

1 Eta-equivalence in Core Dependent Haskell

2 Anastasiya Kravchuk-Kirilyuk

3 Princeton University

4 ayk2@princeton.edu

5 Antoine Voizard

6 University of Pennsylvania

7 voizard@seas.upenn.edu

8 Stephanie Weirich

9 University of Pennsylvania

10 sweirich@cis.upenn.edu

11 — Abstract

12 We extend the core semantics for Dependent Haskell with rules for η -equivalence. This semantics
13 is defined by two related calculi, Systems D and DC. The first is a Curry-style dependently-typed
14 language with nontermination, irrelevant arguments, and equality abstraction. The second, inspired
15 by the Glasgow Haskell Compiler’s core language FC, is the explicitly-typed analogue of System D,
16 suitable for implementation in GHC. Our work builds on and extends the existing metatheory for
17 these systems developed using the Coq proof assistant.

18 **2012 ACM Subject Classification** Software and its engineering → Functional languages; Software
19 and its engineering → Polymorphism; Theory of computation → Type theory

20 **Keywords and phrases** Dependent types, Haskell, Irrelevance, Eta-equivalence

21 **Digital Object Identifier** 10.4230/LIPIcs.TYPES.2019.7

22 **Funding** This material is based upon work supported by the National Science Foundation under Grant
23 No. 1521539 and Grant No. 1704041. Any opinions, findings, and conclusions or recommendations
24 expressed in this material are those of the author and do not necessarily reflect the views of the
25 National Science Foundation.

26 1 Introduction

27 In typed programming languages, the definition of type equality determines the expressiveness
28 of the type system. If more types can (soundly) be shown to be equal, then more programs
29 will type check. In dependently-typed languages, the definition of type equality relies on a
30 definition of term equality, because terms may appear in types. Therefore, a dependently-
31 typed language that can equate more terms can also admit more programs.

32 Many dependently-typed programming languages, such as Coq (since version 8.4) and
33 Agda (from its initial design) include rules for η -equivalence when comparing functions for
34 equality. These rules benefit programmers. For example, if a function f has type

35 $f : P x \rightarrow \text{Int}$

36 then it can be called with an argument of type

37 $P(\lambda y. x y)$

38 because the term $(\lambda y. x x)$ is η -equivalent to x .

39 Dependent Haskell [20, 47] is a proposal to add dependent types to the Haskell program-
40 ming language, as implemented by the Glasgow Haskell Compiler. This design unifies the
41 term and type languages of Haskell so that terms may appear directly in types, removing
42 the need for awkward singleton encodings of richly-typed data structures [21, 27, 45].

© Kravchuk-Kirilyuk, Voizard, and Weirich;
licensed under Creative Commons License CC-BY

25th International Conference on Types for Proofs and Programs (TYPES 2019).

Editors: Marc Bezem and Assia Mahboubi; Article No. 7; pp. 7:1–7:32

Leibniz International Proceedings in Informatics

LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

43 The specification of this language extension [47] is founded on two related dependently
 44 typed core calculi, called Systems D and DC. These two systems differ in their annotations:
 45 the latter language, which is inspired by and extends the FC intermediate language of
 46 GHC [42, 46], includes enough information to support simple, syntax-directed type checking.
 47 On the other hand, System D, is a Curry-style language meant to model the runtime behavior
 48 of the language, and to inspire type inference for the source language. (At the source level,
 49 type inference for Dependent Haskell will require more annotations than System D, which
 50 includes no annotations, and many fewer than System DC, which annotates everything.)

51 However, the specification of Systems D and DC, as presented in prior work, did not
 52 include rules for η -equivalence. The goal of this paper is to describe our experience with adding
 53 η -equivalence rules to these two systems, demonstrating that η -equivalence is compatible
 54 with Dependent Haskell.

55 While this extension is small—it involves three new rules for System D and two new rules
 56 for DC—it was not at all clear that it would work out from the beginning. Both Systems D
 57 and DC include support for *irrelevant arguments*, i.e the marking of some lambda-bound
 58 variables as not relevant for run-time execution. For Dependent Haskell, this feature is
 59 essential. Haskellers expect a type-erasure semantics and GHC erases type arguments during
 60 compilation. Irrelevance generalizes this idea to include not just type arguments but all
 61 terms that are used irrelevantly, enabling the generation of efficient code.

62 Unfortunately, η -equivalence, when combined with irrelevance in dependently-typed
 63 languages, is a subtle topic. Much prior work has laid out the issues, though in contexts that
 64 are not exactly the same as that found in Dependent Haskell. We describe this landscape in
 65 Section 6.3, and show how our work compares to and does not match any existing treatment
 66 of these features. In particular, our system features the `type:type` axiom, employs a typed
 67 definition of equivalence that ignores type annotations, supports large eliminations, includes
 68 a variant with decidable type checking, does not restrict how irrelevant arguments may be
 69 used in types, and comes with a completely mechanized type soundness proof.

70 In particular, this work extends the type soundness proof that was developed in prior
 71 work with support for η -equivalence. Prior work included a mechanized formalization of the
 72 meta-properties of both Systems D and DC, developed using the Coq proof assistant [43]. In
 73 this work, we have extended that development with these new rules and have updated the
 74 proofs accordingly. This mechanized proof gives us complete confidence in our extension,
 75 even in the face of a few curious findings.

76 As a result, this project also gives us a chance to report a success story for proof
 77 engineering. As the extension described in this paper is small compared to the overall system,
 78 we would expect the changes to the proof to be similarly minor, and they are. Furthermore,
 79 the three different forms of η -equivalence that we add are themselves quite similar to each
 80 other. Because of this relationship, a newcomer (the first author, an undergraduate at
 81 the time) could join the project and was able to adapt the changes needed for the usual
 82 η -equivalence rule to the novel ones for this setting. Although this process required careful
 83 understanding of binding representations, especially in the representation of the new rules,
 84 the mechanical proof served as an essential benefit to the overall research endeavor.

85 2 Overview of System D and System DC

86 This work presents and extends the languages Systems D and DC from prior work [47].
 87 Therefore, we begin our discussion with an overview of these systems and their properties.

88 System D is an implicit language; its syntax only contains terms that are relevant

	D	DC
<i>Typing</i>	$\Gamma \models a : A$	$\Gamma \vdash a : A$
<i>Definitional equality (terms)</i>	$\Gamma; \Delta \models a \equiv b : A$	$\Gamma; \Delta \vdash \gamma : a \sim b$
<i>Proposition well-formedness</i>	$\Gamma \models \phi \text{ ok}$	$\Gamma \vdash \phi \text{ ok}$
<i>Definitional equality (props)</i>	$\Gamma; \Delta \models \phi_1 \equiv \phi_2$	$\Gamma; \Delta \vdash \gamma : \phi_1 \sim \phi_2$
<i>Context well-formedness</i>	$\models \Gamma$	$\vdash \Gamma$
<i>Signature well-formedness</i>	$\models \Sigma$	$\vdash \Sigma$
<i>Primitive reduction</i>	$\models a > b$	
<i>One-step reduction</i>	$\models a \rightsquigarrow b$	$\Gamma \vdash a \rightsquigarrow b$

■ **Figure 1** Summary of judgement forms

89 for computation. It is based on a Curry-style variant of a dependently-typed lambda
 90 calculus, with the `type:type` axiom. Functions are not annotated with their domain types
 91 and computations may not terminate. As a result, type checking in System D is undecidable.
 92 Compared to other Curry-style languages [32, 33], this language annotates the locations of
 93 irrelevant abstractions and irrelevant applications. Such generalizations and instantiations
 94 may occur only at the marked locations. Full Curry-style languages allow generalization and
 95 instantiation at any point in the derivation.

96 In contrast, System DC is an explicit language. It extends System D with enough
 97 annotations so that type checking is not only decidable, it is straightforward through a simple
 98 syntax-directed algorithm. While System D is intended to serve as a *specification* of what
 99 Dependent Haskell should mean, System DC is intended to serve as a core *implementation*
 100 language for the Glasgow Haskell Compiler (GHC) [20, 22], when it is extended with
 101 dependent types. The annotations allow the compiler to check core language terms during
 102 compilation, eliminating potential sources of bugs during compilation.

103 Because the annotated language DC is, in some sense, a *reification* of the derivations of
 104 D; DC can thus be seen as a syntax-directed version of D. To emphasize this connection in
 105 our formal system, we reuse the same metavariables for analogous syntactic forms in both
 106 languages.¹ The judgement forms are summarized in Figure 1. By convention, judgements
 107 for D use a double turnstile (\models) whereas judgements for DC use a single turnstile (\vdash). As
 108 we make precise below, judgements in these two languages are connected: we can apply an
 109 erasure operation to DC derivations to produce analogous judgements in D, and given a
 110 derivation in D, it is possible to add enough annotations to produce an analogous judgement
 111 in DC.

112 The judgement forms in these languages include the usual typing judgement, a typed
 113 equivalence relation (augmented in DC with an explicit proof witness in γ), a first-class
 114 notion of equality propositions ϕ , and a judgement when two propositions are equivalent
 115 (also augmented with a proof witness in DC), as well as well-formedness checks for typing
 116 contexts Γ and top-level signatures of recursive definitions Σ .

117 Computation in both languages is specified operationally, using a small-step, call-by-name,
 118 evaluation relation \rightsquigarrow . These one-step relations are decidable and produce a unique reduct in
 119 each case. This computation is also type sound, which we demonstrate through preservation

¹ In fact, our Coq development uses the same syntax for both languages and relies on the judgement forms to identify the pertinent sets of constructs.

System D

<i>terms, types</i>	$a, b, A, B ::= \text{type} \mid x \mid F \mid \lambda^\rho x.b \mid a\ b^\rho \mid \square \mid \Pi^\rho x:A.B$
	$\mid \Lambda c.a \mid a[\gamma] \mid \forall c:\phi.A$
<i>coercions</i>	$\gamma ::= \bullet$

<i>values</i>	$v ::= \lambda^+ x.a \mid \lambda^- x.v \mid \Lambda c.a$
	$\mid \text{type} \mid \Pi^\rho x:A.B \mid \forall c:\phi.A$

System DC

<i>terms, types</i>	$a, b, A, B ::= \text{type} \mid x \mid F \mid \lambda^\rho x:A.b \mid a\ b^\rho \mid \Pi^\rho x:A.B$
	$\mid \Lambda c:\phi.a \mid a[\gamma] \mid \forall c:\phi.A$
	$\mid a \triangleright \gamma$
<i>coercions (excerpt)</i>	$\gamma ::= c \mid \mathbf{refl}\ a \mid \mathbf{sym}\ \gamma \mid \gamma_1; \gamma_2 \mid \mathbf{red}\ a\ b \mid \dots$
	$\mathbf{eta}\ a$
<i>values</i>	$v ::= \lambda^+ x:A.a \mid \lambda^- x:A.v \mid \Lambda c:\phi.a$
	$\mid \text{type} \mid \Pi^\rho x:A.B \mid \forall c:\phi.A$

Shared syntax

<i>propositions</i>	$\phi ::= a \sim_A b$
<i>relevance</i>	$\rho ::= + \mid -$
<i>contexts</i>	$\Gamma ::= \emptyset \mid \Gamma, x : A \mid \Gamma, c : \phi$
<i>available set</i>	$\Delta ::= \emptyset \mid \Delta, c$
<i>signature</i>	$\Sigma ::= \emptyset \mid \Sigma \cup \{F \sim a : A\}$

Figure 2 Syntax of D and DC. The syntactic differences between the two systems are highlighted in yellow. The sole addition for η -equivalence (the coercion form **eta** a) is highlighted in green.

120 and progress theorems [49].

121 The syntax of D, the implicit language, is shown at the top of Figure 2. This language,
122 inspired by pure type systems [12], uses a shared syntax for terms and types. The language
123 includes:

124 ■ a single sort (**type**) for classifying types,
125 ■ functions ($\lambda^+ x.a$) with dependent types ($\Pi^+ x:A.B$), and their associated application
126 form ($a\ b^+$),
127 ■ functions with irrelevant arguments ($\lambda^- x.a$), their types ($\Pi^- x:A.B$), and instantiation
128 form ($a\ \square^-$),
129 ■ coercion abstractions ($\Lambda c.a$), their types ($\forall c:\phi.B$), and instantiation form ($a[\bullet]$),
130 ■ and top-level recursive definitions (F).

