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Using Spectral Graph Theory to Map Qubits onto
Connectivity-Limited Devices
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Technology

We propose an efficient heuristic for mapping the logical qubits of quantum algorithms to the physical qubits
of connectivity-limited devices, adding a minimal number of connectivity-compliant SWAP gates. In particular,
given a quantum circuit, we construct an undirected graph with edge weights a function of the two-qubit
gates of the quantum circuit. Taking inspiration from spectral graph drawing, we use an eigenvector of the
graph Laplacian to place logical qubits at coordinate locations. These placements are then mapped to physical
qubits for a given connectivity. We primarily focus on one-dimensional connectivities, and sketch how the
general principles of our heuristic can be extended for use in more general connectivities.
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1 INTRODUCTION

The field of quantum computation has shown immense promise for solving certain problems more
efficiently than classical computers including prime factorization [21], unstructured search [7],
optimization [5], and chemical simulation [16]. However, while advantageous quantum algorithms
have been thoroughly developed in theory, the technological implementations of quantum devices
is still very much in its infancy. The challenges and resource constraints of current and near-term
devices present roadblocks for the feasibility of practial quantum information processing.

Because quantum entangling operations are crucial to setting quantum computing apart from
classical computing, it is important in many practical algorithms for operations to be applied
between multiple qubits. However, on many present day quantum architectures, the application of
multiqubit gates is not always possible among every subset of qubits. This particular challenge
has to do with the connectivity limitation of physical devices, which constrains the set of allowable
operations. Therefore, there is a compilation step needed to convert a theoretical quantum algorithm,
which often assumes full connectivity between qubits, to an equivalent connectivity compliant
circuit that can be run on a physical device. In this work, we focus on this challenge and develop a
novel approach using spectral graph theory.

In Sec. 2, we provide the background and motivation for our problem. This includes formally
describing the problem of converting quantum circuits to be compliant with the connectivity
constraints of a device, surveying prior solutions to the problem, and reviewing relevant results
from spectral graph theory. Next, we explain our algorithm in Sec. 3, discussing design principles
that motivate our decisions, specific details for practical implementation, and overall runtime. In
Sec. 4 we discuss the use of known benchmarks and a comparable open source algorithm to evaluate
our own algorithm, and show the results in Sec. 5. Finally, we conclude in Sec. 6 and provide future
directions for improvement.

2 BACKGROUND

In this section, we provide the necessary background for our algorithm. We first formalize the
problem of making a quantum circuit connectivity-compliant for a given device. Then, we survey
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related work on the problem, and close with a description of spectral graph theory and token
swapping, two key components to our algorithm.

2.1 Problem Description

As mentioned in Sec. 1, our objective is to start with a circuit containing only single qubit and
CNOT gates, with no connectivity constraints, and transform the circuit into one adhering to the
connectivity constraints of the device. To differentiate the two domains, we call the untransformed
circuit the logical circuit and the transformed circuit the physical circuit. We say that the logical
circuit operates on logical qubits with logical gates, and similarly for the physical circuit.

For this transformation to be meaningful, the circuits must be equivalent in the sense that their
unitary descriptions are equal. There are certain operations that can be performed that lead to
equivalent circuits in all cases. These include:

(1) the commutation of disjoint gates. When two gates operate on disjoint subsets of qubits, the
order in which they are applied does not matter.

(2) the logical reordering of qubits. Circuits are equivalent under the relabling of qubits.

(3) the physical reordering of qubits. When a SWAP gate is inserted for qubits i and j, and gates
and measurements are changed to take the SWAP into account, the circuit is equivalent.

See [15] for a longer and more thorough list of circuit equivalences. We assume that the first two
operations can be done with no cost, but that the addition of SWAP gates should be minimized to
save resources and to minimize the effects of noise in physical implementations of the circuit.

We are now ready to formalize the connectivity-compliance problem. As previously discussed,
only multi-qubit gates of the circuit are affected by connectivity; therefore, without loss of generality
we consider only the CNOT gates of a circuit. Let Q be the set of logical qubits of the circuit, with
M = |Q]. Similarly, let the set C be the CNOTs of a logical circuit, with N = |C|. We can represent
C as an ordered list of pairs [(lf, m,..., (lf\], l]t\])], where If € Q and I! € Q are the logical control
and target qubits, respectively, of the i-th CNOT.

Next, we represent the connectivity characteristics of an architecture by a graph G = (V, E),
where the vertices are the physical qubits and the edges represent pairs of qubits which support
two qubit operations. We assume |V| = M. We also assume that the graph is unweighted and
undirected, meaning each edge can support a CNOT in either direction and can do so with equal
“ability” (e.g. fidelity, time, etc.) as any other edge.

Now, let C’ be the ordered list of two-qubit gates of another circuit, where N’ = |C’|. It also
can be represented as an ordered list of tuples [ (p], p?, type,) ... .. (ph» P2 tyPen-) |, where type;
represents the type of gate that gate i is (i.e. either CNOT or SWAP), and p}, p? € V represent the
two physical qubits on which the gate is applied.

If we can transform circuit C to C’ using the three equivalency rules established above, then the
circuits are equivalent. Furthermore, if the physical qubits on each gate of C’ are connected, i.e.

!, p?) € E for all i, then the transformed circuit is connectivity compliant according to G. We will
deem a transformation valid if an only if both criteria are satisfied: the transformed circuit must be
both equivalent to the original circuit and also compliant to the connectivity rules.

Finally, our objective is to find a valid C” that minimizes N’; as C and C’ must have the same
number of CNOTs assuming C” was constructed using the aforementioned circuit transformation
rules then, by construction, this optimization minimizes the total number of added SWAP gates.

A couple notes should be made about the C” we consider. First, no transformed circuit should have
a SWAP gate that can be commuted to the front of the circuit. This is because another equivalent
and still valid circuit can be made by replacing that SWAP with a logical relabeling (that is, using
transformation rule 2 instead of 3). Similarly, no SWAP gates should be able to be commuted to the
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end of the circuit. This is because these SWAP gates can be removed and any single qubit gate or
measurements happening at the end of the circuit can be logically reassigned.

To finish our problem description, we discuss two different ways to view the transformation
problem. The first is SWAP based, and is essentially how we described this problem: add SWAP
gates to C (and adjust any affected gates that follow) until the resulting C’ is connectivity-compliant.
Implicit in this was also deciding on an initial one-to-one logical relabeling 7 : Q — V, which is
the mapping at the beginning of C’.

The second interpretation is layer and permutation based. Note that C’ can be viewed as layers of
CNOT gates which can be applied using various Q — V permutations, with the intermediate SWAP
gates acting as a bridge between permutation. This can be seen as follows. Suppose we took C’, and
commuted the gates so that as many CNOTs were at the front as possible before a SWAP gate must
be applied. Then, those CNOTs are the CNOTs from C’ that can be made connectivity compliant
through the initial mapping 7. Then, suppose that we remove those CNOTs from the circuit (as
they have been now applied already), and perform a similar commutation to bring as many SWAPs
to the front as possible. These SWAPs form a physical permutation oy : V. — V. If we then remove
the SWAPs and again bring as many CNOTs to the front as we can, we have another layer of CNOTs
that can be applied from the logical circuit, under the permutation 7; = oy : Q — V. This can be
continued until all gates of C” are exhausted.

Using this second interpretation, we can describe an equivalent way of transforming C into a
valid C":

(1) Beginning with C, allow commutation of CNOTs that are nonoverlapping.

(2) Partition the CNOTs into layers such that the CNOTs of each layer can be made compliant
using some mapping 7; : Q — V.

(3) Using only compliant SWAP gates, create a physical permutation 0,1V — V that transfers
one logical permutation to the next one, via ;.1 = 0417;.

The optimization problem is still the same, find the C’ with the fewest number of added SWAPs,
but the optimizaiton is now over layers and permutations, rather than individual SWAPs. As we
will see, this interpretation can allow for the overall optimization problem to be subdivided into
smaller problems with well-known solvers.

2.2 Prior Work

In the literature, results and algorithms related to this issue of connectivity-compliance have gone
by many names, including circuit layout, circuit transformation, qubit allocation, qubit mapping,
and qubit routing [1, 3, 6, 11, 14, 18, 20, 22, 24, 25]. We provide a survey of these results, and go
more in-depth with a few of particular interest.

First, we establish the various choices that each algorithm designer has had to make:

(1) Metric to optimize. Examples include circuit size (i.e. number of gates in the final circuit;
often equivalent to number of added SWAP gates); circuit depth (number of layers in the
circuit, where each qubit is acted on by only one gate per layer); and error rate.

(2) Exact vs. Approximate. Designers must make the choice between a brute force approach
versus using a heuristic or relaxation.

(3) Connectivity Constraint. Examples include LNN, 2D grid nearest neighbor, connectivities of
actual NISQ devices; ring; and arbitrary connectivity

(4) Problem Interpretation. As described above, two common interpretations are SWAP-based
and layer- and permutation-based.
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(5) Solving strategy. Many times, this involves reduction in part to another well-known problem.
This includes dynamic programming; search (e.g. breadth-first and A* search); Boolean
or satisfiability solvers; and MinLA solvers.

For example, Siraichi et al. [22] provide both an exact and approximate solver to minimize the
circuit size for arbitrary connectivity. The former makes use of dynamic programming, while the
latter uses a search-like procedure. Both use an interpretation close to the SWAP-based one discussed
in Sec. 2.1. Another example of an exact solver is [24], which specifically solves the problem for
linear nearest-neighbor architectures using SAT solvers and pseudo-Boolean optimization.

Because solving the qubit mapping problem exactly is NP-complete [12], all exact solvers have
prohibitively large asymptotic runtimes, and in practice cannot be used beyond very small circuits.
Therefore, we shift our focus to approximate approaches.

In 2018, IBM held a challenge ! for compiling circuits to various architectures. The winning
algorithm, by Zulehner, Paler, and Wille [25], makes novel use of A* search to construct the SWAP
gates between permutations. First, the CNOTs are divided up into layers in a greedy fashion (i.e.
putting each CNOT in the left-most layer). An initial permutation is then needed; it is proposed
that, instead of a random initial mapping, an empty partial mapping is used. Then when searching
for a permutation for a given layer, the cost of assigning a previously unassigned physical qubit
can be made 0. The search is then from the previous permutation to any one that makes all CNOTs
of the next layer connectivity compliant.

