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Classical simulation of noncontextual Pauli Hamiltonians
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Noncontextual Pauli Hamiltonians decompose into sets of Pauli terms to which joint values may be assigned
without contradiction. We construct a quasiquantized model for noncontextual Pauli Hamiltonians. Using this
model, we give an algorithm to classically simulate the noncontextual variational quantum eigensolver. We also
use the model to show that the noncontextual Hamiltonian problem is NP-complete. Finally, we explore the
applicability of our quasiquantized model as an approximate simulation tool for contextual Hamiltonians. These
results support the notion of noncontextuality as classicality in near-term quantum algorithms.
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I. INTRODUCTION

Simulation of quantum systems using the variational quan-
tum eigensolver (VQE) is a promising application for noisy
intermediate-scale quantum (NISQ) computers [1,2]. VQE is
advantageous in the NISQ era because the necessary circuit
depths are small compared with other quantum simulation
methods, such as phase estimation [2]. Small-scale VQE
experiments have been performed in a variety of qubit archi-
tectures to simulate systems from molecular to high-energy
physics [2-16].

In this paper we give a classical simulation technique for
noncontextual Hamiltonians, defined in our previous work
[17]. Contextuality is an indicator of nonclassicality [18-20]
that is related to negativity of quasiprobability representations
[21-26] and resources for quantum computation [27-35]. Re-
cent work has led to a variety of approaches to characterizing
and quantifying contextuality [17,36—48].

In the present work we show that when a Hamiltonian is
noncontextual according to the criterion of [17], we may con-
struct a quasiquantized classical model of the associated VQE
instance. Quasiquantized models are descriptions of classical
subtheories of quantum mechanics, such as the stabilizer sub-
theory for odd-dimensional qudits, and Gaussian subtheory
for continuous systems [21,49-52].

Our quasiquantized model is a hidden-variable theory for
prepare-and-measure scenarios where all states are allowed
but the measurements must correspond to a noncontextual set
of Pauli observables. This contrasts with [47], in which it is
shown that for noncontextual states (in the sense of being
positively representable over a noncontextual phase space),
any set of Pauli measurements permits classical description.

The problem of approximating the ground state energy of
a classical or quantum Hamiltonian can be NP-complete or
QMA-complete, respectively; NP-complete (QMA-complete)
problems are the hardest decision problems whose answers
can be efficiently verified on classical (quantum) computers
[53-64]. Our quasiquantized model allows us to show that the
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noncontextual Hamiltonian problem (see Sec. I B) is only NP-
complete, rather than QMA-complete [54]. In other words,
the fact that we can describe the VQE procedure in terms
of nonnegative joint probabilities places noncontextual VQE
unambiguously in the realm of the classical, and this result
extends to the computational complexity of the problem.

In Sec. II we show how to construct a quasiquantized
model for any noncontextual Hamiltonian. The states of the
quasiquantized model are probability distributions that corre-
spond to quantum states. We prove that these probability dis-
tributions reproduce expectation values for the Hamiltonian
terms, including the expectation values corresponding to
Hamiltonian eigenstates. In Sec. III we use our model to
construct a classical simulation algorithm for VQE. We also
show that the noncontextual Hamiltonian problem is NP-
complete. In Sec. IV we show how to approximate contextual
Hamiltonians by noncontextual Hamiltonians. In some cases
we reach chemical accuracy using this approximation, and in
most cases we outperform existing experimental results. In
Sec. V we summarize and discuss our results.

A. Variational quantum eigensolvers

In VQE we wish to minimize the energy expectation value
of a Hamiltonian H:

(H) =Y hp(P), ()

PeS

where the hp are real coefficients, and S is the set of Pauli op-
erators in the support of the Hamiltonian (see [65] for a review
of VQE). The energy expectation value (1) is estimated by
preparing a physical ansatz on a quantum device, and evaluat-
ing the expectation value of each Pauli term P € S separately.
The weighted sum (1) is then treated as an objective function
for a classical optimization of the ansatz parameters [2].

B. Local Hamiltonian problems

The k-local Hamiltonian problem is the decision problem
of whether the ground state energy of a k-local Hamiltonian
lies below some specified energy gap [with size at least
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1/poly(n), for n qubits], given the promise that the ground
state does not lie within the gap [54]. The k-local Hamiltonian
problem is QMA-complete, and has also been studied for
various subsets of Hamiltonians (such as k-local commut-
ing Hamiltonians, and Hamiltonians with specific interaction
graphs) [53-64]. The complexity of the k-local commut-
ing Hamiltonian problem is a long-standing open problem
[57,61-64].

In this paper we focus on Pauli Hamiltonians. The com-
plexity of the corresponding commuting problem is known:
the k-local commuting Pauli Hamiltonian problem is in NP,
since it is a special case of the k-local commuting, factoriz-
able qubit Hamiltonian problem [57,66]. Since all commuting
Pauli Hamiltonians are noncontextual, we will generalize this
by proving that the noncontextual Hamiltonian problem is
NP-complete.

C. Noncontextual Hamiltonians

For S the set of Pauli operators in the Hamiltonian, let S
denote the closure under inference of S [17,47]. This means
that S is the smallest set containing S as a subset, such that
for every commuting pair A, B € S, AB € S as well. Since we
could in principle measure A and B simultaneously together
with their product AB, from any value assignment to A, B
we may infer the assignment to AB: hence closure under
inference. We say that a value assignment is consistent if it
respects all such inference relations. A value assignment to
the observables in S (an ontic state) extends to an assignment
to S, and noncontextuality is defined by situations in which
consistent assignments to S exist [17].

We can determine whether S is contextual by the following
criterion. Let Z C S be the set of operators in S that commute
with all operators in S (we say that elements of Z commute
universally in S). Let 7 = S\ Z; then S is noncontextual
if and only if commutation is an equivalence relation on T
[17]. In other words, if S is noncontextual, then 7 is a union
of N disjoint “cliques” Cy, C, ..., Cy, such that operators in
different cliques anticommute, while operators in the same
clique commute.

Let G={Cjlj=12,....1Gl}. A
Hamiltonian then has the form

N |Cil
H = Z (Z hijcij) + Z hgB, 2
i=1 \j=1

BeZ

noncontextual

where A;; and hp are real coefficients.

We may rewrite this Hamiltonian in a useful way by defin-
ing A;; = C;;C1. A is itself a Pauli operator (up to a sign)
and commutes universally in S, since any operator in C; or in
Z commutes with both C;; and Cj;, and any operator in one of
the other cliques anticommutes with both C;; and Cj;. Thus,
we may rewrite (2) as

N ICil
H=Y" (Z hiinj>ci1 + > hgB. 3)

i=1 \j=I BeZ

Note that in (3), the only operators appearing on the right-
hand side that do not commute universally in S are the C;;: Cy
and Cy; anticommute for i # i’. See Appendix B for further
discussion of noncontextual sets.

II. QUASIQUANTIZED MODEL
FOR A NONCONTEXTUAL HAMILTONIAN

In this section we describe our main tool, a quasiquan-
tized (or epistricted) model for noncontextual Hamiltonians.
A quasiquantized model is composed of a set of phase space
points, called the ontic states of the system, and a set of prob-
ability distributions over the ontic states, called the epistemic
states [49,50].

A. Ontic states

If the set S is noncontextual, then consistent joint valua-
tions for S exist. However, in general not every assignment of
values to S is consistent. This motivates the following:

Definition 1. An independent set of Pauli operators con-
tains no operator that can be written as a product of other
commuting operators in the set.

