
1 **Five Misperceptions Surrounding the Environmental Impacts of Single-Use Plastic**

2 *Shelie A. Miller**

3 Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, 440
4 Church Street, Ann Arbor, Michigan 48109, United States;

5 *Corresponding email: sheliem@umich.edu

6 TOC/Abstract Art

17 waste into better context, integrating a holistic, life cycle perspective into research efforts and discussions
18 that shape public policy.

19 **Introduction**

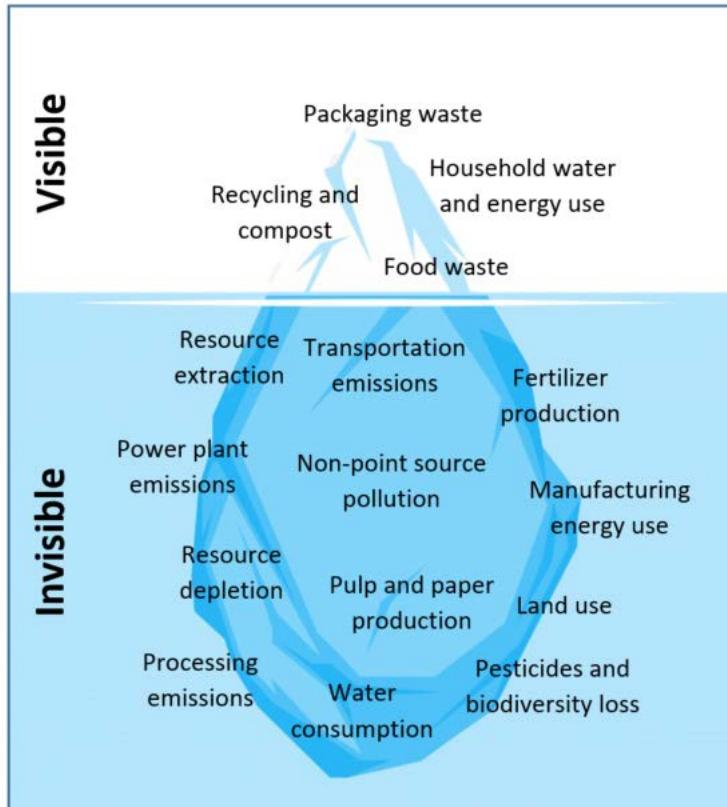
20 Major efforts across the globe are seeking to address our single-use plastics problem and resulting
21 ecological damage. It is essential that the scientific community takes a larger, system-level view to
22 appropriately contextualize the problems of plastic waste, combat common misperceptions, and ensure
23 that the best scientific knowledge is represented in discussions surrounding potential initiatives to reduce
24 the environmental impacts of plastic and plastic waste.

25 Focusing sustainability efforts on reducing visible impacts such as solid waste generation can
26 detract focus from less visible, and often more damaging, environmental impacts associated with energy
27 use, manufacturing, and resource extraction. Well-intentioned efforts that are focused primarily on plastic
28 reduction usually demonstrate only marginal improvements in the total environmental impacts
29 associated with consumer products. As this paper shows, efforts to reduce single-use plastic may distract
30 from larger environmental issues, or worse, result in even greater environmental impacts due to
31 unintended consequences. Scientists need to expand the conversation beyond its current focus on single-
32 use plastic reduction toward a more holistic approach to minimize total environmental impacts of
33 products throughout their supply chains.

34 **The Plastic Waste Problem**

35 The ability to manipulate and use natural gas distillates to create various forms of plastic has
36 brought about one of the greatest shifts in material transitions of our society¹. Inexpensive, versatile
37 plastics have created a shift from durable, reuseable materials to single-use disposables. The majority of
38 single-use plastics take the form of packaging, as well as once-through products such as plasticware for
39 dining and single-use medical equipment.²

40 Plastics that are properly captured and disposed through municipal solid waste systems pose
41 minimal risk to ecosystems; however, plastics that enter ecosystems through mismanagement and
42 “leakage” can pose physical and chemical hazards to wildlife.³ There are growing concerns about how
43 improperly disposed plastics are degrading ecosystems, with particular concerns surrounding damage to
44 marine ecosystems and the adverse ecological effect of microplastics.⁴ It is estimated that 4.8-12.7 million
45 MT of plastic can enter marine ecosystems in a given year.⁵ Major policy efforts across the world are
46 underway to reduce the use of single-use plastics, such as adoption of plastic bans or fees associated with


47 the use of single-use plastics.⁶ There has been some evidence that recently implemented policies to
48 reduce single-use plastics have already had unintended consequences of environmental problem-
49 shifting,^{7,8} highlighting the importance of a holistic approach.

50 While some in the scientific community have argued that the health risks to ecosystems from
51 plastics are overstated,^{3,9} this article is not meant to downplay the environmental concerns associated
52 with plastics and plastic wastes. Nevertheless, a broader suite of impacts that extend throughout the
53 supply chain should be considered and balanced against the direct physical and chemical ecosystem
54 hazards of plastic waste.

55 **Life-Cycle Thinking for Evaluating Plastic Systems**

56 Life cycle assessment (LCA) is a tool to systematically evaluate the environmental impacts that
57 occur throughout the entire supply chain of a given product from resource extraction to ultimate disposal
58 or reuse.¹⁰ LCA quantifies the environmental impacts of products on the basis of multiple environmental
59 impact categories, which can include various metrics associated with climate change, acidification,
60 eutrophication, energy use, water and resource depletion, solid waste generation, ozone depletion, smog
61 formation, human and ecological toxicity, land use, as well as other impact categories.¹¹ Due to data
62 availability, many studies select a subset of impact categories to analyze. For the purposes of this paper,
63 environmental impacts broadly refers to the range of impacts reported by the reviewed study of interest.