One of the second place winners expanded upon their algorithm, and proposed both a framework
and several solvers [3] for this problem. They formalize the layer- and permutation-based interpre-
tation of the problem, defining the concepts of permuters and mappers. The former is a subroutine
for finding an (approximately) optimal sequence of SWAPs to go from one permutation to the
next, while the latter is used to determine what each permutation is. The overall algorithm then
involves invoking the mapper to generate a permutation, applying all first-layer CNOTs compliant
for that permutation, and repeating the process until the unapplied CNOTs run out. Then, the
permutations are bridged by invoking the permuter. For their circuit size optimizing permuter,
they use a modified, approximate token swapping algorithm (we describe the original algorithm
in Sec. 2.3.2). For the circuit size optimizing mappers, they present four different variations. Most
consider all possible gates in the first layer and for each one finds the permutation that requires
the fewest number of SWAPs, according to the permuter, while allowing that gate to be compliant.
Which gate is chosen (and therefore which permutation) depends on the mapper.

SABRE [11] is another approximate algorithm that minimizes circuit size. It is another heuristic,
search-based algorithm targeting arbitrary connectivities. We mention them briefly to highlight
their focus on the SWAP-based interpretation, as well as their use of look-ahead and bidirectionality.
Look-ahead is the notion of using not just the first layer CNOTs but also some later layer CNOTs,
with a parametric weighting to lower its importance relative to the first layer. Bidirectionality
makes use of the fact that a connectivity compliant transformation of the reverse circuit, when
itself reversed, becomes a connectivity compliant transformation of the original circuit reversed.
Therefore, considering both directions can be useful for finding an optimal transformation.

The final algorithms we review share the use of a interaction (or adjacency) graph. An interaction
graph is a weighted, undirected graph where the vertices represent logical qubits. The graph is
meant to indicate, in a sense, which qubits should be placed adjacent to one another, prioritizing
higher edge weights. One approach, used by both [18, 20] and [1], is as follows. Let there be an
edge of weight w;; between logical qubits g; and g; if and only if there are exactly w;; two-qubit
gates (i.e. CNOTs) between g; and g; in the circuit. Both sets of papers use this interaction graph
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to map the logical qubits onto an LNN architecture. While the former set of two papers use the
interaction graph and solves a Minimum Linear Arrangement (MinLA) problem, the latter paper
performs a graph partitioning algorithm on the interaction graph.

In future Sections, we will refer back to this survey to compare and contrast the design, imple-
mentation, and performance of our own algorithm.

2.3 Theory Background

To close this Section, we will describe the necessary theoretical background on which we will
base our own algorithm. We describe the use of spectral graph theory for assigning points of a
graph to coordinate locations, as well as the token swapping problem for transitioning between
permutations via swapping. These have the significance of providing ways to generate the logical
permutations 7; : Q — V and physical permutations o; : V. — V, respectively, that were described
in Sec. 2.1.

2.3.1 Spectral Graph Theory and Drawing. Here, we discuss a method for mapping the vertices of
a weighted graph to Cartesian coordinate locations, given that the edge weights are some sort of
priority for how close the vertices should be. We develop this method and make the description
more precise below.

Let G = (17, ]::) be a weighted, undirected graph with vertices 0; for i = 1, ..., n. Next, suppose
that a nonnegative weight w;; = wj; is associated between each pair of vertices 9; and 9, where
i # j.If (0;,9;) € E is an edge, then w;; > 0; otherwise, w;; = 0. The Laplacian of G can then be
defined as follows:

Definition 2.1. (Graph Laplacian) The Laplacian of a graph G= (17, ]::) is defined by a symmetric,
Z wie, ifi=j

Lij = | ki (1)
—Wij, if i :ﬁ]

n X n matrix L such that:

Note that L can also be written as D — A, where D and A are the degree and adjacency matrices,
respectively, of G.

Citing [10], there are several properties of the Laplacian that make it appealing for our purposes.
In particular, its eigenvectors help provide a drawing for the graph that places the vertices at spatial
locations while optimizing over a quantity related to the edge weights. First, consider the following
result:

LEMMA 2.2. Let x € R". Then

KL= 3wy (=) @)

i<j

Since this is a standard fact, we postpone the proof to Appendix A.

Next, it can be directly observed that L is a real, symmetric matrix. It can further be easily shown
that L is positive semidefinite. This allows us to conclude that L has nonnegative, real eigenvalues
and real, orthogonal eigenvectors. The lowest eigenvalue is always 0, regardless of the graph.

LEMMA 2.3. Let1, = (1,...,1)T € R" be the all ones vector. Then:
L1, =0, 3)

i.e. 1, is an eigenvector with eigenvalue 0.
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Again the proof of this well-known property is in Appendix A.

Finally, we are ready to motivate an optimization problem relating L to drawing a graph. Suppose
the edge weight w;; is a measure of “how important” it is for vertices v; and v; to be near one
another, with a larger weight correlating with greater importance. Next, suppose we seek to layout
the vertices in 1D according to a vector x € R", with v; at location x;. A reasonable minimization
problem would then be:

mxin Z wij(xi — x;)° (4)
i<j
st Var(x) = % 5)

Note that the constraint is simply chosen to normalize the scale of the drawing; the choice of 1/n is
completely arbitrary but helps simplify the calculations in the following steps. Next, notice that we
can use Lemma 2.2 to rewrite the problem as:

min x!Lx (6)
X

s.t. Var(x) =1/n. (7)

We then invoke Lemma 2.3 to note that both the objective and variance do not change under a
translational shift; that is, both x and x + a1, for any @ have the same variance and same objective
value. Therefore, without loss of generality we choose for x'1,, = 0, i.e. that the average position is
0. This is, again, an arbitrary choice made out of convenience, as it allows us to write:

Var(x) = xTx/n. (3)

Combining all of these results, we can write our desired optimization problem as:

mxin xT Lx 9)

st. xTx=1 (10)

x"1, = 0. (11)

Define the eigenvalues of Ltobe 0 = A; < A; < .-+ < A, with corresponding normalized

eigenvectors 1,/y/n =y, y®, ..., y™. As our optimization problem is to minimize the Rayleigh
quotient R (L, x) = xT Lx, subject to x being normalized and over the subspace orthogonal to the
eigenvector y(), we can invoke the Courant-Fischer principle and immediately write down that
y® is an optimal solution with optimal objective value A,. This special vector is known as the
Fiedler vector of G.

To conclude this section, we note a couple extensions of this result. First, suppose we only
allowed for the vertices to be placed at discrete locations, e.g. integer locations. Formally, suppose
we required a one-to-one mapping 7 : V- {1,2,...,n}. A natural way to get an approximate
solution is to take the components of y®) and use the order they impose:

7 (9;) > 7 (9;) only ifygz) > yj.z).

We cite [8, 9, 19] for this result, which show that this mappings gives a good approximation to
the related Minimum Linear Arrangement (MinLA) problem. Note that in the MinLA problem, the
(x; — x;)° terms are replaced by ¢ (v:) — ¢ (v;)| terms. We cite this result, not because we wish to
solve the MinLA problem, but because, as we previously mentioned, MinLA solvers have been used
in part for approximate solvers. Therefore, we are motivated to use a solver as an alternative but
related heuristic.
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Finally, although we will mostly focus on using the 1D result, we note that this spectral drawing
method can be expanded to two (or even more) dimensions. To do this, we again cite [10], which
motivates the use of y® for the second dimension. This vector solves the same optimization
problem, but with the added constraint that x is orthogonal to y® as well. This provides a drawing
in which the two dimensions are uncorrelated, which allows for the added dimension to provide
as much new information as possible. While this is useful for drawing purposes, the use of this
method to map to discrete grid locations in two dimensions is less trivial than the one-dimensional
case.

2.3.2 Token Swapping. We now discuss the subroutine that will be used to transfer logical qubits
from one permutation to another using only connectivity compliant SWAP gates. Our problem is
exactly equivalent to the Token Swapping Problem, which can be described as follows.

Suppose we have a graph G = (V, E) of n vertices. Further suppose that we have tokens t1, . .., t,
that are to be placed on the vertices so that each vertex has exactly one token. Given an initial and
desired final mapping of tokens to graph vertices, the problem is then to transform the former to
the latter only by swapping the tokens on a pair of vertices connected by an edge.

This is exactly analogous to the connectivity compliance problem for quantum circuits: the
vertices V represent physical qubits, the edges E are between physical qubits which allow two-qubit
operations, and the tokens are the logical qubits to be mapped on the physical devices. Swapping
adjacent tokens then amounts to applying SWAP gates between adjacent qubits.

This problem is NP-hard, and the best known exact algorithm requires an exponential runtime.
Therefore, we use an approximate algorithm described in [13] that gets a sequence of swaps of
length within 4 times the optimal length for general graphs, and within 2 times the optimal length
for trees. For completeness, we review the algorithm in Appendix B.

3 THE SPECTRAL MAPPING ALGORITHM
3.1 Design Principles and Motivations

The related work and subroutines outlined in Sec. 2 motivate the design our algorithm. We start by
specifying the five general categories we previously listed as choices for algorithm designers.

First, we will be focusing on an approximate solution. As previously discussed, an exact solution
takes exponentially long to solve for (and often requires exponential space as well); this is not
feasible for circuits consisting of more than just a few qubits and CNOTs. Next, we adhere to the
permutation-based interpretation of the problem, specifically the mapper-permuter model from [3].
This provides the problem with added structure and modularity, which in turn allows us to design
and evaluate smaller subproblems independently. Like [3], we will use the approximate token
swapping algorithm as our permuter, which we described in Sec. 2.3.2.

Next, we consider the choice of mapper. Note that here we only describe the high-level design,
omitting details that will be presented in later sections. We are motivated by [1, 18, 20] in the
creation of a weighted interaction graph. However, where previous uses of interaction graphs
do not account for how “far” in the future a CNOT occurrence happens, we incorporate a time
component in our interaction graph construction. For example, a CNOT within the earliest layer of
the circuit that acts on the same qubit(s) as many later CNOTs (i.e. a CNOT that is “blocking” many
other gates and acting as a bottleneck) should be given higher priority in qubit placement than a
CNOT near the end of the circuit. In fact, CNOTs many layers back should not be considered at all,
as they are “shielded” from affecting the current permutation we wish to generate by earlier CNOTs.
Therefore, while we do look-ahead past the first layer, we limit how far we look and down-weight
less important CNOTs. We mention at this point that limiting the look-ahead also has the added
benefit of improving runtime; we further discuss this in Sec. 3.5. Finally, we must also consider
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the previous permutation we chose. Therefore, adjacency of the previously chosen permutation is
incorporated into the interaction graph as well.

