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Quantum computing at the frontiers of  
biological sciences
Computing plays a critical role in the biological sciences but faces increasing challenges of scale and complexity. 
Quantum computing, a computational paradigm exploiting the unique properties of quantum mechanical analogs 
of classical bits, seeks to address many of these challenges. We discuss the potential for quantum computing to aid 
in the merging of insights across different areas of biological sciences.
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Understanding complex biological 
phenomena has required concurrent 
advances in experiment, theory and 

computing power. The increasing need 
for computing infrastructure has led to 
expansions of current supercomputing and 
other massively parallel computing facilities, 
but also considerations of entirely new 
computing paradigms. Here we consider 
the potential of quantum computing (QC) 
to address complex biological questions. 
QC is an approach to computation in 
which an algorithm is defined by a series 
of operations on quantum states that 
results in a solution to a problem. Recent 
technological developments have carried 
QC capabilities from the realm of academic 
exploration to commercial opportunities1,2. 
While the scale is not yet competitive with 
classical technologies, there is substantial 
excitement in its eventual promise, and 
we hope to provide an entry point for 
biologists to certain aspects of the discussion 
surrounding QC. This effort is especially 
timely given recent policy efforts at a 
national or international level, such as the 
US National Quantum Initiative Act of 20183 
(the implementation of a National Quantum 
Initiative for quantum information science 
and technology4), the European Quantum 
Technologies Flagship, and efforts in the 
United Kingdom and China5.

We first present a primer on quantum 
computation to familiarize the reader with 
the basic concepts and language of QC. The 
remainder is focused on the study of the 
human brain through genetics, genomics, 
neuroimaging and deep behavioral 
phenotyping, a multidisciplinary effort 
that falls under the term “convergent 
neuroscience.” We highlight these areas as 
they exemplify two sources of complexity: 
separately, each field presents a rich set 

of problems that often push the limits 
of classical computational capability; 
in combination, they offer a multiscale 
challenge leading from the molecular scale 
through the cellular and tissue levels to  
brain architecture and, eventually, to 
complex human behaviors and disorders. 
The study of the emergent properties of  
the brain, such as cognition and behavior,  
is a uniquely challenging multilevel 
endeavor that demands pioneering 
approaches in computation. Accordingly,  
we discuss how quantum algorithms that 
map onto methodological issues in the 
biological sciences may provide much 
needed improvements in computational 
efficiency, and we posit open questions  
for eventual development of new 
computational solutions.

Classical versus quantum circuits: 
state of the art
Quantum computing uses the laws 
of quantum mechanics to perform 
computations. Quantum mechanics 
is the physical theory that governs all 
matter but is particularly relevant at the 
molecular scale and below. It states that 
particles have wave-like properties and 
waves have particle-like properties. If a 
quantum computer could be built, then this 
wave-like behavior could be harnessed for 
computational benefit: in a conventional 
(classical) computer using randomness, 
different random choices can lead to 
different outcomes, and the total probability 
of an outcome is the sum of the probabilities 
of each computational path leading to that 
outcome; by contrast, a quantum computer 
can have complex amplitudes along 
computational paths, just as a wave can have 
different amplitudes in different modes. 
Measuring will ‘collapse’ the state and yield 

a specific outcome with probability equal to 
the squared absolute value of the amplitude. 
Thus, quantum computers promise a 
new form of computing that would be 
qualitatively different from any previous 
(classical) form of computation by allowing 
interference between computational paths, 
analogous to the interference between 
waves6. While quantum computers are 
technically more difficult to build, and the 
best current general-purpose quantum 
computers have only 50–100 qubits, they 
can solve some problems in a time that 
grows more slowly as a function of the 
input size than classical computation. The 
term “qubit” refers to a quantum two-level 
system, such as a photon that can travel 
down one of two optical fibers. Qubits can 
be thought of as a generalization of classical 
bits (cbits): cbits can be in states 0 or 1, 
while the state of a single qubit is described 
by complex numbers α0 and α1 satisfying 
|α0|2 + |α1|2 = 1. The power of quantum 
computers comes from scaling. A system 
of n cbits can be in one of 2n possible states 
at any time, while the state of n qubits 
is described by a complex unit vector of 
dimension 2n (Fig. 1a,b). These vectors (also 
called wavevectors or wavefunctions) can be 
transformed by multiplying them by unitary 
matrices, and in many cases this can be done 
efficiently. For example, the wavevector 
can be Fourier transformed using O n2ð Þ

I
 

elementary quantum gates. However, not all 
transformations can be done efficiently. The 
laws of quantum measurement also limit the 
amount of information that can be extracted 
from a quantum state. A full measurement 
of the state yields outcome x with probability 
|αx|2, destroying the state in the process. 
Thus, even though describing the quantum 
state of n qubits requires an amount of 
information that scales exponentially with n,  
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measurement can only extract n bits of 
information. Finding a way to benefit from 
the exponential state space of quantum 
computers despite this limitation and 
others is the central challenge of quantum 
algorithm design7.