In other words, a set is independent if it contains no
operators whose values can be inferred from the values of
other operators in the set, according to the notion of inference
defined in Sec. I C. If a set of Pauli operators is independent,
then every joint valuation for the set is consistent. Although
the set S of Hamiltonian terms may be dependent, we can
construct an independent set R such that R = S. Since R is
independent, the joint valuations for R are {41, —1}/*!: these
label the ontic states.

To obtain R, we first construct

N
G’EZU(U{Aij|j=2,3,...,|Ci|}>. 4)

i=1

All operators in G’ commute universally in S. G’ will in gen-
eral be dependent, but we may obtain an independent set G =
{Gili=1,2,...,|G|} from G’ using the method described in
[[67], Sec. 10.5.7] (summarized in Appendix C). Operators in
G commute universally in S because G C G.

The independent set R is then given by

R={Cyli=1,2,...,NJUG. (5)

The C;; are independent because no pair of them commutes,
and since any product of operators in G commutes with all
operators in S, the C;; are also independent of G. Therefore,
‘R is an independent set.

Each operator in Z and each A;; may be written as a
product of operators in G (see Appendix C). Therefore, since

C=

T= {Aijcil|j=1727'-'vN}v (6)

i=1

each operator in 7 is a product of one of the C;; and some
set of operators in G. Thus, each operator in S is a product of
commuting operators in R, so R = S.

The set G has size at most n — 1, because a set of n
independent, commuting Pauli operators forms a complete,
commuting set of observables for n qubits. Therefore, if G had
size n (or more), each set G U {C;;} would be a commuting set
of size n + 1 (or more), which could not be independent. Thus
‘R has size at most N + n — 1. As pointed out in [[47], Sec.
IV AL N <2m+ 1form =n — |G|, so |R| is in fact at most

032418-2



CLASSICAL SIMULATION OF NONCONTEXTUAL PAULI ...

PHYSICAL REVIEW A 102, 032418 (2020)

2n + 1, which can be true only when G (and thus Z) is empty.
This will be important in Secs. III and I'V.

Note that although R is not in general a subset of S, it is
a subset of S. Furthermore, since there is a bijection from the
set of ontic states for R to the set of ontic states for S, |R|
is unique for each S. Thus closure under inference permits
construction of the independent generating set R.

B. Epistemic states

Epistemic states are joint probability distributions over the
ontic states, which complete our quasiquantized model. We
write these joint probabilities as P(cy,...,cn, 81,82, --- ),
where each c;, g; is =1 and denotes the value assigned to Cj;
or G;, respectively.

First consider a commuting Hamiltonian. In this case, R =
G, and S =R is the Abelian group generated by R. The
observables may be simultaneously measured, so there is a
one-to-one mapping between the ontic states and the simulta-
neous eigenstates of S. Thus the only constraint on the joint
probabilities in this case is normalization.

Next consider the case where all observables pairwise an-
ticommute:

Lemma 1. LetA = (A, Ay, ..., Ay) be an anticommuting
set of Pauli operators. For any unit vector & € RV, the operator
Z;V:l a;A; has eigenvalues £1. From this it follows that for
any state, vazl (A)? < 1.

We prove Lemma 1 in Appendix A.

For a general noncontextual set S, construct R as described
in Sec. I A. The set E = E(R) of epistemic states is then

E={(G7 e {1} xRV ||F| = 1}. (7
The pairs (¢, 7) define the joint probabilities as follows:
G| N oy
Pgr(ct, ..., cn, 81,82, --) = (H Sg‘,,q,> l_[ E'Ci + 7il.
j=1 i=1

®)

We refer to both the joint probabilities and the vector pairs
(g, 7) as epistemic states: they contain equivalent information.
In terms of (g, 7), the expectation values for R are given by

(Gjan =4

9
Cinygn =ri- ©

Theorem 1. For epistemic states (g, 7) as defined in (7),
the joint probability distribution (8) is equivalent to the set
of expectation values (9).

We prove Theorem 1 in Appendix A.

The model (7) is epistricted in the following sense: as
in [49], a state is represented by joint knowledge of a set
of commuting observables. For a given (g, 7), this set is G
together with the observable

N

AF) =) riCa (10)

i=1

(which has eigenvalues 1, by Lemma 1). Note that since the
C;1 have expectation values r; as in (9), A(¥) has expectation
value 1, since 7 is a unit vector. No probability distributions
are allowed that represent more knowledge of the state than

simultaneous values of G and A(7). Note that our model
describes only pure states (as do the models in [49]).

From the expectation values (9) for R, we can obtain
expectation values for S as follows. For B € Z, let Jp be the
set of indices such that B = [ | je, G then

(B)@gm» = < l_[ Gj> = l_[ qj; (11)

Jj€TB Jj€TB

where the second equality follows because G; — ¢; = %1 for
all j (in other words, the state is a common eigenstate of the
G; and of B). Similarly, for C;;B € T,

(CaB)gn =ri || a;- (12)
JjeTs

Theorem 2. The epistemic states (7) give sets of expecta-
tion values that correspond to valid quantum states, and the set
of quantum states described by the epistemic states includes
an eigenbasis of any Hamiltonian whose Pauli terms are S.

The proof of Theorem 2 is given in Appendix A. Note that
for any (g, ¥), the expectation values (9) are produced by a
simultaneous eigenstate of G U {A(¥)}. For the second claim
in Theorem 2, we show that there exists an eigenbasis for the
Hamiltonian composed of common eigenstates of G and A(¥)
for some 7. That A(¥) may be included is implied by:

Lemma 2. For |{) an eigenstate of the full Hamiltonian
(3), the expectation values of the C;; satisfy vazl (Ci)? = 1.

The proof of Lemma 2 is given in Appendix A. In other
words, the (C;1) saturate the bound given in Lemma 1, for any
energy eigenstate. This means that every energy eigenvalue
can be reproduced via the expectation values (11) and (12) for
some setting of (g, 7).

We show in Appendix D how for any quantum state we
may construct a joint probability distribution that reproduces
the expectation values for S; however, to simulate noncon-
textual VQE it is only necessary to reproduce probabilities
corresponding to eigenstates.

III. CLASSICAL SIMULATION
OF A NONCONTEXTUAL HAMILTONIAN

A. Classical objective function

Given the model described in Sec. II, we now define a
classical variational algorithm to simulate a noncontextual
Hamiltonian. In (3), each A;; and each B is a product of
operators in G, i.e., is an element of G. Therefore, we may
replace A;; by B and sum over all of G, obtaining

N

H=Y" (hBB +y hB,,-Bc,-l), (13)
BeG i=1

where the g ; and hp are just relabelings of the coefficients in

(2). Thus we can use (11) and (12) to write:

N
(H)@grn = Z <h3 + Zhs,m) l_[ q;- (14)
i=1

BeG JE€TB

We may now treat (14) as a classical objective function.
This classical optimization problem will in general be hard.
Although a convex special case of (14) is obtained when
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TABLE 1. Contextual VQE experiments, as approximated by noncontextual and diagonal Hamiltonians. n is the number of qubits. |Sg,y| is
the number of terms in the full Hamiltonian, |Syoncon| i the number of terms in the noncontextual sub-Hamiltonian, and |R| is the number of
parameters in an epistemic state (which is upper bounded by 2n + 1 for n qubits). €,oncon 15 the error in the noncontextual approximation, €giag
is the error obtained by only keeping the diagonal terms in the Hamiltonian, and €. is the error in the VQE experiment. Errors are in units of
chemical accuracy, 0.0016 Ha. Experimental errors preceded by ~ were estimated from figures.