After the creation of the interaction graph, we make use of spectral graph theory, as described in
Sec. 2.3.1. Note that this gives a mapping of each logical qubit onto a coordinate location according
to the graph Laplacian eigenvectors, which can then in turn be used to place the qubits at discrete
integer locations. As we have already seen other algorithms make use of the MinLA problem [18, 20]
and graph partitioning [1], we believe the related spectral graph drawing method provides another
good solving strategy to the qubit mapping problem.

Like with the other algorithms that have used an interaction graph, our use of spectral graph
theory leads us to focus on the linear nearest neighbor architecture. We do not see this as a
prohibitive restriction on the problem; as described in Sec. 1, many experimental devices do in fact
adhere to LNN connectivity. Furthermore, because LNN connectivity is among the most restrictive of
architectures, finding an efficient translation to an LNN compliant circuit implies the original circuit
can be run efficiently on many other practical, and often less restrictive, architectures [2]. Lastly,
since many analyses have been done on LNN architectures and most qubit mapping algorithms
can run with LNN connectivity constraints, comparison of our results to others can be used to
specifically evaluate our solving strategy choices (i.e. using a weighted interaction graph and
a spectral graph drawing mapper). These reasons all justify and motivate our focus on LNN
architectures.

3.2 Spectral Mapper

In this section, we formally detail our spectral mapper.

3.2.1 CNOT Dependency and Layering. Let C be the CNOTs of a logical circuit. The CNOTs of C
have a dependency in that, for i < j, CNOT j must be applied strictly later than CNOT i if there is a
qubit both CNOTs act on. In other words, CNOT j cannot be commutated ahead of CNOT i. We say
that CNOT i is a direct blocker of CNOT j if:

(1) i <},

(2) they both act on qubit g, and

(3) no CNOT between i and j acts on g.

Let b (j) be the set of direct blockers of CNOT j. In general, b (j) can have 0, 1 or 2 elements.
Next, we define tjf , the forward layer of CNOT j. It is a quantity that represents the minimum

number of CNOT layers that must be applied before CNOT j is eligible to be applied. It acts as a
proxy for how “soon” the CNOT can be applied. Formally, we have:

s_lo if|b(j) =0

J 1 + max tf , otherwise
ieb(j)

(12)

If we think about assigning each CNOT a layer, where each layer contains CNOTs that can be
simultaneously applied, tjf represents the layer of CNOT j in a greedy layering that tries to place
each CNOT as early as possible. If we consider all the CNOTs j for which t}f = 0, one of them will
be the next CNOT to be applied. We will call this set of CNOTs the front layer.

Consider now the reverse list of C, given by [(lfv, 1), (I, lf)] We similarly define t], the
reverse layer of CNOT j, as the forward layer of CNOT j in this reversed list. Let T = max; t{ be
the maximum forward layer. Then, the quantity T — tf represents the layer of CNOT j in a lazy
layering of C that tries to place each CNOT as late as possible.
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We interpret these results as follows. A small forward layer means the CNOT is soon to be eligible
for application, and has the potential to be related to the next mapping of logical to physical qubits.
A simultaneously small reverse layer, however, means that the CNOT could in fact be applied much
later, and have little to do with the next mapping. These concepts are used when calculating our
weighted interaction graph.

3.2.2  Weighted Interaction Graph. A weighted interaction graph is some weighted, undirected
graph G = (Q,E) whose vertices are logical qubits, and whose edge weights w;; represent the

priority of placing those qubits close to one another. There are two categories of contributions
to edge weights: the previous logical to physical mapping, and the CNOTs yet to be applied. We
consider each one.

First, suppose the previous permutation is given by 7 : Q — V. For simplicity, we will let
V ={1,2,..., M}, and order the vertices so that the LNN connectivity constraint places consecutive
numbers adjacent to each other. That is, for i,j € V,

(i,j) € Eifand only if |i — j| = 1. (13)

Then, for every q;,q; € Q for which (7 (q;), 7 (q;)) € E, i.e. for each pair of logical qubits that
were previously adjacent, we increment w;; by the prior mapping weight § € [0, 1]. The motivation
is that, to minimize the number of SWAPs, the next permutation we generate should be as close to
the previous as possible. The parameter then acts as a sort of memory for the algorithm. It adds a
B-weighted component of the previous logical adjacency to G.

Next, we consider the unapplied CNOTs, which we will represent as C. Each CNOT can only be
applied if the qubits they act on are adjacent. Furthermore, at least one CNOT should be applied in
the next generated permutation, and at least one must come from the front layer. As reasoned in
Secs. 3.1 and 3.2.1, we can consider CNOTs with a small forward layer to potentially be applied in
the next mapping, while discounting those same CNOTs with large backward layers due to the
flexibility in their layer choice. We define an integer = € [0, T] to be the cutoff layer and real number
a € [0,1] to be the layering discount. Then, if CNOT i acts on qubits g; and g and has forward
layer tlf < 7, we increment wj by al =t
In closed form, we define the edge weight between ¢; and gy as:

Wik = Z aT—tir + {ﬂ if (ﬂ (qJ) ’”(Qk)) €E . (14)
) 0 otherwise
#1510 g ac)

I{Sr

We intend to use this interaction graph G as an input to the spectral drawing method outlined in
Section 2.3.1. A mapping 7 : Q — V is generated, placing the logical qubits at physical locations.
While we have chosen the edge weights of G to try to place the qubit pairs in front layer CNOTs
close together, there is actually no guarantee that any front layer CNOTs are actually compliant on
the generated mapping. This leads to a breakdown that needs to be resolved via some fallback. A
naive fallback would be to arbitrarily pick a front layer CNOT and SWAP the two qubits together,
or to apply another established algorithms. In the following section, we propose a third strategy,
which we ultimately use.

3.2.3  Forced Coupling. For our fallback strategy, we would like to make use of our weighted
interaction graph and spectral drawing framework. However, we wish to guarantee that the
generated permutation allows for at least one front layer CNOT to be compliant. To this end, we
propose a forced coupling step. First, we consider the front layer CNOTs with the largest reverse
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layers, signifying the highest priority of application within our previous description. We use this
limited subset of the front layer, rather than the whole front layer, to minimize the impact of the
fallback and only apply this forceful coupling to priority pairs of qubits.

More specifically, we are seeking every CNOT i for which t] = T. Then, if that CNOT i is
applied on qubits g; and gx, we combine the corresponding vertices in G together. This combination
involves:

(1) replacing g; and g with a single node fused node f representing the two qubits, and

(2) for every third node p (which may be a single qubit or a newly created fused node), drawing
an edge between f and p with edge weight equal to the sum of the previous edge weights
between g; and p, and between gy and p.

After this process is performed for every CNOT i with ¢] = T, we are left with a new interaction
graph Gforced — (Qforced E“forced).

Note that because no front layer CNOTSs act on the same qubit, each new vertex in Qf
represents either one or two of the original qubits from Q. We then again use the spectral drawing
method, but with Gf°7¢¢d a5 the input.

This method will first provide us with a real number coordinate position for each vertex in
Qf orced Ror each coordinate, we first add a small perturbation, randomly generated for each vertex,
so as to break ties; we do this to guarantee the forced pairs will be adjacent to each other. Then, we
assign each of the original qubits from Q to the coordinate of their corresponding forced vertex in
Qforeed; pote that forced pairs are thus given the same location. Finally, if y; is the coordinate for
qi, we generate the permutation 7 : Q — V adhering to

orced

7 (q5) > 7 (qr) = v; > yr. (15)

Note that the ties between the forced pairs is broken at random, as any such ordering of the pairs
will satisfy Eq. 15.

By virtue of the forced pairs selection, at least one of the front layer CNOTs is connectivity
compliant on 7, and therefore the overall algorithm can progress.

One interesting consideration is whether this forced pairing algorithm can be used independently,
as a standalone mapper, rather than as a fallback. This is an option we consider and allow for our
overall algorithm.

3.24 Applying the Spectral Drawing Algorithm. We conclude our description of our spectral mapper
by discussing some details regarding the use of the spectral drawing method from Sec. 2.3.1. As
mentioned, the coordinates generated may sometimes lead to vertices assigned to the same location.
In that case, ties are typically broken at random, either implicitly when moving the vertices to
discrete integer locations, or explicitly through the addition of small, random perturbations to each
coordinate.

Another consideration we make is in regards to the symmetries of our architecture. In particular,
a given mapping to an LNN architecture affords the same connectivity constraints when rotated
180° (or reflected about its center). As a result, we must consider both possibilities; this is equivalent
to considering the mapping induced by both the Fiedler vector y® calculated by the eigensolver,
and its negative —y®. The mapping we ultimately choose is the one which requires the fewest
SWAPs to get from the previous permutation; as a proxy, we use as a metric the sum of the distances
each logical qubit must travel from previous to potential mapping, and pick the potential mapping
with the smaller sum as the generated mapping.
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3.3 Bidirectionality

Many of the algorithms we have considered start from the beginning of the circuit, as it is provided,
and then sequentially work to the end in the forward direction. When considering the connectivity
compliance problem on a circuit of CNOTs, however, the same problem can be solved on the reversed
circuit to provide a valid transformation. Indeed, there is no inherent preference between the two
directions. Thus, we explore the option of a bidirectional mapper. At each iteration, the mapping
strategy is applied as described in Sec. 3.2 to generate a mapping n that allows for some front layer
CNOTs to be applied. Our bidirectional proposal adds for the same iteration the generation of a
mapping on the reversed circuit as well, so that some front layer CNOTSs on the reversed circuit
can be applied. In terms of the notation for generating the weighted dependency graph, the reverse
mapper simply interchanges tf and t]. The mappings are then generated for each end of the circuit
every iteration, working towards the middle of the circuit.

3.4 Overall Connectivity-Compliance Transformation Algorithm

In this section, we summarize the full algorithm for transforming a logical circuit into one that is
LNN compliant. First, we list the configuration options we have available for our algorithm. These
include whether to use the forced-coupling mapper as a standalone or fallback strategy; whether to
include bidirectionality; and what choices of a, f, and 7 to choose. A summary of the options is
given in Table 1.

