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Hyperbolic metamaterials (HMMs), an unusual class of electromagnetic metamaterials, have found
important applications in various fields due to their distinctive properties. A surprising feature of HMMs is
that even continuous HMMs can possess topological edge modes. However, previous studies based on
equal-frequency surface (analogy of Fermi surface) may not correctly capture the topology of entire bands.
Here we develop a topological band description for continuous HMMs that can be described by a non-
Hermitian Hamiltonian formulated from Maxwell’s equations. We find two types of three-dimensional
non-Hermitian triply degenerate points with complex linear dispersions and topological charges 2 and 0
induced by chiral and gyromagnetic effects. Because of the photonic nature, the vacuum band plays an
important role for topological edge states and bulk-edge correspondence in HMMs. The topological band
results are numerically confirmed by direct simulation of Maxwell’s equations. Our work presents a general
non-Hermitian topological band treatment of continuous HMMs, paving the way for exploring interesting
topological phases in photonic continua and device implementations of topological HMMs.

DOLI: 10.1103/PhysRevLett.124.073603

Introduction.—Hyperbolic metamaterials (HMMs), also
known as indefinite media, are a class of optical meta-
materials with extreme anisotropy [1]: the effective per-
mittivity (or permeability) tensor components that are
parallel and perpendicular to the optical axis have opposite
signs, therefore their optical properties resemble dielectric
and metal in orthogonal directions [1,2]. Due to such
unique property and associated indefinite dispersion,
HMMs possess an infinite optical density of states, giving
rise to applications in versatile fields [3—10] such as super-
resolution microscopy, biosensing, lasing, etc.

Recently, it was proposed [11-13] that HMMs can serve
as an ideal candidate for studying topological photonics in
materials with continuous translational symmetry (i.e., no
periodic lattice structure at optical wavelength scale or the
periodicity goes to infinity) [14]. Topological photonics,
the application of topological band theory in photonic
systems, have generated great excitements for both funda-
mental studies and practical applications. Most studies have
focused on periodic dielectric systems [15] (e.g., photonic
crystals, coupled waveguides, and cavities), which are well
described by band topology in Bloch basis based on the
analogy between electromagnetic wave equations and
Schrodinger’s equation [16-28].

Different from Hermitian dielectric systems [18,19,29]
with real-valued band structures, HMMs represent a con-
tinuous non-Hermitian system with complex eigenvalues
due to their metal nature along one or two of the optical
axes. Therefore two important questions naturally arise.
Can a theory be developed for characterizing topological
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bands of such continuous non-Hermitian HMMs? If so,
what new physics can arise from such topological band
theory? We note that previous studies have introduced the
equal frequency surface (EFS) to characterize the topology
of HMMs [11-13] with photonic EFS corresponding to the
Fermi surface in electronic materials. While the Fermi
surface does contain certain information, the complete
topological properties are encoded in the entire bands.
As a result, the EFS theory is incomplete for investigating
the topological properties of continuous non-Hermitian
HMMs, and may lead to ambiguous (sometimes misleading
or incorrect) predictions (see the Supplemental Material
[30] for an example).

