‘ '.) Check for updates

comment

Quantum computing at the frontiers of
biological sciences

Computing plays a critical role in the biological sciences but faces increasing challenges of scale and complexity.
Quantum computing, a computational paradigm exploiting the unique properties of guantum mechanical analogs
of classical bits, seeks to address many of these challenges. We discuss the potential for gquantum computing to aid
in the merging of insights across different areas of biological sciences.
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nderstanding complex biological
phenomena has required concurrent
advances in experiment, theory and
computing power. The increasing need
for computing infrastructure has led to
expansions of current supercomputing and
other massively parallel computing facilities,
but also considerations of entirely new
computing paradigms. Here we consider
the potential of quantum computing (QC)
to address complex biological questions.
QC is an approach to computation in
which an algorithm is defined by a series
of operations on quantum states that
results in a solution to a problem. Recent
technological developments have carried
QC capabilities from the realm of academic
exploration to commercial opportunities™?.
While the scale is not yet competitive with
classical technologies, there is substantial
excitement in its eventual promise, and
we hope to provide an entry point for
biologists to certain aspects of the discussion
surrounding QC. This effort is especially
timely given recent policy efforts at a
national or international level, such as the
US National Quantum Initiative Act of 2018°
(the implementation of a National Quantum
Initiative for quantum information science
and technology*), the European Quantum
Technologies Flagship, and efforts in the
United Kingdom and China’.

We first present a primer on quantum
computation to familiarize the reader with
the basic concepts and language of QC. The
remainder is focused on the study of the
human brain through genetics, genomics,
neuroimaging and deep behavioral
phenotyping, a multidisciplinary effort
that falls under the term “convergent
neuroscience” We highlight these areas as
they exemplify two sources of complexity:
separately, each field presents a rich set

of problems that often push the limits

of classical computational capability;

in combination, they offer a multiscale
challenge leading from the molecular scale
through the cellular and tissue levels to
brain architecture and, eventually, to
complex human behaviors and disorders.
The study of the emergent properties of
the brain, such as cognition and behavior,
is a uniquely challenging multilevel
endeavor that demands pioneering
approaches in computation. Accordingly,
we discuss how quantum algorithms that
map onto methodological issues in the
biological sciences may provide much
needed improvements in computational
efficiency, and we posit open questions
for eventual development of new
computational solutions.

Classical versus quantum circuits:
state of the art

Quantum computing uses the laws

of quantum mechanics to perform
computations. Quantum mechanics

is the physical theory that governs all
matter but is particularly relevant at the
molecular scale and below. It states that
particles have wave-like properties and
waves have particle-like properties. If a
quantum computer could be built, then this
wave-like behavior could be harnessed for
computational benefit: in a conventional
(classical) computer using randomness,
different random choices can lead to
different outcomes, and the total probability
of an outcome is the sum of the probabilities
of each computational path leading to that
outcome; by contrast, a quantum computer
can have complex amplitudes along
computational paths, just as a wave can have
different amplitudes in different modes.
Measuring will ‘collapse’ the state and yield
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a specific outcome with probability equal to
the squared absolute value of the amplitude.
Thus, quantum computers promise a

new form of computing that would be
qualitatively different from any previous
(classical) form of computation by allowing
interference between computational paths,
analogous to the interference between
waves®. While quantum computers are
technically more difficult to build, and the
best current general-purpose quantum
computers have only 50-100 qubits, they
can solve some problems in a time that
grows more slowly as a function of the
input size than classical computation. The
term “qubit” refers to a quantum two-level
system, such as a photon that can travel
down one of two optical fibers. Qubits can
be thought of as a generalization of classical
bits (cbits): cbits can be in states 0 or 1,
while the state of a single qubit is described
by complex numbers a, and a, satisfying
|ty + |exy|* = 1. The power of quantum
computers comes from scaling. A system

of n cbits can be in one of 2" possible states
at any time, while the state of # qubits

is described by a complex unit vector of
dimension 2" (Fig. 1a,b). These vectors (also
called wavevectors or wavefunctions) can be
transformed by multiplying them by unitary
matrices, and in many cases this can be done
efficiently. For example, the wavevector

can be Fourier transformed using O(n?)
elementary quantum gates. However, not all
transformations can be done efficiently. The
laws of quantum measurement also limit the
amount of information that can be extracted
from a quantum state. A full measurement
of the state yields outcome x with probability
||, destroying the state in the process.
Thus, even though describing the quantum
state of n qubits requires an amount of
information that scales exponentially with n,

701


http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-020-01004-3&domain=pdf
http://www.nature.com/naturemethods

z=10)

Bit Qubit

+1 billion years

1 million years

5]
o
%000 €
3
oo £ 1,000 years
X510 -g I-100 years
o4 = r10years
%100 5 lyear.-”
X101 S +1'month _
%o e Hday .
a °
11
E k1 hour
=

100 seconds -

1 second

100

Ll
1,000

T L
10,000 100,000
n (bits)

Fig. 1| Concepts in quantum computing. a, Conceptual illustration of bit versus qubit. The state of a qubit can be represented by a point on the unit sphere
with the north and south poles corresponding to the states O and 1 of a classical bit. b, The state space of 3 qubits is a 23-dimensional complex vector.