Citation System n | St | Snoncon| IR| €noncon €diag €expt Expt. outperforms noncontextual?
Peruzzo et al., 2014 [2] HeH™" 2 9 5 3 0.21 4.1 4.1 No
Hempel et al., 2018 [11] LiH 3 13 9 4 0.56 0.56 ~80 No
Kandala et al., 2017 [10] LiH 4 99 23 5 4.2 9.3 ~30 No
Kandala et al., 2017 [10] BeH, 6 164 42 7 156 266 ~90 Yes

we fix some set of values for the g; (or when G is empty),
in general the function is nonconvex. It is also in general
frustrated, even if all terms commute, since in that case (14)
becomes a linear combination of products of the g;. Thus, as
discussed further in Sec. III B, we should not expect worst
cases of this optimization to be tractable, but they remain at
worst classically hard.

B. The noncontextual Hamiltonian problem

The statement of the noncontextual Hamiltonian problem
is as follows: The inputs are a Hamiltonian H of the form (13)
with poly(n) terms, together with a “promise” that the lowest
eigenvalue of H is either greater than b or less than a for some
a < b e R such that b — a > 1/poly(n). The goal is to return
YES if the lowest eigenvalue is less than a.

A problem is in NP if for every YES instance, there exists
a proof (or witness) that is classically verifiable in polyno-
mial time. In our case, the witness for a YES instance is an
epistemic state (g, 7) € E (a vector with dimension at most
2n + 1, as discussed in Sec. Il A) satisfying (H) 7 < a. By
showing that such a witness can be efficiently verified, we
prove the following in Appendix A:

Theorem 3. The noncontextual Hamiltonian problem is in
NP.

The diagonal local Hamiltonian problem is NP-complete,
as follows from [53]; see also [63]. This remains true even for
2-local diagonal Hamiltonians [55], so since any 2-local diag-
onal Hamiltonian is noncontextual with poly(n) Pauli terms,
the noncontextual Hamiltonian problem is NP-complete as
well.

IV. APPROXIMATION OF GENERAL HAMILTONIANS
BY NONCONTEXTUAL HAMILTONIANS

Can we use our classical simulation technique as an
approximation method for contextual Hamiltonians? Since
the model described in Sec. II depends structurally on the
Hamiltonian being noncontextual, we cannot apply it to
a general Hamiltonian directly. However, given a general
Hamiltonian we can find a noncontextual subset of the terms,
and take their (collective) ground state energy as an approxi-
mation of the true value.

Finding the largest noncontextual subset of terms is a
generalization of the disjoint cliques problem [68], which
is NP-complete. However, to date VQE experiments have
largely focused on Hamiltonians in which the total weight of

the terms (in /; norm) is dominated by the diagonal terms.
Therefore, as a heuristic we select terms from the full Hamil-
tonian greedily by coefficient magnitude while the set remains
noncontextual, thus obtaining the diagonal terms together
with some additional set of relatively low weight. Given this
noncontextual set, we construct R and minimize the resulting
objective function (14) by brute-force search, since for few
qubits R is small (see Sec. II A and Table I). For larger
examples a classical optimization technique should replace
this brute-force search.

We applied this heuristic to contextual Hamiltonians that
have been simulated in VQE experiments to date. The results
are given in Table I. The best noncontextual sub-Hamiltonians
we found, for each full Hamiltonian in Table I, are listed in
Appendix E.

For small Hamiltonians, our noncontextual approximation
reached chemical accuracy. In all but one case the noncontex-
tual approximation outperformed the approximation obtained
by keeping only the diagonal terms. This is a natural point of
comparison, since diagonal Hamiltonians constitute another
common notion of classicality, and any set of diagonal Pauli
operators is noncontextual.

Also, in all cases except for the BeH, simulation in [10],
the noncontextual approximation reached better accuracy than
the corresponding experiment. We wish to be clear that this
is not a criticism of these experiments, which were intended
as demonstrations of methodology rather than as precise es-
timations. However, what our noncontextual approximations
show is that these experiments have not achieved sufficient
accuracy to resolve intrinsically quantum behavior, i.e., the
full-configuration correction to the noncontextual ground state
energy.

Finally, the fact that the BeH, experiment does outperform
our approximation indicates that, as we would expect, more
terms in the Hamiltonian means more room for contextuality,
and hence worse noncontextual approximations. Thus, we
may hope that future experiments simulating larger Hamilto-
nians will reliably exceed this minimum standard for quantum
behavior. On the other hand, better heuristics for identifying
the noncontextual set may improve the noncontextual approx-
imation.

V. DISCUSSION

In the quantum approximate optimization algorithm
(QAOA) [69], the Hamiltonian is diagonal (and thus non-
contextual), because it encodes a classical problem, so our
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method simply recovers the diagonal entries. We have shown
that the noncontextual Hamiltonian problem is in NP. Thus,
the potential for quantum advantage in noncontextual VQE
reduces to the same question that motivates QAOA: can we
use cleverly chosen and/or physically motivated ansatze to
generate otherwise hard-to-reach joint probability distribu-
tions, and thus efficiently converge to solutions of classically
hard problems?

We demonstrated in Sec. I'V that our model is applicable as
an approximation method for contextual Hamiltonians, such
as general electronic-structure Hamiltonians. This technique
provides a more stringent test for nonclassicality than that
given Table I in [17], by demonstrating that some experi-
ments with contextual Hamiltonians do not achieve sufficient
accuracy to tell their results apart from those due to a noncon-
textual approximation. Again, we wish to stress that this is not
a criticism of these experiments, which have played seminal
roles in the development of quantum simulation techniques,
but only a means by which we may try to identify intrinsically
quantum behavior.

Finally, in addition to serving as a benchmark for quantum
experiments, our simulation technique may be useful as a
new approximation method in its own right. Also, it may
be possible to extend our criterion for noncontextuality to
other Hamiltonian decompositions besides Pauli decomposi-
tion, thus improving the capacity of our simulation algorithm.
We leave the full exploration of these possibilities for future
work.
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APPENDIX A: PROOFS

Lemma 1. Let A = (A, Ay, ..., Ay) be an anticommuting
set of Pauli operators. For any unit vector & € R, the operator
i-A= Zf’zl a;A; has eigenvalues £1. From this it follows
that for any state, Zivzl (A < 1.

Proof. This theorem consists of two claims:

For the first claim (that the operator & - A has eigenvalues
+1), note that

(El 1&)2 = ZG?AZZ + Zaiaj{A,-,Aj}

i>j

=> al=a’1=1, (A1)

where the second equality follows because the Pauli operators
A; are self-inverse, and by assumption {A;, A;} =0 for i > j.
Thus, a A is self-inverse, so its eigenvalues are 1. This
completes the proof of the first claim.