H Parameter H Description ‘ Values H

Forced-coupling Whether the mappings are exclusively based on | {Standalone, Fallback}
the forced-coupling weighted interaction graph,
or if the forced-coupling case is only used as a fall-
back for the regular weighted interaction graph.

Direction Which direction(s) the iterations traverse through | {Forward, Bidirec-
the circuit. tional}
a The layering discount factor used in calculating | Any real in [0, 1]

the weighted interaction graph. It is meant to di-
minish the impact of CNOTs that can be pushed
back to much later layers.

B The prior mapping weight used in calculating the | Any real in [0, 1]
weighted interaction graph. It is meant to weight
the relative importance of remaining close to the
previous mapping.

T The cutoff layer used in calculating the weighted | Any positive integer
interaction graph. It is meant to limit the layers of
look-ahead.

Table 1. A summary of all possible configuration options for our overall circuit transformation algorithm.

We begin with a logical circuit C, consisting of N CNOT gates and M qubits. Until we run out
of unapplied CNOTs, we perform the following iteration. First, we run our spectral mapper, as
described in Sec. 3.2, using our specified configurations. This involves the creation of a weighted
interaction graph, the use of spectral graph theory to label each logical qubit to a coordinate, and
the ordering of logical qubits into discrete locations on an LNN architecture. Note that for the
first iteration, no previous mapping is used for the interaction graph. By design, some front layer
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CNOTs are connectivity compliant on the generated mapping. All CNOTs that we can apply to this
mapping are applied and removed from the circuit. Note that as CNOTs are applied, we update
the layerings and try to apply any CNOTs that newly enter the front layer. Once a front layer is
reached with no connectivity compliant CNOTs, the current iteration is over. Note that for the
bidirectional configuration, the same operations are also done but from the end of the circuit with
the reversed circuit mapping generated.

After all CNOTs are applied, we have a sequence of permutations, with CNOTs applied during
each permutation. The final step is to use the token swapping permuter from Sec. 2.3.2 to generate
a list of SWAPs needed to transition between successive permutations. The resulting circuit, which
contains alternating layers of CNOTs compliant on the same permutation and SWAPs moving the
logical qubits between permutations, is our final, equivalent LNN compliant circuit.

3.4.1 Special Implementation Details. To close out the description of our algorithm, there are some
specific implementation details that we wish to describe. The first is related to organization of the
unapplied CNOTs. Note that it is important to be able to determine the forward and backward
layerings for each CNOT, to determine which CNOTs are part of the front layer (and are therefore
eligible for application), and to update the layerings after each iteration of CNOT application. We
do this by keeping a dependency graph, where the nodes are each CNOT and the edges connect
each CNOT to its direct blocker. We augment this graph with layer information at each node, which
can be done by traversing the CNOTs in order and using the blocking information to sequentially
determine the layering. We also keep track of a mapper from each layer to the CNOTs contained, for
quick reference. When a permutation is generated, we can then reference the front layer with ease
and consider the compliancy of each. When a compliant front layer CNOT is found, it is deemed
applied and removed from the set of unapplied CNOTs; the CNOTs which were directly blocked
are then considered for front layer status. Once all front layer CNOTs are no longer compliant for
the permutation, a single pass is made through the remaining CNOTs to reupdate dependencies
and layering information.

The second detail is categorically different, and is more numerical in nature. When we seek the
Fiedler vector of the Laplacian matrix L, there are some properties of our problem that allow for
more efficient calculation. First, because L is a real and symmetric matrix, special eigensolvers, like
the Lanczos method, can take advantage of the structure. Furthermore, iterative methods, like the
Lanczos method, allow for the calculation of just a few eigenvectors in many fewer operations than
full eigensolvers that determine the entire spectrum. Finally, because we ultimately only care about
the order of the components of the eigenvector, the precision is not ultimately that important;
consequently, the number of eigensolver iterations can also be minimized.

3.5 Runtime Analysis

In this section, we analyze the runtime of our algorithm. The number of mapping iterations is
O (N) where N is the number of CNOTs in the circuit, as every iteration is guaranteed to apply at
least one CNOT. Each time the mapper is used, we need to construct G, find an eigenvector of the
corresponding M x M Laplacian (where M is the number of qubits in the circuit), apply front layer
CNOTs, and update the dependency graphs. The calculation of G requires O (N) weight calculations,
dependent on how many CNOTs fall within the cutoff layer 7. Next, we bound the calculation
time of the Fiedler vector to be O (M?). It is shown by [17] that the runtime of calculating the
eigenvalues and eigenvectors of an M X M matrix, to a relative error of O (27?), is bounded by
O (M3 + Mlog? (M)log (b)). As mentioned in Sec. 3.4.1, because we only need a rough estimate
of the Fiedler vector, b need not be large. In practice, the runtime is typically bounded by the
O (M?) term. Second, we note that in practice we only require a few iterations of an iterative
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eigensolvers, like the Lanczos method, which can often compute the desired eigenvector in many
fewer operations than calculating the full spectrum for a general matrix.

After the mapping is generated and CNOTs are applied, a single traversal of the unapplied CNOTs
is needed to update the layerings; this takes another O (N) operations. Each mapping generated
will need to be permuted to the next via the approximate token swapping algorithm; from [3, 13],
we can determine that at most O (M?) steps of the algorithm is needed, with each traversal of
the companion graph F requiring O (M) time. Overall, one call to the token swapping algorithm
therefore takes O (M?) time.

Therefore, for each of the O (N) permutations we generate, we require O (N + M?) time. The
overall runtime for transforming a single circuit is therefore O (N? + NM?). In practice, M < N
(usually circuits are large in gate count and while the number of qubits is limited). Consequently,
the scaling is dominated by O (N?).

3.6 Choosing Optimal Configurations

Because our algorithm has many possible configuration options, we started by evaluating our
algorithm on a wide set of options. We considered whether or not to allow the mapping to occur
bidirectionally; whether the forced pairing of first layer qubits was used standalone or only as a
fallback; and allowed each of the weighting (both for future CNOTs discount « and for the previous
permutation weight f) to take on values from 0.1 to 0.9 (inclusive), in intervals of 0.1. This totaled
384 configurations. Note that we fixed the cutoff layer to r = M for the regular weighted interaction
graph calculations, and 7 = 4M for the forced pairs calculations. The purpose is to provide enough
layers so that the resulting interaction graph contained all qubits.

We tested these configurations over our test set (described below in Section 4) and found that for
the vast majority of the benchmarks, the best performing configuration used the forward direction
only and used forced pairing as a fallback. This allows us to narrow down our choices for those
two parameters.

Next, for just the forward-direction, forced pair fallback results, we considered each pair of
weights (a, ). For each pair (a, ), we counted the number of benchmarks for which the resulting
number of added SWAPs was within 5% of the minimum number of added SWAPs across all pairs
of (a, ). The (a, f) that achieved the highest count was chosen, the benchmarks which contributed
to that pair’s count was discarded, and the process was repeated until a total of ten (a, ) pairs
were generated. These ten pairs were found to be:

{(0.2,0.3),(0.3,0.4),(0.4,0.1),(0.5,0.1), (0.5, 0.6),
(0.7,0.1),(0.8,0.1),(0.8,0.2), (0.8,0.6), (0.9, 0.9)}.

The method by which these resulting ten pairs are chosen is motivated by our desire to have a
relatively good coverage by producing near best results for all of the benchmarks.

Therefore, rather than just running our circuit transformation algorithm with just one pair of
(a, p) weights, our overall “meta-algorithm” runs the algorithm for each of these ten configurations
on a given circuit. The result with the smallest number of added SWAP gates is then returned as
the transformed circuit.

3.7 Software Implementation

We implemented our algorithm in Python 3. The source code can be found at https://github.com/
joelin0/spectral-mapping. Note that the code is subject to change, so the repository README and
source code itself provide the most up-to-date information regarding the algorithm implementation.
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4 PERFORMANCE TESTING METHODOLOGY
4.1 Benchmarks

To test our algorithm’s performance, we use benchmarks that resemble realistic circuits that may be
seen in practice. The set of benchmarks we primarily focused on are publicly available OpenQASM
benchmarks used by Zulehner et al. [25] to evaluate their own algorithm; these files can be found
at https://github.com/iic-jku/ibm_gx_mapping/tree/master/examples. Most of these circuits come
from RevLib [23], a database of reversible and quantum circuit benchmarks. Note that others who
have also approached the problem of circuit connectivity-compliance, like Cowtan et al. [4], have
used the same exact benchmark files to evaluate their algorithm. Other still, like [24] and [20], have
used RevLib circuits (although one should be cautious in comparing their results with those using
these OpenQASM files, as the circuit decomposition used from RevLib circuit to quantum gates is
not specified and may differ).

The benchmarks we used have between 3 and 16 qubits and up to 10,000 CNOTs in their original
circuit. Note that due to computational resource and time constraints, we were unable to evaluate
larger benchmarks across all of the algorithms.

We also supplemented our testing with benchmarks used by [15]. In particular, we use some of
the smaller, post-optimization Arithmetic and Toffoli benchmarks, which can be found at https://
github.com/njross/optimizer/tree/master/Arithmetic_and_Toffoli. These benchmarks have between
5 to 19 qubits and up to 130 CNOTs.

4.2 Comparisons with Alternate Algorithms

After running our algorithm, we compare its output with the algorithms of Childs, Schoute, and
Unsal [3], and Zulehner, Paler, and Wille [25]. For conciseness, we shall refer to these algorithms
as CSU19 and ZPW18, respectively. We choose these two implementations, as they are among
the most recently developed methods, were submissions for an IBM competition on this specific
problem (albeit on IBM’s architecture), can all operate on LNN architectures, and, most importantly,
have open source code available. As of the writing of this thesis, the CSU19 source code can be
found at https://gitlab.umiacs.umd.edu/amchilds/arct/tree/master and the ZPW18 source code can
be found at https://github.com/iic-jku/ibm_gx_mapping.

Each tested code has a command line interface that allows for OpenQASM files to be passed in
and for an equivalent LNN compliant circuit to be written out. Each code is modified to measure
the total amount of CPU time needed to run the entire process. Note that the code from CSU19
was modified to accept arbitrary QASM files, and also to remove writes of files beside the final
output QASM. Note further that the CSU19 algorithm also has four different choices of mappers to
minimize added SWAP count (called greedy size, simple size, extension size, and qiskit size); we
ran each one separately on the suite of benchmarks.