¢, Classical (number field sieve (NFS) algorithm) and quantum (Beckman-Chari-Devabhaktuni-Preskill (BCDP) implementation of Shor’s algorithm) run
times for factoring integers. Shor's algorithm for quantum computers yields an exponential speedup over the best known classical algorithm (panel ¢ adapted

with permission from ref. ¢, R. Van Meter et al.).

measurement can only extract # bits of
information. Finding a way to benefit from
the exponential state space of quantum
computers despite this limitation and
others is the central challenge of quantum
algorithm design’.

The challenges in building quantum
hardware and mitigating noise are
considerable and are not addressed in
this paper, since our focus is principally
on algorithm development and potential
biological applications. Large-scale
quantum computers are likely to rely on
error-correcting codes and other error
mitigation strategies that will result in
additional overhead; for example, needing
to use many physical qubits to store
one logical qubit. However, quantum
algorithms can be built out of a universal
set of quantum gates in a way that does
not depend on the underlying hardware,
just like classical algorithms.

Given the ubiquity of classical computers,
the natural way to understand the strengths
of quantum computers is by comparing
their run-time scaling with that of the
best-known classical algorithms. In some
cases, these speedups are exponential: a
quantum computer with a few thousand
error-corrected qubits could factor numbers
that could not be factored using existing
classical computers and currently known
algorithms in time less than the age of
the universe. In other cases, provable
polynomial speedups are known: for
example, given the ability to compute a
function f(x) where x takes on N values, a
quantum computer can find the minimum
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value of f(x) in only O(\/N ) evaluations
of f(x) while a classical computer would
require O(N) steps (assuming that f(x)
has no other structure we can exploit)®.
By contrast, for some problems, quantum
computers are known to be no stronger than
classical computers. And in many other
cases, plausible heuristic algorithms have
been proposed for quantum computers,
whose performance is only incompletely
understood.

The source of quantum speedup. There is
not a simple description of what accounts
for speedups, although the most plausible
explanation is the difference between
interference of amplitudes and addition of
probabilities. For example, a qubit can have
states |0) and |1), which correspond to cbit
values 0 and 1 and, in the representation
of Fig. 1a, are the north and south poles.
Qubits can also be in superpositions

(see Box 1) such as % and %, which
lie on the equator in the figure; these
correspond to having amplitude % in the

|0) state and amplitude % in the |1) state.

To see that these differ from each other,
and also from a random mixture of |0) and
|1), consider the vNOT gate, which maps

|0) and |1) to % and ‘0>\;§‘1>, respectively.

Starting with the |0) state, applying
V' NOT once yields %. This state could

be thought of as analogous to a random
mixture of 0 and 1, as we would expect

if vV NOT means applying NOT with
probability one-half. However, applying
VNOT twice yields |1), just as we would
expect from a NOT gate, whereas applying
the randomized version twice would yield
the same uniform mixture of 0 and 1.

More generally, quantum computers and
randomized computers can both be thought
of as taking different paths through the

2" possible bit strings, but for randomized
computers we sum the non-negative-valued
probabilities of these paths to get the final
output distribution, while for quantum
computers we sum the complex-valued
amplitudes of these paths. Adding complex
numbers of roughly the same phase (for
example, 1 + 1) corresponds to constructive
interference while adding ones of opposite
phases (for example, 1 + (-1)) corresponds
to destructive interference, analogous

to the way that light and other waves can
exhibit interference.

While we often do not know how to take
advantage of the rich possibilities offered by
quantum interference, in some cases we can
use them to achieve asymptotic speedups.
Algorithms like Grover’s unstructured
search algorithm’ are simple examples of
this. Grover’s algorithm takes a subroutine
with a small success probability p, which
would need to be repeated O(1/p) times on
a classical computer to obtain a successful
outcome, and obtains an answer on a
quantum computer using only O (1 / \/ﬁ)
repetitions. This makes use of the fact
that probabilities are obtained by taking
the square of quantum amplitudes. The
quantum Fourier transform (used in period
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Box 1| Glossary

Biological

o Single-nucleotide polymorphism
(SNP). Germline (inherited) variant in
a genome where the identity of a single
nucleotide is changed relative to a refer-
ence genome; the prevalence of a SNP
in a population is dependent on the
pattern of its inheritance.

o Genetic recombination. Exchange of
segments between separate genomes or
chromosomes, or different regions of
the same chromosome, by the creation
of single-stranded (in, for example,
viruses) or double-stranded (in, for
example, humans) breaks and subse-
quent ligation of the crossed segments.

o Genome-wide association study
(GWAS). Identification of variants in a
population with statistically significant
associations to the occurrence of a
studied phenotype.

o Quantitative trait locus (QTL).
Variant in a genome or population with
statistically significant association to
the occurrence of a studied phenotype,
including but not limited to endophe-
notypes (that is, phenotypes at the
suborganismal level; for example, cell-
or tissue-level gene expression).

