LM (MLM) task. More
details about semi-supervised classification with attn-bi-conv-
PGDS and DocBERT are deferred to Appendix. From the
result shown in Fig. 6, VAE structured models have better
generalization performance varying with the size of the la-
beled training data, benefiting from naturally leveraging the
unlabeled documents. It is interesting to notice that attn-bi-
conv-PGDS outperforms DocBERT when the labeled training
data becomes limited. We attribute the superior generalization
performance of our model to the good representation power
of bi-conv-PGDS, which serves as the decoder of our VAE
framework.

5 Conclusion
Respecting the natural hierarchical structure of each document (words forms a sentence, sentences
form a documents) and incorporating that information into hierarchical Bayesian modeling, we
propose convolutional Poisson gamma dynamical systems (conv-PGDS) to capture not only phrase-
level topics, by introducing word-level convolutions, but also how the topic usages evolve over
consecutive sentences, by modeling sentence-level transitions. To consider both forward and backward
sentence-level information transmissions, we further develop a bidirectional conv-PGDS. For scalable
inference, we develop a hybrid Bayesian inference algorithm that integrates SG-MCMC and a
convolutional-recurrent variational inference network to approximate the posterior. In addition, we
incorporate attention mechanism into our model and develop an attention guided bidirectional conv-
PGDS for document categorization. Experiments on unsupervised feature extraction and supervised
and semi-supervised document categorization tasks show that our models can not only extract
discriminative document representations, achieving state-of-the-art results with low memory and
computational cost, but also inherit the virtues of probabilistic topic models that provide interpretable
phrase-level topics and sentence level-temporal transitions.
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Broader Impact

The proposed models are probabilistic topic models considering hierarchical temporal information
within each document, which can not only achieve state-of-the-art performance in some text analysis
tasks, such as unsupervised feature extraction and (semi-)supervised document categorization, but
also obtain semantically meaningful topics and latent features as well as interpretable transition
relations. Thus, they may be used to detect harmful articles which may contain fake news, violent
content, and fraudulent materials. In addition, they can be used to recommend articles with specific
contents to users according to their needs. More importantly, as they are able to provide interpretable
latent features, one could try to understand why a certain categorization and recommendation has
been made by the proposed model for a given article, so more appropriate actions can be taken rather
than purely trusting the model itself to make the right decisions.

Although big pre-trained language models, such as BERT [35], GPT2 [58], and GPT3 [59], could be
fine-tuned for a variety of natural language processing tasks to achieve state-of-the-art performance
in many difference settings, they are consuming significant amount of computing resources, leading
to higher energy consumption and CO2 emissions. Comparing with these pretrained big models,
the proposed probabilistic models provide customized probabilistic solutions to specific problems,
achieving comparable results in the specific task of document categorization but with much lower
memory and computational cost, which is beneficial for energy saving and environmental protection.

Providing good performance while maintaining interpretability becomes an even more urgent issue
today given the recent trend in building larger and more complex black-box models trained with
bigger data, which work well but make it become increasingly more difficult to understand how and
why they work well. We hope our work can motivate machine learners to pay more attention to the
study of interpretable and compact models. When evaluating the model, we should analyze the model
more and find what can help different areas of society. At present, many people tend to strongly
emphasize on the numerical performance and pay less attention to the energy cost of training and
deploying these models. Meanwhile, the black box feature of deep learning means that the model may
fail without clear explanations, so it is difficult to deploy them to applications with high-level safety
and stability requirements. An interpretable model, on the other hand, enables people to understand
what the model really learns and how it makes decisions, so as to better evaluate the model and
understand how and where to deploy it for the benefits of the society.
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