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Heterogeneous microstructure of Zr4sCuseAlg nanoglasses was studied by molecular dynamics simulation. Glass-
glass interfaces in nanoglasses could be told apart by formulating a contrast in the number of the quasi-nearest
atom. Compared to other short-range order analysis, the quasi-nearest atom can reflect the deviated densely
packing atomic clusters at the glass-glass interfaces directly. In terms of geometric and chemical short-range

order, the low local fivefold symmetry and chemical segregation of interfaces improve the structural hetero-
geneity of nanoglasses. The local deformation preferentially takes place at the interfaces with a larger number of
quasi-nearest atoms, achieving local plastic deformation tuned visually at the glass-glass interfaces. The corre-
lation between structural and deformation properties is quantitatively assessed by tuning glass-glass interfaces. It
is envisioned that the interfaces, as weak regions, can be a critical defect to tune the heterogeneous micro-

structure of nanoglasses.

1. Introduction

Brittle fracturing severely limits the application of metallic glasses
(MGs) as structural materials [1-4]. The introduction of heterogeneous
interfaces into MGs can avoid the formation of penetrating shear bands
and improve the deformability of MGs [5-9]. Nanoglasses, as a new
class of noncrystalline materials, possess amorphous grains surrounded
by glass-glass interfaces that are in analogy to the grain boundary in
polycrystalline materials [10,11]. The heterogeneous microstructure
enables nanoglasses to possess excellent mechanical and functional
properties that are difficult to achieve in monolithic MGs [12-14].
Notably, the glass-glass interface containing excess free volume offers a
kind of structural defects that could be tailed thermodynamically and
chemically to further realize the regulation of mechanical properties of
amorphous materials [15,16]. For example, Fang et al. found that an-
nealing temperature can adjust the width of the glass-glass interfaces in
ScysFeos nanoglasses [17].

Recently, experiments mainly focus on the characterization of the
existence and width of the interfaces [17-19]. Through small-angle x-
ray scattering and positron annihilation spectroscopy, interfacial re-
gions of Sc,sFeys nanoglasses are characterized by widths of 0.8-1.2 nm
[17]. Chen et al. found that the width of interfaces is 2-3 nm in mag-
netron sputter-deposited Au-based nanoglasses by transmission electron
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microscopy (TEM) [20]. Thus, direct structural characterization of
glass-glass interfaces is desirable but challenging. This is fundamentally
due to the limitation of applying diffraction technique and theory,
which are largely developed for crystalline materials, to the glass
structure, not to mention, a few nanometers glassy interface. Advanced
characterization techniques, such as state-of-the-art TEM or atom probe
tomography, can provide atomic-scale resolution of structure and
chemistry, and yet to capture the evolution of glass-glass interface re-
quires further explorations [21-23].

In recent years, a few models have been used to study the nanoscale
interfaces [24-28]. By molecular dynamics (MD) simulations, glass-
glass interfaces with an excess free volume in a Cug4Zrse nanoglass play
a role similar to shear bands in pre-deformed MGs [25]. In a Cug4Zrse
nanoglass model, the width of glass-glass interfaces is approximately 2
nm, and the fraction of icosahedra in the interface is roughly 30% of
that in the Cug4Zrsg MG counterpart [29]. Under uniaxial tensile
loading of Cug4Zrse nanoglass models, concentrated shear deformation
is weakened by the formation of multiple nucleation positions of in-
cipient shear bands [30,31].

MD simulations were performed in this work to characterize the
microstructure of glass-glass interfaces in a model Zr;sCuyeAlg na-
noglass. Particularly, the glass-glass interfaces were identified using the
quasi-nearest atom (QNA), which is keen to atomic packing density
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Table 1

The number and average diameter of grains in different nanoglasses.
Label NG1 NG2 NG3
Number of grains 125 343 512

Average grain diameter (nm) 5.0 +0.1 3.5+0.2 3.0 £0.2

[32-34]. The advantage of QNA on interface analysis of nanoglasses is
that it can reflect atomic clusters deviating from dense-packing directly
so that it is capable of distinguishing the local atomic environment by
forming a contrast in the amorphous grains and glass-glass interfaces.
Furthermore, the microstructure of the glass-glass interfaces including
topological and chemical short-range order was characterized. A scaling
relationship among peak stress, ductility and grain size was quantita-
tively identified. The mechanism of plastic events preferring to be in-
itiated at interfaces was clarified.