The challenges in building quantum 
hardware and mitigating noise are 
considerable and are not addressed in 
this paper, since our focus is principally 
on algorithm development and potential 
biological applications. Large-scale 
quantum computers are likely to rely on 
error-correcting codes and other error 
mitigation strategies that will result in 
additional overhead; for example, needing  
to use many physical qubits to store  
one logical qubit. However, quantum 
algorithms can be built out of a universal  
set of quantum gates in a way that does  
not depend on the underlying hardware,  
just like classical algorithms.

Given the ubiquity of classical computers, 
the natural way to understand the strengths 
of quantum computers is by comparing 
their run-time scaling with that of the 
best-known classical algorithms. In some 
cases, these speedups are exponential: a 
quantum computer with a few thousand 
error-corrected qubits could factor numbers 
that could not be factored using existing 
classical computers and currently known 
algorithms in time less than the age of 
the universe. In other cases, provable 
polynomial speedups are known: for 
example, given the ability to compute a 
function f(x) where x takes on N values, a 
quantum computer can find the minimum 

value of f(x) in only O
ffiffiffiffi
N

p� 

I
 evaluations 

of f(x) while a classical computer would 
require O Nð Þ

I
 steps (assuming that f(x) 

has no other structure we can exploit)8. 
By contrast, for some problems, quantum 
computers are known to be no stronger than 
classical computers. And in many other 
cases, plausible heuristic algorithms have 
been proposed for quantum computers, 
whose performance is only incompletely 
understood.

The source of quantum speedup. There is 
not a simple description of what accounts 
for speedups, although the most plausible 
explanation is the difference between 
interference of amplitudes and addition of 
probabilities. For example, a qubit can have 
states 0j i

I
 and 1j i

I
, which correspond to cbit 

values 0 and 1 and, in the representation 
of Fig. 1a, are the north and south poles. 
Qubits can also be in superpositions 

(see Box 1) such as 0j iþ 1j iffiffi
2

p

I

 and 0j i� 1j iffiffi
2

p

I

, which 

lie on the equator in the figure; these 
correspond to having amplitude 1ffiffi

2
p

I

 in the 

0j i
I

 state and amplitude ± 1ffiffi
2

p

I

 in the 1j i
I

 state. 
To see that these differ from each other, 
and also from a random mixture of 0j i

I
 and 

1j i
I

, consider the 
ffiffiffiffiffiffiffiffiffiffiffi
NOT

p
I

 gate, which maps 

0j i
I

 and 1j i
I

 to 0j iþ 1j iffiffi
2

p

I

 and 0j i� 1j iffiffi
2

p

I

, respectively. 

Starting with the 0j i
I

 state, applying 
ffiffiffiffiffiffiffiffiffiffiffi
NOT

p
I

 once yields 0j iþ 1j iffiffi
2

p

I

. This state could 

be thought of as analogous to a random 
mixture of 0 and 1, as we would expect 

if 
ffiffiffiffiffiffiffiffiffiffiffi
NOT

p
I

 means applying NOT with 
probability one-half. However, applying ffiffiffiffiffiffiffiffiffiffiffi
NOT

p
I

 twice yields 1j i
I

, just as we would 
expect from a NOT gate, whereas applying 
the randomized version twice would yield 
the same uniform mixture of 0 and 1. 
More generally, quantum computers and 
randomized computers can both be thought 
of as taking different paths through the  
2n possible bit strings, but for randomized 
computers we sum the non-negative-valued 
probabilities of these paths to get the final 
output distribution, while for quantum 
computers we sum the complex-valued 
amplitudes of these paths. Adding complex 
numbers of roughly the same phase (for 
example, 1 + 1) corresponds to constructive 
interference while adding ones of opposite 
phases (for example, 1 + (–1)) corresponds 
to destructive interference, analogous  
to the way that light and other waves can 
exhibit interference.

While we often do not know how to take 
advantage of the rich possibilities offered by 
quantum interference, in some cases we can 
use them to achieve asymptotic speedups. 
Algorithms like Grover’s unstructured 
search algorithm9 are simple examples of 
this. Grover’s algorithm takes a subroutine 
with a small success probability p, which 
would need to be repeated O 1=pð Þ

I
 times on 

a classical computer to obtain a successful 
outcome, and obtains an answer on a 
quantum computer using only O 1=

ffiffiffi
p

p� 

I
 

repetitions. This makes use of the fact 
that probabilities are obtained by taking 
the square of quantum amplitudes. The 
quantum Fourier transform (used in period 
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Fig. 1 | Concepts in quantum computing. a, Conceptual illustration of bit versus qubit. The state of a qubit can be represented by a point on the unit sphere 
with the north and south poles corresponding to the states 0 and 1 of a classical bit. b, The state space of 3 qubits is a 23-dimensional complex vector.  
c, Classical (number field sieve (NFS) algorithm) and quantum (Beckman–Chari–Devabhaktuni–Preskill (BCDP) implementation of Shor’s algorithm) run  
times for factoring integers. Shor’s algorithm for quantum computers yields an exponential speedup over the best known classical algorithm (panel c adapted 
with permission from ref. 61, R. Van Meter et al.).
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finding and Shor’s factoring algorithm; 
Fig. 1c) is a more sophisticated example 
of how complex-weighted transitions can 
be useful, and in some cases this can give 
rise to exponential speedups. By contrast, 
some problems are known to not admit any 
quantum speedup: for example, finding the 
parity of N numbers requires time O Nð Þ

I
 on 

either a quantum or classical computer10. 
It is a major open research problem to 
determine when quantum speedup does or 
does not exist, and it is unlikely to ever be 
fully resolved, just as there is still no single 
theorem describing which problems can be 
solved by efficient classical algorithms. We 
next discuss some examples of potential 
quantum speedups.