In this Letter, we answer these two important questions
by developing a topological band description, along with
the bulk-edge correspondence, for continuous HMMs. Our
main results are as follows: (i) an effective non-Hermitian
Hamiltonian for HMMs is derived from Maxwell’s equa-
tions. Symmetry analysis shows the physics can be
described by three bands (i.e., a spin-1 system). A proper
gyromagnetic or chiral field opens a band gap between the
upper and the other two bands except at k = 0, which is a
non-Hermitian triply degenerate point (TDP) [31-33] with
complex linear band dispersions (i.e., a topological semi-
metal). The complex bulk spectrum exhibits an exceptional
cone with the TDP as cone vertex. TDPs were studied
recently in solid state [31,32] and ultracold atomic systems
[33], but have not been explored in photonic materials
or any non-Hermitian systems, and their real linear dis-
persions are very different from non-Hermitian TDPs.
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The topological charge of the TDP at k = 0 is £2 (0) for
chiral (gyromagnetic) effect. For any fixed nonzero k,, the
HMM is a 2D Chern insulator, and the TDP emerges as the
band gap closing point at k, = 0. (ii) There exist surface
states connecting the single TDP to infinity for both cases
(change +2 or charge 0), which are illustrated through
topological edge states in both 3D and 2D Chern insulators
with fixed k, using the bulk-edge correspondence. More
importantly, the topological edge states can only be found
in the common band gap of the HMMs and vacuum
because, unlike electrons in solid-state materials, photons
can propagate in the vacuum, forming vacuum band
structures outside the HMMs. The edge states are purely
real and do not suffer loss as the complex bulk, which,
combining with the unique properties of HMMs, enable the
design of novel optical devices such as topological lasing.
And (iii) our theoretical predictions on topological bands and
chiral edge states of HMMs are confirmed by numerically
solving the Maxwell’s equations using COMSOL simulations.
Non-Hermitian Hamiltonian and topological invariant.—
The HMMs can be described by the source-free Maxwell’s
equations with the following constitutive relation
D = ¢E + iyH, B = uH — iyE, (1)
based on the symmetrized Condon set [34], where ¢, p, and
y are 3 x 3 permittivity, permeability, and chirality tensors.
Without gain and loss, they satisfy u = y and €' = €. The
chirality term can be written as y = Tr(y)I/3 + N with I
the identity matrix and N a real-valued symmetric trace-free
tensor. The chiral and gyromagnetic effects for HMMs can
be induced by nonzero y and imaginary nondiagonal terms
in € or u, respectively. The Maxwell’s equations can be
recast to a linear-transformation form H|¥) = w|¥), with

(G GO () oo

where pj,,] = €,/ V; is an antisymmetric tensor operator

(pT = —p) defined through the Levi-Civita symbol &,,,.
In the limit y - 0, Eq. (2) reduces to the Hermitian
formalism in previous works [18,19,29] if ¢ and u are
positive-definite. In the context of HMMs, the Hamiltonian
in Eq. (2) is generally non-Hermitian and possesses
complex eigenvalues, therefore the topological classifica-
tions for Hermitian systems [35-37] do not apply.

The Hamiltonian has six bands, which appear in pairs
(w,—w) due to the symmetry TTHII"! = —H, where the
symmetry operator IT is defined as the composite of chiral
symmetry C and the operation y — —y. Here C =0, ® I3
and o; represents a Pauli matrix in the (E,H) space.
In addition, the state at (k, @) represents the same physical
state as that at (—k, —w) due to the symmetry H(—p) =
—H(p), which holds for arbitrary H. When combined
together, these symmetries dictate that only three bands

are independent. Here we consider three bands with
N(w) >0 (N takes the real part), which form an effective
spin-1 system. Note that one band is a zero-energy (o = 0)
flat band, which represents the static solutions E = Vd(r)
and H = Vb(r). Interestingly, the three bands are always
(triply) degenerate at (k, @) = 0 for arbitrary H, independent
of €, u, and y.

The energy spectra for a non-Hermitian Hamiltonian are
generally complex, and the topological invariants can be
defined by either eigenvalues or eigenstates. The eigenvalue-
based winding number for a closed loop in momentum space
is defined as [38,39] C,, = ¢ dk(9/0y) arg[w(k)], which is
generally trivial and irrelevant to the topological edge modes
for HMMs discussed here. On the other hand, the bands for
HMMs are separable in the complex plane, therefore the
winding number W = (1/7) o dk - A(k) and the Chern
number C = (1/27) §5dS - F based on eigenstates are well
defined and quantized, which can be used to characterize the
topological properties of HMMs. Here S' is a closed 1D loop
and S can be a closed 2D sphere S (or infinite plane R?) in
the momentum space, A(k) = —i; (¥(k)|Vy|¥(k))x and
F =V x A(k) are the Berry connection and Berry curva-
ture, respectively, and [¥(k))z (|¥(k)),) is the right (left)
eigenstate [39] of the Hamiltonian. Among the three bands,
the zero-energy flat band is topologically trivial, while the
other two nonzero bands possess opposite topological
invariants. Hereafter we only plot the two nonzero-energy
bands with 9 (w) > 0 for better visualization.