For the second claim (that Zf’i](Ai>2 < 1), note that for
any state represented as a density operator p, we may write

p=ml+b-A+--), (A2)

for some b € RY, where the ellipsis indicates the presence in
general of additional Pauli terms. The expectation value of any
A; 1s then

(Ai) = Tr(Aip) = b;, (A3)

since the Pauli operators are Hilbert-Schmidt orthogonal and
self-inverse. . .
Assume that |b| > 0 [if |b| = 0, then the theorem holds, by

(A3)]. Leta = % so that |d| = 1. By the first claim in this

lemmﬁa, the observable a - A has eigenvalues +1. Therefore,
[(G-A)| <1, so we have

1> |(@-A)| = |Te(@- Ap)|
1 L o o L=
iTr(a A(b-A))| =la-bl,

where (as above) the steps in the second line follow because
the Pauli operators are Hilbert-Schmidt orthogonal and self-
inverse. Therefore,

(A4)

N

1Bl -
1> a5 == =b’ =) b =) (A’
i=1

|b|2 (A

i=1

(since by assumption |b| > 0). This completes the proof of the
second claim. ]
Theorem 1. For epistemic states (g, 7) as defined in (7),
the joint probability distribution (8) is equivalent to the set of
expectation values (9).
Proof. (1) We first prove the reverse implication: as-
sume that (9) holds. We reproduce (9) here for convenience:

(Gj)arn = 4 (A6)
(Ci)@g,p = i
That these lead to the joint probabilities given by (8) essen-
tially follows from the discussion following (9), but we will
fill in the details.
Since (G;) =¢g; ==l for each j [as in (7)], the
G; have definite values. The values of the G; in
the ontic state (c,...,cn,81,82,...) are the g;, so

P(ct,...,cN,81,82,...) can be nonzero only when
qj =g, for each j. If this holds for each j, then
P(ci,...,cN, 81,82, ...) is just the product over

i=1,2,...,N of the probabilities of obtaining outcome
Cii — ¢; given the expectation value (C;) =r;: these
probabilities are given by

slei + ril (A7)

for each i. Taking the joint probability to be the product of
these works only because the C;; do not commute, and thus

cannot be correlated.
The condition due to the G; thus gives a factor of

|Gl

[T
j=1

(A8)
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and the condition due to the C;; gives a factor of
N

H%|Ci+"i|;

i=1

(A9)

(8) is simply the product of these.
Now assume that (8) holds. We reproduce (8) here for
convenience:

|Gl N
1
P(Clv"'5cN9g19g27"') = (1_[85’]‘,(/]’) <l_[ §|Ci+r[|>-
j=1

i=1
(A10)

The probabilities for the outcomes of each G; and each Cj
should be obtained as marginals of (A10). If pg, denotes the
probability of obtaining the outcome G; + +1, then

pG,: Z P(Clv"'»CN7g17g27"')‘g_1
cigr = %1, ’
Vi A
G| N
= Z (l_[ 85’14]1) )g:l (l_[ §|Cm + rm|)
ci, =41, =1 ’ m=1
Vi A
Mo
~0 X (I3 )
ci=%1 \m=1
1 Mo
=G+ 1)(}1 5 U+ 11+ 7 — 1|)>
1
(A11)
where the fourth equality follows because for r,,, € [—1, 1],
[Fp + 1]+ |rm — 1] = 2. (A12)
Similarly,
P, = Z P(ci,...,cn, 81,82, --+) -
o g; = £1, ’
“ Sk
te] Ny
% (M) (Mgt )l
Cr, 8i = :|:1, =1 m=1 !
“ Sk

—_

ci=1

N
= _Zil (l_[]§|cm+rm|)
Yo
= l|ri+ 1= l(Vi-i- 1),
2 2
(A13)

again using (A12). From (Al1) and (A13) we can obtain the
expectation values for G; and Cj:

(Gj)gmn =2pc; — 1 =g,
(Ci)grm =2pc, — 1 =ri, (A14)
which is (9) [and (A6), above], as desired. |

Lemma 2. For |1) an eigenstate of the full Hamiltonian (3),
the expectation values of the C;; satisfy

N

Dy =1.

i=1

(A15)

Proof. As discussed in the main text, we may simulta-
neously diagonalize the G;. The resulting form for the full
Hamiltonian H will be block diagonal, with each block cor-
responding to a common eigenspace of the G;, since the C;
commute with the G; and therefore do not mix their common
eigenspaces. Thus, the eigenstates of the full Hamiltonian are
common eigenstates of G.

Given this, there exists an eigenbasis of H in which each
eigenvector |v) is also an eigenstate of any B € G, a product
of some subset of G. Therefore,

BCii|Y) = CiBly) = AgCit ),

where Ap = *£1 is the eigenvalue of |i) for the operator B.
Thus, we may rewrite the full Hamiltonian (3), acting on |¢/),
as

(Al6)

N
Hl|y) = (hz, - Zh;c,-l) ¥), (A17)
i=1
for coefficients 4 defined by
h(/) = Z hB)"Ba
BeZ
(A18)
W= hgirp fori>0,
BeG

where hg; is the coefficient of BC;; in H. Since |¥) is an
eigenstate of H, by (A17) it must also be an eigenstate of

N N
Z hCi =h Z hiCi,
i1 i1

the nonidentity terms in (A17), for h = ,/ vaz L (h))?2, so that
the h; = h}/h satisfy

(A19)

(A20)

Thus by Lemma 1, the operator Zi\’: . hiC;; has eigenvalues
+1. Since |y/) is an eigenstate of the operator given in (A19),
.. . N 7

it is an eigenstate of ) ;" h;Ci:

N
(Zﬁicﬂ)m = +y).
i=1

Therefore, if (-) denotes expectation value with respect to |),

(A21)

N N
(vl (Z ﬁic,-l) W) =D hi(Ci) = %1. (A22)
i=1 i=1
We know by 1 that
N
DG <1, (A23)
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TABLE II. HeH" Hamiltonian in Peruzzo et al., 2014 [2]. Terms are displayed in the format {Pauli operator: coefficient,...}, i.e., as a
Python dict mapping Pauli operators that appear in the Hamiltonian to their coefficients. Coefficients are given in Hartree.

Diagonal terms: {II: —1.46658, IZ: —0.39863, ZI: —0.39863, ZZ: 0.089735}

Additional terms in noncontextual sub-Hamiltonian: {XX: 0.099524}

Additional terms in full Hamiltonian: {IX: —0.087145, XI: —0.087145, XZ: 0.087145, ZX: 0.087145}

Minimal energy parameter setting for R, in noncontextual sub-Hamiltonian:

q =(ZZ) — +1, rn = (XX)r —0.1238712791070418,

r, = (IZ) — 0.9922982949760547

and by construction Zf]: \ h? = 1. Thus the only way (A22)
can be satisfied is if

(Cit) = sh; (A24)
foralli=1,2,...,N, for fixed s = £1. Therefore,
N N
Yy =) =1 (A25)
i=1 i=1

Since this holds for any |) in the eigenbasis of H, it holds
for any eigenstate of H. |
Theorem 2. The epistemic states (7) give sets of expectation
values that correspond to valid quantum states, and the set of
quantum states described by the epistemic states includes an
eigenbasis of any Hamiltonian whose Pauli terms are S.
Proof. The theorem consists of two claims. For the
first, note that for any epistemic state (g, 7), there exists a
simultaneous eigenstate of the operators G;, with eigenvalue
q; = %1 for each Gj, and of A(F) = Zf\;l r,C;1, with eigen-
value 1. For this state, the expectation value of each G; is
q;, and the expectation value of each Cj; is r;, as noted in
Sec. II B. Thus every epistemic state (g, ') corresponds to a
valid quantum state, proving the first claim.

For the second claim, consider first the universally com-
muting operators: Z, which are generated by G. Since these
may in principle be simultaneously diagonalized, the common
eigenstates of G (which are the common eigenstates for all
of Z) are a complete set of eigenstates for any Hamiltonian
whose terms are a linear combination of Z.

Now suppose we add to such a Hamiltonian a linear com-
bination of the terms in 7, each of which is a product of
operators in G with one of the C;;. As in the previous para-
graph, we may simultaneously diagonalize G: the resulting
form for the full Hamiltonian will be block diagonal, with
each block corresponding to a common eigenspace of the G;.
‘Within each block, the Hamiltonian will take the form of some
linear combination of the C;;, obtained by replacing the G; by
their eigenvalues for the current block, as in (A17) and (A18).
Since the C;; commute with G, we may diagonalize the linear
combination of the C;; within each block (i.e., the C;; do not
mix the common eigenspaces of G). Thus, it is still the case
that we may take the eigenstates of the full Hamiltonian to be
common eigenstates of G. This justifies the condition on g (the
first set of values in our epistemic states) given in (7), namely,
q; = %1, since these correspond to the expectation values of
the G j € G.