Machine learning
« Hidden Markov model (HMM).
Stochastic latent-state method to

finding and Shor’s factoring algorithm;

Fig. 1c) is a more sophisticated example

of how complex-weighted transitions can
be useful, and in some cases this can give
rise to exponential speedups. By contrast,
some problems are known to not admit any
quantum speedup: for example, finding the
parity of N numbers requires time O(N) on
either a quantum or classical computer'.

It is a major open research problem to
determine when quantum speedup does or
does not exist, and it is unlikely to ever be
fully resolved, just as there is still no single
theorem describing which problems can be
solved by efficient classical algorithms. We
next discuss some examples of potential
quantum speedups.

Exponential speedup. The main exponential
speedups known are for code breaking
(dramatic but unlikely to be relevant here)
and quantum simulation of molecules

or other large quantum systems. If the
properties of a molecule are not well
captured by simple classical approximations,
then there is a good case to be made for using

model a linear sequence of observa-
tions as a probabilistic sequence

of underlying state transitions and
state-to-observation emissions.

« Boltzmann machine. Generative clas-
sical neural network model, based on
an energy function containing local
(unary) and pairwise terms over an
underlying undirected graph. Recently,
the model has been extended to replace
the classical energy with a quantum
Hamiltonian to form a quantum Boltz-
mann machine (QBM)®.

o Variational autoencoder (VAE). Gen-
erative neural network model, incorpo-
rating a latent space that is mapped to
observed variables by a learned feedfor-
ward classical neural network. Latent
space can be a classical (Gaussian) or
quantum (QBM)" distribution.

Quantum computing

o Quantum superposition. A fundamen-
tal principle of quantum mechanics
whereby the overall state of a system
(for example, an electron in an atom
or qubit) is in a linear combination of
orthogonal basis states (for example,
the lowest energy state, next excited
state and so forth). For example, if
|0) denotes the lowest energy state
of a qubit and |1) an excited state of
a qubit, the state of the qubit, |y),

a quantum computer to make a better-quality
approximation computationally tractable.
The advantage of a quantum computer

here arises from the exponentially growing
dimension of quantum states. As a result,
some promising cases for quantum advantage
involve molecules with large numbers of
active electrons, such as organometallic
compounds'’.

Polynomial speedup. Typical polynomial
speedups can be thought of as direct
improvements of some classical algorithms.
The best known of these is Grover’s
square-root search speedup, described
above'. Other, more sophisticated
algorithms also admit provably quadratic
improvements. For example, a classical
algorithm might search over a tree of
possibilities in a manner that can improve
over brute-force search by sometimes being
able to quickly prune entire subtrees. Such
searches can also be quadratically improved
quantumly; that is, if the classical search
process explores N nodes, then the quantum
algorithm requires effort roughly equal to
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can be a superposition of basis states:
ly) = a0[0) + an[1).

o Quantum random-access memory

(qQRAM). In analogy with random
access memory (RAM), which uses n
bits to address 2" distinct memory cells,
qRAM would use 7 qubits to address
any quantum superposition of 2"
memory cells'.

e Quantum annealing (QA). A tech-

nique for minimizing a function f using
a low-temperature quantum system
whose energy corresponds to f, along
with an auxiliary field that is slowly
turned off. The auxiliary field attempts
to create superpositions between nearby
qubit strings, similarly to equally
weighting possible solutions, and
facilitates quantum tunneling (that is,
transition of a quantum state between
nearby low-energy strings even through
regions of higher energy) to arrive at a
minimum of f relatively efficiently once
turned off.

o Hidden quantum Markov model

(HQMM). The quantum analog of
HMMs, where the sequence of quan-
tum operations is such that information
of the state transition and emission
probabilities of the qubits can be
retained even after partial measurement
of the system (that is, measurements do
not collapse the entire system)”'.

V/N times the effort to evaluate one node'.
The strength of these algorithms is that they
apply under very general conditions, such as
needing to minimize an easily computable
function. They also do not usually need
more qubits than are already needed to
compute the function.