Charge 2 TDPs from chiral effects.—Without chiral
and gyromagnetic terms and assume € = diag(e, > 0,¢, >
0,¢e, < 0) and u = I for hyperbolic dispersion, there is one
degenerate line along the k, axis between the two upper
nonzero bands with €, = €, as shown in Fig. 1(a). The
degenerate line possesses a nontrivial winding number
(defined by the highest band) W =2 for a closed loop
encircling the line [30]. The corresponding band structure
in the k, — k, plane with a fixed nonzero k, contains a
quadratic band touching point with winding number W = 2
at (k. k,) = (0,0), which is computed on a closed circle
enclosing the degenerate point. The band structures for
€, # €, are presented in the Supplemental Material [30].

The degeneracy between two nonzero bands along the &,
axis (except at k = 0) can be lifted by breaking inversion
symmetry using a chiral term [Fig. 1(b) with y =
diag(1,0,0)]. For a fixed k, # 0, the gap at the quadratic
band touching point is opened, yielding 2D Chern insula-
tors with opposite Chern numbers —1 and +1 for k, <0
and k, > 0 because the inversion symmetry along the z axis
is broken [Fig. 1(c)]. Note here that the 2D Chern number is
always defined by the upper band that is fully gapped
except at k = 0. The 2D Chern number is integrated over
the 2D infinite plane R? in momentum space at a constant
k, and is quantized in continuous limit (see the
Supplemental Material [30] for a proof). The lower nonzero
band transits from real to imaginary eigenenergies along an
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FIG. 1. Typical band structures for HMMs. (a) A HMM with
(€y.€y,€,) = (4,4, -3) exhibits a degenerate line along k, axis
between two nonzero bands. (b) The degenerate line (except
k =0) in (a) is lifted by y = diag(1,0,0). (c) Corresponding
gapped topological bands in 2D k, — k, plane for k, = 1. See the
Supplemental Material [30] for the imaginary bands. The dashed
green circle is the exceptional ring. (d) The 3D exceptional cone
in momentum space at k, >

exceptional ring with coalesced eigenstates [the green circle
in Fig. 1(c)]. Such an exceptional ring at finite &, shrinks to
a point at k = 0, resulting in a 3D exceptional cone with
the cone vertex at k = 0 [Fig. 1(d)].

The origin k = 0 is a TDP with linear band dispersions
[Fig. 1(b) and [30] ], which, for the lower band, can appear
in either real or imaginary spectrum along different
momentum directions. Such a non-Hermitian TDP is quite
different from the real TDPs in electronic and cold atomic
Hermitian systems [31-33]. At k, = 0, the band gaps for
2D Chern insulators close, yielding a topological charge
C = +2 of the TDP that is equivalent to the change of 2D
Chern number across k, = 0. Here the topological charge is
evaluated on a closed surface S enclosing k = 0. Because
there is only one charge +2 TDP in the HMM due to its
continuous translational symmetry, there should be surface
states connecting the TDP to infinity. We consider an open
boundary condition along the y direction with a semi-
infinite HMM in y < 0 and the vacuum (i.e., y, = €, = I)
aty > 0, and the surface state is solved as Dyakonov wave
[40]. Within the scope of this work, we find that the surface
wave only has real energy despite the complex bulk
spectrum. The obtained surface states in the k,-k, plane
connect two bulk bands and vanish at the TDP. Because the
band gap appears at different @ regions for different &, the
commonly used surface spectral density at a fixed w is not
good for describing the surface states of continuous
HMMs. For a fixed k, # 0, the chiral edge states propagate
along opposite directions (i.e., opposite velocities dw/dk,)
for k, > 0 and k, < O [Fig. 2(a)] because of their opposite
bulk Chern numbers of 2D insulators. Although the lower

1.

1 (@) (b) I\

3
T 0.5 S 0.5 0.5
~

. 0. 0.
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
ky ks k.

FIG. 2. 2D band structure with edge states. We choose
(€r.€y,€;) = (4,4,-3). The color-coded areas represent sub-
bands under projection and solid red (or dark gray) curves are
chiral surface waves with velocity dw/dk. (a) The edge states are
induced by a pure chiral effect y = diag(1,0,0) such that they
possess opposite chirality for k, = +1 (red) and k, = —1 (dark
gray) while the band structure remains the same. The two dashed
curves show the bands with y = 0. (b) The chiral edge states are
the same at k, = 1 for a gyromagnetic term ¢,, = —e,, = i.
(c) Same as (b) but we set k, = —0.3 and compute the edge states
along k,. Here a zero charge TDP yields two edge states with
opposite chirality.

band is purely imaginary in part of the momentum space,
the edge states only connect to purely real parts.