Each benchmark test was run on a device with 2 vCPUs and 4 GB of RAM; with a few exceptions,
these constrained computational resources did not affect the benchmark testing.

5 BENCHMARKING RESULTS AND DISCUSSION

Now, we present the results of the benchmark testing described in Sec. 4, and compare the per-
formance of each algorithm. We refer to our algorithm as the Spectral algorithm; the four size-
optimizing configurations of [3] as CSU19 greedy size, simple size, extend (extension) size, and
qiskit-based; and the algorithm from [25] as ZPW18.

The raw data for the experiments is given in Table 2 of Appendix C. There, we present each
benchmark circuit’s name, number of qubits (M), and number of CNOTs (N). For each algorithm,
we provide the number of SWAP gates in the generated connectivity compliant circuit of that
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benchmark, as well as the CPU time taken. Note that we first list the selected benchmarks used
by [25], and below them the selected benchmarks from [15].

For the purpose of visual comparison, we provide plots in Figs. 1, 2, 3, 2, and 5. These plots
compare the results of our algorithm to each alternate algorithm: on the horizontal axis is the ratio
of our CPU time taken to the alternate algorithm, while the vertical axis is the ratio of our added
SWAP count to the alternate algorithm. A point is added for each benchmark result. If we draw
lines at the ratio 1 for both axis, four quadrants are created. The bottom left quadrant signifies that
our algorithm produces a better circuit in faster time, and is the location we wish for most points to
lay. Conversely those in the upper right quadrant represent benchmarks for which our algorithm
does poorer in both performance metrics. For each plot, we also label some of the extreme points,
some of which we analyze in further detail later in this Section.
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Fig. 1. Plot of swap count ratios vs. CPU runtime ratios for our spectral algorithm over the CSU19 greedy
size algorithm. Each point represents a single benchmark test.

5.1 Comparisons with CSU19 Algorithms

First, we compare our algorithm to the CSU19 algorithms. From a design and implementation
standpoint, the algorithms share much in common. Our algorithm is modeled in part after the
mapper-permuter model of the CSU19 algorithms. Both algorithms use the approximate token
swapping algorithm as the permuter. And, importantly from an experimental standpoint, both are
implemented in Python. The major difference is in the mapper: we use our spectral drawing method
on a weighted interaction graph, while they solve an optimization problem over the selection of a
first layer CNOT and of a permutation on which that CNOT is compliant. Recall that our algorithm
has time complexity O (N? + NM?). On LNN architectures, the CSU19 greedy size, simple size,
extension size, and qiskit-based algorithms have time complexities O (NM5 ), (0] (NM4), O (N 2M4),
and O (N M3), respectively. Assuming M < N, which is the case for most of the benchmarks, we see
that the extension algorithm run in O (N?) while the greedy, simple, and qiskit-based algorithms
all run in O (N) time. Therefore, we would theoretically expect, in the limit of large circuit gate
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Fig. 2. Plot of swap count ratios vs. CPU runtime ratios for our spectral algorithm over the CSU19 simple
size algorithm. Each point represents a single benchmark test.

Swap Count and Runtime Ratios of
Spectral / CSU19 Extend Size

—_ 1
21.2 1
7 1 barenco_tof _4_after_heavy
O e 1
~10] =" ——— = —————— FP—_——— e ————
© 1
o 1
© 0.8
Q —_— — 1
& + i
20.6 : barenco_tof_4_after_light
g — p————
© 1
Zo4 ]
S ising_model_10 1
S 0.2 ising_model_13 :
= ising_model_16 1
& 0.0 +~graycode6_47 :
0.0 0.5 1.0 1.5 2.0

CPU Time Ratios (Spectral / CSU19)

Fig. 3. Plot of swap count ratios vs. CPU runtime ratios for our spectral algorithm over the CSU19 extension
size algorithm. Each point represents a single benchmark test.

counts N, to have comparable runtimes with the extension algorithm while having slower runtimes
compared to the other three.

Looking at the results, we see that our algorithm performs better on both metrics for the
vast majority of benchmarks. Against the extension algorithm, our algorithm ran faster on all
benchmarks. Furthermore, our algorithm generated a smaller SWAP count graph in almost all
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Fig. 5. Plot of swap count ratios vs. CPU runtime ratios for our spectral algorithm over the ZPW18 algorithm.
Each point represents a single benchmark test.

benchmarks, with the few exceptions only being slightly higher in comparison. Against the greedy
and giskit-based algorithms, our SWAP counts were again better for almost all benchmarks and only
slightly more for the ones where our algorithm performed worse. As expected from the runtime
analyses, the qiskit-based algorithm is asymptotically the fastest, even when M is factored in;
indeed, we start seeing some larger benchmarks for which our algorithm performs up to three
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times as slowly. The greedy algorithm also has a better runtime N dependence compared to ours,
thus explaining the right trail of higher time ratios. Finally, our algorithm had the most mixed
performance against the simple size algorithm. While the majority of points still lay in the lower
left quadrant, our algorithm provided a circuit with more SWAPs in many more benchmarks.
Furthermore, our worst benchmarks resulted in SWAP counts over 1.6 times that of the simple size
algorithm.

Our overall conclusion is that our algorithm is quite competitive with the CSU19 algorithms. In
most cases, our algorithm finds circuits with significantly fewer SWAPs. This may be expected at
least in part due to our algorithm being more tailored towards LNN architectures through the use
of spectral drawing, while their algorithms target arbitrary connectivities. In terms of runtime, our
algorithm can be quite a bit faster for some smaller circuits, but in general is on the same order of
magnitude in terms of runtime. Theoretically, we do expect our algorithm to get slower for much
larger circuits; however, that limit is clearly not yet reached for circuits with up to 10,000 CNOTs.
Even above those counts, our algorithm still has polynomial asymptotic runtime.

5.2 Comparisons with ZPW18 Algorithm

Next, we compare our algorithm to the ZPW18 algorithm. Recall that the ZPW18 algorithm involves
an A* search across a state space involving all possible mappings. As there are M! possible mappings,
both worst-case runtime and storage complexities are O (M!). However, with A* search, the actual
runtime may be a lot less depending on the choice of heuristic; as a result, it is more difficult
to translate these theoretical runtime characteristics into experiments. Another difficulty in the
runtime comparisons has to do with implementation: the implementation of the ZPW18 algorithm
we compare against was written in C++. That means their code was compiled first before run on
the benchmarks, an advantage not afforded to either the CSU19 algorithm or ours.

When considering the results presented in Fig. 5, we immediately see their runtimes are many
orders of magnitude faster than ours. We believe that much of this is due to the difference in
implementation language (C++ vs. Python); however, without testing, this is merely speculation.
Our algorithm also only performs better on the SWAP count metric on a minority of the benchmarks;
additionally, with only one exception, the SWAP count decrease is only modest. In most cases, our
algorithm performs worse, hovering up to (and a few times beyond) 50% more SWAPs.

Because this algorithm is relatively exhaustive in nature and is also regarded as one of the best
performing algorithms for this problem, we find it encouraging that our algorithm does still find
smaller SWAP count circuits in a nontrivial number of benchmarks. Additionally, we believe that our
algorithm will scale better to larger circuits. In the benchmarks we tested, the qubit count M only
went as high as 16; therefore, the runtime limitations of the algorithm did not yet show. However,
as M increases, we do expect the O (M!) runtime to lead to the ZPW18 algorithm being infeasible.
One scalability issue that already did arise was with memory. In four of the benchmarks, their
algorithm ran out of memory. Again, with an O (M!) worst case scaling for the space complexity,
we would expect the memory needed to quickly rise to exorbitant levels. Indeed, this concern for
scalability was also raised by the authors of the SABRE algorithm [11].

5.3 Commentary on Specific Benchmarks

We close this Section with commentary on some of the outlier benchmarks marked in the fig-
ures. We start with the ising_model_10, ising_model_13, ising_model_16, and graycode6_47
benchmarks. Each benchmark has the property that the circuit can be made LNN compliant with-
out any additional SWAPs. In fact, the circuits are already written in an LNN fashion. Therefore,
only a single mapping needs to be generated with no additional SWAPs. It can be seen that our
algorithm indeed detects the structure in all of these circuits and reports an optimal, zero SWAP
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compliant circuit. This is not necessarily the case for any of the alternate algorithms, especially for
graycode6_47.

Many benchmarks on the far right of the figures, like 1ife_238, sym9_148, and rd84_253 are
among the largest circuits we consider in terms of gate count. As expected, the larger the N, the
slower our algorithm becomes relative to those alternate algorithms.

One of our worst performing benchmark is 4mod5-bdd_287. The circuit itself is not that large
(only 7 qubits and 31 CNOTs). However, the circuit properties do raise a weakness of our algorithm
in its current form. After the first two gates are applied, two of the seven qubits are never operated
on again. Rather than limiting ourselves to a five qubit subset of the LNN architecture, however, our
mapper continues trying to map all seven qubits. This likely leads to the two unused qubits being
disruptively placed in the middle of the circuit and moved around between mappings, rather than
staying fixed on the end. Additionally, the CNOTs are all such that no CNOTs can be commutated
past each other. This means the front layer is only a single CNOT. The fact that only one CNOT is
eligible at a time could mean the number of iterations is quite high and could also mean increased
reliance on the forced pairs fallback. All of these factors could explain why our algorithm takes an
unusually long time on this benchmark yet still produces a relatively high SWAP count circuit.

Finally, tof_10_after_heavy and tof_10_after_light are two benchmarks with which the
ZPW 18 algorithm seems to vastly outperform the other algorithms. While the specific cause still
requires more investigation, it can likely be attributed to the ZPW18 algorithm’s ability to detect
the “staircase” pattern of CNOTs in the two benchmarks.

6 CONCLUSIONS
6.1 Summary and Significance

We explored the use of spectral graph theory and drawing to map logical qubits to physical qubits
in connectivity-constrained devices. Concerned with the problem of transforming logical circuits
into connectivity-compliant ones, we first characterized the properties and strengths of many other
modern algorithms and decided to follow a mapper-permuter model. We focused our exploration
on linear nearest neighbor connectivities, and in particular explored how spectral drawing could
be used as part of the mapper. We contributed a novel way of generating a more sophisticated
weighted interaction graph based on the previously generated mapping and on layering properties
of the unapplied CNOTs. Having presented a class of algorithms with several configuration options,
we selected a set of ten options found to provide the best coverage across realistic benchmarks.
The overall meta-algorithm then generated ten circuits using these different options and returning
the best one. Finally, we compared our implementation to two recent, high-performing algorithms.
We find our implementation to be quite promising, constructing circuits with smaller SWAP counts
on many benchmarks while still having scalable space and runtime characteristics.