64 Life cycle thinking encourages a holistic perspective, taking into account multiple different
65 environmental impacts that occur at every stage of the supply chain of a product. One of the major
66 purposes of conducting an LCA is to avoid environmental problem shifting, or solving one environmental
67 issue only to cause another. LCA systematically evaluates the entire supply chain in order to appropriately
68 include environmental impacts that may be overlooked yet still have a major influence on the overall
69 environmental profile of a product. As an example, Figure 1 depicts various environmental impacts
70 associated with a packaged food product. The environmental impacts that are visible to the consumer
71 include only those associated with the use or disposal phases of the product. Meanwhile, there are a
72 wide range of environmental impacts that are largely invisible to the consumer, including those associated
73 with intensive agricultural production, energy generation, refrigeration and transportation throughout
74 the supply chain, and the processing and manufacturing associated with food and packaging.¹²

75

76 *Figure 1. Examples of visible and invisible environmental impacts of a packaged food product from a life-cycle perspective.*

77 The adage to “Reduce, Reuse, Recycle”, commonly known as the 3Rs, was created to provide an
 78 easy-to-remember hierarchy of the preferable ways to reduce environmental impact.¹³ Most
 79 environmental messaging does not emphasize the inherent hierarchy of the 3Rs and consumers often
 80 over-emphasizes the importance of recycling packaging instead of reduced product consumption.^{14,15} At
 81 the highest priority, the 3Rs encourage reducing consumption to the extent possible. When it is not
 82 possible to reduce consumption, reuse items to extend their useful life. Finally, when neither reduction
 83 nor reuse are possible, materials should be recycled to recover valuable materials and prevent depletion
 84 of additional resources.

85 Although the 3Rs are one of the greatest successes in environmental education and
 86 communication, the 3Rs are rooted in a focus on solid waste reduction rather than promoting life cycle,
 87 systematic thinking about environment and sustainability issues. Given packaging’s ubiquity and volume,
 88 it is not surprising that consumers and environmentalists alike have given major attention to reducing
 89 packaging and its resulting environmental damages. Focusing environmental efforts on reducing visible
 90 impacts such as solid waste generation associated with plastic waste can distract focus from the impacts

91 of climate change, ecotoxicity, biodiversity loss, and resource depletion that occur upstream in the supply
92 chain and are largely invisible to the consumer. This paper highlights five common misperceptions that
93 seem to have arisen from the focus on reducing solid waste and reviews insights gained from taking a
94 broader view of life-cycle thinking.

95 **Misperception #1: Plastic packaging is the largest contributor to the environmental impact of a product**

96 *LCA Insight: The product inside the package is usually responsible for greater environmental impact than*
97 *the packaging.*

98 On a life cycle basis, the resource extraction, manufacturing, and use phases of a product
99 generally dominate the environmental impacts of most products, whereas the production of packaging
100 and packaging disposal often represent only a few percent of total life cycle impact.^{12,16} Meanwhile,
101 studies have shown that consumers' perceptions of environmental impacts do not correspond with
102 scientific evidence, and consumers tend to focus on the impact of the packaging rather than the impact
103 of the product itself.^{17,18} Further, consumer perception regarding the environmental friendliness of
104 packaging influences their perceptions of the environmental attributes of the product inside.¹⁹

105 Food systems are one of the dominant sectors for the use of single-use plastics. Due to the
106 environmental intensity of agricultural production, the environmental impacts associated with food
107 production far surpass the environmental impacts of packaging.^{12,20} Counterintuitively, increasing the
108 amount of packaging can decrease total life cycle impact of a food product by reducing food waste via
109 improved shelf life, quality, and freshness of perishable foods.²¹ This is particularly true for
110 environmentally intensive foods such as cheese, high breakage rate items such as eggs, or high spoilage
111 items such as bread.²² In such cases, the package's ability to protect food against loss or spoilage tends
112 to avoid greater environmental impacts than those incurred by the production of the actual packaging
113 material.^{18,21,23,24}

114 A number of LCA studies show that when compared to their traditional counterparts, consumer
115 products that reduce food waste and energy use tend to have lower aggregate greenhouse gas (GHG)
116 emissions, despite generating a higher quantity of solid waste through single-use plastic packaging. For
117 example, a study on coffee pods showed that the use of coffee pods could have lower environmental
118 impacts than coffee brewed via traditional drip coffee makers.²⁵ Similarly, a study on direct-to-consumer
119 meal kits showed that the meal kits had fewer greenhouse gas emissions than the same meals purchased
120 at a grocery store, despite having greater amounts of packaging.²⁶

121 **Misperception #2: Plastic has the most environmental impact of all packaging materials**

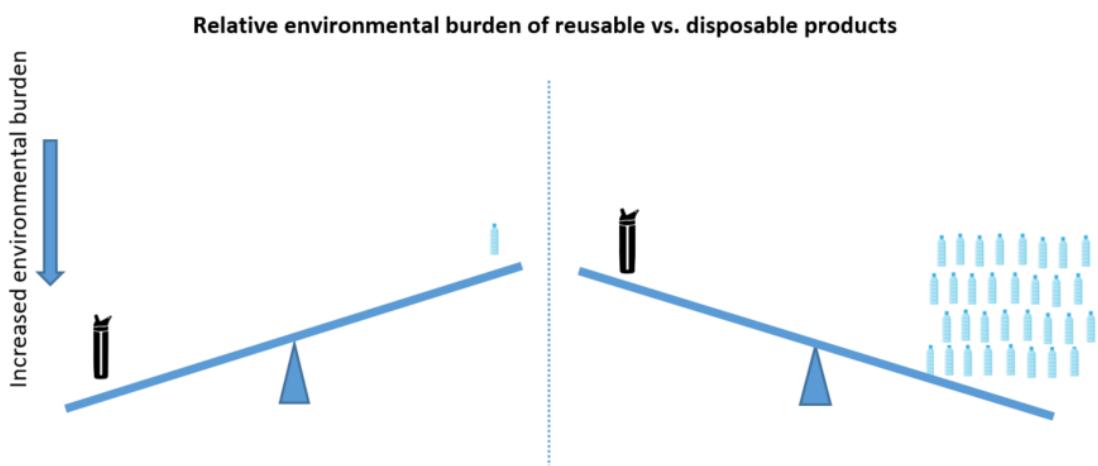
122 *LCA Insight: Plastic is often responsible for fewer environmental impacts than many common packaging*
123 *materials*