Charge 0 TDP from gyromagnetic effects.—The degen-
erate line in Fig. 1(a) can also be gapped out by the
gyromagnetic effect, leading to another type of TDP at
k = 0. We consider the gyromagnetic effect that is induced
by a magnetic field along the z direction, which yields a
pure imaginary nondiagonal term e, (€, = —¢,, to keep €
Hermitian). The resulting band structure is similar as
Fig. 1(b) [see also Fig. 3(b). However, the Chern numbers
for 2D bands in the k,-k, plane are +1 for both k, > 0 and
k. < 0 because the magnetic field along the z direction,
although it breaks the time-reversal symmetry, still pre-
serves the inversion symmetry along the z axis. The Chern
number changes sign with the sign of €., i.e., sign[J(e,, )]
(3 takes the imaginary part). Although the band topology
does not change across k, = 0, the band gap still closes,
leading a topological TDP at k = 0 with charge 0 due to
opposite Berry flux for k, > (<)0 [30].

Because of the same topology, the edge states for k, > 0
and k, < 0 propagate along the same direction [Figs. 2(b)
and 3(b)]. We see for a given k, and w at the edge, there
could be two surface states with opposite k,. In Fig. 2(c),
we show these two edge modes along k, for a fixed k.,
which start from the lower band and gradually approach the
upper band. As a comparison, there may be only one edge
mode along k, for a fixed large k, with the chiral effect [30].
Such double edge modes originate from topologically trivial
2D bands in the k -k plane for a fixed k., which gives zero or
even numbers of edge modes with opposite chirality.

We remark that when both gyromagnetic and chiral
effects are considered, their competition would drive a
transition between charge-2 and charge-0 TDPs. An exam-
ple is shown explicitly in the Supplemental Material [30].
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FIG. 3.
magnetic term €, = 3.5i for k, = 1. The dashed green curve is
the vacuum band, which is twofold degenerate. Two dashed
curves (from top to bottom) give the frequencies of the line source
in cCOMSOL simulations shown in Figs. 4(c) and 4(a). (b),(c) 3D
band structures with edge states for e,, = 2i and e,, = 3.5i,
respectively. The red surfaces represent chiral surface waves and
the green one is the vacuum band.

(a) 2D band structure and edge states with a gyro-

Bulk-edge correspondence with vacuum bands.—Unlike
electronic materials, a vacuum 1is not an insulator for
photons and there exist photonic bands for a vacuum
(although topologically trivial), i.e., the free space con-
tinuum. Because of its direct contact with the edges of
HMMs, vacuum effects should be taken into account for
edge states and bulk-edge correspondence. Here we illus-
trate the vacuum effects using gyromagnetic effects. For a
small e,, term, the vacuum band is higher than both bulk
bands of the HMM [the vacuum band was not shown in
Figs. 2(b) and 2(c) for this reason]. With increasing |e,,|,
the band gap between the two nonzero bulk bands increases
and the upper band would surpass the vacuum bands at a
certain value of e, |, after which the edge mode connects to
the vacuum band, instead of the upper band, as shown in
Fig. 3(a). This is because photons cannot localize at the
boundary of the HMM after they diffuse into a vacuum.
Since the vacuum band is topologically trivial, the physical
properties of the surface waves like chirality are preserved.

In Figs. 3(b) and 3(c), we plot the 3D band structures
with edge modes for both weak (e, = 2i) and strong
(€xy = 3.5i) gyromagnetic effects in the k -k, plane, which
show similar features as Figs. 2(b) and 3(a). Note that the
vacuum band crosses (k,w) = 0 and does not intersect
with the nonzero upper HMM band away from the TDP
because both bands increase linearly with respect to |k|.
The surface states, starting from the TDP, always fill the
common gap between the lower HMM band and either the
upper HMM or vacuum bands, depending on which has
the lower energy. For a given ¢,,, only one band [upper
HMM band, Fig. 3(b), or vacuum band, Fig. 3(c), for weak
and strong gyromagnetic effects, respectively] is connected
by the surface states.