131 In this syntax, term and type variables, x , are bound in the bodies of functions and their
132 types. Similarly, coercion variables, c , are bound in the bodies of coercion abstractions and

133 their types. (Technically, irrelevant variables and coercion variables are prevented by the
 134 typing rules from actually appearing in the bodies of their respective abstractions.) We use
 135 the same syntax for relevant and irrelevant functions, marking which one we mean with
 136 a relevance annotation ρ . We sometimes omit relevance annotations ρ from applications
 137 $a b^\rho$ when they are clear from context. We also write nondependent relevant function types
 138 $\Pi^+ x:A.B$ as $A \rightarrow B$, when x does not appear free in B , and write nondependent coercion
 139 abstraction types $\forall c:\phi.A$ as $\phi \Rightarrow A$, when c does not appear free in A .

140 The metavariable Δ , called the *available set*, represents a set of coercion variables. This
 141 set is used to restrict the usage of coercion variables in certain situations; only variables
 142 appearing in the set are available.² The operation $\tilde{\Gamma}$ returns the available set made of all the
 143 coercion variables in the domain of context Γ . In other words, it is the available set that
 144 permits the use of all coercion variables in Γ .

145 The syntax of DC, also shown in the figure, includes the same features as D but with
 146 more typing annotations. In particular, this language removes the trivial argument for
 147 irrelevant instantiation (instead specifying the actual argument it stands for) and adds
 148 domain information to the bound variable in the abstraction forms. Finally, it replaces
 149 implicit type conversions by an explicit coercion term $a \triangleright \gamma$ as well as a language of coercion
 150 proofs (not completely shown in the figure). The addition of η -equivalence requires a new
 151 form of coercion proof, written **eta** a , that corresponds to all three new equivalence rules in
 152 D.

153 The erasure operation, written $|a|$ translates terms from System DC to System D by
 154 removing all type annotations and coercion proofs. For example, rules of this function include
 155 $|\lambda^\rho x:A.a| = \lambda^\rho x.|a|$ and $|a \triangleright \gamma| = |a|$.

156 2.1 Type checking in System D and System DC

157 Unlike System D, System DC enjoys unique typing, meaning that any given term has at most
 158 one type. Thanks to this uniqueness property and to the presence of typing annotations,
 159 type checking is decidable in System DC. In fact, the syntax of System DC can be seen
 160 as encoding not just a D term, but a D *typing derivation*. That is, any DC term uniquely
 161 identifies a typing derivation for the underlying (erased) D term.

162 In System D, type checking is undecidable due to two reasons. The first is that System
 163 D includes Curry-style System F as a sublanguage, where type checking is known to be
 164 undecidable [48, 36]. Since type arguments are implicit in Curry-style languages, irrelevant
 165 quantification is a feature of System D. The second reason for undecidable type checking in
 166 System D is the presence of an implicit conversion rule. In order to maintain decidable type
 167 checking in an environment where implicit conversion is allowed, System DC uses explicit
 168 coercion proofs whenever type conversion is performed. Below, we discuss these two features
 169 which contribute to the undecidability of type checking in System D. However, even though
 170 type checking is undecidable, we sketch what a partial type inference algorithm for System
 171 D might look like in Section 2.3.

E-PI $\frac{\Gamma, x : A \vDash B : \text{type}}{\Gamma \vDash \Pi^\rho x : A.B : \text{type}}$	AN-PI $\frac{\Gamma, x : A \vdash B : \text{type}}{\Gamma \vdash \Pi^\rho x : A.B : \text{type}}$
E-ABS $\frac{\begin{array}{c} \Gamma, x : A \vDash a : B \\ (\rho = +) \vee (x \notin \text{fv } a) \end{array}}{\Gamma \vDash \lambda^\rho x.a : \Pi^\rho x : A.B}$	AN-ABS $\frac{\begin{array}{c} \Gamma, x : A \vdash a : B \\ (\rho = +) \vee (x \notin \text{fv } a) \end{array}}{\Gamma \vdash \lambda^\rho x : A.a : \Pi^\rho x : A.B}$
E-APP $\frac{\Gamma \vDash b : \Pi^+ x : A.B \quad \Gamma \vDash a : A}{\Gamma \vDash b\ a^+ : B\{a/x\}}$	AN-APP $\frac{\Gamma \vdash b : \Pi^\rho x : A.B \quad \Gamma \vdash a : A}{\Gamma \vdash b\ a^\rho : B\{a/x\}}$
E-IAPP $\frac{\Gamma \vDash b : \Pi^- x : A.B \quad \Gamma \vDash a : A}{\Gamma \vDash b\ \square^- : B\{a/x\}}$	

Figure 3 Rules for relevant and irrelevant arguments in System D (left) and System DC (right).

2.1.1 Irrelevant quantification

Because Haskell includes parametric polymorphism, which has a type erasure semantics, Dependent Haskell includes a way to indicate which terms should be erased before execution.³ Thus, the rules that govern the treatment of irrelevant, or implicit, quantification appear in Figure 3.

D and DC's approach to implicit quantification follows ICC [32], ICC* [13], and EPTS [33]. When possible, the typing rules use the metavariable ρ to generalize over the relevance of the abstraction. For example, irrelevance places no restrictions on the usage of the bound variable in the body of the dependent function type, so the same rule suffices in each case (see rules E-PI and AN-PI).

However, for abstractions, if the argument is irrelevant, then the variable cannot appear in the body of the System D term (rule E-ABS). On the other hand, System DC includes annotations, which are not relevant, so the DC rule only restricts the variable from appearing in the *erasure* of the body (rule AN-ABS).

In DC, an application term is type-checked in the same way no matter whether it is relevant or not, so we are able to use the same rule in both cases (rule AN-APP). However, in D, if the application is to an irrelevant argument, then the argument does not appear in the term. Instead, it must be replaced by the trivial term \square (rule E-IAPP). Type-checking an irrelevant application in D thus requires guessing the actual argument used at this occurrence. Due to this, we need two separate rules for relevant and irrelevant application in D (rule E-APP and rule E-IAPP respectively).

² This is analogous to marking available coercion variables in the context.

³ Although it is possible to infer such information [14], we annotate it here to avoid a reliance on whole program optimization.

193 **2.1.2 Explicit coercions**

194 As mentioned previously, System D includes an implicit conversion rule, shown on the left
 195 below (rule E-CONV). This rule depends on the type equality judgement to allow the system
 196 to work up-to the definition of this type equality. At any point in a System D derivation, the
 197 type of a term can silently be replaced with an equivalent type.

$$\begin{array}{c}
 \text{E-CONV} \\
 \frac{\Gamma \models a : A \quad \Gamma ; \tilde{\Gamma} \models A \equiv B : \text{type}}{\Gamma \models a : B}
 \end{array}
 \qquad
 \begin{array}{c}
 \text{AN-CONV} \\
 \frac{\Gamma \vdash a : A \quad \Gamma ; \tilde{\Gamma} \vdash \gamma : A \sim B \quad \Gamma \vdash B : \text{type}}{\Gamma \vdash a \triangleright \gamma : B}
 \end{array}$$

199 To enable decidable type checking, System DC includes an explicit justification γ in
 200 rule AN-CONV, called a coercion proof, whenever type conversion is used. These coercions
 201 are reifications of the type equality derivations of System D; a coercion proof γ specifies
 202 a unique equality derivation. Equality is homogeneously typed in System D, if we have
 203 $\Gamma ; \Delta \models a \equiv b : A$, then both terms a and b must have type A . In DC the relationship is
 204 more nuanced. If we have a coercion proof $\Gamma ; \Delta \vdash \gamma : a \sim b$ where $\Gamma \vdash a : A$ and $\Gamma \vdash b : B$,
 205 then there must exist an additional coercion proof witnessing the equality between types
 206 A and B . In other words, the types of coercible terms must be equal according to System
 207 D. For example, compare the reflexivity rule in System D below (rule E-REFL) with the
 208 two different reflexivity rules in System DC (rule AN-REFL and rule AN-ERASEEQ). While
 209 the first DC rule is the classic form of the reflexivity rule, we still need the second form to
 210 account for the case when two terms a and b have different type annotations. To derive
 211 reflexivity between a and b in this case, we must furthermore know that their *types* are
 212 equal, witnessed by the coercion proof γ . Note also that we cannot get away with having
 213 rule AN-ERASEEQ alone, since rule AN-REFL is the only rule which can derive reflexivity
 214 for type. For example, in order to prove $\text{Int} \sim_{\text{type}} \text{Int}$ with rule AN-ERASEEQ, we need the
 215 base case rule AN-REFL to prove type \sim_{type} type.

$$\begin{array}{c}
 \text{AN-ERASEEQ} \\
 \frac{\text{E-REFL} \quad \text{AN-REFL} \quad \Gamma \vdash a : A \quad \Gamma \vdash b : B \quad |a| = |b| \quad \Gamma ; \tilde{\Gamma} \vdash \gamma : A \sim B}{\Gamma ; \Delta \vdash (a \mid=_{\gamma} b) : a \sim b}
 \end{array}$$

217 The type equality judgement in System D includes primitive (i.e. β) reductions, shown
 218 in rule E-BETA below. The analogous rule in System DC uses an explicit coercion, **red** $a_1 a_2$
 219 in the coercion checking rule AN-BETA to indicate a reduction. Both rules use the primitive
 220 reduction relation of System D, available in DC through erasure. Although this relation is
 221 deterministic, there are multiple ways to annotate a System D term. Thus, the coercion
 222 rule must annotate both terms, a_1 and a_2 involved in the redex. Furthermore, because these
 223 annotations may differ, these terms may have different types in DC, as long as those types
 224 are also related through erasure.

$$\begin{array}{c}
 \text{AN-BETA} \\
 \frac{\text{E-BETA} \quad \Gamma \vdash a_1 : B_0 \quad \vdash a_1 > a_2 \quad \Gamma \vdash a_2 : B_1 \quad |B_0| = |B_1| \quad \vdash |a_1| > |a_2|}{\Gamma ; \Delta \vdash \text{red } a_1 a_2 : a_1 \sim a_2}
 \end{array}$$

226 The System D type equality judgement is undecidable because it includes the operational
 227 semantics and the language is nonterminating. This nontermination is due to the type:type

228 axiom and general recursion, the latter already available in Haskell. Furthermore, because
229 System D is nonterminating, types themselves may diverge and thus don't necessarily have
230 normal forms (this is already the case for GHC, in the presence of certain language extensions).

231 2.2 Coercion abstraction

232 D and DC inherit the *coercion abstraction* feature from System FC, the existing core language
233 of GHC [42, 46]. This feature is primarily used to implement GADTs in GHC but is also
234 available for explicit use by Haskell programmers.