Exponential speedup. The main exponential 
speedups known are for code breaking 
(dramatic but unlikely to be relevant here) 
and quantum simulation of molecules 
or other large quantum systems. If the 
properties of a molecule are not well 
captured by simple classical approximations, 
then there is a good case to be made for using 

a quantum computer to make a better-quality 
approximation computationally tractable. 
The advantage of a quantum computer 
here arises from the exponentially growing 
dimension of quantum states. As a result, 
some promising cases for quantum advantage 
involve molecules with large numbers of 
active electrons, such as organometallic 
compounds11.

Polynomial speedup. Typical polynomial 
speedups can be thought of as direct 
improvements of some classical algorithms. 
The best known of these is Grover’s 
square-root search speedup, described 
above12. Other, more sophisticated 
algorithms also admit provably quadratic 
improvements. For example, a classical 
algorithm might search over a tree of 
possibilities in a manner that can improve 
over brute-force search by sometimes being 
able to quickly prune entire subtrees. Such 
searches can also be quadratically improved 
quantumly; that is, if the classical search 
process explores N nodes, then the quantum 
algorithm requires effort roughly equal to 

ffiffiffiffi
N

p
I

 times the effort to evaluate one node13. 
The strength of these algorithms is that they 
apply under very general conditions, such as 
needing to minimize an easily computable 
function. They also do not usually need 
more qubits than are already needed to 
compute the function.

Heuristic speedups. Many of the most 
important algorithms for classical computers 
either lack formal proofs of correctness 
or are often run outside of the regime in 
which these proofs of correctness apply. 
These include Markov chain Monte Carlo 
(where rigorous upper bounds on mixing 
time are usually not known) and gradient 
descent applied to non-convex problems 
such as deep neural networks. For quantum 
computers, heuristic algorithms include 
adiabatic optimization14 — or, more 
generally, quantum annealing (QA)15 — and 
the quantum approximate optimization 
algorithm (QAOA)16. The level of speedup 
provided by these algorithms over classical 
algorithms is in general unknown. It is 
expected that as quantum computers are 

Box 1 | Glossary

Biological
•	 Single-nucleotide polymorphism 

(SNP). Germline (inherited) variant in 
a genome where the identity of a single 
nucleotide is changed relative to a refer-
ence genome; the prevalence of a SNP 
in a population is dependent on the 
pattern of its inheritance.

•	 Genetic recombination. Exchange of 
segments between separate genomes or 
chromosomes, or different regions of 
the same chromosome, by the creation 
of single-stranded (in, for example, 
viruses) or double-stranded (in, for 
example, humans) breaks and subse-
quent ligation of the crossed segments.

•	 Genome-wide association study 
(GWAS). Identification of variants in a 
population with statistically significant 
associations to the occurrence of a 
studied phenotype.

•	 Quantitative trait locus (QTL). 
Variant in a genome or population with 
statistically significant association to 
the occurrence of a studied phenotype, 
including but not limited to endophe-
notypes (that is, phenotypes at the 
suborganismal level; for example, cell- 
or tissue-level gene expression).

Machine learning
•	 Hidden Markov model (HMM). 

Stochastic latent-state method to 

model a linear sequence of observa-
tions as a probabilistic sequence 
of underlying state transitions and 
state-to-observation emissions.

•	 Boltzmann machine. Generative clas-
sical neural network model, based on 
an energy function containing local 
(unary) and pairwise terms over an 
underlying undirected graph. Recently, 
the model has been extended to replace 
the classical energy with a quantum 
Hamiltonian to form a quantum Boltz-
mann machine (QBM)39.

•	 Variational autoencoder (VAE). Gen-
erative neural network model, incorpo-
rating a latent space that is mapped to 
observed variables by a learned feedfor-
ward classical neural network. Latent 
space can be a classical (Gaussian) or 
quantum (QBM)40 distribution.

Quantum computing
•	 Quantum superposition. A fundamen-

tal principle of quantum mechanics 
whereby the overall state of a system 
(for example, an electron in an atom 
or qubit) is in a linear combination of 
orthogonal basis states (for example, 
the lowest energy state, next excited 
state and so forth). For example, if 
0j i
I

 denotes the lowest energy state 
of a qubit and 1j i

I
 an excited state of 

a qubit, the state of the qubit, ψj i
I

, 

can be a superposition of basis states: 
ψj i ¼ α0 0j i þ α1 1j i
I

.
•	 Quantum random-access memory 

(qRAM). In analogy with random 
access memory (RAM), which uses n 
bits to address 2n distinct memory cells, 
qRAM would use n qubits to address 
any quantum superposition of 2n 
memory cells18.