124 Literature has shown that consumers' perceptions of the environmental impacts of packaging are
125 largely based on intuition and do not necessarily correspond to actual environmental impact.²⁷
126 Consumers tend to rate plastic as more environmentally harmful compared to other types of packaging,
127 regardless of the actual environmental attributes of the materials.^{17,18,27} Although individual packaging
128 systems can vary, LCA studies have shown plastic generally has lower environmental impacts than single
129 use glass or metal in the majority of environmental impact categories measured.^{17,28,29} When compared
130 to single-use paperboard cartons, the relative environmental impacts of plastic containers are mixed and
131 largely depend on the specific product as assumptions within the study.³⁰⁻³² The smaller emissions
132 burdens associated with plastics are largely due to less materials needed for effective packaging
133 performance, lower transport emissions due to lower mass, and lower energy and material associated
134 with the production of plastic relative to other materials. The misperception of the relative environmental
135 impacts of plastic is particularly important to recognize given potential environmental problem-shifting as
136 consumers adopt substitutes with less favorable attributes, which has been shown to occur as a result of
137 plastic bans.³³

138 An increasing trend to substitute single-use plastic packaging with single-use glass-based
139 packaging is particularly troublesome from a life cycle energy and GHG perspective. When comparing the
140 relative environmental impacts of single-use glass and plastic, plastic has been shown to be significantly
141 better in terms of energy use, greenhouse gas emissions, and multiple other environmental impact
142 categories.¹⁷ Glass containers are a higher energy-intensity material to produce and are significantly
143 heavier than their plastic counterparts, increasing associated transportation emissions.³⁴ Recycling of
144 glass can also be problematic, since it is logically and energetically prohibitive to remanufacture into
145 new glass product.³⁵ Reclaimed glass is increasingly used as aggregate in construction materials in order
146 to avoid high energy recycling operations.³⁶ It should be noted that substituting reusable, refillable glass
147 bottles for single-use plastic is likely to offer environmental benefits, although these results vary
148 depending on a number of assumptions regarding the actual reuse rate of the bottles.³⁷

149 Even though plastic outperforms glass on a wide variety of impact categories, there are tradeoffs
150 in chemical exposure associated with plastic food packaging^{38,39} that are not often taken into account

151 within LCA studies due to lack of data. In light of concerns about chemical leaching and plastics,
152 substitution of paperboard packaging may be a superior alternative than glass.^{30–32}


153 **Misperception #3: Reusable products are always better than single-use plastics**

154 *LCA Insight: Reusable products have lower environmental impacts only if they are actually reused a
155 sufficient number of times to compensate for their greater materials intensity*

156 Environmental efforts have consistently recommended reusable options over disposable items, and in the
157 3R hierarchy, reuse is preferable to recycling.¹³ Life cycle studies have shown that the debate between
158 reusable and disposable products is complex and depends on the specific products being evaluated.^{40–42}
159 Although reusable alternatives can have lower environmental impacts than their single-use plastic
160 counterparts, the benefits are often contingent on the assumption that the reusable product are actually
161 reused, and usually reused a large number of times. If the reusable product is not reused a large enough
162 number of times to compensate for its greater materials intensity, the single-use, disposable option may
163 be environmentally preferable.

164

165

166 Figure 2. Conceptual diagram showing the material intensity of reusable versus single-use water bottles. Reusable bottles offer
167 greater environmental benefits only after they have displaced a sufficient number of disposable alternatives.

168

169 Most reusable products are designed for a relatively long product lifetime compared to disposable
170 alternatives. Because the product must last, reusable alternatives must be made of more durable

171 materials than single use options and generally require more material overall to make. Meanwhile, single-
172 use plastics are easy to manufacture, can often perform a required function with very little material use,
173 and are responsible for low manufacturing and transportation emissions. At the same time, the upstream
174 emissions for the reusable option occur once, whereas upstream emissions occur every time another
175 disposable item is produced. The reusable option must be used a sufficient number of times to payback
176 the costs of the additional upstream environmental impact burden. Figure 2 depicts the conceptual
177 rationale for needing to reuse a reusable product a large number of times in order to break even. In
178 addition to upstream emissions, some reusable products incur significant use phase emissions, such as
179 the environmental impacts associated with washing the item. When taking into account dishwashing
180 impacts, it can take longer for the reusable option to break even with the disposable option or potentially
181 not break even at all.⁴³⁻⁴⁵

182 A study by the Dutch Environmental Protection Agency on reusable grocery shopping bags investigated
183 the number of uses required for reusable grocery bags to break even when compared to single-use low-
184 density polyethylene plastic alternatives.⁴⁶ Assuming a weekly shopping trip, a reusable polymer bag
185 would need to be used by a consumer 1-8 weeks before the relative GHG emissions for the reusable bag
186 was less than the single-use plastic alternative, and 9-21 months before it became environmentally
187 preferable in all measured impact categories, which included resource depletion, human toxicity, and a
188 variety of impacts associated with air and water pollution. A conventional cotton grocery bag was
189 estimated to need to be reused for 2.9 years to payback the GHG emissions associated with the upstream
190 impacts of cotton agriculture and processing and 137 years of weekly shopping trips (i.e. 7100 uses) for
191 all environmental impact categories. The payback for organic cotton was even worse. This example
192 highlights the need to pay careful attention to the material intensity of reusable products and emphasizes
193 that the default assumption that reusable is always better can be flawed.

194 The environmental payback associated with reusable products should not be seen to suggest that reusable
195 alternatives should not be promoted to displace single use plastic options. Nevertheless, it can be easy
196 for consumers to fall into a reusability trap, perceiving reusable items to be preferable to disposable
197 items, but not actually using the reusable product the requisite number of times to actually achieve an
198 environmental benefit. Responsible reuse on the behalf of the consumer is necessary in order to make
199 reusable products environmentally beneficial. A worst-case scenario option can be created when more
200 durable and material intensive products get treated as semi-disposable after only a couple of uses. As
201 one example, replacing reusable water bottles every few months due to consumer preference or loss is a

202 scenario where greater environmental impacts are likely to occur, despite the perception of
203 environmental improvement.

204 **Misperception #4: Composting and recycling should be highest priority**

205 *LCA Insight: The environmental benefits associated with recycling and composting tend to be small
206 compared to efforts to reduce overall consumption*

207 When consumers are asked what makes a package sustainable, the most frequent choices are
208 recyclability, compostability, and recycled content rather than considerations of upstream environmental
209 impact or functional ability to protect a product.^{17,27} In terms of the 3Rs, “Recycle” is the least effective
210 strategy and should only be deployed when “Reduce” and “Reuse” options have been exhausted.¹³ The
211 environmental benefits associated with recycling are contingent upon virgin resources being displaced.
212 Due to recycling losses and degradation of material quality during recycling, recycled material will never
213 be able to fully offset the environmental impacts associated with production. Therefore, reduction in
214 materials consumption is always preferable to recycling, since the need for additional production is
215 eliminated.