235 Coercion abstraction means that equality is first class. Terms may abstract over equality
236 propositions (denoted by ϕ in rules E-CABS and AN-CABS) and can discharge those
237 assumptions in contexts where the proposition is derivable (rules E-CAPP and AN-CAPP).
238 Once an equality has been assumed in the context, it may contribute to an equivalence
239 derivation as long as the coercion variable is available (i.e. found in the available set Δ).

$$\begin{array}{c}
 \begin{array}{c}
 \text{E-CABS} \\
 \frac{\Gamma, c : \phi \vdash a : B}{\Gamma \models \Lambda c.a : \forall c : \phi. B}
 \end{array}
 \quad
 \begin{array}{c}
 \text{AN-CABS} \\
 \frac{\Gamma, c : \phi \vdash a : B}{\Gamma \vdash \Lambda c : \phi.a : \forall c : \phi. B}
 \end{array}
 \\
 \begin{array}{c}
 \text{E-CAPP} \\
 \frac{\Gamma \models a_1 : \forall c : (a \sim_A b). B_1 \quad \Gamma ; \widetilde{\Gamma} \models a \equiv b : A}{\Gamma \models a_1[\bullet] : B_1\{\bullet/c\}}
 \end{array}
 \quad
 \begin{array}{c}
 \text{AN-CAPP} \\
 \frac{\Gamma \vdash a_1 : \forall c : a \sim_{A_1} b. B \quad \Gamma ; \widetilde{\Gamma} \vdash \gamma : a \sim b}{\Gamma \vdash a_1[\gamma] : B\{\gamma/c\}}
 \end{array}
 \\
 \begin{array}{c}
 \text{E-ASSN} \\
 \frac{\vdash \Gamma \quad c : (a \sim_A b) \in \Gamma \quad c \in \Delta}{\Gamma ; \Delta \models a \equiv b : A}
 \end{array}
 \quad
 \begin{array}{c}
 \text{AN-ASSN} \\
 \frac{\vdash \Gamma \quad c : a \sim_A b \in \Gamma \quad c \in \Delta}{\Gamma ; \Delta \vdash c : a \sim b}
 \end{array}
 \end{array}$$

241 The role of the set Δ is to prevent the usage of certain coercion variables, namely those
242 introduced in a congruence proof between two coercion abstraction types. More details about
243 this issue are available in prior work [47].

244 2.3 Type inference for System D

245 Even though complete type inference for System D is undecidable, we still intend it to
246 be a model for the source language of the Glasgow Haskell Compiler. Type inference
247 in GHC currently elaborates implicitly-typed Source Haskell to an explicitly-typed core
248 language, similar to System DC. This inference algorithm works by gathering constraints
249 and then solving those constraints using a variant of mixed-prefix unification combined
250 with type-family reduction [44]. This algorithm already supports numerous features related
251 to System D, including GADTs, type-level computation, higher-rank polymorphism and
252 the `type:type` axiom. There are also experimental extensions of this algorithm in support
253 of type-level lambdas [26], higher-kinds [50], and first-class polymorphism [39]. The most
254 straightforward extension of GHC's algorithm with dependent types is based on parallel
255 reduction; to determine whether two types are equivalent one must find a term that they
256 both reduce to. In System D, this reduction may not terminate, so this process describes a
257 semi-decision procedure.

3 Adding η -equivalence to Systems D and DC

Extending Systems D and DC with η -equivalence requires the addition of the following three rules to System D and two analogous rules in System DC. These three rules encode the usual η -equivalence properties for normal functions, irrelevant functions, and coercion abstractions. As our equivalence relation is typed, we must ensure that both left and right hand sides are well typed with the same type. This precondition also ensures that the bound variable does not appear free in b .

$$\begin{array}{c}
 \text{E-ETAREL} \qquad \qquad \qquad \text{E-ETAIRREL} \\
 \dfrac{\Gamma \models b : \Pi^+ x : A.B}{\Gamma ; \Delta \models \lambda^+ x.b \ x^+ \equiv b : \Pi^+ x : A.B} \qquad \qquad \dfrac{\Gamma \models b : \Pi^- x : A.B}{\Gamma ; \Delta \models \lambda^- x.b \ \square^- \equiv b : \Pi^- x : A.B} \\
 \text{E-ETAC} \\
 \dfrac{\Gamma \models b : \forall c : \phi.B}{\Gamma ; \Delta \models \Lambda c.b[\bullet] \equiv b : \forall c : \phi.B}
 \end{array}$$

In the annotated language, we only need two rules for coercion proofs because we can unify the two application forms in the annotated language (i.e. we can generalize over ρ).

$$\begin{array}{c}
 \text{AN-ETA} \qquad \qquad \qquad \text{AN-ETAC} \\
 \dfrac{\Gamma \vdash b : \Pi^\rho x : A.B}{\Gamma ; \Delta \vdash \mathbf{eta} \ b : \lambda^\rho x.b \ x^\rho \sim b} \qquad \dfrac{\Gamma \vdash b : \forall c : \phi.B}{\Gamma ; \Delta \vdash \mathbf{eta} \ b : \Lambda c.b[c] \sim b}
 \end{array}$$

We use the single marker **eta** b as the explicit proof witness for both rules. We can overload this form because the annotated term b includes enough information to recover its type, and the type of b is enough to determine which of the η -equivalence properties are needed.

The five rules shown in this section are all that was needed to extend the definition of both languages with η -equivalence. Note that we do not include any η rules (i.e. reduction or expansion) in the operational semantics (i.e. the one step reduction relations $\vdash a \rightsquigarrow b$ and $\Gamma \vdash a \rightsquigarrow b$). The computational behavior of the system is unchanged by this extension. Instead, our goal is to extend the systems' reasoning about this existing computational behavior through the added equivalences. Although the rules for η -equivalence for relevant and irrelevant function have appeared in various prior work (see Section 6), the η -equivalence rule for coercion abstraction is new to this extension.

4 Extending proofs

The addition of the five rules above means that we must extend all existing proofs of Systems D and DC and show that after the inclusion of the new rules these systems retain the desired properties. The properties developed in prior work [47] include the following results.

- Consistency of definitional equality for System D
- Type soundness (progress and preservation) for both languages
- Decidable type checking for System DC
- Annotation and erasure lemmas relating the two languages

In this section, we provide an overview of these proofs and discuss their interaction with this extension. In the formal statements of our results below, we include the source file and

291 definition in our Coq proofs⁴ that justifies that result.

292 The type soundness proof comes in two parts. We prove the progress lemma for System
 293 D, and then use the annotation lemma to translate that result to System DC. We prove
 294 the preservation lemmas for both systems directly, but it would also be possible to only
 295 prove preservation for System DC and then use the erasure lemma to translate that proof to
 296 System D.

297 By far, the largest modification was needed for the proof of the progress lemma for System
 298 D, which in turn relies on the consistency of definitional equality.

299 4.1 Progress lemma overview

300 In order to show proof of progress, we must first show the consistency of definitional equality
 301 in our setting (see Corollary 7 below). Consistency means that in certain contexts, types
 302 that have different head forms cannot be proven definitionally equal.

303 \triangleright **Definition 1 (Consistent⁵).** Two types A and B are consistent, written **consistent** $A B$,
 304 when it is *not* the case that they are types with conflicting head forms. We formalize this
 305 property with the following two judgements.

306 $\boxed{\text{hft}(A)}$	<i>(Types with head forms)</i>		
	VALUE-TYPE-STAR	VALUE-TYPE-PI	
307	$\frac{}{\text{hft}(\text{type})}$	$\frac{}{\text{hft}(\Pi^\rho x : A.B)}$	
	<i>(Types that do not differ in their heads)</i>		
308 $\boxed{\text{consistent } a b}$	CONSISTENT-A-STAR	CONSISTENT-A-PI	
309	$\frac{}{\text{consistent type type}}$	$\frac{}{\text{consistent } (\Pi^\rho x_1 : A_1.B_1) (\Pi^\rho x_2 : A_2.B_2)}$	
310	CONSISTENT-A-CP1	CONSISTENT-A-STEP-R	CONSISTENT-A-STEP-L
	$\frac{}{\text{consistent } (\forall c_1 : \phi_1.A_1) (\forall c_2 : \phi_2.A_2)}$	$\frac{\neg(\text{hft}(b))}{\text{consistent } a b}$	$\frac{\neg(\text{hft}(a))}{\text{consistent } a b}$

311 We use two auxiliary relations, *parallel reduction* and *joinability*, when proving consistency.

312 *Parallel reduction*, written $\models a \Rightarrow b$, is not part of the specification of System D⁶. This
 313 relation is a strongly confluent, but not necessarily terminating, rewrite relation on terms.
 314 In one step of parallel reduction, multiple redexes in one term may be reduced at the same
 315 time. For example, we can reduce $(z((\lambda x.x) 1) ((\lambda y.y) 2))$ to $(z 1 2)$ in one step, even though
 316 two different beta-reductions need to be performed at the same time.

317 Two types are *joinable* when they reduce to some common term using any number of
 318 steps of parallel reduction.

319 \triangleright **Definition 2 (Joinable⁷).** Two types are joinable, written $\vdash a_1 \Leftrightarrow a_2$, when there exists
 320 some b such that $\vdash a_1 \Rightarrow^* b$ and $\vdash a_2 \Rightarrow^* b$.

⁴ Available from <https://github.com/sweirich/corespec/tree/master/src/FcEtt>.

⁵ `ett.ott:consistent`

⁶ `ett.ott:Par`

⁷ `ett.ott:join`

321 We use these two relations to prove consistency in two steps. First, we show that
 322 definitionally equal types are joinable. Second, we show that joinable types are consistent.

323 In proving the first step, it is important to note that only *some* definitionally equal types
 324 are joinable. This is illustrated by the following example. If a has type type , and there
 325 is a coercion assumption $a \sim_{\text{type}} \text{Int}$ available in the context, then under this assumption
 326 a and Int are two definitionally equal types. However, these two types are not joinable.
 327 Because our consistency proof is based on parallel reduction, and because parallel reduction
 328 ignores assumed equality propositions, we state our result only for equality derivations with
 329 no available coercion assumptions. Thus, we restrict the set of all available assumptions we
 330 can use to derive equality to the empty set.

331 ► **Theorem 3** (Equality implies Joinability⁸). *If $\Gamma; \emptyset \vdash a \equiv b : A$ then $\vdash a \Leftrightarrow b$*

332 This restriction in the lemma is necessary because the type system does not rule out
 333 clearly bogus assumptions, such as $\text{Int} \sim_{\text{type}} \text{Bool}$. Because we cannot use such assumptions
 334 to derive equality, they cannot be allowed to appear in the context. As a result, in order to
 335 be able to prove that consistent types are definitionally equal, the context must not make
 336 any such assumptions available.

337 To prove the second step, we use the fact that parallel reduction is a strongly confluent
 338 relation, and thus head forms must be preserved by parallel reduction. The confluence
 339 property is stated below.

340 ► **Theorem 4** (Confluence⁹). *If $\vdash a \Rightarrow a_1$ and $\vdash a \Rightarrow a_2$ then there exists b , such that
 341 $\vdash a_1 \Rightarrow b$ and $\vdash a_2 \Rightarrow b$*

342 Our proof of confluence for System D follows the the proof of Church-Rosser for the
 343 untyped lambda calculus given in Barendregt [11], sections 3.2 and 3.2. The proof with
 344 β -reduction is attributed to Tait and Martin-Löf, and its extension with η -reduction is
 345 attributed to Hindley [25] and Rosen [38].

346 The confluence property essentially shows that even if a term can take several reduction
 347 paths, those paths can never diverge to produce terms with conflicting head forms. Thus,
 348 since joinability is defined in terms of parallel reduction, and parallel reduction is strongly
 349 confluent, it is true that joinability implies consistency.

350 ► **Lemma 5** (Joinability is transitive¹⁰). *If $\vdash A_1 \Leftrightarrow B$ and $\vdash B \Leftrightarrow A_2$ then $\vdash A_1 \Leftrightarrow A_2$*

351 ► **Theorem 6** (Joinability implies consistency¹¹). *If $\vdash A \Leftrightarrow B$ then **consistent** $A B$.*

352 ► **Corollary 7** (Consistency). *If $\Gamma; \Delta \vdash a \equiv b : A$ then **consistent** $a b$.*

353 The consistency result allows us to prove the progress lemma for System D. This progress
 354 lemma is stated with respect to the one-step reduction relation and the definition of *value*
 355 given in Figure 2.