2. Methods

The MD simulation of Zr4sCuyeAlg nanoglasses used the embedded
atom method (EAM) potential via LAMMPS [35,36]. Firstly, a
Zr46CuygAlg monolithic MG (28 nm X 5.6 nm X 56 nm) containing
500,000 atoms was obtained by quenching with a cooling rate of
1.0 x 10" K/s and periodic boundary conditions (PBCs) in three di-
rections. The Zr,sCuysAlg nanoglass was generated in the ZrysCugsAlg
monolithic MG using the Voronoi algorithm with random grain or-
ientations through the VORONORIZE tool [37], which is a part of
AtomEye utilities. And the initial Zr,¢Cu46Alg nanoglass experienced an
energy minimization with a final relative energy convergence of 102,
Then the interface porosity is minimized by applying a hydrostatic
pressure of 2 GPa at 50K for 0.4 ns. The sintered nanoglass was fol-
lowed by the relaxation at zero pressure and 50 K for 0.4 ns. Three
different nanoglasses by tuning the number of grains, and thus the grain
size are listed in Table 1. These nanoglasses were subjected to uniaxial
compression along the Z-direction at 4 x 10” s~* and 50 K. The Y- and
Z-directions were set as PBCs, and X-direction was set as free surface.
The zero pressure was applied in the Y-direction.

Based on Voronoi tessellation, each plane of Voronoi polyhedra is
drawn to bisect the line connecting the center atom and its neighboring
atoms [38]. The Voronoi polyhedra can be expressed by index <ns, ng,
ns, ng>, in which n; denotes the number of i-edged faces. By adding
Voronoi index, the coordination number of the central atom can be
obtained. To characterize the microstructure of nanoglasses, the pair of
QNAs is adopted and three conditions need to be met at the same time
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as follows [32]: (1) the pair of atoms are not nearest neighbors of each
other; (2) they share a common nearest-neighbor atom; (3) their Vor-
onoi faces of the Voronoi polyhedron centered by the common nearest-
neighbor atom share an edge.

3. Results
3.1. Structural characterization

The presence of glass-glass interfaces make microstructure of na-
noglasses significantly different from that of conventional MGs.
However, since the microstructure of both MGs and nanoglasses are
amorphous, it is difficult to characterize their differences. For example,
the common number analysis (CNA) doesn't work for nanoglasses be-
cause the ‘grain’ and ‘interface’ of nanoglasses are both amorphous.
Recently, a parameter called QNA is used to characterize amorphous
microstructures based Voronoi polyhedra and is keen to atomic packing
density [32-34]. The larger number of QNAs (Ng) represents for the
looser atomic packing. Therefore, by using the Ny, the global structure
of nanoglasses can be revealed clearly through formulating a contrast in
the amorphous grains and glass-glass interfaces, which is similar to
etching grain boundaries in polycrystalline materials. Fig. 1 shows the
MG, NG I, NG II and NG III that are colored according to the Ng. The
light blue atoms with large N, represent glass-glass interfaces. Com-
paring the MG in Fig. 1a, the glass-glass interfaces of the nanoglasses in
Fig. 1(b-d) are highlighted. There are some big regions in Fig. 1(b-d)
that are not identified by QNA. This is because that those big grains are
with similar atomic packing density, like grains in the crystal bounded
by small-angle boundary. As shown in Fig. 1(b—d), the less these uni-
dentified regions are as the number of grains increases. In other words,
the probability of grains with "similar orientation" decreases as the
number of grains increases, resulting in a reduction in unidentified
regions.

In the following, we will analyze quantitatively the overall dis-
tribution N of the nanoglasses with different gain sizes. The distribu-
tion of the N in the MG, NG1, NG2 and NG3 is shown in Fig. 2. In the
MGs, the atoms with N, = 0, 1 and 2 dominate, while in the na-
noglasses the atoms with No = 1, 2, 3, 4, 5, and 6 all become sig-
nificant. Overall, the fractions of atoms with N, < 2 in nanoglasses
gradually decrease with the reduction of grain sizes, whereas atoms
with N > 2 gain popularity. It is worth noting that the population of
Nqg = 4is greater than that of the others (except for N, = 0) accounting
for the main proportion in the nanoglasses. As shown in the insert, the

Fig. 1. The (a) MG, (b) NG I, (c) NG II and (d) NG III were colored according to the Ng. The light blue atoms with large N, represent glass-glass interfaces. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) .
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Fig. 3. The variation of the average number of QNAs (Ng) every 3 A along the
green dotted line that crosses “grain” and “interface”.