•	 Quantum annealing (QA). A tech-
nique for minimizing a function f using 
a low-temperature quantum system 
whose energy corresponds to f, along 
with an auxiliary field that is slowly 
turned off. The auxiliary field attempts 
to create superpositions between nearby 
qubit strings, similarly to equally 
weighting possible solutions, and 
facilitates quantum tunneling (that is, 
transition of a quantum state between 
nearby low-energy strings even through 
regions of higher energy) to arrive at a 
minimum of f relatively efficiently once 
turned off.

•	 Hidden quantum Markov model 
(HQMM). The quantum analog of 
HMMs, where the sequence of quan-
tum operations is such that information 
of the state transition and emission 
probabilities of the qubits can be 
retained even after partial measurement 
of the system (that is, measurements do 
not collapse the entire system)21.
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built, our understanding of the performance 
of these heuristics will improve, just  
as much of our understanding of the 
performance of classical heuristics  
comes from empirical evidence and not  
only theory. In the following sections,  
we refer to this class of methods as 
“quantum heuristics.”

Interfacing with classical algorithms. 
There is an important caveat about quantum 
algorithms. Suppose for concreteness that 
we are minimizing a function f(x). For 
a speedup, a quantum computer would 
need to interfere computational paths that 
compute f(x) for different values of x. If 
information about the value of x leaked  
to an outside classical system, then  
this would prevent those paths from 
coherently interfering, and we would be 
left with f(x) for a random choice of x. 
This would limit its ability to share the 
computation with a classical computer. 
Suppose, for example, that the evaluation 
of f(x) were a memory- and time-intensive 
calculation for which quantum speedups 
were not known. Then using quantum 
computers to improve the minimization 
of f would need to use qubits to perform 
this evaluation and could not offload the 
computation to a classical computer.  
This means that the overall speedup  
would be less than quadratic.

Big data and quantum RAM. A related 
limitation of current models of quantum 
computers is that they cannot access 
large classical datasets in superposition; 
attempting to do so would amount to 
measuring the qubit register containing 
the address being queried, which would 
collapse any superposition there into 
a random mixture. This means that 
quantum computers may be able to speed 
up complicated calculations on small 
datasets (for example, finding the best 
Bayesian network) but have less advantage 
in solving problems on large datasets. 
One way to address this is with filtering 
or data-reduction techniques, which 
select a small but hopefully representative 
sample of the data and use that as input 
to the optimization problem17. Or the 
quantum computer could be used for 
‘small data’ problems where the difficulty 
comes from the complexity of the 
analysis. A more speculative possibility is 
a quantum hardware solution known as a 
qRAM (quantum RAM)18, which would 
give a quantum computer the ability to 
coherently query a large classical dataset as 
a superposition of qubits: a superposition 
of input memory addresses would yield 
an output consisting of a superposition of 
memory cell contents (see Box 2). A qRAM 
would enable powerful quantum algorithmic 
primitives18, but there are no proposals for 

scalable error-corrected qRAM, and it is not 
clear whether it would ultimately be easier 
than making a large quantum computer19.

Potential applications for quantum 
computing in biology
Sequence analysis. We first consider QC 
algorithms implementable on near-term 
quantum processors. An essential initial step 
in genetics and genomics is the matching of 
sequences of nucleotides and amino acids to 
organism databases and, more specifically, 
the mapping of sequencing reads from 
experimental assays to reference genomes. 
Any approach needs to contend with both 
memory (holding a representation of the 
reference and information on the mapping) 
and speed concerns. Dynamic programming 
methods, such as the Smith–Waterman 
algorithm20, enable queries of sequence 
strings against immense databases and 
could be cast as hidden Markov models 
(HMMs). The recent development of hidden 
quantum Markov models (HQMMs)21,22 
opens the possibility of simulating classical 
HMMs on available quantum circuits22, 
as well as extending model space beyond 
classical HMMs21. In fact, the potential 
advantage of HQMMs stems from this 
extension of the model space to yield 
more efficient representations of sequence 
generators21. However, it is unclear how 
and to what extent this increased efficiency 

Box 2 | Computational opportunities for the future

Existing quantum algorithms — for 
example, function minimization — are 
often written in terms of abstract and 
highly general functions. If biological 
applications can help motivate specific, 
mathematically well-posed tasks, then it 
may be the case that targeted quantum 
algorithm development can lead to 
improvement. While this promise is 
discussed at length in the main text in the 
context of the study of the human  
brain, here we briefly introduce some  
of the key areas of ongoing research 
in quantum computing, related to and 
providing the context for applications  
in biology.

Optimization in biomolecular problems
There has been considerable interest 
in extending QC to biomolecular and 
biological problems63. In several cases, 
small examples of biological problems 
have been mapped to combinatorial 
optimization problems. A QA approach 
was employed in the exploration of the 

coarse-grained folding landscape of a 
six-amino-acid peptide, within a 2D 
lattice framework64. QA was also evaluated 
against a set of classical methods on 
an optimization problem involving the 
search for the consensus DNA sequence 
motif of transcription factor binding35. 
In this instance, Li et al. trained a 
classifier (sequence binds or does not 
bind) and a ranking algorithm (ranking 
sequences by binding affinity), finding a 
slight improvement of QA over classical 
approaches in the classification problem 
and similar performance for the  
ranking task.