Heuristic speedups. Many of the most
important algorithms for classical computers
either lack formal proofs of correctness

or are often run outside of the regime in
which these proofs of correctness apply.
These include Markov chain Monte Carlo
(where rigorous upper bounds on mixing
time are usually not known) and gradient
descent applied to non-convex problems
such as deep neural networks. For quantum
computers, heuristic algorithms include
adiabatic optimization'* — or, more
generally, quantum annealing (QA)"”” — and
the quantum approximate optimization
algorithm (QAOA)'®. The level of speedup
provided by these algorithms over classical
algorithms is in general unknown. It is
expected that as quantum computers are
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Box 2 | Computational opportunities for the future

Existing quantum algorithms — for
example, function minimization — are
often written in terms of abstract and
highly general functions. If biological
applications can help motivate specific,
mathematically well-posed tasks, then it
may be the case that targeted quantum
algorithm development can lead to
improvement. While this promise is
discussed at length in the main text in the
context of the study of the human
brain, here we briefly introduce some
of the key areas of ongoing research

in quantum computing, related to and
providing the context for applications
in biology.

Optimization in biomolecular problems
There has been considerable interest

in extending QC to biomolecular and
biological problems®. In several cases,
small examples of biological problems
have been mapped to combinatorial
optimization problems. A QA approach
was employed in the exploration of the

built, our understanding of the performance

of these heuristics will improve, just

as much of our understanding of the
performance of classical heuristics
comes from empirical evidence and not
only theory. In the following sections,
we refer to this class of methods as
“quantum heuristics.”

Interfacing with classical algorithms.

There is an important caveat about quantum

algorithms. Suppose for concreteness that
we are minimizing a function f{x). For

a speedup, a quantum computer would
need to interfere computational paths that
compute f(x) for different values of x. If
information about the value of x leaked
to an outside classical system, then

this would prevent those paths from
coherently interfering, and we would be
left with f{x) for a random choice of x.
This would limit its ability to share the
computation with a classical computer.
Suppose, for example, that the evaluation
of f(x) were a memory- and time-intensive
calculation for which quantum speedups
were not known. Then using quantum
computers to improve the minimization
of fwould need to use qubits to perform
this evaluation and could not offload the
computation to a classical computer.

This means that the overall speedup
would be less than quadratic.
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coarse-grained folding landscape of a
six-amino-acid peptide, within a 2D
lattice framework®. QA was also evaluated
against a set of classical methods on

an optimization problem involving the
search for the consensus DNA sequence
motif of transcription factor binding®.
In this instance, Li et al. trained a
classifier (sequence binds or does not
bind) and a ranking algorithm (ranking
sequences by binding affinity), finding a
slight improvement of QA over classical
approaches in the classification problem
and similar performance for the
ranking task.

Simulation of classical and quantum
systems

There have been successful demonstrations
of the application of quantum computation
to problems in chemistry. A variational
quantum eigensolver (VQE) approach was
used® to estimate the ground state energies
of small molecules as a function of their
component atomic separations. Briefly,

Big data and quantum RAM. A related
limitation of current models of quantum
computers is that they cannot access

large classical datasets in superposition;
attempting to do so would amount to
measuring the qubit register containing
the address being queried, which would
collapse any superposition there into

a random mixture. This means that
quantum computers may be able to speed
up complicated calculations on small
datasets (for example, finding the best
Bayesian network) but have less advantage
in solving problems on large datasets.
One way to address this is with filtering
or data-reduction techniques, which
select a small but hopefully representative
sample of the data and use that as input
to the optimization problem'. Or the
quantum computer could be used for
‘small data’ problems where the difficulty
comes from the complexity of the
analysis. A more speculative possibility is
a quantum hardware solution known as a
qRAM (quantum RAM)'¥, which would
give a quantum computer the ability to
coherently query a large classical dataset as
a superposition of qubits: a superposition
of input memory addresses would yield
an output consisting of a superposition of
memory cell contents (see Box 2). A qRAM

would enable powerful quantum algorithmic

primitives'®, but there are no proposals for

short quantum circuits define a variational
ansatz of trial solutions for the ground
state, and the circuit parameters are varied
to minimize the energy using algorithms
such as gradient descent. While the
complexity of simulating quantum
dynamics on quantum computers is well
understood and is usually tractable, the
success of VQE will depend on the quality
of the ansatz and is an active area of
ongoing research.

Quantum simulation of chemical
reactions is known in principle to be
possible on a quantum computer, and,
as the practical details are fleshed out,
this is expected to be an important
application of quantum computers for
applications both inside and outside of
biology. One particular strength is in
modeling dynamics, and there is evidence
that energy transport and electron
transport in biological molecules involves
quantum effects that could potentially be
more accurately modeled by a quantum

simulation®.

scalable error-corrected qRAM, and it is not
clear whether it would ultimately be easier
than making a large quantum computer”.