Numerical simulations.—The above topological band
properties and corresponding edge states in continuous
HMMs can be further confirmed through coMsoL muti-
physics. Here we choose three different values of line
source frequency w; = 0.9, 1 and 1.45, which correspond
to band energies below the vacuum band, overlapping with

(a) Vacuum (b)
Hyperbolic ZAl—nAc ‘
(©) Wi @
,,,,, el
1 f 1 . : ' i1
FIG. 4. comsoL simulation results for our model, where a

HMM is placed in vacuum with two absorption materials on two
sides (gray-coded areas). The color represents the distribution of
total electric field strength. The green arrow indicates the position
of a line source, which is a plane wave along vertical direction,
with input energy w;. The field propagates along the z direction.
We choose the same parameters as those in Fig. 3(a) and tune the
input source to (a) w; = 0.95, (b) w; =1, and (c) w; = 1.45.
(d) Same as panel (a) except that the sign of the applied
gyromagnetic term is opposite such that the chirality of the edge
state is reversed.

the vacuum band, and overlapping with both the vacuum
and bulk bands, respectively [Fig. 3(a)]. The simulation
results are shown in Fig. 4. In panel (a), when w; just lies
below the vacuum band, the surface wave moves along the
positive direction and is robust to any scattering process.
When we increase o; a little bit so that it overlaps with the
vacuum band, the surface wave is scattered into vacuum at
defective points and source [panel (b)]. If @; overlaps with
both vacuum and bulk bands, as well as the gapless surface
state, the electromagnetic waves diffuse into the entire
space while the right side has a stronger field intensity
[panel (c)]. Finally, since the chirality of edge states is
determined by sign[3J(e,, )], the surface wave indeed travels
along the opposite direction when the gyromagnetic term is
changed to an opposite sign in Fig. 4(d).

Here, we mainly concern the simulations with gyromag-
netic terms while the chirality cases are studied in the
Supplemental Material [30].

Discussions and conclusion.—We have considered a
HMM with hyperbolicity on the permittivity tensor, which,
however, is not necessary for the existence of chiral surface
wave. For instance, a HMM with e = I and (u, > 0,1, >
0,u, < 0) may also exhibit chiral surface waves under
proper time-reversal (or inversion) symmetry breaking.
Besides €,,, the gyromagnetic effects can also be generated
by nondiagonal terms in u. Indeed, a purely imaginary
Hyy induces chiral surface waves in a similar way, which,
however, becomes topologically trivial (gapless) upon
passing the critical point I(u,,) = %,/ [30].

For experimental considerations, the chiral effects exist
in a range of natural materials [41] while the advances of
metamaterials allow us to synthesize strong chiral media
[42]. To achieve gyromagnetic effects, magnetic materials
can be mixed during fabrication and one commonly used
material is Yttrium-Iron-Garnet [20].

The topological band theory described here can be
applied to various parameter regions and many interesting
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effects, such as gain and loss [43], disorder, and bianiso-
tropy terms with more general y tensor, remain to be
explored. The hyperbolic band dispersion of the topologi-
cal HMMs opens a new avenue for studying negative
refraction with topological edge states as well as topologi-
cal lasing. In particular, the topological edge states in
HMMs may be used to design a topological-semimetal
laser. By tuning the structure of HMM and gyromagnetic or
chiral field, the topological edge mode can be promoted to
the lasing mode, rendering a highly efficient single-mode
laser, which is robust to local disorders and defects. Note
that although the bulk spectrum of HMMs could be
complex, the topological edge spectrum is purely real.
Thus it does not suffer from the inherent loss, which is the
primary roadblock to the insertion of bulk HMMs into
practical technologies. Because of the important and unique
properties of HMMs like broad-band spontaneous emission
enhancement (thus, the lasing threshold would be very
small) and the ability to support propagations of large-
momentum waves [2], the topological-semimetal laser may
outperform recently emerged topological insulator laser
using photonic crystals [44,45].

In conclusion, we developed a topological band descrip-
tion for the non-Hermitian continuous HMMs and found
two types of non-Hermitian photonic triply degenerate
points (classified by their topological charges) with differ-
ent surface states. Our work should provide physical
understanding of topological phases in HMMs and may
inspire further theoretical and experimental investigations
on the fundamental properties as well as practical appli-
cations of topological photonic continua.

We thank W. Gao for helpful discussions about COMSOL
simulations. This work was supported by Air Force Office
of Scientific Research (FA9550-16-1-0387), National
Science Foundation (PHY-1505496), Army Research
Office (W911INF-17-1-0128) and the UT Dallas Office
of Research through the SPIRe Grant Program. Z. Li and Q.
Gu acknowledge funding from the Welch Foundation (AT-
1992-20190330) and UT Dallas faculty start-up funding.