356 ► **Lemma 8** (Progress¹²). *If $\Gamma \vdash a : A$, Γ contains no coercion assumptions, and no term
 357 variable x in the domain of Γ occurs free in a , then either a is a value or there exists some
 358 a' such that $\vdash a \rightsquigarrow a'$.*

⁸ `ext_consist.v:consistent_defeq`

⁹ `ext_consist.v:confluence`

¹⁰ `ext_consist.v:join_transitive`

¹¹ `ext_consist.v:join_consistent`

¹² `ext_consist.v:progress`

359 **4.2 Progress lemma update**

360 The addition of η -equivalence required three new rules to be added to the parallel reduction
 361 relation. These rules encode η -reduction, meaning that any outer abstractions of the correct
 362 form can be removed. Because parallel reduction is an untyped relation, there is no analogous
 363 typing precondition as in the equivalence rules. However, these rules also have the condition
 364 that the bound variable not appear free in b or b' . (In our rules below, this condition is not
 365 explicitly mentioned because it is guaranteed by the usual Barendregt variable convention.
 366 We discuss how we maintain this property in our Coq development in Section 5.)

$$\begin{array}{c}
 \text{PAR-ETA} \qquad \text{PAR-ETAIRREL} \qquad \text{PAR-ETAC} \\
 \frac{\models b \Rightarrow b'}{\models \lambda^+ x. b \ x^+ \Rightarrow b'} \quad \frac{\models b \Rightarrow b'}{\models \lambda^- x. b \ \square^- \Rightarrow b'} \quad \frac{\models b \Rightarrow b'}{\models \Lambda c. b[\bullet] \Rightarrow b'}
 \end{array}$$

368 We can view joinability as a semi-decision algorithm. Two terms are equal when they join
 369 to the same common reduct, though this process may diverge. This algorithm is a technical
 370 device only; we don't suggest its direct use in any implementation. Indeed, in the presence of
 371 η -reduction, joinability could equate more terms than definitional equality because it doesn't
 372 always preserve typing (see below).

373 **4.3 Parallel reduction and type preservation**

374 There are three types of reduction included in this development: primitive reduction $\models a > b$,
 375 one-step reduction $\models a \rightsquigarrow b$, and parallel reduction $\models a \Rightarrow b$. In the original formulation of
 376 System D, all three of these reduction relations were type-preserving.

377 The first two relations are unchanged by this extension, so type preservation still holds
 378 for those relations¹³.

379 However, parallel reduction is an untyped relation. It does not depend on type information,
 380 even in the case of η -equivalence. As a result, after the addition of η -equivalence rules, the
 381 parallel reduction relation is no longer type-preserving.

382 ► **Example 9** (Parallel reduction does not preserve types). There is some a such that $\Gamma \models a : A$
 383 and $\models a \Rightarrow a'$ where there is no derivation of $\Gamma \models a' : A$.

384 This property fails in the case where $\lambda^+ x. b \ x^+$ reduces to b , but x is required in the
 385 context for b to type check, even though it does not appear free in b .

386 For example, let A be $\Pi^- x:\text{type}.\Pi^+ z:\text{type}.(x \rightarrow x)$ and consider the following derivation
 387 of the application of some function y with this type to two arguments: an implicit one
 388 and then an explicit one. In both cases in the derivation, the argument is just x , which is
 389 abstracted in the conclusion of the derivation.

$$\begin{array}{c}
 \frac{\emptyset, y : A, x : \text{type} \models y : A \quad \emptyset, y : A, x : \text{type} \models x : \text{type}}{\emptyset, y : A, x : \text{type} \models y \ \square^- : \Pi^+ z : \text{type}.(x \rightarrow x) \quad \emptyset, y : A, x : \text{type} \models x : \text{type}} \\
 \frac{}{\emptyset, y : A, x : \text{type} \models y \ \square^- \ x^+ : x \rightarrow x} \\
 \frac{}{\emptyset, y : A \models \lambda^+ x. (y \ \square^-) \ x^+ : \Pi^+ x : \text{type}.(x \rightarrow x)}
 \end{array}$$

391 Now, the term $\lambda^+ x. y \ \square^- \ x^+$ reduces to $y \ \square^-$ using rule PAR-ETA. However, there is no
 392 implicit argument that we can fill in so that this term will have type $\Pi^+ x : \text{type}.(x \rightarrow x)$.

¹³ `ext_red.v:Beta_preservation, ext_red.v:reduction_preservation`

393 Subject reduction also does not hold for η -reduction in the case of irrelevant arguments.¹⁴
 394 In particular, there is a case where $\lambda^-x.b \square^-$ reduces to b and the two terms do not have
 395 the same type. This situation is not the same as above: the issue is that in a derivation of
 396 $\lambda^-x.b \square^-$ there is no requirement that the argument \square be the same type as x .

397 For example, suppose y has type $\Gamma \vdash y : \Pi^-x : A.B$ and we have $f : A \rightarrow A'$ in the
 398 context Γ where the type A does not equal A' . Then we can construct a derivation of
 399 $\Gamma \vdash \lambda^-x.(y \square^-) : \Pi^-x : A'.B\{fx/x\}$ by using the term fx as the implicit argument. A
 400 similar counterexample also applies to η -reduction for coercion abstraction.

401 Thus, in the presence of η -reduction, preservation does not hold for parallel reduction.
 402 However, this loss is not significant to the soundness of the type systems of System D and
 403 System DC. None of our results require this property. The only place where this may come
 404 up is in a parallel-reduction based type inference algorithm for GHC (see Section 2.3). In this
 405 case, parallel reduction must preserve enough type information during reduction to ensure
 406 that the result is still well-typed.

407 4.4 Additional updates

408 Other updates to the proof include new cases in the erasure and annotation lemmas and
 409 in the uniqueness and decidability of type checking in DC. These lemmas are proven by
 410 mutual induction on the typing derivations shown in Figure 1. As the new rules are for the
 411 definitional/provable equality judgements, we only list that part of the lemma statement.

412 ► **Lemma 10 (Erasure¹⁵).** *If $\Gamma; \Delta \vdash \gamma : a \sim b$ then for all A such that $\Gamma \vdash a : A$, we have
 413 $|\Gamma|; \Delta \models |a| \equiv |b| : |A|$.*

414 ► **Lemma 11 (Annotation¹⁶).** *If $\Gamma; \Delta \models a \equiv b : A$ then for all Γ_0 , such that $|\Gamma_0| = \Gamma$, there
 415 exists some γ , a_0 , b_0 and A_0 , such that $\Gamma_0; \Delta \vdash \gamma : a_0 \sim b_0$ and $\Gamma_0 \vdash a_0 : A_0$ and $\Gamma_0 \vdash b_0 : A_0$
 416 where $|a_0| = a$ and $|b_0| = b$ and $|A_0| = A$.*

417 ► **Lemma 12 (Unique typing for DC¹⁷).** *If $\Gamma; \Delta \vdash \gamma : A_1 \sim B_1$ and $\Gamma; \Delta \vdash \gamma : A_2 \sim B_2$, then
 418 $A_1 = A_2$ and $B_1 = B_2$.*

419 ► **Lemma 13 (Decidable typing for DC¹⁸).** *Given Γ , Δ , and γ , it is decidable whether there
 420 exists some A and B such that $\Gamma; \Delta \vdash \gamma : A \sim B$.*

421 5 Proof engineering

422 The development of our Coq formalization for Systems D and DC was assisted with the use
 423 of two tools for mechanized reasoning about programming language metatheory. The first
 424 tool, Ott [40], takes as input a specification of the syntax and type system and produces
 425 both Coq definitions and LaTeX figures. The inference rules of this paper were typeset with
 426 this shared specification, though some rules in the main body of the paper have been slightly
 427 modified for clarity. We include the complete and unmodified specification of the system in
 428 Appendix A.

¹⁴This issue was previously observed in the implementation of the Agda compiler: see <https://github.com/agda/agda/issues/2464>.

¹⁵`erase.v:typing_erase`

¹⁶`erase.v:annotation_mutual`

¹⁷`fc_unique.v:unique_mutual`

¹⁸`fc_dec.v:FC_typechecking_decidable`

429 In addition to producing inductive definitions for the syntax and judgements, the Ott
 430 tool also produces substitution and free variable functions. To make working with these
 431 definitions more convenient, we also use the Lngen tool [9], that automatically states and
 432 proves many lemmas about these operations.

433 This extension increased the overall size of the original development by about ten percent,
 434 just looking at the line counts of the two versions. In Figure 4 we order the proof files by
 435 largest difference in line count¹⁹ to see that the most significant effort was the update to
 436 the progress proofs for System D. The preservation proof file (`ext_red.v`) shrank due to the
 437 removal of the preservation lemma for the parallel reduction relation. The table includes
 438 some modifications (such as inserting a newline, or slight refactoring of proof scripts) that
 439 have no effect on the development. Files with unchanged line counts are omitted from this
 440 figure.

441 The `ett_ind.v` file contains tactics that are tailored to our language development. These
 442 tactics automatically apply inference rules, pick fresh variables with respect to binders, etc.
 443 As we have added new rules to the language definition, we needed to update these tactics. To
 444 assist in the rest of this proof development, we developed a tactic for automatically rewriting
 445 a term given a hypothesis of the form found in the η -rules (and similar).

446 The `ext_invert.v` file contains inversion lemmas for System D. New with this extension
 447 is the addition of a lemma that asserts that \bullet is the only coercion proof found in System D
 448 terms.

449 5.1 Stating rules for η -equivalence

450 One issue that we faced in our development is the precise characterization of the new η -
 451 equivalence rules using Ott. In the end, our actual formalization specifies these rules in a
 452 slightly different form than as presented in Section 3. For example, rule PAR-ETA reads as
 453 follows, where we have named the body of the abstraction a and constrain it to be equal to
 454 the application as a premise of the rule.

$$455 \begin{array}{c} \text{PAR-ETA} \\ \frac{\models b \Rightarrow b' \quad a = b \ x^+}{\models \lambda^+ x. a \Rightarrow b'} \end{array}$$

456 Although informally, this is a minor change, the precise statement of the rule determines the
 457 definitions that will be produced in Coq.

458 The generated Coq definition uses the *locally nameless* representation and co-finite
 459 quantification [8] for the bound variable inside the abstraction. Given any choice for the
 460 bound variable x (except for some variables that must be avoided in the set L), we can show
 461 that *opening* the body of the abstraction²⁰ produces an application of b to that variable.
 462 Furthermore, because this equation must hold for almost any variable x , we know that x
 463 could not have appeared in the term b to begin with.

```
464 Inductive Par : context -> available_set -> tm -> tm -> Prop :=  

465   ...  

466   | Par_Eta : forall (L:vars) (G:context) (D:available_set) (a b' b:tm),  

467     Par G D b b' ->  

468     (forall x, x \notin L ->
```

¹⁹These numbers were calculated using the `cloc` tool, version 1.76, available from <http://github.com/Aldanial/cloc>.

²⁰The process of replacing the bound variable, represented by an index, with a free one.

	File name	(1)	(1 η)	(2)	(3)	(3 η)
Specification (generated)	<code>ett_ott.v</code>	1337	1386	49	29	78
Progress (D)	<code>ext_consist.v</code>	1427	2054	627	205	832
Progress (D)	<code>ett_par.v</code>	660	1044	384	35	419
Erasure/annotation (D and DC)	<code>erase.v</code>	2002	2182	180	2	182
Decidability (DC)	<code>fc_dec_fun.v</code>	1561	1695	134	45	179
Progress (DC)	<code>fc_consist.v</code>	768	901	133	48	181
Inversion and regularity (D)	<code>ext_invert.v</code>	1057	1174	117	0	117
Inversion lemmas (DC)	<code>fc_invert.v</code>	650	665	15	82	97
Dec. of type checking (DC)	<code>fc_get.v</code>	774	844	70	1	71
General tactics	<code>ett_ind.v</code>	439	493	54	8	62
Preservation (D)	<code>ext_red.v</code>	290	241	-49	91	42
Context includes all vars (DC)	<code>fc_context_fv.v</code>	221	257	36	0	36
Context includes all vars (D)	<code>ext_context_fv.v</code>	143	178	35	0	35
Dec. of type checking (DC)	<code>fc_dec_aux.v</code>	395	399	4	18	22
Substitution (DC)	<code>fc_subst.v</code>	1270	1292	22	0	22
Unique typing (DC)	<code>fc_unique.v</code>	261	277	16	0	16
Reduction determinism (D)	<code>ext_red_one.v</code>	111	123	12	0	12
Substitution (D)	<code>ext_subst.v</code>	550	561	11	1	12
Primitive reduction	<code>beta.v</code>	71	78	7	4	11
Subst. prop. for coercions (DC)	<code>congruence.v</code>	349	354	5	0	5
Weakening (D)	<code>ext_weak.v</code>	139	141	2	3	5
Preservation (DC)	<code>fc_preservation.v</code>	247	245	-2	4	2
Well-formedness (D)	<code>ext_wf.v</code>	93	93	0	3	3
Dec. of type checking (DC)	<code>fc_dec_fuel.v</code>	223	223	0	2	2
Erasure properties	<code>erase_syntax.v</code>	486	486	0	1	1
General tactics	<code>tactics.v</code>	182	182	0	1	1
Total		17499	19404	554	2445	

Figure 4 Comparison between line counts in the original [47] and extended proof developments. The columns are (1) - number of lines in the original, (1 η) - number of lines in the extended version, (2) - change in line counts between the versions, (3) - size of diff for original, and (3 η) - size of diff for the extended version. Files that are identical between the versions are not included in the table, but appear in the total line count. Note, all line counts include only non-blank, non-comment lines of code.

```

470     open a (Var_f x) = App b Rel (Var_f x))  ->
471     Par G D (UAbs Rel a) b'

```

473 In the Ott version of the rule, we need not explicitly mention that x cannot appear free
474 in b due to this use of cofinite quantification. Thus, the usual side condition on η -reduction
475 is implied by our formulation of the rule in Ott and does not need to be stated again.