216 The environmental benefits of recycling stem from the assumption that a recycled product can be
217 made using fewer new materials and energy than a virgin product; however, that is not universally true
218 due to energy use and material loss throughout the recycling process.⁴⁷ Nevertheless, recycling does
219 usually offer the advantage of reducing the amount of virgin materials and energy required to make a
220 new product.⁴⁸ The overall benefit of recycling is variable according to a variety of assumptions with
221 respect to material and energy recovery.⁴⁹ One prior study has shown that the energy requirement
222 associated with recycling plastic is 26-44% less than the energy requirement of creating virgin plastic.⁵⁰
223 while another found that benefit to be 40-85%, with a GWP savings of 25-75% over virgin material.⁵¹
224 Meanwhile, a recent analysis suggests that the benefits of recycling are often overstated, and that actual
225 displacement of virgin material is less than often reported.⁴⁸

226 Beneficial recycling efforts can be undermined by the availability of functioning recycling markets.
227 Without viable markets for secondary materials, plastics that are collected via recycling efforts may
228 ultimately end up in a landfill. For example, China’s recently implemented ban on importation of plastic
229 waste has significantly disrupted the capacity of global recycling channels. Without significant changes to
230 recycling practices in domestic markets, much of the plastic collected for recycling is likely to be
231 landfilled.⁵²

232 This article does not suggest that recycling is without benefits, but highlights that recycling efforts
233 are not the panacea that many consumers assume. Recycling definitely has a place in reducing the
234 environmental impacts of products and helping to create a circular economy. But recycling does not erase
235 any of the upstream impacts incurred throughout the resource extraction and manufacturing stages of
236 the product. The benefits of recycling are confined to reduction of further material depletion and energy
237 use, to the extent that virgin materials are displaced with recycled materials⁴⁸.

238

239 Similar to recycling, consumers also see composting as highly beneficial. Composting provides an
240 alternative end-of-life option to landfilling, although composting also does not eliminate any of the
241 upstream environmental impacts associated with resource extraction and manufacturing of a product.
242 This article focuses on examining the benefits of biodegradable plastic in the context of overall plastic
243 waste reduction. Discussion of the merits of composting food waste and other biodegradable products is
244 outside the scope of this article. There are logistical benefits to co-composting biodegradable plastics
245 with food waste, the food waste is ultimately the more important driver to improved environmental
246 impact than compostable plastic packaging.⁵³

247 One of the major potential advantages to biodegradable plastic is the potential to reduce
248 ecological damage due to improper disposal of plastic waste leading to physical damage of organisms. In
249 addition, when biodegradable plastic is made from biomass, there is also a common sentiment that a
250 renewable feedstock is inherently environmentally favorable than a fossil-based feedstock⁵⁴. The reality
251 of biodegradable plastic does not often live up to consumer perception of the potential benefits. There
252 have been many studies that study the environmental impacts of bio-based plastics relative to fossil-based
253 plastics. Although results can vary greatly on assumptions related to producing biomass and the specific
254 products studied, a critical review indicated that there is no definitive evidence to suggest that bio-based
255 plastics have a lower overall environmental footprint.⁵⁵ In addition, biodegradable plastics only degrade
256 under very specialized conditions and may not help reduce physical damage associated with improper
257 disposal of plastics leaked to the environment.⁵⁶⁻⁵⁸ Biodegradable plastics are therefore unlikely to
258 naturally degrade in marine environments that are of primary concern. In addition, lack of ability to
259 differentiate between compostable and recyclable products among consumers could contaminate
260 recycling streams with greater amounts of bioplastic, undermining recycling efforts.⁵⁴

261 Finally, when comparing end-of-life options, composting plastic has a worse energy and GHG
262 emissions profile than landfilling, incineration, recycling, or anaerobic digestion these materials.^{44,59}

263 While this result may seem counter-intuitive, composting plastics releases carbon into the atmosphere in
264 the form of GHG emissions. Other end-of-life mechanisms such as incineration and anaerobic digestion
265 also release the carbon contained within the product, but are able to convert the product into usable
266 energy while doing so. Meanwhile, landfilled and recycled biodegradable plastic allows the carbon to
267 remain in a solid state without gaseous emissions, and recycling has the advantage of reduced materials
268 and energy associated with displacing virgin material.

269 In summary, recycling and composting efforts have some value, but ultimately, mindful
270 consumption that reduces the need for products and eliminate wastefulness, reducing the intensity of the
271 supply chain, and trying to design products that will actually be reused by the consumer are more effective
272 at reducing overall environmental impact. Nevertheless, it is fundamentally easier for consumers to
273 recycle the packaging of a product rather than voluntarily reduce demand of that product,⁶⁰ which is likely
274 one reason why recycling efforts are so popular.

275 **Misperception #5: “Zero waste” efforts that eliminate single-use plastics minimize the environmental
276 impacts of an event**

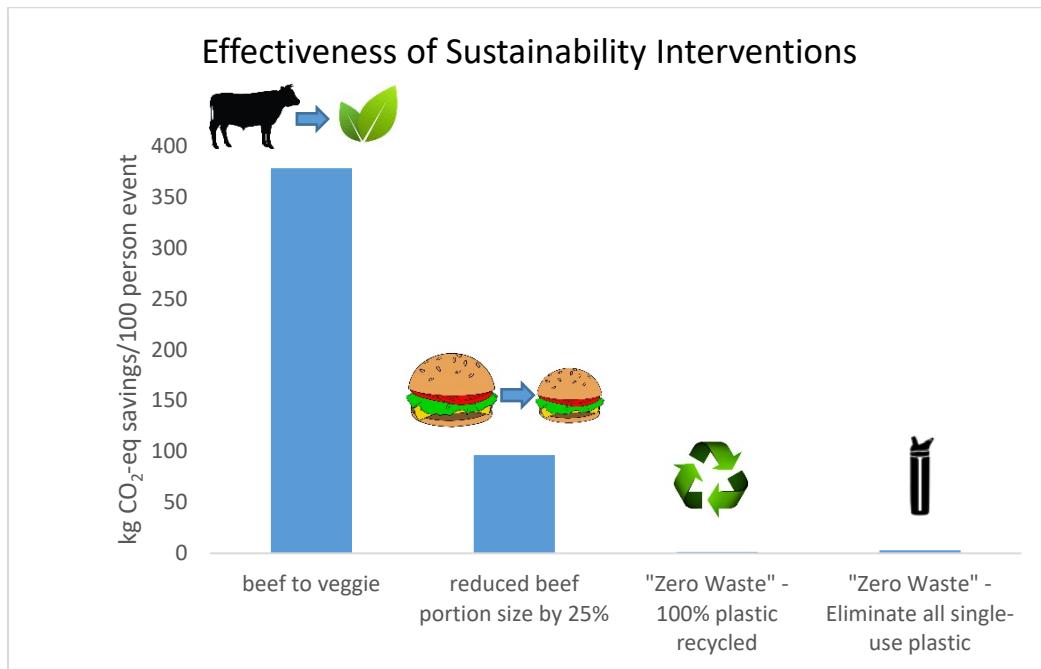
277 *LCA Insight: Well intended zero waste initiatives have the potential to create additional environmental
278 impacts if not designed for holistic reduction of environmental impacts. Mindful consumption, waste
279 reduction, and the types/amount of products consumed are larger factors dictating the environmental
280 impact of an event, whereas the benefits of diverting waste from landfill are relatively small.*