6.2 Future Directions
There are many future directions for this work. Some categories include:

(1) optimizing the current LNN algorithm,

(2) adapting the algorithm for other architectures and objective functions,

(3) making use of the spectral mapper in conjunction with other algorithms, and
(4) making use of other approximation or relaxation methods.

There are many minor optimizations that can be made on the current algorithm to improve
performance. As mentioned in Sec. 5.3, our algorithm does not properly detect when qubits go
unused part way through iterations. One solution is to detect when this occurs and fix the unused
qubits at the ends; then, continue the algorithm on just a subset of the physical qubits. More generally,



20 Lin, Anschuetz, and Harrow

further exploration of some common circuit patterns can help illuminate issues in our solver and
allow us to optimize for them. Another improvement is to further optimize the interaction graph
generation. To start off, a more exhaustive and systematic search over the parameters, (including
some that were fixed, like 7), may find more optimal parameters and also might elucidate why
some parameters perform better than others.

We can also consider exploring variations of the connectivity-compliance problem. One obvious
modification is to consider more general connectivities. Because our algorithm relies on spectral
drawing, which involves mapping to coordinate locations and then to discrete locations, adapting to
general connectivities would be quite challenging. However, a two-dimensional, nearest neighbors
grid connectivity could be within the realm of possibility. Then, our algorithm would use not only
the Fiedler vector, but also the eigenvector with the next smallest eigenvalue. These vectors then
provide a coordinate location in 2D for each qubit. The question of mapping the coordinates to
discrete grid locations is not as straightforward, as there is not a strict ordering of 2D coordinates.
Even supposing a similar assignment strategy as in the 1D case were use, issues still arise related
to a fallback strategy. It is nontrivial to decide how to place forced pairs: which orientation they
are in, or which qubits to “shift aside” to make space. Additionally, when the number of physical
qubits exceeds that of the logical qubits, it is nontrivial to decide which physical qubits go unused.
All-in-all, the adaptation from LNN to a 2D grid still has many open questions. A more feasible
modification to consider is a change in the objective. So far, we have focused on circuit size, via
minimizing added SWAPs. However, another metric we can explore is minimizing circuit depth.
This would require no change to the current algorithm initially and would involve measuring the
circuit depth for the generated connectivity-complaint benchmark circuits.

Third, we propose that ideas from our spectral mapper may be used in conjunction with other
developed algorithms. Most straightforward is the inclusion of our spectral mapper as a mapper
option in the CSU19 mapper-permuter algorithm framework, albeit only for LNN connectivities.
There is also an opportunity to use our spectral mapper to provide an initial mapping. Many
search-style algorithms, like the ZPW18 A* algorithm [25] and SABRE [11], need to be seeded with
a good initial permutation; we suggest that our spectral mapper could be used for that purpose.

Finally, another direction we wish to explore is the search for different solving strategies. In
this work, we proposed the use of spectral graph theory, a framework that was not previously
explored for this problem. The motivation was that the spectral optimization problem provides a
relaxation of the original problem, which is to determine a list of the best mappings. While the
original problem cannot be exactly solved efficiently, the relaxed problem can. Right now, however,
the relaxation is done mapping-by-mapping: though it has lookahead properties and considers the
previous mapping, the optimization is still very much a local one. We leave as an open problem
the search for another optimization problem or framework that is efficient to exactly solve and
provides a global relaxation. The desire would be to frame the problem in such a way that a single
problem can be solved, for all layers of CNOTs, and then the resulting relaxed solution can be
translated (e.g. rounded, assigned to discrete locations) to provide a strong approximate solution to
the original problem.
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A SPECTRAL GRAPH THEORY PROOFS

In this section we include proofs of the claims made in Section 2.3.1. They are not original to our
paper (see e.g. [10]) but are included here for convenience.

Proor oF LEMMA 2.2. With use of the fact that w;; = wj; and L;; = Lj;, we see that:

xTLx = Zn: Zn: x;x;L;j (16)

i=1 j=1
n
= le-zLii +22xiijij (17)
i=1 i<j
n
= Zfowik —Zinxjwl-j (18)
i=1 k#i i<j
= Zx?wik + Z x?wik -2 Z XiXjwWij (19)
i<k k<i i<j
= inzwij + Z X;Wji - Z ZX,'XjWij (20)
i<j i<j i<j
= Z Wij (sz - 2xixj + sz) (21)
i<j
2
= Z W,’j (x,' - Xj) (22)
i<j
as desired. m]
PROOF OF LEMMA 2.3.
n
(L) = ) L (23)
j=1
= Z Lij + Li; (29)
i#]
= Z —wij + Z Wik (25)
i#j k#i
=0. (26)

B APPROXIMATE TOKEN SWAPPING ALGORITHM

In this section, we outline an approximate token swapping algorithm as proposed in [13]. First, we
define two operations. An unhappy swap occurs when we perform a swap for which one token was
already on its desired vertex and the other token is swapped closer to its desired vertex. A happy
swap chain occurs when, given a path of [ + 1 distinct vertices v;,, . . ., v;,,, we perform in order
the [ swaps (v;,,v;,) , (03, 0iy) » - - - » (035 0i,,, ) and every swapped token along the path is moved
strictly closer to its target vertex.

It turns out that as long as some token is not at its desired vertex, one of the above operations
exists. The approximate algorithm, then, involves finding either an unhappy swap or a happy swap
chain and performing that operation. Furthermore, it was shown by [13] that this algorithm is
guaranteed to converge.



To efficiently detect one of the two valid operations, a companion graph F is created at each step.
First, F is given the same set of vertices V. For an edge between vertices v and w of the original
graph G, consider a swap along that edge. If this causes the token currently on vertex v to move
closer to its desired vertex, then a directed edge is added from v to w in F. A vertex with out-degree
0 represents a token at its desired location, and therefore any edge going into that vertex represents
an unhappy swap. Additionally, any directed cycle represents a happy swap chain. Therefore, if we
start at any vertex whose token is misplaced and travel along a directed path, we will eventually
end at a vertex with no outward vertices (thus detecting an unhappy swap) or return to a vertex
already in the path (thus detecting an unhappy swap chain). This algorithm ultimately runs in time
polynomial in the size of G, i.e. polynomial in |V| and |E]|.

C RAW DATA

In this section, we present the full results of our benchmarking experiments, described in Sec. 5.
They appear in Table 2, across the next several pages.



Table 2. Results of benchmarking experiments on LNN architectures. Each row is a single benchmark, where
its name is the filename of the test circuit. Each benchmark is characterized in part by the number of qubits
and number of CNOTs in the original circuit. The algorithms we compare are our spectral mapper, the four
size mappers from CSU19 [3], and ZPW18 algorithm [25]. We run each algorithm, and characterize the
performance both by the number of added SWAPs in the connectivity-compliant circuit, and the amount of
CPU time taken. Note the benchmarks are ordered by the number of CNOTs in their circuit.

ORIGINAL CIRCUIT SPECTRAL CSU19 (GREEDY) CSU19 (S1MPLE) CSU19 (EXTEND) CSU19 (Q1sKIT) ZPW18 (A¥)

BENCHMARK CIRCUIT QUBITS CNOTs SWAP CPU TiME SWAP CPU TmME SWAP CPU TiME SWAP CPU TiME SWAP CPU TiME SWAP CPU TiME

COUNT (SEC) CoOuNT (SEC) COUNT (sEC) COuUNT (SEC) COUNT (sEC) COUNT (sEC)
ex1_226 6 5 5 0.3 5 0.9 7 1.6 6 1.5 6.4 0.9 3 0.002
graycode6_47 6 5 0 0.09 4 0.7 6 1 5 0.9 4.2 0.6 1 0.002
xor5_254 6 5 5 0.3 5 0.8 7 1.6 6 1.6 6 0.8 3 0.003
ex-1_166 3 9 3 0.1 7 1.5 7 2.2 6 2 6.4 1.2 3 0.004
4gt11_84 5 9 3 0.2 11 1.8 8 2.1 6 2 6.4 1.2 5 0.002
4mod5-v0_20 5 10 5.4 0.3 8.4 13 8.6 2.1 8.4 1.9 9.2 13 4 0.005
ham3_102 3 11 3 0.1 7 14 6 2.2 5 2 7 14 4 0.005
4mod5-v1_22 5 11 6.2 0.3 9 14 8.2 2.3 8.8 2.3 10 15 5 0.002
mod5d1_63 5 13 8 0.3 8.2 15 11.6 2.9 11 2.3 10 1.5 8 0.003
4gt11_83 5 14 6 0.2 8 1.4 9 2.8 10 2.6 10 1.6 6 0.005
rd32-v0_66 4 16 8 0.3 11 2.1 8 3.1 8 3.1 10.8 2 7 0.004
rd32-vl_68 4 16 8 0.3 11 2.1 8 3.1 8 3.2 9.8 1.8 7 0.003
4mod5-v0_19 5 16 13.6 0.6 11 2.2 12 3.8 11 3.7 12.6 2.2 8 0.005
4mod5-v1_24 5 16 11 0.5 16 2.5 13 4 11 3.6 13.6 2.3 7 0.004
mod5mils_65 5 16 11.6 0.6 12 2.2 14 4.1 12 3.7 15.8 2.5 7 0.004
3.17_13 3 17 6 0.2 9 2.2 11 4 11 3.9 10 2 6 0.003
alu-v0_27 5 17 11 0.4 15.8 2.4 18 4.7 15 12.5 14.8 2.3 11 0.003
alu-vl_29 5 17 11 0.4 16.6 2.5 16.8 4.4 14.4 12.2 12.8 2 11 0.004
alu-v2_33 5 17 12.6 0.5 16 2.5 16 4.3 13 11.9 11.8 1.9 7 0.006
4gt11_82 5 18 7 0.3 13 1.9 10 3.1 14 33 14.4 2.1 8 0.004
alu-vl_28 5 18 13 0.4 17 2.6 18 4.7 14.8 123 13.6 2.2 11 0.005
alu-v3_35 5 18 11 0.4 16.6 2.5 15.6 4.2 15 124 15.6 24 11 0.004
alu-v4_37 5 18 11 0.4 16.6 2.5 18 4.7 15 12.6 14.2 2.2 11 0.006
decod24-v2_43 4 22 11 0.4 15 3 16 5.8 13 4.8 15.8 3 12 0.005
miller_11 3 23 9 0.4 17 3.5 15 5.1 14 4.7 14.2 2.6 9 0.004
decod24-v0_38 4 23 10 0.4 21 3.5 14 5 15 4.7 14.4 2.8 9 0.004
alu-v3_34 5 24 15 0.5 18 3.7 17.2 5.7 18 17.6 19.6 3.3 13 0.003
mod5d2_64 5 25 19.8 0.7 20 3.8 20 5.4 21 5.6 22.2 3.5 17 0.005
4gt13-v1_93 5 30 16 0.6 30.6 4.4 26 6.5 26.4 14.5 24.2 3.7 16 0.004
4gt13_92 5 30 17 0.6 31.4 4.3 27 6.7 27.4 214 27.8 4.1 19 0.007
4mod5-v0_18 5 31 19 0.8 22 4 24 7.3 20 6.4 24.6 4.1 15 0.005
4mod5-bdd_287 7 31 22 2.7 27 4.1 28 7.4 28 7.3 32.2 4.7 15 0.006
4mod5-v1l_23 5 32 22.6 0.9 27 5.1 25 8.2 22 14.8 25.2 4.4 18 0.005
one-two-three-v2_100 5 32 16 0.6 26.6 4.2 30.6 7.5 31.2 13.8 28.2 4.2 18 0.004
one-two-three-v3_101 5 32 16 0.7 28.8 4.5 26.8 7.8 28.2 14 26.4 4 20 0.005
decod24-bdd_294 6 32 18 2 25 4.8 22 6.5 17 53 23.6 4 16 0.005
rd32_270 5 36 21 0.9 34 5.4 22 7.5 28.6 16.8 29.4 4.8 19 0.006
4gt5_75 5 38 23 0.7 32 5.1 27.6 8.7 25.4 28.8 29 4.6 22 0.005
alu-v0_26 5 38 22 0.7 29 5.4 38 9.6 30 7.8 37 54 25 0.004
decod24-v1_41 5 38 25.6 1 38.2 5.5 30 8.1 26.8 14.3 29.6 4.7 23 0.005
alu-bdd_288 7 38 31 2.9 42.8 5.3 34.6 8 43.2 14.5 39 54 25 0.005
4gt5_76 5 46 25 0.7 46 6.1 38 10.7 37 18.1 43.4 6 25 0.006