476 5.2 Confluence proof update

477 Updating the confluence proof with the new cases for these rules was fairly straightforward.
478 In particular, Coq was easily able to point out the new cases that needed to be added.

479 One wrinkle was that the new cases required a change from an induction on the syntax
480 of the term to an induction on the *height* of the term. The reason for this modification is
481 that the new η -rules reduce b , which is not an *immediate* subterm of $\lambda^+ x. b\ x^+$. However, it
482 is clear that in comparison to $\lambda^+ x. b\ x^+$ the term b has a smaller height. The induction on
483 height of term was also effective for the other cases where we were dealing with immediate
484 subterms. Furthermore, our tool support (LNGen) already defined an appropriate height
485 function for terms which we were able to use for this purpose. Consequently, although we
486 needed to adjust the use of induction in each case, the overall modifications were minor.

487 6 Related work

488 6.1 Mechanized metatheory for dependent types

489 Mechanical reasoning via proof assistants has long been applied to dependent type theories.
490 We will not attempt to describe all results. However, we will mention two recent developments:
491 Sozeau et al. [41] present the first implementation of a type checker for the kernel of Coq,
492 which is proven correct in Coq with respect to its formal specification. More specifically,
493 their work models an extension of the Predicative Calculus of (Co)-Inductive Constructions:
494 a Pure Type System with an infinite hierarchy of universes, universe polymorphism, an
495 impredicative sort, and inductive and co-inductive type families. However, although the
496 Coq system includes η from version 8.4, this formalization does not include η -conversion.
497 Like this work, their proofs of the metatheory of this system include a confluence proof of a
498 parallel reduction relation, following Tait and Martin-Löf.

499 In [3], Abel, Öhman and Vezzozi mechanically prove (in Agda) the correctness of an
500 algorithm for deciding conversion in a dependent type theory with one universe, an inductive
501 type, and η -equality for function types. The algorithm that they verify is similar to the one
502 used by Agda and is derived from Harper and Pfenning's definition of LF [24], as refined and
503 extended by Scherer and Abel [4, 2]. The proof of correctness of this algorithm is based on a
504 Kripke logical relations argument, parameterized by suitable notion of equivalence of terms.

505 6.2 Dependent types, type:type and η -equivalence

506 Similarly, the literature is rich with work pertaining to η -equivalence in type theories. Below,
507 we will focus on the interaction with type:type systems. In the next subsection, we discuss
508 the interactions with irrelevant arguments.

509 Many versions of the type:type language do not include η -equivalence in the definition of
510 conversion. For example, Coquand presents a semi-decision procedure for type checking a
511 language with type:type [18]. This algorithm compares types for equality through weak-head
512 normalization only. Similarly, Abel and Altenkirch [1] provide a more modern implementation

513 of the type checking algorithm for a very similar language (still without η -conversion), and
 514 prove completeness on terminating terms (with a terminating type).

515 One difficulty with η -reduction in this setting is the problem with confluence for Church-
 516 style calculi. To avoid a dependency between type checking and reduction, many dependent
 517 type systems rely on an untyped reduction relation. However, in Church-style systems,
 518 parallel reduction is only confluent for well-typed terms; ill-typed terms may not have a
 519 common reduct. For example, the term $(\lambda x : A.(\lambda y : B.y) x)$ can η -convert to $\lambda y : B.y$ or
 520 β -convert to $\lambda x : A.x$. These terms are only equal when $A = B$, but that is only guaranteed
 521 by well-typed terms. As System D is a Curry-style system however, it does not suffer from
 522 this issue.

523 Two versions of type:type that include η -equivalence are Cardelli [15] and Coquand and
 524 Takeyama [19]. Both of these works justify the soundness of the type systems and the
 525 consistency of the conversion relation using a denotational semantics. Furthermore, in
 526 both of these systems, the denotational semantics ignores the annotated domain types of
 527 lambda-expressions.

528 Coquand and Takeyama additionally provide a semi-decidable type checking algorithm.
 529 Their conversion algorithm is not based on parallel reduction; instead it follows Coquand's
 530 algorithm[17], reducing expressions to their weak-head-normal-forms before a structural
 531 comparison. When one of the terms being compared is a lambda expression and the other is
 532 not, the algorithm invents a fresh variable, applies both terms to this fresh variable and then
 533 continues checking for conversion.

534 6.3 Irrelevant quantification and η -equivalence

535 In this section, we survey prior work on dependently-typed languages that include some form
 536 of irrelevant quantification and discuss their interaction with η -equivalence. The contents of
 537 this section are summarized in Figure 5, which compares these systems along the features
 538 described below.

539 Note that the terms “irrelevance” and “irrelevant quantification” have multiple meanings
 540 in the literature. Our primary focus is on erasability, the ability for terms to quantify over
 541 arguments that need not be present at runtime. However, this terminology often includes
 542 compile-time irrelevance, or the blindness of type equality to such erasable parts of terms. It
 543 can also refer to erasability in the compile-time type equivalence algorithm. These terms are
 544 also related to, but not the same as, “parametricity” or “parametric quantification”, which
 545 characterizes functions that map equivalent arguments to equivalent results.

546 Below, we describe the various columns in this table that we use to lay out the design
 547 space of dependent type systems with irrelevance. Our purpose in this taxonomy is merely
 548 to define terms and summarize properties that we discuss below. We do not intend this table
 549 to characterize the contributions of prior work.

550 **What form of type quantification is supported (Q)?** First, we distinguish prior work by
 551 whether, and how, they support *type quantification*—that is, the ability for the system to
 552 quantify over types as well as terms. Type quantification is the foundation for *parametric*
 553 *polymorphism*, a key feature of modern programming languages, enabling modularity and
 554 code reuse. In dependent type systems, type quantification can take different forms, which
 555 have varying degrees of expressiveness. Prior work is based on the following foundations
 556 for type quantification:

557 **LF** [23], variants of the Logical Framework. This system includes dependency on terms
 558 only and does not allow quantification over types.

	Q	DC	TE	η -F	η -T	Π	MM
P01 [37]	LF	✓	✓	✓	✓		
AS12 [4]	MLTT	✓	✓	✓	✓		
AVW17 [5]	MLTT	✓	✓	✓	✓	2.	
NVD17 [35]	MLTT	✓	✓			3.	
ND18 [34]	MLTT	4.	✓	✓	✓	3.	
A18 [7]	MLTT	4.	✓	5.	5.	✓	
M01 [32]	ECC			✓		✓	
BB08 [13]	ECC	✓		✓		✓	
MLS08 [33] IPTS	PTS					✓	
MLS08 [33] EPTS	PTS	✓				✓	
System D [47]	TT		✓	1.		✓	✓
System DC [47]	TT	✓	✓	1.		✓	✓

Notes:

1. Contribution of the current paper.
2. Only arguments of type *size* can be used without restriction.
3. Includes several different quantifiers, some with restriction, some without.
4. Not explicitly discussed in the paper. (But there are enough annotations that type checking is likely decidable.)
5. Definitional equality rules are not discussed in the paper, so the status is unclear.

■ **Figure 5** Dependent type systems with irrelevance

559 **MLTT** [30, 31], variants of Martin-Löf Type Theory. These systems feature predicative
 560 polymorphism only, where types are stratified into an infinite hierarchy of universes.
 561 A type from one universe can quantify only over types from lower universes.

562 **ECC** [16, 28], variants of the extended calculus of constructions. These systems feature
 563 an impredicative sort (called `Prop`), in addition to an infinite hierarchy of predicative
 564 universes. The types in the impredicative sort can quantify over themselves, all others
 565 must be stratified.

566 **TT** [29, 15], variants of core systems that include the `type:type` axiom. In these systems
 567 there is only a single sort of type, which includes types that quantify over all types.
 568 Systems D and DC include this form of quantification to make the system simpler for
 569 Haskell programmers, who are used to the impredicative polymorphism of System F.

570 **PTS** [10], pure type systems. These systems do not fix a single regime of type quantification.
 571 Instead, they may be instantiated with many different treatments of quantification,
 572 including all of the forms described above.

573 **Is type checking decidable (DC)?** Next, we distinguish systems based on whether they
 574 support decidable type checking (✓) or not (). Some calculi include enough annotations
 575 so that a decidable type checking algorithm can be defined, others merely specify when
 576 terms are well-typed. Sometimes the “same” system can be cast in two different variants.
 577 For example, System D does not support decidable type checking, System DC augments
 578 the syntax of terms with annotations for this purpose.²¹

²¹Note, one typical location of annotation is the type of bound variables. Systems are often called “Church”-style when they include this annotation and “Curry”-style when they do not. However, this annotation is independent of the decidability of the type system, and many type systems that do not include this annotation support complete typing algorithms.

579 **Is the definition of equality typed (TE)?** Does the conversion rule in the type system use
 580 a typed (✓) or untyped () definition of equivalence? A typed equivalence requires a
 581 typed judgemental equality ([6]) and each transitive step used in the derivation to be
 582 between well-typed terms. In contrast, an untyped equivalence is usually defined in terms
 583 of β - or $\beta\eta$ - conversion of terms, only checking that the endpoints are well typed.

584 This distinction can affect expressiveness in both directions. On the one hand, an untyped
 585 relation might equate terms with different types, or justify an equality using ill-typed
 586 terms. There may be no analogous derivation in a typed relation. On the other hand,
 587 some equivalence rules (like η for the unit type, see below) can only be included in the
 588 system when type information is present, thus *expanding* the relation.

589 The inclusion of typed equivalence relation means that the algorithm used for type
 590 checking may depend not just on the syntax of terms but also on their types during
 591 execution. This type information may be used to prevent two terms from being equated
 592 (for example, if one of the terms doesn't type check), or it may be used to enable two
 593 terms to be equated (such as in the case of the η -equivalence rule for the unit type).

594 **Does the equality include η -equivalence rules for functions (η -F)?** In this column, we in-
 595 clude rules for functions regardless of whether they take relevant or irrelevant arguments.
 596 Note that some systems ([32]) do not mark the introduction and elimination sites of
 597 functions with irrelevant arguments. As a result, the corresponding equivalence rules
 598 are unnecessary. Similarly to other features, η -F (as well as η -T below) is important for
 599 programming as it may be used to derive equalities between types that mention functions,
 600 and thus to type-check more programs.

601 **Does the equality include η -equivalence rules for products and unit (η -T)?** Does the
 602 equality include type-directed η -equivalence rules for products or the unit type? For
 603 example, the rule for the unit type equates all terms of this type. Because this rule
 604 is type dependent, it can only be added to systems that use a typed definition of
 605 equivalence. These rules are typically implemented in the type system through a type-
 606 directed equivalence algorithm [24, 2].