281 “Zero waste” events tend to focus on minimizing or eliminating the amount of material that goes
282 to landfill at an event. These events often substitute compostable materials for single-use plastic
283 alternatives and/or making extensive use of recycling, with clearly designated receptacles for both waste
284 disposal methods. Despite good intentions, zero waste events may not ultimately meet intended goals of
285 reducing environmental impact. In addition to diverting attention from overall environmental impacts
286 associated with the event, they can run the risk of having a greater overall environmental impact than a
287 traditional event.

288 Well intentioned interventions to divert waste to landfill can backfire. For example, event
289 organizers may fall into the reusability trap (See Misperception #3), where “durable” goods are given out
290 during the event to eliminate the disposal of single-use materials. While these giveaways may reduce
291 landfill waste at the actual event, these reusable options only result in an environmental benefit if they
292 are consistently used by participants post-event, at a frequency that will pay back the increased amount

293 of materials needed to create the reusable product. Reusable giveaways that are not of sufficiently high
294 quality to incentivize repeated use post-event are particularly troublesome, since a product that is
295 intended for repeated use is essentially transformed into a materially-intensive single-use product.
296 Similarly, if participants accumulate more reusable products than they can effectively use (i.e. cupboards
297 filled with reusable water bottles), it will create additional environmental burden through manufacturing
298 that exceeds the impact associated with single-use products. This unintended consequence at zero waste
299 events can be avoided by encouraging participants to bring their own existing reusable alternatives to
300 events rather than broad dissemination of reusable giveaways that may not actually be reused.

301 Even if a zero waste event does not increase environmental impact, zero waste events can be
302 problematic by potentially misleading participants into believing an event is zero or low impact. In
303 practice, diverting waste from landfill only has a marginal effect on the overall environmental impact of
304 an event (See: Misperception #4). A prior analysis of zero-waste events in collegiate sports found that
305 zero waste strategies that focused on composting and recycling were significantly less effective at
306 reducing environmental impacts when compared to reduction of edible food.⁶¹ Zero waste events that
307 focus only on end-of-life considerations by relying on compostable/biodegradable items will yield only
308 minimal improvements over a traditional event, unless there are simultaneous efforts dedicated to
309 reducing overall consumption and reduced environmental intensity of the services provided at the event.


310 As a thought experiment to put zero waste events into perspective, some simple scenarios can be
311 explored using a hypothetical 100 person cookout that traditionally serves 1/3 lb hamburgers and bottled
312 water. The organizers of the event consider 4 basic options to improve environmental impact: 1) Continue
313 to serve bottled water and recycle all bottles; 2) Eliminate single-use plastic by providing water coolers
314 and having participants bring reusable bottles; 3) Reduce portion sizes of beef burgers to be ¼ lb burgers;
315 4) Substitute black bean burgers for beef burgers. Beyond the specific interventions, it is assumed that
316 nothing else changes in each scenario. Through this simplified thought experiment, we can see the
317 relative importance of the various interventions in Table 1 and Figure 3.

	Emission factor (kg CO ₂ -eq/kg product)	Mass of product (kg product/person)	GHG Impact per person (kg CO ₂ -eq/person)
beef	26.6	0.15	3.86
black beans	0.51	0.15	0.077

beef (reduced portion)	26.6	0.113	2.89
Plastic (landfilled)	2.4	0.013	0.030
Plastic (recycled)	1.2	0.013	0.016

318 Table 1. Emissions factors and masses of beef, black bean, and plastic used for thought experiment. Data
 319 obtained from ⁶²

320

321

322 Figure 3. GHG emissions reductions associated with 4 scenarios in a hypothetical 100-person event that serves 1/3 lb beef burgers
 323 and 16 oz. bottled water, based off the data in Table 1. Beef to veggie scenario is the difference between 100 beef and 100 bean
 324 burgers. Reduced portion size scenario is 75% of 100 beef burger impacts. Recycled plastic scenario is the difference between 100
 325 landfilled and recycled plastic bottles. Single-use plastic elimination scenario is 100% of 100 landfilled bottles.

326 As shown in Figure 3, the zero waste interventions of recycling or eliminating all plastic (1.4 and
 327 3.0 kg CO₂-eq/100 person event, respectively) are orders-of-magnitude less effective at reducing GHG
 328 emissions than interventions that reduce or eliminate the consumption of environmentally-intensive
 329 foods (96 and 380 kg CO₂-eq/100 person event for 25% reduction in beef portion and substituting beans
 330 for beef, respectively). This thought experiment underscores the importance of putting environmental
 331 impacts associated with single-use plastics into perspective and taking a more holistic approach. The
 332 interventions to eliminate single-use plastic to landfill do result in improved environmental outcomes;
 333 however, a focus on reduction of landfill waste can distract from other more significant steps that event

334 organizers can take to reduce environmental impacts. Organizers who choose to select lower intensity
335 proteins, reducing the portion sizes of environmentally intensive foods, and taking steps to significantly
336 reduce or eliminate food waste are all likely to result in greater environmental benefits than focusing on
337 diverting solid waste from landfill.^{21,63}

338 **Shifting environmental impact communication toward systems-level impacts**

339 As this paper has shown, an emphasis on the reduction of solid waste as a sustainability strategy
340 fails to address the full spectrum of environmental issues that occur prior to consumption. Single-use
341 plastics are a visible and tangible symbol of the larger environmental issues associated with over-
342 consumption of resources. Although the use of single-use plastics has created a number of environmental
343 problems that need to be addressed, there are also numerous upstream consequences of a consumption-
344 oriented society that will not be eliminated, even if plastic waste is drastically reduced.