average value of the Ng for the MG, NG1, NG2 and NG3 gradually in-
crease with the reduction of grain sizes. The larger the N, around the
central atom, the greater the ability of the central atom to move [34].
The above illustrates that the QNA can recognize the looser atomic
packing environment induced by forming more glass-glass interfaces.
To show the grain regions and interfaces more clearly, Fig. 3 shows
the variation of average Nq every 3 A along the green dotted line that
goes through “grain” and “interface”. Inside the grain, the average N, is
about 1, which is consistent with the Ny, of MGs [32,34], while the
interface's N, is around 6. Therefore, different grains in the nanoglasses
can be distinguished by N, to highlight the different amorphous grains
and glass-glass interfaces. Next, atoms with N, = 6 are identified to be
the interface atoms. To characterize the topological frustration of short-

range order, Voronoi polyhedra denoted by <ns, ny ns, ng> were
employed. During the glass transition, the proportion of pentagonal
faces ns with five-fold symmetry increases sharply, compared to tri-
angle, tetragon and hexagon faces with translational symmetry [39].
During deformation, the deformation units are formed in regions with
lower pentagonal structures n; because of their higher packing density
[40]. Therefore, it is essential to investigate the distribution of penta-
gons ns of polyhedra in grains and interfaces.

The fraction of pentagons ns in polyhedra with different coordina-
tion numbers (CN) is shown in Fig. 4a. Grid-lines represent interfaces,
while solid areas represent grains. In the polyhedra with different CN,
the pentagonal fraction in the grains is greater than that in the inter-
faces, except Voronoi polyhedra with ns = 6. The Voronoi polyhedra
with ns; = 6 possess low five-fold symmetry, while the Voronoi poly-
hedra with ns = 8, 10 and 12 possess high five-fold symmetry.
Therefore, the pentagonal structures in interfaces are greatly reduced.
The above quantitatively characterizes the decrease of local fivefold
symmetry of interfaces, which proves the effectiveness of QNA to de-
termine the interfaces. In addition to the topological frustration of
short-range order, the chemical short-range order is also characterized.
The percent of partial coordination number (PCN) for central elements
Zr, Cu and Al in the grains and interfaces is shown in Fig. 4b. In the
grain, the proportion of Zr, Cu and Al atoms around each central ele-
ment is about 46%, 46% and 8%, which is consistent with the pro-
portion of the Zr4sCuysAlg monolithic MG; While in the interfaces, the
proportion of Zr atoms around each central element is greatly de-
creased, and the proportion of Al atoms around each central element
increases significantly. The average chemical composition of interfaces
is Zr3Cuy;Alse, suggesting pronounced chemical segregation at the in-
terfaces. It is worth noting that the preparation of nanoglasses in this
work is at 50 K, and increasing the preparation or annealing tempera-
tures can enhance mobility of atoms and further change the interfacial
chemistry, which will be explored in the future. It is envisioned that the
interfaces, as weak regions, can be a critical defect to tune the het-
erogeneous microstructure of nanoglasses.
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Fig. 4. (a) Fraction of pentagons n; in polyhedra with different coordination numbers, and (b) fraction of partial coordination number for central elements Zr, Cu and

Al at “grain” and “interface” of the nanoglasses.

3.2. Compression tests

The simulation results above clearly show the glass-glass interfaces
and their short-range order. In the following, the relationship between
interfaces and QNA during deformation is discussed. The compressive
stress-strain curves of different nanoglasses are shown in Fig. 5. The
stress-strain curves of the nanoglasses are seriously different from that
of the monolithic MG. The sudden drop after the peak stress 7y in the
monolithic MG corresponds to form penetrating shear bands [41],
while that doesn't occur in the nanoglasses. After the sudden drop, the
stress reaches the stable flow stress z,. The value of (Az=17,~7,) corre-
sponds to the structural softening and strain localization [42-44]. The
significant reduction of the stress drop Az for nanoglasses corresponds
to the enhanced plasticity. It is worth noting that the peak stress z, and
the flow stress z; can be changed by changing grain size and glass-glass

interfaces. The maximum stress of the NG1 is even greater than that of
the MG. The insert shows the scaling relationship among peak stress,
grain size and initial interface fraction. The interfacial fraction is ob-
tained by roughly counting initial atoms with Ng = 6 that can represent
the interface. It is found that peak stress decreases with increasing in-
terface fraction, and interface fraction increases with decreasing grain
size. For MGs, the interfacial fraction is ~ 0, and the fit linear curve
cannot retrieve the yield stress. This is because that during deformation,
the penetrating shear bands play a leading role in MGs, while the
multiple glass-glass interfaces play that role in nanoglasses.