Potential applications for quantum
computing in biology

Sequence analysis. We first consider QC
algorithms implementable on near-term
quantum processors. An essential initial step
in genetics and genomics is the matching of
sequences of nucleotides and amino acids to
organism databases and, more specifically,
the mapping of sequencing reads from
experimental assays to reference genomes.
Any approach needs to contend with both
memory (holding a representation of the
reference and information on the mapping)
and speed concerns. Dynamic programming
methods, such as the Smith-Waterman
algorithm?, enable queries of sequence
strings against immense databases and
could be cast as hidden Markov models
(HMMs). The recent development of hidden
quantum Markov models (HQMM:s)?"*
opens the possibility of simulating classical
HMMs on available quantum circuits®,

as well as extending model space beyond
classical HMMs™'. In fact, the potential
advantage of HQMMs stems from this
extension of the model space to yield

more efficient representations of sequence
generators”'. However, it is unclear how

and to what extent this increased efficiency
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would translate into speedups. Hybrid
approaches are attractive prospects: the
iteration through hyperparameter space in
HMMs could be classical, with quantum
optimization of the maximal trajectory
through state space. Given that dynamic
programming methods have mostly been
supplanted by the approximate but faster
k-mer-based BLAST algorithm?® for
database searches, a QC-based improvement
in efficiency could reopen the case for
their utility.

We next explore problems whose QC
solutions may depend on the availability
and storage in memory of superpositions
of qubits (QRAM). For genomic read
mapping, state-of-the-art classical
algorithms include the exploitation of the
Burrows—Wheeler transform to efficiently
perform DNA sequence alignments®,
and seed-based approaches to map RNA
reads to exon boundaries separated by
large genomic distances*’. Both methods
rely on lexicographically sorted suffixes
constructed from the reference genome,
followed by scanning for matches of the
query read. The classical complexity of
sequence matching depends on whether
exact (O(n + m); n = length of reference
sequence, m = query read length) or
inexact matches (O(nm)), including gaps,
are considered. Grover’s-algorithm-based
improvements in string-matching speeds*
could be exploited (O(y/n + y/m) for exact
matches) to aid the scanning process. Recent
work has demonstrated the potential for
even further QC speed gains under the
assumption of unique membership of a
query string within a reference database.
The scaling of the problem is such that a
reduction in complexity of even simpler
mapping problems would be highly
beneficial, although the need to generate
superpositions of the entire reference
string also creates potential problems:
given the need to store a large reference
database in superposition, the current
lack of QRAM is an issue. Furthermore,
speed gains from Grover’s-algorithm-based
methods could be reduced by the cost of
evaluating the function being searched,
if done classically.

Genetics. As in the previous section,

a possible problem for near-term QC
algorithms to tackle is the imputation of
individual-specific mutations, especially
single-nucleotide polymorphisms (SNPs).
Given shared sets of haplotypes across
subpopulations, a relatively sparse set

of SNPs can be expanded by inferring
additional SNPs that co-occur with the
original set with high probability. This
imputation usually involves an HMM-based

likelihood maximization”, which could be
cast as HQMMs.

While imputation depends on
inherited SNPs within populations
(germline mutations), cells also contain
postconception de novo variants, called
“somatic variants” Every neuron in the
human brain is likely to contain private
somatic variants, including single-nucleotide
variants and large structural variants that
alter allelic diversity for dozens of genes.
Identifying their functional impact is
essential. Machine-learning classifiers have
been trained on case-control datasets to
identify psychiatric-disorder-associated
variants®. However, given the
high-dimensional parameter search space
for the classification problem, classical
computation frequently runs into search
efficiency issues. These issues might be
ameliorated using near-term implementable
QC machine learning methods®, discussed
at length in subsequent subsections.

Another important category of genetic
analyses is the construction of optimal
trees that describe the relative proximity
of genetic sequences, including ancestral
recombination graphs (ARGs)*, depicting
ancestral relationships between individual
genomes while accounting for genetic
recombination; pathogen evolutionary trees
in epidemiological studies; and tumor cell
mutational lineages, as could be relevant
to malignancy and medical response. Tree
reconstruction algorithms optimize across
the similarity constraints between genomic
segments, mainly involving sampling from
the space of possible genealogies with
heuristics and simplifications®’. For smaller
input sequence sets, the massive tree-search
space makes this an open candidate problem
for speedup using available quantum
heuristic optimization methods'*'¢.

SNP association and heritability
analyses are problematic for near-term
quantum approaches, given the need
to manipulate large matrices to solve
systems of linear equations. In association
studies, SNPs can be statistically associated
with individual-level phenotypes in
genome-wide association studies (GWAS)
or to quantitative molecular traits (cell
or tissue gene expression, methylation,
epigenetic markers, cell fractions) and other
quantitative traits (loci designated as QTLs).
The evaluation of total SNP heritability
often involves linear mixed effects models,
with genetic variance estimations carried
out through techniques such as the
restricted maximum likelihood (REML)
method™. With qRAM, algorithms such as
quantum least squares™** could offer up to
exponential speedups through the ability
to perform fast linear-algebraic operations,
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under certain assumptions of sparseness and
condition number, although it is unclear

to what extent any advantages would be
undercut by the time cost of querying the
qRAM. For lower-dimensional regression
problems, there is some potential for
near-term quantum heuristic optimizers to
tackle these tasks™.