607 At a high-level, the type-directed algorithm works in two stages. First, in the type-directed
 608 phase, if the terms being compared have function types, the two terms are applied to a
 609 fresh variable. This process takes care of η -equality. If the terms do not have function
 610 types, then the algorithm continues by converting both terms to weak-head normal form.
 611 If their heads match, then the algorithm recurses with the type-directed stage again on
 612 each of the corresponding subterms.

613 **Is the codomain of the irrelevant Π -type unrestricted (Π)?** In some systems, the *type* of
 614 an irrelevant abstraction is restricted so that the dependent argument must *also* be
 615 used irrelevantly. In other systems, the variable can appear freely without restrictions.
 616 Still others only allow unrestricted use for certain types of variables [5], or give users a
 617 choice [35, 34]. We discuss systems that include such restrictions, and their reasons for it,
 618 in Section 6.4. Systems D and DC do not restrict the codomain of irrelevant Π -types.

619 **Mechanized metatheory (MM)?** Have the metatheoretic results in the paper been devel-
 620 oped and checked using a proof assistant? Our work is unique in this respect compared
 621 to similar systems.

6.4 Irrelevant quantification and restrictions on Π types

622 In this paper, we use irrelevance to mean erasure—i.e. the property that some arguments
 623 may be removed from the term without affecting the runtime behavior of the operational
 624 semantics. However, there is also a question of what happens to these arguments during

626 type checking. Do these arguments affect the definition of type equality? If not, can they
 627 similarly be erased as part of a type checking algorithm?

628 Abel and Scherer [4] noted that although some arguments are irrelevant at run-time, they
 629 can still be relevant when determining type equality. If the definitional equality of the type
 630 system is typed, and if the type system allows *large eliminations*, i.e. the definition of a type
 631 via case analysis, then it can be difficult to incorporate type erasure into a type-directed
 632 equivalence algorithm. Fundamentally, the algorithm is driven by type information (instead
 633 of the structure of terms) and if irrelevant arguments can influence those types, they cannot
 634 be erased.

635 The key difficulty is demonstrated by the following example, taken from Abel and
 636 Scherer [4]. In the presence of large eliminations, and without any other restrictions, one
 637 would be able to type check the following term t , reproduced below in the syntax of DC
 638 extended with booleans.²²

$$T : \mathbf{Bool} \rightarrow \text{type}$$

$$T = \lambda^+ x : \mathbf{Bool}. \text{if } x \text{ then } (\mathbf{Bool} \rightarrow \mathbf{Bool}) \text{ else } \mathbf{Bool}$$

$$t = \lambda^- F : \Pi^- x : \mathbf{Bool}. (T x \rightarrow T x) \rightarrow \text{type}.$$

$$639 \quad \lambda^+ f : (F \mathbf{False}^- (\lambda^+ x : \mathbf{Bool}. x)^+) \rightarrow \mathbf{Bool}.$$

$$\lambda^+ n : F \mathbf{True}^- (\lambda^+ x : (\mathbf{Bool} \rightarrow \mathbf{Bool}). \lambda^+ y : \mathbf{Bool}. x \ y^+)^+.$$

$$f (n \triangleright \gamma)^+$$

640 The DC coercion proof γ marks the point where conversion must be used in this example.
 641 This term is well-typed in a setting where the type system can derive an equality between the
 642 type of the parameter to f and the type of the argument n . These two types differ in only
 643 their irrelevant components, so they should be equated. In System DC, which, like ICC*,
 644 includes rules that erase types as part of type equivalence, we can define a coercion proof γ
 645 that witnesses the equality between the two types. Such a proof is composed transitively
 646 by first using the erasure-based reflexivity rule (rule AN-ERASEEQ) to change the implicit
 647 argument to F , and then using η -equivalence with the explicit argument.

$$|F \mathbf{False}^- (\lambda^+ x : \mathbf{Bool}. x)^+| = F \square^- (\lambda^+ x. x)^+$$

$$648 \quad =_{\beta\eta} F \square^- (\lambda^+ x. \lambda^+ y. x \ y^+)^+$$

$$= |F \mathbf{True}^- (\lambda^+ x : (\mathbf{Bool} \rightarrow \mathbf{Bool}). \lambda^+ y : \mathbf{Bool}. x \ y^+)^+|$$

649 This example causes no difficulty for type checking in DC because it does not use a type-
 650 directed equivalence algorithm. Indeed, all of the information required by the algorithm is
 651 already present in the term.

652 However, it is difficult to extend a type-directed equivalence algorithm, particularly
 653 one that includes the η -equivalence rule for the unit type, so that it can equate these two
 654 types. Therefore, Abel and Scherer proposed restrictions on the use of irrelevantly quantified
 655 variables, not just in abstractions, but also in the codomain of irrelevant quantifiers. These
 656 restrictions were lifted in [5] for sized types, on the observation that they were irrelevant to
 657 the *shape* of types and therefore were not relevant to the operation of the type-equivalence
 658 algorithm. Nuyts and Devriese [35] expand on this idea and develop a modal type theory

²²Note that many systems support the large elimination needed for this example, even in the absence of inductive types. For example, in Systems D and DC we can use a Church-style encoding of booleans.

659 that includes, along with other modalities, irrelevance and shape-irrelevance in a unified
 660 framework.

661 However, note that the issue with this example is the desire to use erasure as part of
 662 a type-directed algorithm, not in the use of a typed equivalence in the language definition
 663 itself, nor the fact that the definition of type-equivalence ignores irrelevant components.

664 Because System DC does not rely on this sort of algorithm, it demonstrates that decidable
 665 type checking, irrelevance and large eliminations are compatible. Indeed, System DC requires
 666 the use of erasure in one of its key coercion proofs. On the other hand, one could worry
 667 that this example would cause trouble for System D. The fact that type checking is already
 668 undecidable in that language is not an excuse: a compiler like GHC will need to implement
 669 some type inference algorithm and should identify some subset of the language that it will
 670 support. This example demonstrates that type-directed algorithms are not a good fit for this
 671 setting, but does not rule out the algorithms sketched in Section 2.3.

672 7 Conclusion

673 Overall, this work demonstrates the benefits of developing the metatheory of type systems
 674 using a proof assistant. Although establishing the original development in prior work [47]
 675 took significant effort, we are able to build on that foundation when considering extensions
 676 of the system.

677 Furthermore, the availability of this sort of proof as a software engineering artifact makes it
 678 easier to bring on new collaborators. Because all of the proofs are machine-checked, newcomers
 679 can easily find what parts of the system need extension, even without understanding all
 680 details of how everything fits together. As a result, this sort of effort can be shared among
 681 many more collaborators, who can assist in maintaining the results.

682 Finally, the confidence gained from machine-checked proofs is also important. The failure
 683 of preservation for parallel η -reduction is obvious only in hindsight, and could have been
 684 easily overlooked in a pen-and-paper proof. At the same time, the automatic reassurance
 685 that this failure does not interact with the main soundness and decidability results is also
 686 welcome.

687 — References —

- 688 1 Andreas Abel and Thorsten Altenkirch. A partial type checking algorithm for Type:Type. *Electronic Notes in Theoretical Computer Science*, 229(5):3 – 17, 2011. Proceedings of the
 689 Second Workshop on Mathematically Structured Functional Programming (MSFP 2008).
 690 [doi:10.1016/j.entcs.2011.02.013](https://doi.org/10.1016/j.entcs.2011.02.013).
- 692 2 Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by evaluation for Martin-
 693 L  f type theory with typed equality judgements. In *22nd Annual IEEE Symposium on Logic
 694 in Computer Science (LICS 2007)*, pages 3–12. IEEE, 2007.
- 695 3 Andreas Abel, Joakim   hman, and Andrea Vezzosi. Decidability of conversion for type theory
 696 in type theory. *Proceedings of the ACM on programming languages*, 2(POPL):23, 2017.
- 697 4 Andreas Abel and Gabriel Scherer. On irrelevance and algorithmic equality in predicative type
 698 theory. *Logical Methods in Computer Science*, 8(1), 2012. [doi:10.2168/LMCS-8\(1:29\)2012](https://doi.org/10.2168/LMCS-8(1:29)2012).
- 699 5 Andreas Abel, Andrea Vezzosi, and Th  o Winterhalter. Normalization by evaluation for sized
 700 dependent types. *PACMPL*, 1(ICFP):33:1–33:30, 2017. [doi:10.1145/3110277](https://doi.org/10.1145/3110277).
- 701 6 ROBIN ADAMS. Pure type systems with judgemental equality. *Journal of Functional
 702 Programming*, 16(2):219–246, 2006. [doi:10.1017/S0956796805005770](https://doi.org/10.1017/S0956796805005770).

703 7 Robert Atkey. The syntax and semantics of quantitative type theory. In *LICS '18: 33rd*
 704 *Annual ACM/IEEE Symposium on Logic in Computer Science, July 9–12, 2018, Oxford,*
 705 *United Kingdom*, 2018. doi:10.1145/3209108.3209189.

706 8 Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie
 707 Weirich. Engineering formal metatheory. In *ACM SIGPLAN-SIGACT Symposium on Principles*
 708 *of Programming Languages (POPL)*, pages 3–15, January 2008.

709 9 Brian Aydemir and Stephanie Weirich. Lngen: Tool support for locally nameless represen-
 710 tations. Technical Report MS-CIS-10-24, Computer and Information Science, University of
 711 Pennsylvania, June 2010.

712 10 H. P. Barendregt. *Lambda Calculi with Types*, page 117–309. Oxford University Press, Inc.,
 713 USA, 1993.

714 11 Hendrik Pieter Barendregt. *The Lambda Calculus - its Syntax and Semantics*, volume 103 of
 715 *Studies in logic and the foundations of mathematics*. North-Holland, 1985.

716 12 Henk Barendregt. Introduction to generalized type systems. *J. Funct. Program.*, 1(2):125–154,
 717 1991.

718 13 Bruno Barras and Bruno Bernardo. The implicit calculus of constructions as a programming
 719 language with dependent types. In Roberto Amadio, editor, *Foundations of Software Science*
 720 *and Computational Structures*, pages 365–379, Berlin, Heidelberg, 2008. Springer Berlin
 721 Heidelberg.

722 14 Edwin Brady. *Practical Implementation of a Dependently Typed Functional Programming*
 723 *Language*. PhD thesis, Durham University, 2005.

724 15 Luca Cardelli. A polymorphic λ -calculus with Type:Type. Technical report, DEC SRC, 1986.
 725 URL: <http://lucacardelli.name/Papers/TypeType.A4.pdf>.

726 16 Thierry Coquand. A calculus of constructions. manuscript, November 1986.

727 17 Thierry Coquand. An algorithm for testing conversion in type theory. In Gérard Huet and
 728 Gordon Plotkin, editors, *Logical Frameworks*, pages 255–279. Cambridge University Press,
 729 New York, NY, USA, 1991.

730 18 Thierry Coquand. An algorithm for type-checking dependent types. *Science of computer*
 731 *programming.*, 26(1-3):167,177, 1996-05.

732 19 Thierry Coquand and Makoto Takeyama. An implementation of type: type. In *International*
 733 *Workshop on Types for Proofs and Programs*, pages 53–62. Springer, 2000.

734 20 Richard A. Eisenberg. *Dependent Types in Haskell: Theory and Practice*. PhD thesis, University
 735 of Pennsylvania, 2016.

736 21 Richard A. Eisenberg and Stephanie Weirich. Dependently typed programming with singletons.
 737 In *ACM SIGPLAN Haskell Symposium*, 2012.

738 22 Adam Gundry. *Type Inference, Haskell and Dependent Types*. PhD thesis, University of
 739 Strathclyde, 2013.

740 23 Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. *J. ACM*,
 741 40(1):143–184, January 1993. doi:10.1145/138027.138060.

742 24 Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type theory.
 743 *ACM Trans. Comput. Logic*, 6(1):61–101, January 2005. doi:10.1145/1042038.1042041.

744 25 J. Roger Hindley. *The Church-Rosser property and a result in combinatory logic*. PhD thesis,
 745 University of Newcastle upon Tyne, 1964.