*xiwang.luo@utdallas.edu
‘chuanwei.zhang @utdallas.edu

[1] D.R. Smith and D. Schurig, Electromagnetic Wave Propa-
gation in Media with Indefinite Permittivity and Permeabil-
ity Tensors, Phys. Rev. Lett. 90, 077405 (2003).

[2] A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Hyperbolic
metamaterials, Nat. Photonics 7, 948 (2013).

[3] Z. Jacob, L.V. Alekseyev, and E. Narimanov, Optical
Hyperlens: Far-field imaging beyond the diffraction limit,
Opt. Express 14, 8247 (2006).

[4] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Far-field
optical hyperlens magnifying sub-diffraction-limited ob-
jects, Science 315, 1686 (2007).

[5] A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A.
Waurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V.

Zayats, Plasmonic nanorod metamaterials for biosensing,
Nat. Mater. 8, 867 (2009).

[6] M. Shoaei, M. K. Moravvej-Farshi, and L. Yousefi, All-
optical switching of nonlinear hyperbolic metamaterials in
visible and near-infrared regions, J. Opt. Soc. Am. B 32,
2358 (2015).

[7] T. Galfsky, Z. Sun, C.R. Considine, C. T. Chou, W. C. Ko,
Y. H. Lee, E. E. Narimanov, and V. M. Menon, Broadband
enhancement of spontaneous emission in two-dimensional
semiconductors using photonic hypercrystals, Nano Lett.
16, 4940 (2016).

[8] D. Lu, J.J. Kan, E.E. Fullerton, and Z. Liu, Enhancing
spontaneous emission rates of molecules using nanopat-
terned multilayer hyperbolic metamaterials, Nat. Nanotech-
nol. 9, 48 (2014).

[9] L. Ferrari, J. S. T. Smalley, Y. Fainman, and Z. Liu, Hyper-
bolic metamaterials for dispersion-assisted directional light
emission, Nanoscale 9, 9034 (2017).

[10] R. Chandrasekar et al., Lasing action with gold nanorod
hyperbolic metamaterials, ACS Photonics 4, 674 (2017).

[11] C. Liu, W. Gao, B. Yang, and S. Zhang, Disorder-Induced
Topological State Transition in Photonic Metamaterials,
Phys. Rev. Lett. 119, 183901 (2017).

[12] W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J.
Li, and S. Zhang, Topological Photonic Phase in Chiral
Hyperbolic Metamaterials, Phys. Rev. Lett. 114, 037402
(2015).

[13] R.-L. Chern and Y.Z. Yu, Chiral surface waves on hyper-
bolic-gyromagnetic metamaterials, Opt. Express 25, 11801
(2017).

[14] Note that the term “continuous” here is defined in the
context of long wave limit, where the period for the lattice
structure to generate hyperbolic metamaterials is much
shorter than the optical wavelength.

[15] T. Ozawa et al., Topological photonics, Rev. Mod. Phys. 91,
015006 (2019).

[16] L. Lu, J. D. Joannopoulos, and M. Soljacic, Topological
photonics, Nat. Photonics 8, 821 (2014).

[17] A.B. Khanikaev and G. Shvets, Two-dimensional topologi-
cal photonics, Nat. Photonics 11, 763 (2017).

[18] F.D. M. Haldane and S. Raghu, Possible Realization of
Directional Optical Waveguides in Photonic Crystals with
Broken Time-Reversal Symmetry, Phys. Rev. Lett. 100,
013904 (2008).

[19] S. Raghu and F. D. M. Haldane, Analogs of quantum-Hall-
effect edge states in photonic crystals, Phys. Rev. A 78,
033834 (2008).

[20] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic,
Observation of unidirectional backscattering-immune topo-
logical electromagnetic states, Nature (London) 461, 772
(2009).

[21] A. Raman and S. Fan, Photonic Band Structure of
Dispersive Metamaterials Formulated as a Hermitian
Eigenvalue Problem, Phys. Rev. Lett. 104, 087401 (2010).

[22] L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos,
and M. Soljaci¢, Symmetry-protected topological photonic
crystal in three dimensions, Nat. Phys. 12, 337 (2016).