Regarding the condition on 7 (the second set of values in
our epistemic state) in (7), we draw on Lemma 2. In (7),

-

the condition on 7 is that it be a unit vector, so since its

components r; give the expectation values for the C;; as in
(9), Lemma 2 proves that the set of expectation values thus
described includes all eigenvalues of the Hamiltonian. |

Theorem 3. The noncontextual Hamiltonian problem is in
NP.

Proof. We demonstrated in Sec. III A that by varying over
all epistemic states, the expected energy given in (14) varies
over all eigenvalues of the Hamiltonian. Therefore, if the
Hamiltonian possesses an eigenvalue A < q, there is some
epistemic state (4, 7) such that (H)r = A. This epistemic
state serves as a proof of the YES instance, as long as given
the Hamiltonian as in (13) we can classically evaluate the
objective function in (14) in polynomial time.

To show this, we use the fact that by assumption |S| (the
number of terms in the Hamiltonian) is polynomial in n. Thus,
the total number of nonzero coefficients s and kg ; is poly(n);
these are given in the statement of the problem instance.
Which coefficients are nonzero also determines the terms in
the sum in (14) (and upper bounds their number). The only re-
maining components of (14) to be evaluated are the sets of in-
dices Jp: we have one such set for each term, defined to satisfy
B = ]_[Ge T G. The Jp are obtained directly from the stan-
dard method used to construct G (described in Appendix C),
the entirety of which requires poly(n) classical operations
given that |S| = poly(n). Thus, given a Hamiltonian of the
form (13) and a witness in the form of an epistemic state
(g, 7), we can use (14) to verify that (H) 7 < a, in poly(n)
classical operations. |

APPENDIX B: NONCONTEXTUAL SETS
OF PAULI OPERATORS

As noted in Sec. IC, the key concept in reasoning about
noncontextuality is inference among value assignments to
Pauli operators. This stems from the following property that
we demand of a noncontextual ontological model for a set of
Pauli observables: in any set of measurements we can perform
simultaneously, the values we obtain from the noncontextual
model must agree with those required by the full formalism of
quantum mechanics. In other words, if A and B are commuting
Pauli operators, then by measuring them simultaneously we
can predict with certainty the result of measuring their prod-
uct AB; therefore, in an assignment of values to {A, B, AB},
the value assigned to AB must be the product of the values
assigned to A and B.

This motivates the closure under inference S of a set S of
Pauli operators, as defined in Sec. I C: it is the set of Pauli op-
erators whose values are determined by a value assignment to
S [17]. The Jordan product %{~, -} provides another definition
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TABLE III. LiH Hamiltonian in Hempel ez al., 2018 [11]. Terms are displayed in the format {Pauli operator: coefficient,...}, i.e., as a
Python dict mapping Pauli operators that appear in the Hamiltonian to their coefficients. Coefficients are given in Hartree.

Diagonal terms: {III: —6.823060333, ZII: —0.1110098029, IZI: —0.5370907285, I1Z: —0.3127149146, ZZI: 0.383637914, ZIZ:

0.2581256772, 1Z7: 0.2523178271}

Additional terms in noncontextual sub-Hamiltonian: {XXI: 0.06593809513, YYI: —0.06593809513}

Additional terms in full Hamiltonian: {XIX: 0.0121680127, YIY: 0.0121680127, IXX: 0.01764480014, IYY: 0.01764480014}

Minimal energy parameter setting for R, in noncontextual sub-Hamiltonian:

q ={I1Z) — +1, q,=(ZZI)— —1,

1 = (XXI) > —0.000000129227,

ry = (ZII) = —0.999999999999

of S. Since a pair of Pauli operators A, B either commute or
anticommute,

ABif[A,B] =0,

0 otherwise. (B1)

1

Thus, S is the closure of S under the Jordan product.

A set of Pauli operators is noncontextual if ontic states for it
exist that are self-consistent. We check consistency of an ontic
state by making sure that in the ontic state it induces for the
closure under inference, none of the inferences are violated:
in other words, the value assigned each each product AB of a
commuting pair A, B is the product of the values assigned to
the pair.

Since by definition an ontic state (assignment of values)
for S extends to an ontic state for S, and the ontic state for S
includes the ontic state for S, any pair of noncontextual sets
of Pauli operators that share the same closure under inference
have equivalent ontic states that may derived from each other.
Thus, given an arbitrary noncontextual set of Pauli operators,
we may transform it into a noncontextual set with a standard
form that shares the same closure under inference.

The first move we can make in doing this is, given a com-
muting pair A, B, so replace B by AB. Since Pauli operators
are self-inverse, B is given by the product of A and AB, so
from a value assignment to A and AB we can infer the value
assignment to B, and thus recover the original set. The second
move we can make is to remove any C that is the product of
some commuting A, B that are also in the set. In obtaining the
independent set R that we used to define our ontic states in
Sec. IT A, we simply made a sequence of such moves.

The Jordan product is again useful in describing indepen-
dent sets according to Definition 1. If S commutes, then this
definition reduces to that in [[67], Sec. 10.5.1]. For the general
noncontextual case, we would like to relate Definition 1 to
the notion of independence that applies to sets of generators
of Abelian groups, where it means that removing any of the
generators reduces the size of the generated group. Since the
Jordan product is commutative, Definition 1 nearly reproduces
the usual notion of independence for an Abelian group taking
the group operation to be the Jordan product, but the Jordan
product is not associative. This distinction aside, S is the
closure of S under the Jordan product, and correspondingly, a
subset of S that is independent in our sense is also indepen-
dent as a generating set under the Jordan product.

Thus, given an arbitrary noncontextual set S, R as con-
structed in Sec. IT A is an independent generating set for S
under the Jordan product. The construction we gave in the
main text may therefore be summarized: a set of Pauli opera-
tors is noncontextual if and only if the independent generating
sets for its closure under inference are composed of a set of
universally commuting operators (G), and a set of pairwise
anticommuting operators {C;; |[i = 1,2, ..., N}.

APPENDIX C: OBTAINING AN INDEPENDENT SET OF
PAULI MEASUREMENTS FROM A COMMUTING SET

Given a set G’ of commuting Pauli operators on n qubits,
we wish to obtain an independent commuting set G such that
every operator in G’ is a product of operators in G. Since G
commutes, G is independent if and only if no operator in G is
a product of other operators in G (see the discussion following
Definition 1). Finding G given G’ is a standard procedure, and
a method for performing it is given by Nielsen and Chuang in
[[67], Sec. 10.5.7]. We summarize the method here in terms
of the language used in this work.

The method to calculate G from G’ is a multiplicative

variant of Gaussian elimination. Let G’ = {g|, &, ..., &}
and write each g} as
§=h1®@hp® - Q hy, (CD)

where each £;; is a single-qubit Pauli operator (including the
identity). We may then express G’ in an array as

hit hi hs o - hy,
hay hy hyz -+ hop,

G =M1 hn hysooo h, (C2)
hml hmZ hm3 e hmnv

where we have suppressed the tensor product symbols.