345 The five misconceptions identified in this paper emphasize the need for the environmental
346 science and engineering communities to promote systems thinking when discussing environmental
347 impacts. Placing plastic waste in its appropriate context is the first step toward improved scientific
348 communication of environmental impacts. In addition, scientific communication needs to move well
349 beyond “Reduce, Reuse, Recycle” to help the public draw connections between consumption of products,
350 energy use, and the upstream environmental effects such as ecosystem damage and climate change that
351 are not as obvious as the visible reminder of solid waste. In addition, policies to reduce single use plastics
352 should be carefully thought through, using the best known evidence from environmental science, life cycle
353 assessment, and behavioral science in order to reduce potential for environmental problem shifting.

354 This paper is not intended to be an argument against efforts to reduce the impacts of single-use
355 plastics. Improved recycling, circular economy, and zero waste events are necessary steps toward
356 sustainability. If sustainability efforts are intended to be truly impactful, organizations need to think
357 systematically about overall energy and materials consumption.

358 While misperceptions about single-use plastic are real, it will be important for the environmental
359 community to harness the enthusiasm associated with single use plastic reduction to take a more holistic
360 viewpoint. The impacts of plastic waste pollution are able to be captured through visceral images of
361 damages to wildlife and voluminous piles of material, capturing public attention and support for actions
362 to reduce plastic waste.⁶⁴ Plastic waste reduction has a variety of fairly straightforward potential solutions
363 that are feasible and reasonable that do not necessarily require wholesale changes to human behavior.⁶⁵

364 Efforts to reduce plastic waste should not be an endpoint, but rather, help initiate broader conversations
365 to create a more informed public and leverage public interest in single-use plastic reduction for greater
366 environmental improvement.

367

368

369 (1) Leal Filho, W.; Saari, U.; Fedoruk, M.; Iital, A.; Moora, H.; Klöga, M.; Voronova, V. An overview of
370 the problems posed by plastic products and the role of extended producer responsibility in
371 Europe. *J. Clean. Prod.* **2019**, *214*, 550–558.

372 (2) Leissner, S.; Ryan-Fogarty, Y. Challenges and opportunities for reduction of single use plastics in
373 healthcare: A case study of single use infant formula bottles in two Irish maternity hospitals.
374 *Resour. Conserv. Recycl.* **2019**, *151*, 104462.

375 (3) Koelmans, A. A.; Besseling, E.; Foekema, E.; Kooi, M.; Mintenig, S.; Ossendorp, B. C.; Redondo-
376 Hasselerharm, P. E.; Verschoor, A.; van Wezel, A. P.; Scheffer, M. Risks of Plastic Debris:
377 Unravelling Fact, Opinion, Perception, and Belief. *Environ. Sci. Technol.* **2017**, *51* (20), 11513–
378 11519.

379 (4) Wang, J.; Tan, Z.; Peng, J.; Qiu, Q.; Li, M. The behaviors of microplastics in the marine
380 environment. *Mar. Environ. Res.* **2016**, *113*, 7–17.

381 (5) Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrade, A.; Narayan, R.; Law, K.
382 L. Plastic waste inputs from land into the ocean. *Science (80-.).* **2015**, *347* (6223), 768 LP – 771.

383 (6) Schnurr, R. E. J.; Alboiu, V.; Chaudhary, M.; Corbett, R. A.; Quanz, M. E.; Sankar, K.; Srain, H. S.;
384 Thavarajah, V.; Xanthos, D.; Walker, T. R. Reducing marine pollution from single-use plastics
385 (SUPs): A review. *Mar. Pollut. Bull.* **2018**, *137*, 157–171.

386 (7) Wagner, T. P. Reducing single-use plastic shopping bags in the USA. *Waste Manag.* **2017**, *70*, 3–
387 12.

388 (8) Herberz, T.; Barlow, C. Y. ; Finkbeiner, M. Sustainability Assessment of a Single-Use Plastics Ban.
389 *Sustainability* **2020**, *12* (9), 3746.

390 (9) Burton, G. A. Stressor Exposures Determine Risk: So, Why Do Fellow Scientists Continue To Focus
391 on Superficial Microplastics Risk? *Environ. Sci. Technol.* **2017**, *51* (23), 13515–13516.

392 (10) international Organization for Standardization. *14040 Environmental Management - Life cycle
393 assessment. Principles and framework;* International Organization for Standardization (ISO):
394 Geneva, Switzerland, 2006.

395 (11) Hauschild, M. Z.; Goedkoop, M.; Guinée, J.; Heijungs, R.; Huijbregts, M.; Jolliet, O.; Margni, M.; De
396 Schryver, A.; Humbert, S.; Laurent, A.; et al. Identifying best existing practice for characterization
397 modeling in life cycle impact assessment. *Int. J. Life Cycle Assess.* **2013**, *18* (3), 683–697.

398 (12) Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A review of life cycle
399 assessment (LCA) on some food products. *J. Food Eng.* **2009**, *90* (1), 1–10.

400 (13) Agency, E. P. Sustainable Materials Management: Non-Hazardous Materials and Waste

401 Management Hierarchy <https://www.epa.gov/smm/sustainable-materials-management-non->
402 hazardous-materials-and-waste-management-hierarchy (accessed Mar 3, 2020).

403 (14) Armstrong Soule, C. A.; Reich, B. J. Less is more: is a green demarketing strategy sustainable? *J.*
404 *Mark. Manag.* **2015**, *31* (13–14), 1403–1427.

405 (15) McEachern, M. G.; Carrigan, M. Revisiting contemporary issues in green/ethical marketing: An
406 introduction to the special issue. *J. Mark. Manag.* **2012**, *28* (3–4), 189–194.

407 (16) Jørgen Hanssen, O. Environmental impacts of product systems in a life cycle perspective: a survey
408 of five product types based on life cycle assessments studies. *J. Clean. Prod.* **1998**, *6* (3), 299–311.