Simulation of classical and quantum 
systems
There have been successful demonstrations 
of the application of quantum computation 
to problems in chemistry. A variational 
quantum eigensolver (VQE) approach was 
used65 to estimate the ground state energies 
of small molecules as a function of their 
component atomic separations. Briefly, 

short quantum circuits define a variational 
ansatz of trial solutions for the ground 
state, and the circuit parameters are varied 
to minimize the energy using algorithms  
such as gradient descent. While the 
complexity of simulating quantum 
dynamics on quantum computers is well 
understood and is usually tractable, the 
success of VQE will depend on the quality 
of the ansatz and is an active area of 
ongoing research.

Quantum simulation of chemical 
reactions is known in principle to be 
possible on a quantum computer, and, 
as the practical details are fleshed out, 
this is expected to be an important 
application of quantum computers for 
applications both inside and outside of 
biology. One particular strength is in 
modeling dynamics, and there is evidence 
that energy transport and electron 
transport in biological molecules involves 
quantum effects that could potentially be 
more accurately modeled by a quantum 
simulation66.
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would translate into speedups. Hybrid 
approaches are attractive prospects: the 
iteration through hyperparameter space in 
HMMs could be classical, with quantum 
optimization of the maximal trajectory 
through state space. Given that dynamic 
programming methods have mostly been 
supplanted by the approximate but faster 
k-mer-based BLAST algorithm20 for 
database searches, a QC-based improvement 
in efficiency could reopen the case for  
their utility.

We next explore problems whose QC 
solutions may depend on the availability 
and storage in memory of superpositions 
of qubits (qRAM). For genomic read 
mapping, state-of-the-art classical 
algorithms include the exploitation of the 
Burrows–Wheeler transform to efficiently 
perform DNA sequence alignments23, 
and seed-based approaches to map RNA 
reads to exon boundaries separated by 
large genomic distances24. Both methods 
rely on lexicographically sorted suffixes 
constructed from the reference genome, 
followed by scanning for matches of the 
query read. The classical complexity of 
sequence matching depends on whether 
exact (O nþmð Þ

I
; n = length of reference 

sequence, m = query read length) or 
inexact matches (O nmð Þ

I
), including gaps, 

are considered. Grover’s-algorithm-based 
improvements in string-matching speeds25 
could be exploited ( ~O ffiffiffi

n
p þ ffiffiffiffi

m
pð Þ

I
 for exact 

matches) to aid the scanning process. Recent 
work has demonstrated the potential for 
even further QC speed gains under the 
assumption of unique membership of a 
query string within a reference database26. 
The scaling of the problem is such that a 
reduction in complexity of even simpler 
mapping problems would be highly 
beneficial, although the need to generate 
superpositions of the entire reference  
string also creates potential problems:  
given the need to store a large reference 
database in superposition, the current 
lack of qRAM is an issue. Furthermore, 
speed gains from Grover’s-algorithm-based 
methods could be reduced by the cost of 
evaluating the function being searched,  
if done classically.

Genetics. As in the previous section, 
a possible problem for near-term QC 
algorithms to tackle is the imputation of 
individual-specific mutations, especially 
single-nucleotide polymorphisms (SNPs). 
Given shared sets of haplotypes across 
subpopulations, a relatively sparse set 
of SNPs can be expanded by inferring 
additional SNPs that co-occur with the 
original set with high probability. This 
imputation usually involves an HMM-based 

likelihood maximization27, which could be 
cast as HQMMs.

While imputation depends on 
inherited SNPs within populations 
(germline mutations), cells also contain 
postconception de novo variants, called 
“somatic variants.” Every neuron in the 
human brain is likely to contain private 
somatic variants, including single-nucleotide 
variants and large structural variants that 
alter allelic diversity for dozens of genes. 
Identifying their functional impact is 
essential. Machine-learning classifiers have 
been trained on case–control datasets to 
identify psychiatric-disorder-associated 
variants28. However, given the 
high-dimensional parameter search space 
for the classification problem, classical 
computation frequently runs into search 
efficiency issues. These issues might be 
ameliorated using near-term implementable 
QC machine learning methods29, discussed 
at length in subsequent subsections.

Another important category of genetic 
analyses is the construction of optimal 
trees that describe the relative proximity 
of genetic sequences, including ancestral 
recombination graphs (ARGs)30, depicting 
ancestral relationships between individual 
genomes while accounting for genetic 
recombination; pathogen evolutionary trees 
in epidemiological studies; and tumor cell 
mutational lineages, as could be relevant 
to malignancy and medical response. Tree 
reconstruction algorithms optimize across 
the similarity constraints between genomic 
segments, mainly involving sampling from 
the space of possible genealogies with 
heuristics and simplifications31. For smaller 
input sequence sets, the massive tree-search 
space makes this an open candidate problem 
for speedup using available quantum 
heuristic optimization methods14–16.