ORIGINAL CIRCUIT LIN (SPECTRAL) CSU19 (GREEDY) CSU19 (SIMPLE) CSU19 (EXTEND) CSU19 (Q1sKIT) ZPW18 (A¥)

BENCHMARK CIRCUIT QUBITS CNOTs SWAP CPU TiME SWAP CPU TiME SWAP CPU TiME SWAP CPU TiME SWAP CPU TiME SWAP CPU TiME

COUNT (sEC) COUNT (sEC) COUNT (sEC) COUNT (SEC) COUNT (sEC) COUNT (sEC)
4gt13_91 5 49 26.8 0.9 41.2 6.7 28 9.1 36 9.8 35 5.7 30 0.007
alu-v4_36 5 51 28 1 40.4 6.5 31.6 9.3 33.6 24.5 41 6.4 25 0.007
4gt13_90 5 53 29 1 46 7.3 30 9.7 40 10.5 39.6 6.2 34 0.006
4gt5_77 5 58 35 1 50 7.7 43 13 50.8 41.7 51.2 7.3 36 0.008
one-two-three-vl_99 5 59 36 14 55 8.7 46.4 12.8 50.8 20.6 49.2 7.4 35 0.009
rd53_138 8 60 43 4.5 80.8 12.1 59.2 18.1 66.4 102.8 57 6.5 41 0.01
decod24-v3_45 5 64 41 13 78.6 10.7 52.2 15.6 56.8 433 55.4 8.2 40 0.009
one-two-three-v0_98 5 65 43 14 66.6 9.3 55 16.1 60.4 34.7 53.4 8.1 44 0.009
4gt10-v1_81 5 66 41.8 14 53.6 8.5 42.8 13.6 43.6 353 55.4 8.6 40 0.007
aj-el1_165 5 69 40.2 15 63.6 10.6 54.4 17.3 43.8 21.2 54 8.2 33 0.007
4mod7-v0_94 5 72 42 14 67.6 9.8 51.4 16.8 524 38 62.8 9.4 41 0.006
4mod7-v1_96 5 72 48.6 15 64 10.5 55 17.9 62.4 34.2 53.6 8.7 44 0.01
alu-v2_32 5 72 46 14 68 10.8 56 19.9 64.2 56.4 55.6 8.7 50 0.01
mini_alu_305 10 77 75 6.4 101 15.6 81.2 253 814 145.6 79 8.6 61 0.03
mod10_176 5 78 47 1.5 717.6 11.4 58.2 17.7 56 38.2 64 9.5 48 0.009
4gt4-v0_80 6 79 71.6 5.5 62 10.5 69.4 22,6 79.8 49 72.6 10.3 52 0.01
cnt3-5_179 16 85 78 6.2 172.8 18.6 1254 24.5 147 206 156.6 10.2 93 12
4gt12-v0_88 6 86 67 5.8 65 113 68.8 22.6 86.2 55.4 76 10.6 58 0.009
ising_model_10 10 90 0 0.08 42.8 14.8 27.8 7.6 54.6 222.7 50.2 4.4 0 0.009
qft_10 10 90 58.2 2.6 93.2 18.4 161.6 23.8 93.6 246.5 51.6 4.6 44 0.02
sys6-v0_111 10 98 84 7.3 112.6 19.2 99.2 30.2 158.4 241.9 110.4 10.2 65 0.02
4_49 16 5 99 57 2.2 78 12.6 61.8 19.5 68.8 46.6 75.4 12.2 59 0.008
4gt12-v1_89 6 100 78 6.9 81.6 143 95 22.1 90.6 70.4 90.2 13 70 0.01
rd73_140 10 104 83.6 8.3 129 19.8 101.6 30.1 149.8 196.8 118.2 11.7 71 0.02
0410184_169 14 104 76 8.8 190 17.7 179 33 161 177.8 173 13.6 105 0.04
4gtd-v0_79 6 105 75 7 92.4 13.9 69.2 22.1 83 70.2 89.4 12.5 68 0.01
hwb4_49 5 107 65 2.4 96.6 14.9 75.8 25.2 87.2 66.4 78.2 12.3 56 0.01
mod10_171 5 108 65.4 2.3 92.2 15.5 78.2 28.3 75 60.4 91.2 13.3 70 0.01
4gt4-v0_78 6 109 83 7.4 100.4 14.8 78 223 81.6 64.6 99.4 13.7 74 0.01
4gt12-v0_87 6 112 78.8 7.2 112.8 16.8 74 24 89 95.4 94.6 13 79 0.01
4gtd-v0_72 6 113 82 7.4 113.2 18.5 90.8 28.9 112.8 108.5 102.8 13.9 78 0.01
4gt12-v0_86 6 116 81.8 7 114.8 17.4 78 249 102 107.4 106.8 14.1 86 0.01
4gtd-v1_74 6 119 80 8.2 109.4 16.8 128.6 30.7 112.6 68.9 102.4 15.2 76 0.01
ising_model_13 13 120 0 0.09 117.2 34.4 84.8 29.8 105.6 454.6 78.8 5.6 0 0.01
sym6_316 14 123 124 12.1 170.6 213 154 32.8 216.6 166.8 182.4 16.9 138 4.8
rd53_311 13 124 112 11.7 171.8 21.7 155 45.8 193.8 207.1 165.2 15.5 119 0.08
mini-alu_167 5 126 79 2.5 123.8 18.8 96.4 31 102 70.9 104.4 15.1 76 0.01
one-two-three-v0_97 5 128 82 2.6 99.6 16.6 94.4 31 98.6 82.2 108.4 16.4 74 0.01
rd53_135 7 134 136 9.9 136.4 20.1 125 40 150.6 156.7 133.6 16.7 108 0.02
sym9_146 12 148 132 12.8 194.2 26.5 143.4 419 239.8 292 167.8 15.8 99 0.03
decod24-enable_126 6 149 134 10.5 136.8 21.9 121.6 39.4 116.4 95 128.8 18.6 97 0.01
ham?7_104 7 149 119 11.1 133 19.3 123.2 31.6 144 69.2 135.2 18.9 96 0.01
ising_model_16 16 150 0 0.1 164.8 53.5 123.6 41.8 174 722.7 101.4 6.6 0 0.02
mod8-10_178 6 152 117 9.9 138.8 23.6 118.4 42.5 150.2 97.1 131.8 19.3 113 0.02
rd84_142 15 154 130.8 13.3 197 333 161.8 48.5 262.8 516.8 215.2 16.4 109 0.1
ex3_229 6 175 119 11.3 147.6 244 116.2 40.2 143 113.2 171.2 22.8 118 0.02
4gtd-v0_73 6 179 145 11.4 170.8 25.9 141 47.4 168.6 102.9 162.6 23 129 0.02
mod8-10_177 6 196 156 13.7 142 23.6 149 494 175.6 120.3 172.8 25 146 0.02
alu-v2_31 5 198 127.8 4.4 174.6 27.9 144 49.6 144 129 157 24 125 0.02
rd53_131 7 200 156.4 14.7 209.6 26.2 155 42.6 230.6 162.3 205.6 25.7 146 0.03
C17_204 7 205 199.6 15.7 226.4 33.1 201 48.4 217.6 182.2 199.6 26.3 153 0.03
cnt3-5_180 16 215 225.8 20.9 309.2 36.7 280 55.1 292 359.2 311 275 127 0.03
alu-v2_30 6 223 195 154 214.4 33.4 234.2 56.9 193.2 152.7 202 28 154 0.02




ORIGINAL CIRCUIT LIN (SPECTRAL) CSU19 (GREEDY) CSU19 (SIMPLE) CSU19 (EXTEND) CSU19 (Q1sKIT) ZPW18 (A¥)