In addition to clarifying the relationship between strength and in-
terface fraction, the relationship between plasticity and interface frac-
tion has also been investigated. The von Mises strain 7M** > 0.3 is
utilized to quantify the ability of atoms to participate in deformation
[45-47]. Fig. 6 illustrates the proportion of atoms with 7 > 0.3 as a
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function of compressive strain. At the same strain, the proportion in-
creases with decreasing grain size (increasing interfaces). For the
monolithic MG, the proportion proportion radically increases after 4%
strain; while for the nanogalsses, the proportion keeps increasing with
strain, without monolithic-MG-like platform before 4% strain. This
suggests that initial glass-glass interfaces provide nucleation positions
for deformation. In the insert of Fig. 6, two penetrating shear bands
form at the strain of 10% in the MG, while in the nanoglasses, tiny

Strain (%)

>0.3 for the nanoglasses as a function of strain. The insert shows the snapshots of models at the strain of 10%.

deformation units are distributed throughout the samples. Adibi found
that the microstructures for the shear bands and the glass-glass inter-
faces of nanoglasses are nearly identical [31], implying that glass-glass
interfaces play the role of pre-introduced shear bands. These interfaces
interact with each other, which limits the rapid propagation of a single
shear band and promotes the homogeneous deformation [48]. The
smaller the grain, the more the glass-glass interface, the more homo-
geneous the deformation. The proportion of atoms involved in plasticity
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for the NG3 with maximum proportion of interfaces is largest, in-
dicating most homogeneous deformation in these nanoglasses.

4. Discussion

Next, the parameter N will be regarded as a guide to explain why
nanoglasses with more interfaces show enhanced plasticity. Fig. 7
shows the distribution of the initial N in the MG, the NG1, the NG2 and
the NG3 before loading. In the nanoglasses, the atoms with N, = 0
gradually decrease with decreasing grain sizes (increasing the glass-
glass interfaces). For example, the fraction of atoms with N = 0 is the
smallest for the NG3. Comparing the large fraction of the atoms with N,
=1 or 2 in the MG, the atoms with N, =1 or 2 in the nanoglasses are
greatly reduced. In the MG, there is almost no atom with N, = 6, while
in nanoglasses, the fraction of atoms with N, = 6 reaches 27%~35%.
And the smaller the grain size, the larger the fraction of atoms with N,
= 6. In the NG3, the fraction of atoms with N, = 6 is largest. By
comparing the MG, the NG1, the NG2 and the NG3 in Fig. 6, at the same
strain, the proportion of atoms with #M*¢ > 0.3 increases with de-
creasing grain size (increasing interfaces), which is the same as the
change trend of N = 6 in Fig. 7. Therefore, atoms with N, = 6 can
represent the structural signal of the glass-glass interfaces. For the MG,
plastic events start with small N, but change quite dramatically due to
strain localization. For the nanoglass, deformation units prefer to be
initiated in interfaces with large N but the change could be small due
to distributed flow. This is proven by the proportions of atoms with
M5 >0.3 as a function of compressive strain in Fig. 6. For the
monolithic MG, the proportion is small and basically remains the same
before 4 % strain, while the proportion rapidly increases after 4%
strain. For the nanogalsses, the proportion of atoms with ¢ > 0.3
keeps increasing with strain, without monolithic-MG-like platform be-
fore 4% strain. Therefore, plastic events corroborate well with initial
interfaces represented by Np = 6, and local plastic deformation can be
tuned visually before loading.

[N s I N, SE 0N, N 2 Y,

NGI

NG2

Fig. 7. The distribution of the initial N, for atoms in the MG, the NG1, the NG2 and the NG3 before loading.

NG3

5. Conclusions

The heterogeneous microstructure of a Zr,sCuyeAlg nanoglass was
characterized by MD simulations. The QNA is keen to the atomic
packing density and can distinguish the amorphous grains and glass-
glass interfaces. The distribution of pentagons ns of Voronoi polyhedra
quantitatively characterizes the low local fivefold symmetry of inter-
faces, proving the effectiveness of QNA. In addition to the geometric
short-range order by Voronoi polyhedra, partial coordination number
characterizes chemical segregation at the interfaces in terms of che-
mical short-range order. The average value N, gradually increase with
forming more glass-glass interfaces, improving structural hetero-
geneity. The deformation units preferentially take place at interfaces
with N = 6, and atoms with Ng = 6 can represent the structural signal
of the glass-glass interfaces during deformation, achieving local plastic
deformation tuned visually before loading.
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