Functional genomics. The chain of

factors that leads from genetic variation

to higher-level behaviors such as cognitive
traits includes complex intermediate links,
such as the molecular regulatory framework
within cells, cell-to-cell interactions,
heterogeneity in cellular composition and
behavior in tissues, and inter-regional
connectivity patterns in the brain, among
many others (Fig. 2). These factors are
further governed by complex developmental
processes and gene—environment
interactions in an individual-specific
manner. Despite this complexity, recent
studies have shown that genetic risk for
particular traits can be partitioned across
‘intermediate’ phenotypes, such as gene
expression or chromatin binding profiles; a
direct approach to such analysis is to impute
intermediate molecular phenotypes first
and then link the imputed phenotypes to
high-level traits*. However, intermediate
molecular phenotypes are typically high
dimensional and interdependent; for
example, bulk transcriptome expression
profiles can be ~22,000 dimensional.
Possible models that can learn joint
probability distributions over such levels

of analyses include Bayesian networks,
undirected models such as Boltzmann
machines”, and recent deep-learning
approaches such as variational autoencoder
(VAEs). Exact optimization of such
models, however, is intractable: structure
learning in Bayesian networks requires
optimization over a search space of all
directed acyclic graphs, which is

super-exponential (O n!2<z'<"n92ﬂ>) , where

n is the dimensionality™®). Inference in
Boltzmann machines requires a search over
O(2") states after binarization to calculate

a gradient, and training VAEs requires the
optimization of a non-convex objective
function. Such problems may be potential
candidates for quantum approaches: for
smaller input sizes, near-term approaches
without qRAM may be developed to
perform exact searches across the space of
Bayesian networks, while for moderate-sized
problems, approximate quantum analogs

of Boltzmann machines (QBMs) and VAEs
(QVAESs) have been tested in simulation and
experimentally’>"’, with the optimization
being conducted through QA. We note also
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Computational complexity across level of analysis: many-to-many mapping problem
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Fig. 2 | Complexity of linking levels of analyses from genetics to human behavior. The challenge consists, in part, of the need to interrogate the enormous
search space for determining the mapping across levels, which constitutes a many-to-many probabilistic problem. Computational innovation will be a key
effort to help close these gaps. Portion of figure adapted with permission from ref. ¢, Elsevier. Also shown are some of the ways in which QC can aid in the

interrogation of these levels.

that, for all these models, prior knowledge
of molecular interactions may be used
during training to suggest causal network
interpretations.

In contrast to direct imputation of
molecular phenotypes, intermediate
phenotypes may be derived at the level
of sets of genes (such as functional
pathways) and cell-type proportions.

For instance, weighted gene correlation
network analysis (WGCNA) performs a
version of hierarchical clustering to derive
coexpression modules, which are enriched
in gene pathways*, and non-negative matrix
factorization (NMF) based on marker

gene profiles can be used to decompose
bulk transcriptome data into components
corresponding to cell-type fractions”.
Exact optimization of these models is again
intractable; exact hierarchical clustering
would require a search over a large

space of trees, and NMF is a non-convex
optimization problem. The former may be
a candidate for an exact quantum solution
for small-scale problems while both may
benefit from quantum heuristic approaches
(a QA approach to NMF is found in ref. **,
and quantum speedups for approximate
clustering are described in ref. 7). While
clustering ~1,000 to ~20,000 features is
common in genomics, there are a number
of applications where a relatively small
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number of features, ~100, are clustered
across samples (for example, protein-array
data). Clustering associated with global
minimization of objective functions is of
great interest in these small-feature-number
cases. More generally, comparison of clusters
(and solutions to other genomic algorithms)
derived from exact and approximate greedy
minimization would inform the nature of
the errors associated with applying greedy
algorithms to large numbers of features

and samples, as well as suggest possible
approaches to improving the greedy
algorithms in the short term. Application

of these methods at full genomic scale,
however, would require further technical
developments in qRAM or quantum
processor size.