Let i denote the matrix whose entries are A;;, the single-
qubit Pauli operators appearing in (C2), augmented by a
vector § whose entries s; are the signs associated with each row
in A; (initially these are all +1). We first describe a procedure
that, given such a matrix /, transforms it to a matrix in which
at most two entries in the first column are nonidentity:

(1) hyy, hoy, ..., by are the entries in the first column of
h.If

hi=hy=-=hm=1, (C3)
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TABLE IV. LiH Hamiltonian in Kandala et al., 2017 [10]. Terms are displayed in the format {Pauli operator: coefficient,...}, i.e., as a
Python dict mapping Pauli operators that appear in the Hamiltonian to their coefficients. Coefficients are given in Hartree.

Diagonal terms: {ZIII: —0.096022, IZII: 0.364746, IIZI: 0.096022, I1IZ: —0.364746, ZZII: —0.206128, ZIZI: —0.145438, ZIIZ:
0.110811, I1ZZI: 0.110811, IZIZ: —0.095216, IZZ: —0.206128, ZZZI: —0.056040, ZZIZ: 0.063673, ZIZZ: 0.056040, 1ZZZ:

—0.063673, 2Z77: 0.080334}

Additional terms in noncontextual sub-Hamiltonian: {YYZI: 0.039155, XXZI: —0.039155, YYII: 0.02964, XXII: —0.02964,
YYIZ: —0.02428, XXIZ: 0.02428, YYZZ: 0.002895, XXZZ: —0.002895}

Additional terms in full Hamiltonian: {XZII: —0.012585, XIII: 0.012585, IIXZ: 0.012585, XZIZ: 0.007265, XIIZ: —0.007265,
XZZI: —0.011962, XIZI: 0.011962, XZZ7Z: —0.000247, XIZZ: 0.000247, IIZZ: 0.012585, IIXI: 0.012585, XZXZ: —0.002667,
XZXI: —0.002667, XIXZ: 0.002667, XIXI: 0.002667, IZXZ: 0.007265, IZXI: 0.007265, IXII: 0.002792, IIXX: —0.029640, II1IX:
0.002792, XIXX: —0.008195, XIIX: —0.001271, XXXI: —0.008195, XXXX: 0.028926, XXIX: 0.007499, IXXI: —0.001271,
IXXX: 0.007499, IXIX: 0.009327, ITY'Y: 0.029640, YYYY: 0.028926, ZXII: 0.002792, I1ZX: —0.002792, ZIZX: —0.016781, ZIIX:
0.016781, ZXZI: —0.016781, IXZI: —0.016781, ZXZX: —0.009327, ZXIX: 0.009327, IXZX: —0.009327, ZIXZ: —0.011962, ZIXI:
—0.011962, ZZXZ: 0.000247, ZZXI: 0.000247, ZIXX: 0.039155, ZZXX: —0.002895, ZZIX: —0.009769, IZXX: —0.024280, I1ZIX:
—0.008025, ZIYY: —0.039155, ZZYY: 0.002895, IZY'Y: 0.024280, XZXX: 0.008195, XZIX: 0.001271, XZYY: —0.008195, XIYY:
0.008195, XZZX: —0.001271, XIZX: 0.001271, IZZX: 0.008025, IXZZ: —0.009769, IXIZ: 0.008025, XXXZ: —0.008195, IXXZ:
—0.001271, YYXZ: 0.008195, YYXI: 0.008195, XXYY: —0.028926, IXYY: —0.007499, YYXX: —0.028926, YYIX: —0.007499,
XXZX: —0.007499, YYZX: 0.007499, ZZZX: 0.009769, ZXXZ: —0.001271, ZXXI: —0.001271, ZXIZ: 0.008025, ZXXX:

0.007499, ZXYY: —0.007499, ZXZZ: —0.009769}

Minimal energy parameter setting for R, in noncontextual sub-Hamiltonian:

g1 = Z) > +1, g = (ZZII) > +1, qs = IZI) > —1,

r = (YYZI) —» —0.2192200361485217,

r, = (IZII) — —0.9756754459096738

then we are already done.

(2) If for some k, hy; = X, then for each i # k, if h;; = X,
multiply row i by row k. This corresponds to multiplying g,
by g, or the following mapping on the entries in A:

hiy v+ hihy =X? =1,

]’l,’j = hijhkj7 V] > 1. (C4)

Thus when we have completed this step for each i # k, there
will be no Xs in the first column except in row k.

(3) If for some [, hjy = Z, then for each i £ 1, if h;; = Z,
multiply row i by row [. As in step 2, this corresponds to
multiplying g; by g;, so when we have completed this step
for each i # [, there will be no Zs in the first column except
in row [.

(4) If there is both an X and a Z in the first column (in
rows k and [, respectively), then for each i # k, [, if h;) =7,
multiply row i by row k and row /. This corresponds to mul-
tiplying g; by g, g}, or the following mapping on the entries in
h:

hl‘] [ hi]hklh“ =YXZ = —i],
I’l,‘j (g I’l[jhkjh[j, V] > 1. (CS)

Thus when we have completed this step for each i # [, there
will be no Y's in the first column at all (if both X and Z are
present in the first column).

(5) If X and Z are not both present in the first column,
and if for some m, h,,; =Y, then for each i #m, if h;; =7,
multiply row i by row m. As in step 2, this corresponds to
multiplying g; by g,,, so when we have completed this step
for each i # m, there will be no Y's in the first column except
in row m.

Note that since we know that the full Pauli operators cor-
responding to the rows commute, the total phase obtained in

multiplying any row by any other row must be +1. We record
this by multiplying s; by this sign, when the multiplication
takes place in the ith row.

Call this procedure REDUCEFIRSTCOL (/). When we have
completed the mapping, the transformed matrix / will contain
at most two rows in which the first entry is nonidentity (and
the first entries in those two rows will be different).

Our full procedure to obtain G is then as follows:

(1) Let & be the full matrix (C2). &’ will be a submatrix of
h that is updated at each iteration; let /" initially be equal to A.

(2) Perform the mapping

W +— REDUCEFIRSTCOL(/). (C6)

(3) For each of the (up to) two rows in 4’ in which the first
entry is nonidentity, put the corresponding Pauli operators in
G. Then let the new 4’ be the submatrix obtained from the
current /' by removing these rows and the first column.

(4) If any nonidentity entries remain in /', return to step 2.
If not, then G is complete.

When this procedure is complete, at most two rows in &
will have a nonidentity first entry, at most two others will
have a nonidentity second entry, at most two others will have
a nonidentity third entry, and so forth. In other words, under
some reordering of the rows, & will have the form

Poo My e B B,
[Py oy Moy Iy g Ty ]
4 Py hyo hy, h/35 e kg,
[/ Py 23 hﬁm hﬁts hitn’]
I I Ps hy hiy - hHL, (C7)
[/ I P hy hys - kg,
7 I I I I - 1,
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where the bracketed rows may or may not appear, and in cases
where they do appear P, # Py, Py # P3, Ps # Ps, and so forth.
Note that in general there may be a collection of rows at the
bottom of the matrix that have been reduced entirely to the
identity. G will be given by the nonidentity rows in (C7).

To see that G is independent, consider some particular non-
identity row i (representing an operator g; € G). Row i cannot
be written as a product of rows below it, since if 4;; is row i’s
first nonidentity entry, hy; = I foralli’ =i+2,i4+3,...,m.
The entry hy1); (immediately below h;;) might not be the
identity, but it cannot be equal to £;;, so no product of the
entries below /;; can be equal to /;;. Thus g; cannot be written
as the product of any subset of the g; for j > i.