409 (17) Boesen, S.; Bey, N.; Niero, M. Environmental sustainability of liquid food packaging: Is there a gap
410 between Danish consumers' perception and learnings from life cycle assessment? *J. Clean. Prod.*
411 **2019**, *210*, 1193–1206.

412 (18) Lindh, H.; Olsson, A.; Williams, H. Consumer Perceptions of Food Packaging: Contributing to or
413 Counteracting Environmentally Sustainable Development? *Packag. Technol. Sci.* **2016**, *29* (1), 3–
414 23.

415 (19) Magnier, L.; Schoormans, J.; Mugge, R. Judging a product by its cover: Packaging sustainability
416 and perceptions of quality in food products. *Food Qual. Prefer.* **2016**, *53*, 132–142.

417 (20) Silvenius, F.; Grönman, K.; Katajajuuri, J.-M.; Soukka, R.; Koivupuro, H.-K.; Virtanen, Y. The Role of
418 Household Food Waste in Comparing Environmental Impacts of Packaging Alternatives. *Packag.*
419 *Technol. Sci.* **2014**, *27* (4), 277–292.

420 (21) Heller, M. C.; Selke, S. E. M.; Keoleian, G. A. Mapping the Influence of Food Waste in Food
421 Packaging Environmental Performance Assessments. *J. Ind. Ecol.* **2019**, *23* (2), 480–495.

422 (22) Williams, H.; Wikström, F. Environmental impact of packaging and food losses in a life cycle
423 perspective: a comparative analysis of five food items. *J. Clean. Prod.* **2011**, *19* (1), 43–48.

424 (23) Silvenius, F.; Katajajuuri, J.-M.; Grönman, K.; Soukka, R.; Koivupuro, H.-K.; Virtanen, Y. Role of
425 Packaging in LCA of Food Products BT - Towards Life Cycle Sustainability Management;
426 Finkbeiner, M., Ed.; Springer Netherlands: Dordrecht, 2011; pp 359–370.

427 (24) Molina-Besch, K.; Wikström, F.; Williams, H. The environmental impact of packaging in food
428 supply chains—does life cycle assessment of food provide the full picture? *Int. J. Life Cycle Assess.*
429 **2019**, *24* (1), 37–50.

430 (25) Hicks, A. L. Environmental Implications of Consumer Convenience: Coffee as a Case Study. *J. Ind.*
431 *Ecol.* **2018**, *22* (1), 79–91.

432 (26) Heard, B. R.; Bandekar, M.; Vassar, B.; Miller, S. A. Comparison of life cycle environmental
433 impacts from meal kits and grocery store meals. *Resour. Conserv. Recycl.* **2019**, *147*, 189–200.

434 (27) Steenis, N. D.; van Herpen, E.; van der Lans, I. A.; Lighthart, T. N.; van Trijp, H. C. M. Consumer
435 response to packaging design: The role of packaging materials and graphics in sustainability
436 perceptions and product evaluations. *J. Clean. Prod.* **2017**, *162*, 286–298.

437 (28) Humbert, S.; Rossi, V.; Margni, M.; Jolliet, O.; Loerincik, Y. Life cycle assessment of two baby food
438 packaging alternatives: glass jars vs. plastic pots. *Int. J. Life Cycle Assess.* **2009**, *14* (2), 95–106.

439 (29) Saleh, Y. Comparative life cycle assessment of beverages packages in Palestine. *J. Clean. Prod.*
440 **2016**, *131*, 28–42.

441 (30) Scipioni, A.; Niero, M.; Mazzi, A.; Manzardo, A.; Piubello, S. Significance of the use of non-
442 renewable fossil CED as proxy indicator for screening LCA in the beverage packaging sector. *Int. J.*
443 *Life Cycle Assess.* **2013**, *18* (3), 673–682.

444 (31) Xie, M.; Li, L.; Qiao, Q.; Sun, Q.; Sun, T. A comparative study on milk packaging using life cycle
445 assessment: from PA-PE-Al laminate and polyethylene in China. *J. Clean. Prod.* **2011**, *19* (17),
446 2100–2106.

447 (32) Abejón, R.; Bala, A.; Vázquez-Rowe, I.; Aldaco, R.; Fullana-i-Palmer, P. When plastic packaging
448 should be preferred: Life cycle analysis of packages for fruit and vegetable distribution in the
449 Spanish peninsular market. *Resour. Conserv. Recycl.* **2020**, *155*, 104666.

450 (33) Lewis, H.; Vergheze, K.; Fitzpatrick, L. Evaluating the sustainability impacts of packaging: the
451 plastic carry bag dilemma. *Packag. Technol. Sci.* **2010**, *23* (3), 145–160.

452 (34) Garfí, M.; Cadena, E.; Sanchez-Ramos, D.; Ferrer, I. Life cycle assessment of drinking water:
453 Comparing conventional water treatment, reverse osmosis and mineral water in glass and plastic
454 bottles. *J. Clean. Prod.* **2016**, *137*, 997–1003.

455 (35) Blengini, G. A.; Busto, M.; Fantoni, M.; Fino, D. Eco-efficient waste glass recycling: Integrated
456 waste management and green product development through LCA. *Waste Manag.* **2012**, *32* (5),
457 1000–1008.

458 (36) Arulrajah, A.; Disfani, M. M.; Haghghi, H.; Mohammadinia, A.; Horpibulsuk, S. Modulus of
459 rupture evaluation of cement stabilized recycled glass/recycled concrete aggregate blends.
460 *Constr. Build. Mater.* **2015**, *84*, 146–155.

461 (37) Cleary, J. Life cycle assessments of wine and spirit packaging at the product and the municipal
462 scale: a Toronto, Canada case study. *J. Clean. Prod.* **2013**, *44*, 143–151.

463 (38) Ernstoff, A.; Niero, M.; Muncke, J.; Trier, X.; Rosenbaum, R. K.; Hauschild, M.; Fantke, P.
464 Challenges of including human exposure to chemicals in food packaging as a new exposure
465 pathway in life cycle impact assessment. *Int. J. Life Cycle Assess.* **2019**, *24* (3), 543–552.

466 (39) Horodytska, O.; Cabanes, A.; Fullana, A. Non-intentionally added substances (NIAS) in recycled
467 plastics. *Chemosphere* **2020**, *126373*.