BENCHMARK CIRCUIT QUBITS CNOTs SWAP CPU TiME SWAP CPU TiME SWAP CPU TiME SWAP CPU TiME SWAP CPU TiME SWAP CPU TiME

COUNT (sEC) COUNT (sEC) COUNT (sEC) COUNT (SEC) COUNT (sEC) COUNT (sEC)
mod5adder_127 6 239 214.8 16.7 220.8 35.7 196.8 64.8 228.6 160.8 220.6 30.2 169 0.03
qft_16 16 240 153 7.5 333.6 77.7 845.8 86 307 1056.4 142.2 9.9 119 0.9
rd53_133 7 256 171.4 18.9 303.4 35.2 267.6 48.8 265.2 216.1 263.6 329 180 0.03
majority_239 7 267 220.2 20.9 249.6 37.1 251.6 68.4 308.2 222.2 261.2 33.9 197 0.04
ex2_227 7 275 228.8 22.2 274.6 40.1 197 56 288.8 212.4 272.2 35 193 0.03
cm82a_208 8 283 253 24.7 265.6 40.8 198.8 59.7 285.8 230.8 294.4 36.1 202 0.03
sf_274 6 336 277 26.3 275.4 45.6 243.8 81.3 310.2 145.6 284 42.2 239 0.04
sf_276 6 336 293 25.1 289.2 47 273 77.6 272.8 200.9 299.8 429 250 0.03
conl_216 9 415 452.4 39.1 478.6 60.7 463.2 105.7 442.6 355.9 463.2 54.3 365 0.05
wim_266 11 427 430.6 43.5 402.2 58.2 421.4 95.2 563.2 377.5 467 53.7 336 0.05
rd53_130 7 448 405.2 37.4 455.2 68.2 382.4 109.8 492.8 372.4 459.2 57.6 338 0.06
f2_232 8 525 454 48.7 559.6 72.3 444.4 108.4 551.6 392.2 545.8 68.7 398 0.09
cml152a_212 12 532 421 57.2 570.2 74.3 377.2 119.6 672.6 399.6 567.4 70.3 417 0.07
rd53_251 8 564 542 54.4 563 78.8 470.8 122.7 604 398.3 541.4 69.5 429 0.07
hwb5_53 6 598 513 50 518.8 81.6 520.4 157.8 528.4 407.9 543 76 417 0.06
cm42a_207 14 771 731 92.1 658.4 102 606.8 155.4 895.6 597.3 866.8 100.5 608 0.1
pm1_249 14 771 731 91.8 664 101.8 628 161.9 917.8 595.5 844.8 98.9 608 0.1
dc1_220 11 833 830.4 92.7 803.2 107.4 711.4 187.2 1096 629.9 904.8 107.3 678 0.1
squar5_261 13 869 987.2 103.3 1088 120.7 1088.4 206.6 1173.8 776.1 1090.2 115 763 0.2
sqrt8_260 12 1314 1886.6 172.6 1745.6 194.2 1519.2 321.1 1925.6 1190.5 1735 181.4 1223 1.2
z4_268 11 1343 1503 168.5 1594.6 199.8 1226.4 301.7 1839.6 1401.4 1587.4 176.2 1153 0.9
radd_250 13 1405 1552 190.1 1767.8 202.1 1203.4 308.1 1941.2 1155.6 1715.6 190.2 1185 9.1
adr4_197 13 1498 1775 205.5 1791.4 209.5 1647.2 397 2050 1370.9 1875.8 197.7 1370 0.3
sym6_145 7 1701 1483.4 198.1 1618.2 238.9 1729.6 462.7 1803.8 1263.7 1668.8 220.7 1215 0.2
misex1_241 15 2100 2235.4 3253 2182.6 264.2 2289.8 427.2 2658.6 1293.4 2508.6 282.7 1749 0.3
rd73_252 10 2319 2812 348.9 2706.4 329.9 1958.4 497.6 3101.6 2049.3 2793.2 309.1 1995 14.4
cycle10_2_110 12 2648 3155.4 440.7 3479.6 369.1 2834 608.7 3552.6 1998.3 3342.4 356.1 2414 1.6
hwb6_56 7 2952 2850.8 455.2 2862.4 420.5 2665.6 773.5 3036.6 2290.7 2910.6 366.9 2140 0.4
square_root_7 15 3089 4826.6 580.8 4543 492.8 4478 1129.6 4936.4 3788.3 4228.6 417.8 3267 113
ham15_107 15 3858 4136.6 814.4 4597.6 534.8 4254 1015.5 4933.4 3138.1 4572.4 511.9 3308 24
dc2_222 15 4131 5193.6 914.1 5558 583.4 4942.4 955.6 5640.8 3183.9 5485.4 563.8 3906 8.6
sqn_258 10 4459 5055.8 944 5139 643.8 4313.4 1043.2 5710.2 4252.4 5149.2 590.6 out of memory
inc_237 16 4636 5119.6 1101.5 5285.6 606.4 5723 1041.2 5746.6 3348.9 5678 617 out of memory
cm85a_209 14 4986 6066.6 1215.5 6411.8 706.1 6444.6 1247.8 6583.8 3630.7 6667.8 693 4658 ‘ 14.3
rd84_253 12 5960 7825.2 1585.4 7813.8 902 5125.2 13235 8655.6 6197.3 7746.2 796.6 out of memory
root_255 13 7493 10226.8 2310.7 9827.4 1158.7 7694.2 1815.3 10710.4 8786.3 9988.6 993.2 out of memory
col4_215 15 7840 13259.4 2332.3 11722 1342.5 11691.8 2723.2 12480 14008.2 11559.4 1026.3 7704 ‘ 78.9
mlp4_245 16 8232 10745.2 2863 11617 1178 10712.4 2070.9 11598.2 7132.3 11311.8 1136.6 out of memory
sym9_148 10 9408 8822 3328 9563.2 1308.2 9318.4 2715 11375.8 8304.2 9891.6 1219.7 out of memory
life_238 11 9800 11817.8 37419 12467.6 1416.4 12296.2 2607.2 13974.6 8893.9 12715.6 1359.1 out of memory
tof_3_after_heavy 5 14 8 0.2 21 0.9 10 0.7 12 0.8 9.2 0.5 4 0.001
tof_3_after_light 5 14 8 0.2 21 0.9 10 0.7 12 0.8 9.8 0.5 4 0.002
barenco_tof_3_after_heavy 5 18 11 0.3 14 0.8 10 0.7 12 0.9 13 0.7 8 0.002
barenco_tof 3_after_light 5 20 12 0.4 14 0.9 10 0.7 12 0.9 13 0.7 8 0.001
tof_4_after_heavy 7 22 11 17 33 15 22 13 25 1.6 28.8 13 6 0.004
tof_4_after_light 7 22 11 1.1 33 1.6 22 13 25 1.6 23.6 1.2 6 0.002
mod5_4_after_heavy 5 28 15.2 0.6 26 1.2 18 1.1 22 13 214 1 12 0.001
mod5_4_after_light 5 28 14.8 0.6 26 12 18 11 22 13 17.8 0.9 12 0.004
tof_5_after_heavy 9 30 20.8 2 51 2.6 37 2.1 39 3.8 43.8 2.1 8 0.003
tof_5_after_light 9 30 20.6 2 51 2.6 37 2.1 39 3.8 36.6 1.8 8 0.003
barenco_tof_4_after_heavy 7 34 34 2.7 41 1.9 24 1.6 26 1.9 33.8 1.6 16 0.004
barenco_tof_4_after_light 7 40 22 3 46.8 2.3 24 1.6 26 1.9 26.8 1.5 16 0.004
mod_mult_55_after_heavy 9 40 44 2.4 59.8 3.7 48.2 5.5 62.8 16.1 49.6 2.2 30 0.008




ORIGINAL CIRCUIT LIN (SPECTRAL) CSU19 (GREEDY) CSU19 (SIMPLE) CSU19 (EXTEND) CSU19 (Q1sKIT) ZPW18 (A¥)

BENCHMARK CIRCUIT QUBITS CNOTs SWAP CPU TiME SWAP CPU TiME SWAP CPU TiME SWAP CPU TiME SWAP CPU TiME SWAP CPU TiME

COUNT (sEC) COUNT (sEC) COUNT (sEC) COUNT (SEC) COUNT (sEC) COUNT (sEC)
mod_mult_55_after_light 9 40 44 3.5 60.6 3.7 46.6 53 66.4 15.8 61.2 2.5 30 0.007
barenco_tof_5_after_heavy 9 50 60.8 3.4 85 3.9 53 3.7 59 5.3 71 3.2 23 0.004
vbe_adder_3_after_heavy 10 50 30 3.6 55.4 4.7 60 5.6 76.4 24 58 2.8 33 0.02
vbe_adder_3_after_light 10 50 43 5 53.8 4.8 58.4 5.5 84.8 23.8 54 2.6 33 0.02
barenco_tof 5_after_light 9 60 46.6 4.7 89 4.4 55 3.8 64 6.7 63.4 3.1 23 0.003
csla_mux_3_after_heavy 15 70 86.4 5.2 180.2 15.9 158 19.6 142.2 205.5 125 5.9 108 0.2
tof_10_after_heavy 19 70 93.2 7.9 258 19 192 13.7 275 112.8 173 10.9 18 0.01
tof_10_after_light 19 70 93 8.1 258 19.1 192 13.7 275 1111 169.2 10.6 18 0.008
rc_adder_6_after_heavy 14 71 75 73 173 14.4 156.6 24.9 139.4 139 145.4 6.3 83 0.05
rc_adder_6_after_light 14 73 75 6.6 183 15 156.8 24 158.4 127.8 160.2 6.7 83 0.05
csla_mux_3_after_light 15 76 95.8 5 168.6 14.8 147.8 21.7 146.4 194.8 136 6.3 out of memory
mod_red_21_after_heavy 11 77 106 5.3 114.2 7.1 128.6 9.2 129 30.8 105.6 5 59 0.008
mod_red_21_after_light 11 81 78 6.1 116 7.4 134 9.4 127.2 28.1 102.2 5.2 59 0.01
gf2°E4_mult_after_heavy 12 99 124.4 6.3 171.6 11.7 173 16.1 158.2 85.4 153.8 6.6 109 0.03
gf2"E4_mult_after_light 12 99 125 6 168.8 11.4 173.8 16.1 158 85.1 150.6 6.6 128 0.05
barenco_tof_10_after_heavy 19 130 212.2 17.1 382.2 27.6 333 33.1 350.8 93.4 334.6 19.4 58 0.01
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