Mapping neurobehavioral variation via
neuroimaging and deep phenotyping. The
overarching goal of convergent neuroscience
is to link cellular-level mechanisms to
system-level observations and ultimately
behavior. Multimodal neuroimaging
provides rich high-dimensional data that
can map neural and behavioral mechanisms
in humans. While many quantitative
optimizations remain, one of the core
challenges is accurate identification and
alignment across people of brain anatomy
to reference atlases. For instance, one

widespread approach implemented in
FreeSurfer software* employs a sequence
of registration steps involving the
minimization of an energy function over
the spatial transformation field. Here,
potential quantum heuristic approaches
could be brought to bear for images of
moderate resolution if the corresponding
energy function (Hamiltonian) can be
mapped to an Ising-type model. A related
challenge involves training statistical
models to rapidly and accurately quantify
neurobehavioral variation. For instance, the
presence of active psychotic symptoms in
previously unseen individuals diagnosed
with schizophrenia and bipolar illness can
be predicted using dynamic functional
connectome features derived from fMRI*.
Quantum analogs (such as HQMMs?*"-*; see
“Sequence analysis” and “Genetics”) may
help train such predictive models more

efficiently.

Computational neuroscience has used
circuit models to inform and constrain
experimental observations. Dynamical
neural models operate at the local circuit
or global level and use parameterizations
based on known constraints (for example,
biophysical parameters) or learned de novo.
Local and global neural dynamics are
typically highly nonlinear, producing
difficult optimization problems in the case
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of parametric model fitting* and requiring
a rich model class for de novo learning
methods. Fluctuations at equilibrium exhibit
complex interdependencies. Furthermore,
the hierarchical relationships between
genetics, anatomy, function and the
equilibrium connectivity neural state are, in
general, highly nonlinear and only partially
captured by available computational
models. Current classical models relate such
simulations to equilibrium distribution
features (or to resting state characteristics)
— for instance, Ising models and
second-order mean-field regional models
of resting-state fMRI observations*>".
These differential-equation-based analyses
of global brain dynamics represent

regional firing rates using a mean-field
approximation. Such models can be

fitted to functional neuroimaging data by
linearizing the initial stochastic nonlinear
system of differential equations around a
fixed point using the method of moments*
and using methods such as approximate
Bayesian computation to fit parameters®.
In the QC domain, quantum algorithms
have been developed that have the potential
to offer exponential speedups in the

solving of linear differential equations**.
Furthermore, models such as the QBM*
and QVAE", as discussed in the previous
subsection, may be naturally applied to
model complex distributions such as those
found in neurodynamics datasets.

General-purpose quantum solvers for
nonlinear systems of differential equations
have also been proposed™, although so far
these seem unlikely to offer speedups over
classical methods. Efficient general-purpose
solvers would eliminate the need for linear
approximations and allow more accurate
fitting of neural dynamical models,
particularly out of steady state (for example,
transitions between resting-state and
task-based fMRI). This application may help
motivate finding fast quantum algorithms
for nonlinear differential equations.

The computational challenge in human
neuroscience is particularly acute in the
case of ‘deep’ behavioral phenotyping
(for example, digital real-time measures),
which can generate massive amounts
of continuously measured dynamical
behavioral variables with varied granularity.
In this situation, there is clear potential for
‘very deep’ optimization and the opportunity
for massive state-space exploration.
Relevant use-case scenarios include
in-the-moment clinical decisions that may
require rapid computation. This becomes
challenging for longitudinal real-time digital
phenotyping, which may require rapid and
precise data reduction. For instance, rich
individualized phenotypic characterization

using high-resolution video and audio
datasets have yet to be leveraged since they
are identifiable in raw form and present
operational challenges to data reduction and
protection of participant privacy.
Collectively, the complexity of human
neurobehavioral data tests the boundaries
of learning algorithms, which have to deal
with the high dimensionality of data needed
to robustly link nonlinear dynamics of
brain states (for example, fMRI) and the
influence of time-related variables relevant
to behavioral mapping. Recent deep learning
approaches using interpretable recurrent
networks have provided a powerful means
of learning such brain-state/behavior
associations de novo by jointly modeling
fMRI and behavioral data®. Quantum
analogs of neural network frameworks (such
as QNNs*?, QBMs* and QVAEs*) have
the potential to discover novel structure
in these datasets. Models such as HQMMs
provide alternative dynamical models with
intrinsically quantum representations®,
which have been shown to have comparable
or possibly improved performance relative
to classical methods on small-scale problems
through classical simulations. Further, there
is evidence that HQMMs allow complex
dynamics to be modeled in a reduced state
space’’ compared to classical models. The
application of such methods to behavioral
data, though, is a long-term goal, since
reliable QRAM appears necessary to handle
large dataset sizes.