468 (40) Ng, F. S.-F.; Muthu, S. S.; Li, Y.; Hui, P. C.-L. A Critical Review on Life Cycle Assessment Studies of
469 Diapers. *Crit. Rev. Environ. Sci. Technol.* **2013**, *43* (16), 1795–1822.

470 (41) Deviatkin, I.; Khan, M.; Ernst, E.; Honttanainen, M. Wooden and Plastic Pallets: A Review of Life
471 Cycle Assessment (LCA) Studies. *Sustainability* . 2019.

472 (42) Woods, L.; Bakshi, B. R. Reusable vs. disposable cups revisited: guidance in life cycle comparisons
473 addressing scenario, model, and parameter uncertainties for the US consumer. *Int. J. Life Cycle*
474 *Assess.* **2014**, *19* (4), 931–940.

475 (43) Porras, G. Y.; Keoleian, G. A.; Lewis, G. M.; Seeba, N. A guide to household manual and machine
476 dishwashing through a life cycle perspective. *Environ. Res. Commun.* **2020**, *2* (2), 21004.

477 (44) Potting, J.; van der Harst, E. Facility arrangements and the environmental performance of

478 disposable and reusable cups. *Int. J. Life Cycle Assess.* **2015**, *20* (8), 1143–1154.

479 (45) Blanca-Alcubilla, G.; Bala, A.; de Castro, N.; Colomé, R.; Fullana-i-Palmer, P. Is the reusable
480 tableware the best option? Analysis of the aviation catering sector with a life cycle approach. *Sci.
481 Total Environ.* **2020**, *708*, 135121.

482 (46) Bisinella, V.; Albizzati, P.; Astrup, T.; Damgaard, A. *Life Cycle Assessment of grocery carrier bags;*
483 Environmental Project #1985, 2018.

484 (47) Björklund, A.; Finnveden, G. Recycling revisited—life cycle comparisons of global warming impact
485 and total energy use of waste management strategies. *Resour. Conserv. Recycl.* **2005**, *44* (4), 309–
486 317.

487 (48) Zink, T.; Geyer, R. Material Recycling and the Myth of Landfill Diversion. *J. Ind. Ecol.* **2019**, *23* (3),
488 541–548.

489 (49) Rigamonti, L.; Grosso, M.; Sunseri, M. C. Influence of assumptions about selection and recycling
490 efficiencies on the LCA of integrated waste management systems. *Int. J. Life Cycle Assess.* **2009**,
491 *14* (5), 411–419.

492 (50) Arena, U.; Mastellone, M. L.; Perugini, F. Life Cycle assessment of a plastic packaging recycling
493 system. *Int. J. Life Cycle Assess.* **2003**, *8* (2), 92.

494 (51) Shen, L.; Worrell, E.; Patel, M. K. Open-loop recycling: A LCA case study of PET bottle-to-fibre
495 recycling. *Resour. Conserv. Recycl.* **2010**, *55* (1), 34–52.

496 (52) Brooks, A. L.; Wang, S.; Jambeck, J. R. The Chinese import ban and its impact on global plastic
497 waste trade. *Sci. Adv.* **2018**, *4* (6), eaat0131.

498 (53) Kakadellis, S.; Harris, Z. M. Don't scrap the waste: The need for broader system boundaries in
499 bioplastic food packaging life-cycle assessment – A critical review. *J. Clean. Prod.* **2020**, *274*,
500 122831.

501 (54) Dilkes-Hoffman, L.; Ashworth, P.; Laycock, B.; Pratt, S.; Lant, P. Public attitudes towards
502 bioplastics – knowledge, perception and end-of-life management. *Resour. Conserv. Recycl.* **2019**,
503 *151*, 104479.

504 (55) Walker, S.; Rothman, R. Life cycle assessment of bio-based and fossil-based plastic: A review. *J.
505 Clean. Prod.* **2020**, *261*, 121158.

506 (56) Kubowicz, S.; Booth, A. M. Biodegradability of Plastics: Challenges and Misconceptions. *Environ.
507 Sci. Technol.* **2017**, *51* (21), 12058–12060.

508 (57) Narancic, T.; Verstichel, S.; Reddy Chaganti, S.; Morales-Gamez, L.; Kenny, S. T.; De Wilde, B.;
509 Babu Padamati, R.; O'Connor, K. E. Biodegradable Plastic Blends Create New Possibilities for End-
510 of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. *Environ. Sci.
511 Technol.* **2018**, *52* (18), 10441–10452.

512 (58) Ruggero, F.; Gori, R.; Lubello, C. Methodologies to assess biodegradation of bioplastics during
513 aerobic composting and anaerobic digestion: A review. *Waste Manag. Res.* **2019**, *37* (10), 959–
514 975.

515 (59) Piemonte, V. Bioplastic Wastes: The Best Final Disposition for Energy Saving. *J. Polym. Environ.*
516 **2011**, *19*, 988–994.

517 (60) Cherrier, H.; Szuba, M.; Özçağlar-Toulouse, N. Barriers to downward carbon emission: Exploring
518 sustainable consumption in the face of the glass floor. *J. Mark. Manag.* **2012**, *28* (3–4), 397–419.

519 (61) Costello, C.; McGarvey, R.; Birisci, E. Achieving Sustainability beyond Zero Waste: A Case Study
520 from a College Football Stadium. *Sustainability* **2017**, *9* (7), 1236.

521 (62) Clune, S.; Crossin, E.; Verghese, K. Systematic review of greenhouse gas emissions for different
522 fresh food categories. *J. Clean. Prod.* **2017**, *140*, 766–783.

523 (63) Heller, M. C.; Keoleian, G. A. Greenhouse Gas Emission Estimates of U.S. Dietary Choices and
524 Food Loss. *J. Ind. Ecol.* **2014**, *19* (3), 391–401.

525 (64) Van Rensburg, M. L.; Nkomo, S. L.; Dube, T. The ‘plastic waste era’; social perceptions towards
526 single-use plastic consumption and impacts on the marine environment in Durban, South Africa.
527 *Appl. Geogr.* **2020**, *114*, 102132.

528 (65) Kosior, E.; Crescenzi, I. Chapter 16 - Solutions to the plastic waste problem on land and in the
529 oceans; Letcher, T. M. B. T.-P. W. and R., Ed.; Academic Press, 2020; pp 415–446.

530