[23] L. Wang, S.-K. Jian, and H. Yao, Topological photonic
crystal with equifrequency Weyl points, Phys. Rev. A 93,
061801 (2016).

073603-5



PHYSICAL REVIEW LETTERS 124, 073603 (2020)

[24] M. Xiao, Q. Lin, and S. Fan, Hyperbolic Weyl Point in
Reciprocal Chiral Metamaterials, Phys. Rev. Lett. 117,
057401 (2016).

[25] G. Siroki, P. A. Huidobro, and V. Giannini, Topological
photonics: From crystals to particles, Phys. Rev. B 96,
041408 (2017).

[26] B. Bahari, A. Ndao, F. Vallini, A. E. Amili, Y. Fainman, and
B. Kanté, Nonreciprocal lasing in topological cavities of
arbitrary geometries, Science 358, 636 (2017).

[27] Z. Gao, Z. Yang, F. Gao, H. Xue, Y. Yang, J. Dong, and
B. Zhang, Valley surface-wave photonic crystal and its bulk/
edge transport, Phys. Rev. B 96, 201402 (2017).

[28] M. Parto, S. Wittek, H. Hodaei, G. Harari, M. A. Bandres,
J. Ren, M. C. Rechtsman, M. Segev, D. N. Christodoulides,
and M. Khajavikhan, Edge-Mode Lasing in 1D Topological
Active Arrays, Phys. Rev. Lett. 120, 113901 (2018).

[29] M. G. Silveirinha, Chern invariants for continuous media,
Phys. Rev. B 92, 125153 (2015).

[30] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.124.073603 for more
details about the band structure, quantization of band Chern
number, Berry curvature of TDPs, surface wave by chirality
effects, topological phase transition of TDPs, and a counter-
example for EFS theory.

[31] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser,
R.J. Cava, and B. A. Bernevig, Beyond Dirac and Weyl
fermions: Unconventional quasiparticles in conventional
crystals, Science 353, aaf5037 (2016).

[32] B. Q. Lv et al., Observation of three-component fermions in
the topological semimetal molybdenum phosphide, Nature
(London) 546, 627 (2017).

[33] H. Hu, J. Hou, F. Zhang, and C. Zhang, Topological Triply
Degenerate Points Induced by Spin-Tensor-Momentum
Couplings, Phys. Rev. Lett. 120, 240401 (2018).

[34] J. Lekner, Optical properties of isotropic chiral media, J.
Opt. 5, 417 (1996).

[35] A.P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
Classification of topological insulators and superconductors
in three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

[36] A. Kitaev, Periodic table for topological insulators, super-
conductors, AIP Conf. Proc. 1134, 22 (2009).

[37] S. Ryu, A.P. Schnyder, A. Furusaki, and A. W. W. Ludwig,
Topological insulators and superconductors: Tenfold way
and dimensional hierarchy, New J. Phys. 12, 065010 (2010).

[38] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S.
Higashikawa, and M. Ueda, Topological Phases of Non-
Hermitian Systems, Phys. Rev. X 8, 031079 (2018).

[39] H. Shen, B. Zhen, and L. Fu, Topological Band Theory for
Non-Hermitian Hamiltonians, Phys. Rev. Lett. 120, 146402
(2018).

[40] M. 1. Dyakonov, New type of electromagnetic wave propa-
gating at an interface, Sov. Phys. JETP 67, 714 (1988).

[41] A.J. Viitanen, A. Sihvola, I. V. Lindell, and S. Tretyakov,
Electromagnetic Waves in Chiral and Bi-Isotropic Media
(Artech Print, Artech House, 1994).

[42] S.S. Oh and O. Hess, Chiral metamaterials: Enhancement
and control of optical activity and circular dichroism, Nano
Convergence 2, 24 (2015).

[43] L. Feng, R. El-Ganainy, and L. Ge, Non-Hermitian pho-
tonics based on parity—time symmetry, Nat. Photonics 11,
752 (2017).

[44] G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman,
Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, and
M. Segev, Topological insulator laser: Theory, Science 359,
eaar4003 (2018).

[45] M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M.
Segev, D. N. Christodoulides, and M. Khajavikhan, Topo-
logical insulator laser: Experiment, Science 359, eaar4005
(2018).

073603-6