But this means that g; cannot be written as a product of
any subset of the other g; for j #i, as we can prove by
contradiction: suppose g; could be written as a product

8i = l_[gj,

ieJ

(C8)

where J is some set of indices not including i. If i < j for
all j € J, then this violates the condition in the previous
paragraph directly. Otherwise, choose the least j € J: call it
J'. Then since the Pauli operators are self-inverse, and all of
the g, commute, we can rearrange (C8) as

8j = &i l_[ 8j»

JjeI\J'}

(C9)

which violates the condition in the previous paragraph since
Jj <, jforall j € J\{j'}. Thus, all of the g; are indepen-
dent.

We wish to be able to recover the original set of operators
G’ from the new independent set G. To accomplish this, we
simply need to keep track of the row multiplications carried
out in each step above. Since the Pauli operators are self-
inverse, we can reconstruct each row i in G’ as the product
of the corresponding row in G and the rows it is multiplied
by in the procedure (including in the multiplication the corre-
sponding signs in ¥). Thus we can write each operator in G’ as
a product of operators in G.

APPENDIX D: MORE GENERAL
QUASIQUANTIZED MODELS

In Sec. [T A we showed how to construct the ontic states
(phase space points) for a noncontextual set of observables.
The key step is obtaining the set R = {C;; |i=1,2,...,N} U
G, where {C;;|i=1,2,...,N} is a completely anticom-
muting set, G ={G;|i=1,2,...,|G|} is an independent
commuting set whose elements also commute with each
Ci1, and every operator in & may be written as a product
of commuting operators in R. Specifically, each universally
commuting operator in S (these compose the set Z) may be
written as a product of operators in G, and every operator
in one of the cliques C; C 7 may be written as a product of
operators in G with the single operator ;.

The joint outcome assignments for R label the phase space
points (each of which defines a joint outcome assignment for
all of S), so they also label the joint probabilities associated
with each phase space point. As in Sec. II B, we write these

joint probabilities as

P(Cl’-‘~7CNaglag2’-'-)5 (Dl)

where each c;, g; is =1 and denotes the outcome assigned to
C;1 or Gy, respectively.

In Sec. II B we presented a quasiquantized model that gives
a set of joint probabilities P (by way of a set of expectation
values) that is sufficiently general to reproduce the expecta-
tion values associated with any eigenstate of the Hamiltonian.
However, the set of ontic states in principle admits broader
sets of probability distributions, which we discuss in this
Appendix.

The probabilities for outcome +1 for each operator in
S should be obtained as marginals of the joint probability
distribution (D1). Consider an operator in S that is written
as

Bor C;B, (D2)

for B a product of operators in G (which, it is understood,
may be the identity—the product of no operators in G). The
corresponding marginal is the sum of the joint probabilities
for outcomes such that the product outcome from (D2) is
+1. In other words, if po denotes the probability of obtaining
outcome +1 upon measurement of the operator O, then

ps= Y. Plr....ongug,.), (D3
ci, 8j = £1,
st.B—1
pes= Y. Plr....cn.g8,...). (D)
¢, 8j = £1,
s.t. CiiB — 1

Exactly half of the joint probabilities will appear in each sum
(D3) and (D4). This is apparent when we note that for any
point (cy,...,cN, &1, &2, --.) satisfying, say, the condition
B =1 for B a product of some subset of the g;, flipping the
sign of any of the coordinates g; appearing in the product will
cause it to violate the condition, and vice versa.

Alternatively, we may visualize the sets of phase space
points appearing in the sums (D3) and (D4) by first reassign-
ing the outcome labels as

G—c=31-c) g—g=31-g), (D3
i.e., the outcome assignments are mapped as
1-0, —-1-1, (D6)

and products of outcomes become binary sums of outcomes.
In other words, we have mapped our outcome space for each
observable to Z, (also denoted IF,, the field of two elements),
as is common practice in the literature (see [70], for example).
The marginalizations (D3) and (D4) therefore become sums
over all the joint probabilities for phase space points satisfy-
ingconditions of the form

A-¢'+B-g =1, (D7)

where ¢' = (¢}, ...,cy) and 3' = (g}, &5, ... ), and A, B are
vectors in (Z»)V, (Z,)!°!, respectively. We can now see that
(D7) is the equation for a hyperplane in the phase space
(Z)¥*1Cl, so we may think of the marginal probabilities for
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TABLE V. BeH, Hamiltonian in Kandala ef al., 2017 [10]. Terms are displayed in the format {Pauli operator: coefficient,...}, i.e., as a
Python dict mapping Pauli operators that appear in the Hamiltonian to their coefficients. Coefficients are given in Hartree.

Diagonal terms: {ZIIIII: —0.143021, ZZIIII: 0.104962, IZZI1I: 0.038195, IIZIII: —0.325651, IIIZII: —0.143021, IIIZZI: 0.104962,
MMZZ: 0.038195, IIIIIZ: —0.325651, IZIIII: 0.172191, ZZZI11: 0.174763, ZIZIII: 0.136055, ZIIZII: 0.116134, ZIIZZI: 0.094064,

ZIIZZ: 0.099152, ZIIIZ: 0.123367, ZZIZ11: 0.094064, ZZI1ZZ1: 0.098003, ZZI1ZZ: 0.102525, ZZI11Z: 0.097795, IZZZI11: 0.099152,
1Z7771: 0.102525, 1ZZ177: 0.112045, IZZ11Z: 0.105708, HZZII: 0.123367, IZZZ1: 0.097795, IIZIZZ: 0.105708, IIZIIZ: 0.133557,

MZI: 0.172191, IZZZ: 0.174763, INIZIZ: 0.136055}

Additional terms in noncontextual sub-Hamiltonian: {IIZI1ZX: 0.010064, IIZIIX: —0.010064, ZIIIIX: —0.009922, ZINIZX:
0.009922, 1ZZIIX: 0.007952, IZZ1ZX: —0.007952, ZZ1IIX: 0.007016, ZZIIZX: —0.007016, IIIZZX: —0.002246, IIIZIX: 0.002246}