746 26 Csongor Kiss, Tony Field, Susan Eisenbach, and Simon Peyton Jones. Higher-order type-level
 747 programming in haskell. *Proc. ACM Program. Lang.*, 3(ICFP), July 2019. doi:10.1145/
 748 3341706.

749 27 Sam Lindley and Conor McBride. Hasochism: the pleasure and pain of dependently typed
 750 Haskell programming. In *ACM SIGPLAN Haskell Symposium*, 2013.

751 28 Z. Luo. ECC, an extended calculus of constructions. In *[1989] Proceedings. Fourth Annual*
 752 *Symposium on Logic in Computer Science*, pages 386–395, 1989.

753 29 Per Martin-Löf. A theory of types. Unpublished manuscript, 1971.

754 30 Per Martin-Löf. An intuitionistic theory of types: predicative part. In H.E. Rose and J.C.
755 Shepherdson, editors, *Logic Colloquium '73, Proceedings of the Logic Colloquium*, volume 80
756 of *Studies in Logic and the Foundations of Mathematics*, pages 73–118. North-Holland, 1975.

757 31 Per Martin-Löf. *Intuitionistic type theory*, volume 1 of *Studies in Proof Theory*. Bibliopolis,
758 1984.

759 32 Alexandre Miquel. The implicit calculus of constructions: Extending pure type systems with
760 an intersection type binder and subtyping. In *Proceedings of the 5th International Conference*
761 on *Typed Lambda Calculi and Applications*, TLCA'01, pages 344–359, Berlin, Heidelberg, 2001.
762 Springer-Verlag.

763 33 Nathan Mishra-Linger and Tim Sheard. Erasure and polymorphism in pure type systems. In
764 Roberto M. Amadio, editor, *Foundations of Software Science and Computational Structures*,
765 11th International Conference, FOSSACS 2008, Held as Part of the Joint European Conferences
766 on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29 - April 6,
767 2008. *Proceedings*, volume 4962 of *Lecture Notes in Computer Science*, pages 350–364. Springer,
768 2008. doi:10.1007/978-3-540-78499-9_25.

769 34 Andreas Nuyts and Dominique Devriese. Degrees of relatedness: A unified framework for
770 parametricity, irrelevance, ad hoc polymorphism, intersections, unions and algebra in dependent
771 type theory. In Anuj Dawar and Erich Grädel, editors, *Proceedings of the 33rd Annual*
772 *ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,*
773 2018, pages 779–788. ACM, 2018. doi:10.1145/3209108.3209119.

774 35 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. Parametric quantifiers for dependent
775 type theory. *Proc. ACM Program. Lang.*, 1(ICFP):32:1–32:29, August 2017. doi:10.1145/
776 3110276.

777 36 Frank Pfenning. On the undecidability of partial polymorphic type reconstruction. Technical
778 report, Carnegie Mellon University, Pittsburgh, PA, USA, 1992.

779 37 Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal type theory. In
780 J. Halpern, editor, *Proceedings of the 16th Annual Symposium on Logic in Computer Science*
781 (*LICS'01*), pages 221–230, Boston, Massachusetts, June 2001. IEEE Computer Society Press.

782 38 Barry K. Rosen. Tree-manipulating systems and Church-Rosser theorems. *J. ACM*, 20(1):160–
783 187, January 1973. doi:10.1145/321738.321750.

784 39 Alejandro Serrano, Jurriaan Hage, Dimitrios Vytiniotis, and Simon Peyton Jones. Guarded
785 impredicative polymorphism. In Jeffrey S. Foster and Dan Grossman, editors, *Proceedings of*
786 *the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation*,
787 *PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018*, pages 783–796. ACM, 2018. doi:
788 10.1145/3192366.3192389.

789 40 Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
790 Sarkar, and Rok Strniša. Ott: Effective tool support for the working semanticist. *Journal of*
791 *Functional Programming*, 20(1), January 2010.

792 41 Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter.
793 Coq coq correct! verification of type checking and erasure for coq, in coq. *Proc. ACM Program.*
794 *Lang.*, 4(POPL):8:1–8:28, 2020. doi:10.1145/3371076.

795 42 M. Sulzmann, M. Chakravarty, S. Peyton Jones, and K. Donnelly. System F with type equality
796 coercions. In François Pottier and George C. Necula, editors, *Proceedings of TLDI'07: 2007*
797 *ACM SIGPLAN International Workshop on Types in Languages Design and Implementation*,
798 *Nice, France, January 16, 2007*, pages 53–66. ACM, 2007.

799 43 The Coq Development Team. The Coq proof assistant, version 8.8.0, April 2018. doi:
800 10.5281/zenodo.1219885.

801 44 Dimitrios Vytiniotis, Simon L. Peyton Jones, Tom Schrijvers, and Martin Sulzmann. Out-
802 sidein(x) modular type inference with local assumptions. *J. Funct. Program.*, 21(4-5):333–412,
803 2011. doi:10.1017/S0956796811000098.

804 45 Stephanie Weirich. Depending on types, 2014. Invited keynote given at ICFP 2014.

805 46 Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. System FC with explicit kind
806 equality. In *Proceedings of The 18th ACM SIGPLAN International Conference on Functional*
807 *Programming*, ICFP '13, pages 275–286, Boston, MA, September 2013.

808 47 Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo de Amorim, and Richard A.
809 Eisenberg. A specification for dependent types in Haskell. *Proc. ACM Program. Lang.*,
810 1(ICFP):31:1–31:29, August 2017. doi:10.1145/3110275.

811 48 J.B. Wells. Typability and type checking in System F are equivalent and undecidable. *Annals*
812 *of Pure and Applied Logic*, 98(1):111 – 156, 1999. doi:10.1016/S0168-0072(98)00047-5.

813 49 A.K. Wright and M. Felleisen. A syntactic approach to type soundness. *Inf. Comput.*,
814 115(1):38–94, November 1994. doi:10.1006/inco.1994.1093.

815 50 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira. Kind inference for datatypes.
816 *Proc. ACM Program. Lang.*, 4(POPL):53:1–53:28, 2020. doi:10.1145/3371121.

817 A Complete system specification

818 The complete type system appears in here including the actual rules that we used, auto-
 819 matically generated by Ott. For presentation purposes, we have removed some redundant
 820 hypotheses from these rules in the main body of the paper when they were implied via
 821 regularity. We have proven (in Coq) that these additional premises are admissible, so their
 822 removal does not change the type system.²³ These redundant hypotheses are marked by
 823 square brackets in the complete system below.

824 We need to include these redundant hypotheses in our rules for two reasons. First,
 825 sometimes these hypotheses simplify the reasoning and allow us to prove properties more
 826 independently of one another. For example, in the rule E-BETA rule, we require a_2 to have
 827 the same type as a_1 . However, this type system supports the preservation lemma so this
 828 typing premise will always be derivable. But, it is convenient to prove the regularity property
 829 early, so we include that hypothesis in the definition of the type system.

830 Another source of redundancy comes from our use of the Coq proof assistant. Some of
 831 our proofs require the use of induction on judgements that are not direct premises, but are
 832 derived from other premises via regularity. These derivations are always the same height or
 833 shorter than the original, so this use of induction is justified. However, while Coq natively
 834 supports proofs by induction on derivations, it does not natively support induction on the
 835 *heights* of derivations. Therefore, to make these induction hypotheses available for reasoning,
 836 we include them as additional premises.

837 Finally, instead of the usual syntactic distinction of values (as in Figure 2), our formal-
 838 ization identifies values using the judgement [Value a], overloaded for both System D and
 839 System DC terms.

840 B Top-level signatures

841 Our results are proven with respect to the following top-level signatures:

$$842 \quad \Sigma_1 = \emptyset \cup \{\mathbf{Fix} \sim \lambda^- x:\text{type}. \lambda^+ y:x. (y(\mathbf{Fix}[x] y)) : \Pi^- x:\text{type}. (x \rightarrow x) \rightarrow x\}$$

$$843 \quad \Sigma_0 = |\Sigma_1|$$

844 However, our Coq proofs use these signature definitions opaquely. As a result, any pair
 845 of top-level signatures are compatible with the definition of the languages as long as they
 846 satisfy the following properties.

- 847 1. $\models \Sigma_0$
- 848 2. $\vdash \Sigma_1$
- 849 3. $\Sigma_0 = |\Sigma_1|$

²³ `ext_invert.v:E_Pi2,E_Abs2,E_CPi2,E_CAbs2,E_Fam2, ext_invert.v:E_Wff2,E_PiCong2,E_AbsCong2,E_CPiCong2,E_CAbsCong2, ext_red.v:E_Beta2, fc_invert.v:An_Pi_exists2,An_Abs_exists2,An_CPi_exists2,An_CAbs_exists2,An_Fam2, fc_invert.v:An_Sym2,An_Trans2,An_AbsCong_exists2, fc_invert.v:An_AppCong2,An_CPiCong_exists2,An_CAppCong2`

850 C Reduction relations

851 C.1 Primitive reduction

852	$\models a > b$	<i>(primitive reductions on erased terms)</i>	
853	$\frac{\text{BETA-APPABS}}{\models (\lambda^+ x. v) \ b^+ > v\{b/x\}}$	$\frac{\text{BETA-APPABSIRREL} \quad [\text{Value } (\lambda^- x. v)]}{\models (\lambda^- x. v) \ \square^- > v\{\square/x\}}$	$\frac{\text{BETA-CAPPCABS}}{\models (\Lambda c. a')[\bullet] > a'\{\bullet/c\}}$
854	$\frac{\text{BETA-AXIOM} \quad F \sim a : A \in \Sigma_0}{\models F > a}$		

855 C.2 System D one-step reduction

			<i>(single-step head reduction for implicit language)</i>
856	$\boxed{\models a \rightsquigarrow b}$		
	E-ABSTERM	E-APPLEFT	E-APPLEFTIRREL
	$\models a \rightsquigarrow a'$	$\models a \rightsquigarrow a'$	$\models a \rightsquigarrow a'$
857	$\models \lambda^- x. a \rightsquigarrow \lambda^- x. a'$	$\models a b^+ \rightsquigarrow a' b^+$	$\models a \square^- \rightsquigarrow a' \square^-$
			E-CAPPLEFT
			$\models a \rightsquigarrow a'$
			$\models a[\bullet] \rightsquigarrow a'[\bullet]$
858	E-APPABS	E-APPABSIRREL	E-CAPPCABS
		$[\text{Value } (\lambda^- x. v)]$	
	$\models (\lambda^+ x. v) a^+ \rightsquigarrow v\{a/x\}$	$\models (\lambda^- x. v) \square^- \rightsquigarrow v\{\square/x\}$	$\models (\Lambda c. b)[\bullet] \rightsquigarrow b\{\bullet/c\}$
			E-AXIOM
		$F \sim a : A \in \Sigma_0$	
859		$\models F \rightsquigarrow a$	