SNP association and heritability 
analyses are problematic for near-term 
quantum approaches, given the need 
to manipulate large matrices to solve 
systems of linear equations. In association 
studies, SNPs can be statistically associated 
with individual-level phenotypes in 
genome-wide association studies (GWAS) 
or to quantitative molecular traits (cell 
or tissue gene expression, methylation, 
epigenetic markers, cell fractions) and other 
quantitative traits (loci designated as QTLs). 
The evaluation of total SNP heritability 
often involves linear mixed effects models, 
with genetic variance estimations carried 
out through techniques such as the 
restricted maximum likelihood (REML) 
method32. With qRAM, algorithms such as 
quantum least squares33,34 could offer up to 
exponential speedups through the ability 
to perform fast linear-algebraic operations, 

under certain assumptions of sparseness and 
condition number, although it is unclear 
to what extent any advantages would be 
undercut by the time cost of querying the 
qRAM. For lower-dimensional regression 
problems, there is some potential for 
near-term quantum heuristic optimizers to 
tackle these tasks35.

Functional genomics. The chain of 
factors that leads from genetic variation 
to higher-level behaviors such as cognitive 
traits includes complex intermediate links, 
such as the molecular regulatory framework 
within cells, cell-to-cell interactions, 
heterogeneity in cellular composition and 
behavior in tissues, and inter-regional 
connectivity patterns in the brain, among 
many others (Fig. 2). These factors are 
further governed by complex developmental 
processes and gene–environment 
interactions in an individual-specific 
manner. Despite this complexity, recent 
studies have shown that genetic risk for 
particular traits can be partitioned across 
‘intermediate’ phenotypes, such as gene 
expression or chromatin binding profiles; a 
direct approach to such analysis is to impute 
intermediate molecular phenotypes first 
and then link the imputed phenotypes to 
high-level traits36. However, intermediate 
molecular phenotypes are typically high 
dimensional and interdependent; for 
example, bulk transcriptome expression 
profiles can be ~22,000 dimensional. 
Possible models that can learn joint 
probability distributions over such levels 
of analyses include Bayesian networks, 
undirected models such as Boltzmann 
machines37, and recent deep-learning 
approaches such as variational autoencoder 
(VAEs). Exact optimization of such  
models, however, is intractable: structure 
learning in Bayesian networks requires 
optimization over a search space of all 
directed acyclic graphs, which is 
super-exponential (O n!2

n!
2! n�2ð Þ!ð Þ

� �

I

, where 

n is the dimensionality38). Inference in 
Boltzmann machines requires a search over 
O 2nð Þ
I

 states after binarization to calculate 
a gradient, and training VAEs requires the 
optimization of a non-convex objective 
function. Such problems may be potential 
candidates for quantum approaches: for 
smaller input sizes, near-term approaches 
without qRAM may be developed to 
perform exact searches across the space of 
Bayesian networks, while for moderate-sized 
problems, approximate quantum analogs 
of Boltzmann machines (QBMs) and VAEs 
(QVAEs) have been tested in simulation and 
experimentally39,40, with the optimization 
being conducted through QA. We note also 
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that, for all these models, prior knowledge 
of molecular interactions may be used 
during training to suggest causal network 
interpretations.

In contrast to direct imputation of 
molecular phenotypes, intermediate 
phenotypes may be derived at the level 
of sets of genes (such as functional 
pathways) and cell-type proportions. 
For instance, weighted gene correlation 
network analysis (WGCNA) performs a 
version of hierarchical clustering to derive 
coexpression modules, which are enriched 
in gene pathways41, and non-negative matrix 
factorization (NMF) based on marker 
gene profiles can be used to decompose 
bulk transcriptome data into components 
corresponding to cell-type fractions37. 
Exact optimization of these models is again 
intractable; exact hierarchical clustering 
would require a search over a large 
space of trees, and NMF is a non-convex 
optimization problem. The former may be 
a candidate for an exact quantum solution 
for small-scale problems while both may 
benefit from quantum heuristic approaches 
(a QA approach to NMF is found in ref. 42, 
and quantum speedups for approximate 
clustering are described in ref. 17). While 
clustering ~1,000 to ~20,000 features is 
common in genomics, there are a number 
of applications where a relatively small 

number of features, ~100, are clustered 
across samples (for example, protein-array 
data). Clustering associated with global 
minimization of objective functions is of 
great interest in these small-feature-number 
cases. More generally, comparison of clusters 
(and solutions to other genomic algorithms) 
derived from exact and approximate greedy 
minimization would inform the nature of 
the errors associated with applying greedy 
algorithms to large numbers of features 
and samples, as well as suggest possible 
approaches to improving the greedy 
algorithms in the short term. Application 
of these methods at full genomic scale, 
however, would require further technical 
developments in qRAM or quantum 
processor size.

Mapping neurobehavioral variation via 
neuroimaging and deep phenotyping. The 
overarching goal of convergent neuroscience 
is to link cellular-level mechanisms to 
system-level observations and ultimately 
behavior. Multimodal neuroimaging 
provides rich high-dimensional data that 
can map neural and behavioral mechanisms 
in humans. While many quantitative 
optimizations remain, one of the core 
challenges is accurate identification and 
alignment across people of brain anatomy 
to reference atlases. For instance, one 

widespread approach implemented in 
FreeSurfer software43 employs a sequence 
of registration steps involving the 
minimization of an energy function over 
the spatial transformation field. Here, 
potential quantum heuristic approaches 
could be brought to bear for images of 
moderate resolution if the corresponding 
energy function (Hamiltonian) can be 
mapped to an Ising-type model. A related 
challenge involves training statistical 
models to rapidly and accurately quantify 
neurobehavioral variation. For instance, the 
presence of active psychotic symptoms in 
previously unseen individuals diagnosed 
with schizophrenia and bipolar illness can 
be predicted using dynamic functional 
connectome features derived from fMRI44. 
Quantum analogs (such as HQMMs21,22; see 
“Sequence analysis” and “Genetics”) may 
help train such predictive models more 
efficiently.