Additional terms in full Hamiltonian: {XZIIII: 0.059110, XIIIII: —0.059110, IZXIII: 0.161019, IIXIII: —0.161019, IIIXZI:
0.059110, HIXII: —0.059110, IIIZX: 0.161019, IIIIIX: —0.161019, XIXIII: —0.038098, XZXIII: —0.003300, XZIXZI: 0.013745,
XZIXII: —0.013745, XIIXZI: —0.013745, XIIXII: 0.013745, XZI1ZX: 0.011986, XZIIIX: —0.011986, XIIIZX: —0.011986, XIIIIX:
0.011986, IZXXZI: 0.011986, IZXXII: —0.011986, IIXXZI: —0.011986, IIXXII: 0.011986, IZX1ZX: 0.013836, IZXIIX:
—0.013836, IXIZX: —0.013836, IIXIIX: 0.013836, IIIXIX: —0.038098, IIIXZX: —0.003300, ZZXIII: —0.002246, ZIXIII:
0.002246, ZIIXZI: 0.014815, ZIIXII: —0.014815, ZZIXZI: —0.002038, ZZIXII: 0.002038, XIZIII: —0.006154, XZZIII: 0.006154,
XZIZII: 0.014815, XIIZII: —0.014815, XZIZZI1: —0.002038, XI1IZZI: 0.002038, XZI1ZZ: 0.001124, XIIIZZ: —0.001124, XZIIIZ:
0.017678, XIIIIZ: —0.017678, YIYIIL: —0.041398, YYIXXZ: 0.011583, YYIIXI: —0.011094, IYYXXZ: 0.010336, IYYIXI:
—0.005725, IIIXIZ: —0.006154, XXZXXZ: 0.011583, XXZIXI: —0.011094, IXIXXZ: —0.011094, IXIIXI: 0.026631, I1ZXII:
—0.017678, XXZYYI: 0.011583, XXZIYY: 0.010336, IXIYYI: —0.011094, IXIIYY: —0.005725, IITYTY: —0.041398, YYIYYTI:
0.011583, YYIIYY: 0.010336, IYYYYI: 0.010336, IYYIYY: 0.010600, XXZXXX: 0.024909, IXIXXX: —0.031035, XXZYXY:
0.024909, IXIYXY: —0.031035, YYIXXX: 0.024909, IYYXXX: 0.021494, YYIYXY: 0.024909, IYYYXY: 0.021494, XXZZXZ.
0.011094, IX1ZXZ: —0.026631, YYIZXZ: 0.011094, IYYZXZ: 0.005725, XXZZXX: 0.010336, IXIZXX: —0.005725, YYIZXX:
0.010336, IYYZXX: 0.010600, XXXXXZ: 0.024909, XXXIXI: —0.031035, IIXIIZ: —0.010064, XXXYYI: 0.024909, XXXIYY:
0.021494, YXYXXZ: 0.024909, YXYIXI: —0.031035, YXYYYI: 0.024909, YXYIYY: 0.021494, XXXXXX: 0.063207, XXXYXY:
0.063207, YXYXXX: 0.063207, YXYYXY: 0.063207, XXXZXZ: 0.031035, IIXZII: —0.009922, YXYZXZ: 0.031035, XXXZXX:
0.021494, YXYZXX: 0.021494, ZXZXXZ: 0.011094, ZXZIXI: —0.026631, ZXZYYI: 0.011094, ZXZIYY: 0.005725, ZXZXXX:
0.031035, ZXZYXY: 0.031035, ZXZZXZ: 0.026631, ZXZZXX: 0.005725, ZXXXXZ: 0.010336, ZXXIXI: —0.005725, ZXXYYI:
0.010336, ZXXIYY: 0.010600, ZXXXXX: 0.021494, ZXXYXY: 0.021494, ZXXZXZ: 0.005725, ZXXZXX: 0.010600, IZZXZI:
0.001124, 1ZZX1I: —0.001124, IIZXZI: 0.017678, IZXZII: 0.009922, 1ZXZZI: —0.007016, IIXZZI: 0.007016, 1ZXIZZ: —0.007952,

IXIZZ: 0.007952, IZX11Z: 0.010064, IIIXZZ: 0.006154}

Minimal energy parameter setting for R, in noncontextual sub-Hamiltonian:

g1 = (ZZZIII) > —1, g, = (IIIZII) > +1,

qs = UIIZI) — —1, g5 = (ZIIIII) — +1,

ry = (III1ZX) — —0.7522001251805058,

g = (IZIII) +— —1,

r, = (I1111Z) — 0.6589347248995392

outcomes of individual measurements as sums of the joint
probabilities over such hyperplanes [70].

We wish to demonstrate that for any state there exists a
joint probability distribution P that reproduces as marginals
the correct probabilities for the outcomes of any observable
in §. Since each ontic state carries with it an outcome assign-
ment to each observable in S, it is enough to show that for any
state, P can reproduce as marginals the correct probabilities
for the outcomes of any observable in R. The largest subsets
of R that may be measured simultaneously are {C;;} U G for
any i = 1,2,..., N: let us refer to the probabilities for the
joint outcomes for these as

PUCHO (o1 oy ), (D8)

where the ¢;, g1, g2, - - - = %1 label the joint outcomes. Each
C;; commutes with all operators in G, so for a given state
we can directly determine (via Born’s rule, using the appro-
priate projectors, or by actual measurements if the state is
physical) the probabilities (D8) (separately for each 7). P will
thus correctly reproduce as marginals the probabilities for the
observables in R if and only if it correctly reproduces as

marginals the joint outcome probabilities (DS8), since these
correspond to the largest simultaneously measurable subsets
of R.

Thus, we wish P to satisfy

PUCIYO (¢, 01 85, ..0)

= Y Pe....Ci....cNn.81.82....) (DY)
Cjz:i:l,
Vj#£i

foreachi=1,2,..., N. Since the C;; pairwise anticommute,
the probabilities PUC11Y0) and PUCHIYO) for any i # j cannot
be correlated. More specifically, the product C;; B;C;1B; of the
operators C;; B; and C;; B (fori # j and B;, B; any products of
operators in G) is not jointly measurable with C;; B; and C; B;,
since none of the three commute with each other, and in gen-
eral the product need not even be in S. In any case, it has no
bearing on the joint probabilities for C;; B; and C;;Bj; all that
is required of the joint probability distribution P is that it cor-
rectly reproduce the expressions (D9), which the assignment
(D10) does. Therefore, we may take the probability for the
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joint outcome P(cy, ..., Cn, &1, &2, - - . ) to be proportional to
the product of the probabilities PUC1IVO) (¢; g/, g5, ...) over
all i=1,2,...,N. Including the appropriate normalization
gives an expression for the joint probabilities:

r PUCIY9 (¢; g1, 85, ...)

PO (g, 8,...)

P(clv"'chvglagZ"")
PO (g1, 82,...)

)
i=1

(D10)

where P(©)(g;, g5, ...) denotes the probability of obtaining
the joint outcome (g, g2, . . . ) for the operators G (which we
can also obtain via Born’s rule).

As we noted above, given any quantum state we can di-
rectly evaluate each of the probabilities on the right-hand
side, since each is the probability for a joint outcome of one
of the commuting sets of observables {C;;} U G (or just G).
Therefore, for any quantum state, (D10) gives a joint prob-
ability distribution P(cy,...,cn, &1, &2, -..) for the phase
space points (cy,...,cn, 81,82, --.), wWhich reproduces as
marginals all probabilities associated with the state, for ob-
servables in S.

This discussion does not provide specific methods for con-
structing quasiquantized models alternative to that presented
in the main text. What we have shown, however, is that epis-
temic states over the ontic states described in Sec. Il A may in
principle describe the measurable properties of S for any state.
Thus, the door is open for broader sets of epistemic states than
those allowed in our model as described in Sec. II B. For our
purposes, however, the set of epistemic states allowed in our
model is sufficient.

APPENDIX E: NONCONTEXTUAL SUB-HAMILTONIANS

For the HeH" Hamiltonian in [2], we performed a brute-
force search over all noncontextual sub-Hamiltonians to
find the one that gave the best approximation to the full
Hamiltonian’s ground state energy.

For the other three Hamiltonians in Table I, as described in
Sec. IV we used a greedy heuristic to find large noncontextual
sub-Hamiltonians. This “one-by-one” heuristic greedily se-
lected terms from the full Hamiltonian, in decreasing order of
weight, while the set remained noncontextual. In Tables [I-V
we list the full Hamiltonians together with the best noncon-
textual sub-Hamiltonians we found, as well as the diagonal
terms only. We also tried greedily adding larger subsets up to
subsets of size six (four, in the BeH, Hamiltonian of [10]), as
well as checking for noncontextual subsets with certain fixed
structures (by brute-force search over generating sets R where
the anticommuting generators C;; act on fixed subsets of the
qubits). We found that none of the results outperformed the
one-by-one greedy approach, and those that performed best
simply reproduced the same noncontextual sub-Hamiltonian
as the one-by-one greedy approach.

We obtained the ground state energies for the full Hamil-
tonians and diagonal sub-Hamiltonians by evaluating them
directly using the OpenFermion software package [71]. For
the noncontextual sub-Hamiltonians, we evaluated the ground
state energies using our quasiquantized model as described
in Sec. Il A, and optimizing by a brute-force search over the
parameter space E. We then checked the resulting ground state
energies against those computed by OpenFermion, and found
agreement to machine precision in all cases.
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