Integration across disciplines. Stitching
together insights across fields and levels

of analyses to yield a complete picture of
brain function is an ongoing challenge.
Quantum machine learning may help
elucidate the interdependencies between
levels through its ability to learn and
simulate nonlinear, potentially classically
intractable models. One promising avenue
involves mechanism-agnostic machine
learning methods like deep neural networks,
where biological insights are gained by
interpreting the model a posteriori. Such
an interpretable framework would involve
connections between modules such as gene
regulatory networks, on the one hand, and
structural or functional neuroimaging
parameters (for example, cortical thickness,
white matter integrity and dynamic
functional connectivity) on the other. The
exact nature of these connections could

be altered in competing hypotheses. One
could imagine a hierarchical network

with molecular phenotypes at the base,
emergent neuroimaging-based parameters
at a higher layer, and behavioral phenotypes
as prediction targets. An alternative
framework would treat the molecular
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and neural-systems-level components as
parallel factors in determining behavior,
with the latter having been influenced at

a developmental stage and not directly
emerging from the molecular phenotypes
per se but rather operating in dependent
lockstep. Thus, different architectures of
relationships between levels of analysis
may be constructed. The National Institute
of Mental Health in the United States has
recently supported efforts at building

such multiscale, convergent neuroscience
approaches (https://grants.nih.gov/grants/
guide/pa-files/par-17-176.html). Such an
analysis could be aided by QNNs*> and
quantum variational classifiers™ designed
for use on non-qRAM, gate-based quantum
computers. Quantum variational classifiers
are able to successfully classify states
designed to be hard to simulate classically*.
This hints at the greater generality of such
circuits than their classical counterparts.
Here the challenge lies in scaling up the
available number of qubits.

Epilogue

While the field of QC is undergoing
notable development and progress in

both hardware and software, knowledge
gaps and challenges remain. To surpass
classical computers, quantum computer
architectures will need to improve numbers
of and connectivity between qubits, reduce
error rates both for operations and storage,
and expand algorithmic development into
all areas where classical computing faces
inherent bottlenecks. These challenges are
all significant and are partially conflicting;
indeed, the central experimental QC
challenge is to create quantum systems that
are both highly decoupled from unwanted
environmental degrees of freedom yet
subject to fast and precise control and
measurement. While there has been

steady experimental progress over the

past two decades, it is not easy to predict
the rate of future improvements in QC.

A recent consensus study on the progress
and prospects of QC from the National
Academies of Sciences, Engineering and
Medicine estimates that to effectively break
current internet security protocols (that

is, find a private key in a 1,024-bit RSA
encrypted message) using Shor’s algorithm
requires building a quantum computer that
is five orders of magnitude larger and has
error rates that are two orders of magnitude
lower than existing machines™. More than
100 academic and government laboratories
around the world are working to address
these challenges with a variety of hardware
solutions™. These include ion-trap quantum
computers with 20-100 qubits that are likely
to become available by the early 2020s™.
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Leveraging the power of lithographic
technology, superconducting quantum
computers hold great promise, and 5-,
16- and 20-qubit machines are available
to users via the web. Other promising
approaches include developing quantum
computers based on photonic, neutral-atom
and semiconductor qubits™.

As mentioned above, many algorithmic
quantum speedups depend on qRAM,
but there is no practical implementation
of this technology. In fact, this reliance
on qRAM, in part, stems from attempts
to arrive at algorithms that are essentially
quantum versions of classical algorithms. An
alternative approach is to design intrinsically
quantum algorithms that take advantage of
quantum features such as interference. We
think that this alternative approach offers
the added benefit that small-scale versions
of problems are readily implementable on
existing hardware. Indeed, recent advances
in quantum machine learning algorithms
exploit the exponentially large quantum state
space to estimate kernel functions™>, as well
as the natural ability of quantum computers
to execute kernel-based classification™".
We believe that generalizations of these
algorithms for genomics applications hold
great promise and will allow assessment of
the current capabilities of publicly available
quantum computers®. Given the potential
of quantum computers to efficiently explore
a vast state space, we think that the natural
applications to neuroscience problems are
largely associated with optimization and
machine learning, as detailed above. We
feel that another potentially fruitful path
is to identify computational problems
that can be naturally cast into a quantum
framework. For example, the minimum free
energy among all possible protein folds is an
important problem with an exponentially
large search space and thus a compelling
target. Another natural set of problems are
those associated with quantum biology —
the study of chemical processes including
formation of excited electron states within
molecules (for example, proteins) in
living cells, along with their functional
effects®. These processes are inherently
quantum mechanical and may involve
an exponentially vast set of excitation
states, which can only be efficiently
modeled by applying transformations to
an exponentially large state space afforded
by a quantum computer. However, we are
not sure whether such processes can be
relevant to higher-levels of brain function
(and consciousness™); the algorithms used
by the brain at David Marr’s algorithmic
or representational level may ultimately be
classical®, although the advent of quantum
machine learning means that increasingly
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this need not be the case for artificial agents.
While a cautious albeit optimistic estimation
associated with steady progress of quantum
hardware development (for example,
applying Moore’s law) puts the availability
of sufficiently powerful, universal quantum
computers years in the future, sudden,
orders-of-magnitude breakthroughs in
resolution, noise reduction and so forth are
not unprecedented in experimental physics.
We strongly believe that such unforeseen
breakthroughs would unleash the power

of quantum computing to address pressing
computational challenges in biology. a
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