Computational neuroscience has used 
circuit models to inform and constrain 
experimental observations. Dynamical 
neural models operate at the local circuit 
or global level and use parameterizations 
based on known constraints (for example, 
biophysical parameters) or learned de novo. 
Local and global neural dynamics are 
typically highly nonlinear, producing 
difficult optimization problems in the case 
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of parametric model fitting45 and requiring 
a rich model class for de novo learning 
methods. Fluctuations at equilibrium exhibit 
complex interdependencies. Furthermore, 
the hierarchical relationships between 
genetics, anatomy, function and the 
equilibrium connectivity neural state are, in 
general, highly nonlinear and only partially 
captured by available computational 
models. Current classical models relate such 
simulations to equilibrium distribution 
features (or to resting state characteristics) 
— for instance, Ising models and 
second-order mean-field regional models 
of resting-state fMRI observations46,47. 
These differential-equation-based analyses 
of global brain dynamics represent 
regional firing rates using a mean-field 
approximation46. Such models can be 
fitted to functional neuroimaging data by 
linearizing the initial stochastic nonlinear 
system of differential equations around a 
fixed point using the method of moments46 
and using methods such as approximate 
Bayesian computation to fit parameters45. 
In the QC domain, quantum algorithms 
have been developed that have the potential 
to offer exponential speedups in the 
solving of linear differential equations48,49. 
Furthermore, models such as the QBM39 
and QVAE40, as discussed in the previous 
subsection, may be naturally applied to 
model complex distributions such as those 
found in neurodynamics datasets.

General-purpose quantum solvers for 
nonlinear systems of differential equations 
have also been proposed50, although so far 
these seem unlikely to offer speedups over 
classical methods. Efficient general-purpose 
solvers would eliminate the need for linear 
approximations and allow more accurate 
fitting of neural dynamical models, 
particularly out of steady state (for example, 
transitions between resting-state and 
task-based fMRI). This application may help 
motivate finding fast quantum algorithms 
for nonlinear differential equations.

The computational challenge in human 
neuroscience is particularly acute in the 
case of ‘deep’ behavioral phenotyping 
(for example, digital real-time measures), 
which can generate massive amounts 
of continuously measured dynamical 
behavioral variables with varied granularity. 
In this situation, there is clear potential for 
‘very deep’ optimization and the opportunity 
for massive state-space exploration. 
Relevant use-case scenarios include 
in-the-moment clinical decisions that may 
require rapid computation. This becomes 
challenging for longitudinal real-time digital 
phenotyping, which may require rapid and 
precise data reduction. For instance, rich 
individualized phenotypic characterization 

using high-resolution video and audio 
datasets have yet to be leveraged since they 
are identifiable in raw form and present 
operational challenges to data reduction and 
protection of participant privacy.

Collectively, the complexity of human 
neurobehavioral data tests the boundaries 
of learning algorithms, which have to deal 
with the high dimensionality of data needed 
to robustly link nonlinear dynamics of 
brain states (for example, fMRI) and the 
influence of time-related variables relevant 
to behavioral mapping. Recent deep learning 
approaches using interpretable recurrent 
networks have provided a powerful means 
of learning such brain-state/behavior 
associations de novo by jointly modeling 
fMRI and behavioral data51. Quantum 
analogs of neural network frameworks (such 
as QNNs52, QBMs39 and QVAEs40) have 
the potential to discover novel structure 
in these datasets. Models such as HQMMs 
provide alternative dynamical models with 
intrinsically quantum representations22, 
which have been shown to have comparable 
or possibly improved performance relative 
to classical methods on small-scale problems 
through classical simulations. Further, there 
is evidence that HQMMs allow complex 
dynamics to be modeled in a reduced state 
space21 compared to classical models. The 
application of such methods to behavioral 
data, though, is a long-term goal, since 
reliable qRAM appears necessary to handle 
large dataset sizes.

Integration across disciplines. Stitching 
together insights across fields and levels 
of analyses to yield a complete picture of 
brain function is an ongoing challenge. 
Quantum machine learning may help 
elucidate the interdependencies between 
levels through its ability to learn and 
simulate nonlinear, potentially classically 
intractable models. One promising avenue 
involves mechanism-agnostic machine 
learning methods like deep neural networks, 
where biological insights are gained by 
interpreting the model a posteriori. Such 
an interpretable framework would involve 
connections between modules such as gene 
regulatory networks, on the one hand, and 
structural or functional neuroimaging 
parameters (for example, cortical thickness, 
white matter integrity and dynamic 
functional connectivity) on the other. The 
exact nature of these connections could 
be altered in competing hypotheses. One 
could imagine a hierarchical network 
with molecular phenotypes at the base, 
emergent neuroimaging-based parameters 
at a higher layer, and behavioral phenotypes 
as prediction targets. An alternative 
framework would treat the molecular 

and neural-systems-level components as 
parallel factors in determining behavior, 
with the latter having been influenced at 
a developmental stage and not directly 
emerging from the molecular phenotypes 
per se but rather operating in dependent 
lockstep. Thus, different architectures of 
relationships between levels of analysis 
may be constructed. The National Institute 
of Mental Health in the United States has 
recently supported efforts at building 
such multiscale, convergent neuroscience 
approaches (https://grants.nih.gov/grants/
guide/pa-files/par-17-176.html). Such an 
analysis could be aided by QNNs52 and 
quantum variational classifiers53 designed 
for use on non-qRAM, gate-based quantum 
computers. Quantum variational classifiers 
are able to successfully classify states 
designed to be hard to simulate classically53. 
This hints at the greater generality of such 
circuits than their classical counterparts. 
Here the challenge lies in scaling up the 
available number of qubits.

Epilogue
While the field of QC is undergoing 
notable development and progress in 
both hardware and software, knowledge 
gaps and challenges remain. To surpass 
classical computers, quantum computer 
architectures will need to improve numbers 
of and connectivity between qubits, reduce 
error rates both for operations and storage, 
and expand algorithmic development into 
all areas where classical computing faces 
inherent bottlenecks. These challenges are 
all significant and are partially conflicting; 
indeed, the central experimental QC 
challenge is to create quantum systems that 
are both highly decoupled from unwanted 
environmental degrees of freedom yet 
subject to fast and precise control and 
measurement. While there has been 
steady experimental progress over the 
past two decades, it is not easy to predict 
the rate of future improvements in QC. 
A recent consensus study on the progress 
and prospects of QC from the National 
Academies of Sciences, Engineering and 
Medicine estimates that to effectively break 
current internet security protocols (that 
is, find a private key in a 1,024-bit RSA 
encrypted message) using Shor’s algorithm 
requires building a quantum computer that 
is five orders of magnitude larger and has 
error rates that are two orders of magnitude 
lower than existing machines54. More than 
100 academic and government laboratories 
around the world are working to address 
these challenges with a variety of hardware 
solutions54. These include ion-trap quantum 
computers with 20–100 qubits that are likely 
to become available by the early 2020s54. 
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Leveraging the power of lithographic 
technology, superconducting quantum 
computers hold great promise, and 5-,  
16- and 20-qubit machines are available 
to users via the web. Other promising 
approaches include developing quantum 
computers based on photonic, neutral-atom 
and semiconductor qubits54.

As mentioned above, many algorithmic 
quantum speedups depend on qRAM, 
but there is no practical implementation 
of this technology. In fact, this reliance 
on qRAM, in part, stems from attempts 
to arrive at algorithms that are essentially 
quantum versions of classical algorithms. An 
alternative approach is to design intrinsically 
quantum algorithms that take advantage of 
quantum features such as interference. We 
think that this alternative approach offers 
the added benefit that small-scale versions 
of problems are readily implementable on 
existing hardware. Indeed, recent advances 
in quantum machine learning algorithms 
exploit the exponentially large quantum state 
space to estimate kernel functions53,55, as well 
as the natural ability of quantum computers 
to execute kernel-based classification56,57. 
We believe that generalizations of these 
algorithms for genomics applications hold 
great promise and will allow assessment of 
the current capabilities of publicly available 
quantum computers29. Given the potential 
of quantum computers to efficiently explore 
a vast state space, we think that the natural 
applications to neuroscience problems are 
largely associated with optimization and 
machine learning, as detailed above. We 
feel that another potentially fruitful path 
is to identify computational problems 
that can be naturally cast into a quantum 
framework. For example, the minimum free 
energy among all possible protein folds is an 
important problem with an exponentially 
large search space and thus a compelling 
target. Another natural set of problems are 
those associated with quantum biology — 
the study of chemical processes including 
formation of excited electron states within 
molecules (for example, proteins) in 
living cells, along with their functional 
effects58. These processes are inherently 
quantum mechanical and may involve 
an exponentially vast set of excitation 
states, which can only be efficiently 
modeled by applying transformations to 
an exponentially large state space afforded 
by a quantum computer. However, we are 
not sure whether such processes can be 
relevant to higher-levels of brain function 
(and consciousness59); the algorithms used 
by the brain at David Marr’s algorithmic 
or representational level may ultimately be 
classical60, although the advent of quantum 
machine learning means that increasingly 

this need not be the case for artificial agents. 
While a cautious albeit optimistic estimation 
associated with steady progress of quantum 
hardware development (for example, 
applying Moore’s law) puts the availability 
of sufficiently powerful, universal quantum 
computers years in the future, sudden, 
orders-of-magnitude breakthroughs in 
resolution, noise reduction and so forth are 
not unprecedented in experimental physics. 
We strongly believe that such unforeseen 
breakthroughs would unleash the power 
of quantum computing to address pressing 
computational challenges in biology. ❐
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