860 C.3 System DC one-step reduction

861	$\Gamma \vdash a \rightsquigarrow b$	<i>(single-step, weak head reduction to values for annotated language)</i>	
	AN-APPLEFT $\frac{\Gamma \vdash a \rightsquigarrow a'}{\Gamma \vdash a \ b^\rho \rightsquigarrow a' \ b^\rho}$	AN-APPABS $\frac{[\text{Value } (\lambda^\rho x : A.w)]}{\Gamma \vdash (\lambda^\rho x : A.w) \ a^\rho \rightsquigarrow w\{a/x\}}$	AN-CAPLEFT $\frac{\Gamma \vdash a \rightsquigarrow a'}{\Gamma \vdash a[\gamma] \rightsquigarrow a'[\gamma]}$
862			
	AN-CAPPCABS $\frac{}{\Gamma \vdash (\Lambda c : \phi.b)[\gamma] \rightsquigarrow b\{\gamma/c\}}$	AN-ABSTERM $\frac{\Gamma \vdash A : \text{type} \quad \Gamma, x : A \vdash b \rightsquigarrow b'}{\Gamma \vdash (\lambda^- x : A.b) \rightsquigarrow (\lambda^- x : A.b')}$	AN-AXIOM $\frac{F \sim a : A \in \Sigma_1}{\Gamma \vdash F \rightsquigarrow a}$
863			
	AN-CONVTERM $\frac{\Gamma \vdash a \rightsquigarrow a'}{\Gamma \vdash a \triangleright \gamma \rightsquigarrow a' \triangleright \gamma}$	AN-COMBINE $\frac{[\text{Value } v]}{\Gamma \vdash (v \triangleright \gamma_1) \triangleright \gamma_2 \rightsquigarrow v \triangleright (\gamma_1; \gamma_2)}$	
864			
	AN-PUSH $\frac{[\text{Value } v]}{\Gamma; \widetilde{\Gamma} \vdash \gamma : \Pi^\rho x_1 : A_1.B_1 \sim \Pi^\rho x_2 : A_2.B_2 \quad b' = b \triangleright \text{sym}(\text{piFst } \gamma) \quad \gamma' = \gamma @ (b' \models_{\text{piFst } \gamma} b)}{\Gamma \vdash (v \triangleright \gamma) \ b^\rho \rightsquigarrow (v \ b'^\rho) \triangleright \gamma'}$	AN-CPUSH $\frac{[\text{Value } v]}{\Gamma; \widetilde{\Gamma} \vdash \gamma : \forall c_1 : \phi_1.A_1 \sim \forall c_2 : \phi_2.A_2 \quad \gamma'_1 = \gamma_1 \triangleright \text{sym}(\text{cpifst } \gamma) \quad \gamma' = \gamma @ (\gamma'_1 \sim \gamma_1)}{\Gamma \vdash (v \triangleright \gamma)[\gamma_1] \rightsquigarrow (v[\gamma'_1] \triangleright \gamma')}$	
865			

866 **C.4 Parallel reduction**

867	$\boxed{\vdash a \Rightarrow b}$	<i>(parallel reduction (implicit language))</i>		
		PAR-BETA		
	PAR-REFL	$\vdash a \Rightarrow (\lambda^+ x. a')$ $\vdash b \Rightarrow b'$	PAR-BETAIRREL	$\vdash a \Rightarrow (\lambda^- x. a')$ $\vdash a \square^- \Rightarrow a'\{\square/x\}$
868	$\vdash a \Rightarrow a$	$\vdash a b^+ \Rightarrow a'\{b'/x\}$	PAR-APP	$\vdash a \Rightarrow a'$ $\vdash b \Rightarrow b'$ $\vdash a b^+ \Rightarrow a' b'^+$
	PAR-APPIRREL	$\vdash a \Rightarrow a'$	PAR-CBETA	$\vdash a \Rightarrow (\Lambda c. a')$
869	$\vdash a \square^- \Rightarrow a' \square^-$	$\vdash a[\bullet] \Rightarrow a'\{\bullet/c\}$	PAR-CAPP	$\vdash a \Rightarrow a'$ $\vdash a[\bullet] \Rightarrow a'[\bullet]$
			PAR-ABS	$\vdash a \Rightarrow a'$ $\vdash \lambda^\rho x. a \Rightarrow \lambda^\rho x. a'$
	PAR-PI		PAR-CPI	$\vdash A \Rightarrow A'$ $\vdash B \Rightarrow B'$ $\vdash A_1 \Rightarrow A'_1$
870	$\vdash A \Rightarrow A'$ $\vdash B \Rightarrow B'$	$\vdash a \Rightarrow a'$	$\vdash \forall c: A \sim_{A_1} B. a \Rightarrow \forall c: A' \sim_{A'_1} B'. a'$	
	PAR-AXIOM	PAR-ETA	PAR-ETAIRREL	PAR-ETAC
871	$F \sim a : A \in \Sigma_0$	$\vdash b \Rightarrow b'$ $a = b x^+$	$\vdash b \Rightarrow b'$ $a = b \square^-$	$\vdash b \Rightarrow b'$ $a = b[\bullet]$
	$\vdash F \Rightarrow a$	$\vdash \lambda^+ x. a \Rightarrow b'$	$\vdash \lambda^- x. a \Rightarrow b'$	$\vdash \Lambda c. a \Rightarrow b'$

872 **D Full system specification: System D type system**

873	$\boxed{\Gamma \vdash a : A}$	<i>(typing)</i>		
	E-STAR	E-VAR	E-PI	E-ABS
	$\vdash \Gamma$	$\vdash \Gamma \quad x : A \in \Gamma$	$\vdash \Gamma, x : A \vdash B : \text{type}$ $[\Gamma \vdash A : \text{type}]$	$\Gamma, x : A \vdash a : B$ $[\Gamma \vdash A : \text{type}]$ $(\rho = +) \vee (x \notin \text{fv } a)$
874	$\vdash \Gamma \vdash \text{type} : \text{type}$	$\vdash \Gamma \vdash x : A$	$\vdash \Gamma \vdash \Pi^\rho x : A.B : \text{type}$	$\vdash \Gamma \vdash \lambda^\rho x. a : \Pi^\rho x : A.B$
	E-APP	E-IAAPP	E-CONV	E-CP1
	$\Gamma \vdash b : \Pi^+ x : A.B$ $\vdash \Gamma \vdash a : A$	$\Gamma \vdash b : \Pi^- x : A.B$ $\vdash \Gamma \vdash a : A$	$\Gamma \vdash a : A$ $\Gamma; \widetilde{\Gamma} \vdash A \equiv B : \text{type}$ $[\Gamma \vdash B : \text{type}]$	$\Gamma, c : \phi \vdash B : \text{type}$ $[\Gamma \vdash \phi \text{ ok}]$
875	$\vdash \Gamma \vdash b a^+ : B\{a/x\}$	$\vdash \Gamma \vdash b \square^- : B\{a/x\}$	$\vdash \Gamma \vdash a : B$	$\vdash \Gamma \vdash \forall c : \phi. B : \text{type}$
	E-CABS	E-CAPP	E-FAM	
	$\Gamma, c : \phi \vdash a : B$ $[\Gamma \vdash \phi \text{ ok}]$	$\Gamma \vdash a_1 : \forall c : (a \sim_A b). B_1$ $\Gamma; \widetilde{\Gamma} \vdash a \equiv b : A$	$\vdash \Gamma \quad F \sim a : A \in \Sigma_0$ $[\emptyset \vdash A : \text{type}]$	
876	$\vdash \Gamma \vdash \Lambda c. a : \forall c : \phi. B$	$\vdash \Gamma \vdash a_1[\bullet] : B_1\{\bullet/c\}$	$\vdash \Gamma \vdash F : A$	
	$\boxed{\Gamma \vdash \phi \text{ ok}}$	<i>(Prop wellformedness)</i>		
877		E-WFF		
		$\Gamma \vdash a : A \quad \Gamma \vdash b : A$ $[\Gamma \vdash A : \text{type}]$		
878		$\vdash \Gamma \vdash a \sim_A b \text{ ok}$		

$879 \quad \boxed{\Gamma; \Delta \models \phi_1 \equiv \phi_2} \quad (prop\ equality)$	$\frac{\text{E-PROP CONG} \quad \Gamma; \Delta \models A_1 \equiv A_2 : A \quad \Gamma; \Delta \models B_1 \equiv B_2 : A}{\Gamma; \Delta \models A_1 \sim_A B_1 \equiv A_2 \sim_A B_2}$	$\frac{\text{E-IsoConv} \quad \Gamma; \Delta \models A \equiv B : \text{type} \quad \Gamma \models A_1 \sim_A A_2 \text{ ok} \quad \Gamma \models A_1 \sim_B A_2 \text{ ok}}{\Gamma; \Delta \models A_1 \sim_A A_2 \equiv A_1 \sim_B A_2}$
$880 \quad \frac{\text{E-CPiFST} \quad \Gamma; \Delta \models \forall c: \phi_1. B_1 \equiv \forall c: \phi_2. B_2 : \text{type}}{\Gamma; \Delta \models \phi_1 \equiv \phi_2}$		
$881 \quad \boxed{\Gamma; \Delta \models a \equiv b : A} \quad (definitional\ equality)$	$\frac{\text{E-ASSN} \quad \models \Gamma \quad c : (a \sim_A b) \in \Gamma}{\Gamma; \Delta \models a \equiv b : A}$	$\frac{\text{E-REFL} \quad \Gamma \models a : A}{\Gamma; \Delta \models a \equiv a : A}$
$882 \quad \frac{\text{E-SYM} \quad \Gamma; \Delta \models b \equiv a : A}{\Gamma; \Delta \models a \equiv b : A}$	$\frac{\text{E-TRANS} \quad \Gamma; \Delta \models a \equiv a_1 : A \quad \Gamma; \Delta \models a_1 \equiv b : A}{\Gamma; \Delta \models a \equiv b : A}$	
$883 \quad \frac{\text{E-BETA} \quad \begin{array}{c} \Gamma \models a_1 : B \\ [\Gamma \models a_2 : B] \quad \models a_1 > a_2 \end{array}}{\Gamma; \Delta \models a_1 \equiv a_2 : B}$	$\frac{\text{E-PI CONG} \quad \begin{array}{c} \Gamma; \Delta \models A_1 \equiv A_2 : \text{type} \\ \Gamma, x : A_1; \Delta \models B_1 \equiv B_2 : \text{type} \end{array}}{\Gamma; \Delta \models (\Pi^\rho x : A_1. B_1) \equiv (\Pi^\rho x : A_2. B_2) : \text{type}}$	$\frac{\text{E-APP CONG} \quad \begin{array}{c} [\Gamma \models A_1 : \text{type}] \\ \Gamma; \Delta \models a_1 \equiv b_1 : \Pi^+ x : A. B \\ \Gamma; \Delta \models a_2 \equiv b_2 : A \end{array}}{\Gamma; \Delta \models a_1 a_2^+ \equiv b_1 b_2^+ : B\{a_2/x\}}$
$884 \quad \frac{\text{E-ABSCONG} \quad \begin{array}{c} \Gamma, x : A_1; \Delta \models b_1 \equiv b_2 : B \\ [\Gamma \models A_1 : \text{type}] \\ (\rho = +) \vee (x \notin \text{fv } b_1) \\ (\rho = +) \vee (x \notin \text{fv } b_2) \end{array}}{\Gamma; \Delta \models (\lambda^\rho x. b_1) \equiv (\lambda^\rho x. b_2) : \Pi^\rho x : A_1. B}$		
$885 \quad \frac{\text{E-IAPP CONG} \quad \begin{array}{c} \Gamma; \Delta \models a_1 \equiv b_1 : \Pi^- x : A. B \\ \Gamma \models a : A \end{array}}{\Gamma; \Delta \models a_1 \square^- \equiv b_1 \square^- : B\{a/x\}}$	$\frac{\text{E-PI FST} \quad \Gamma; \Delta \models \Pi^\rho x : A_1. B_1 \equiv \Pi^\rho x : A_2. B_2 : \text{type}}{\Gamma; \Delta \models A_1 \equiv A_2 : \text{type}}$	$\frac{\text{E-CPiCONG} \quad \begin{array}{c} \Gamma; \Delta \models \phi_1 \equiv \phi_2 \\ \Gamma, c : \phi_1; \Delta \models A \equiv B : \text{type} \\ [\Gamma \models \phi_1 \text{ ok}] \\ [\Gamma \models \forall c : \phi_1. A : \text{type}] \\ [\Gamma \models \forall c : \phi_2. B : \text{type}] \end{array}}{\Gamma; \Delta \models \forall c : \phi_1. A \equiv \forall c : \phi_2. B : \text{type}}$
$886 \quad \frac{\text{E-PI SND} \quad \begin{array}{c} \Gamma; \Delta \models \Pi^\rho x : A_1. B_1 \equiv \Pi^\rho x : A_2. B_2 : \text{type} \\ \Gamma; \Delta \models a_1 \equiv a_2 : A_1 \end{array}}{\Gamma; \Delta \models B_1\{a_1/x\} \equiv B_2\{a_2/x\} : \text{type}}$		
$887 \quad \frac{\text{E-CABS CONG} \quad \begin{array}{c} \Gamma, c : \phi_1; \Delta \models a \equiv b : B \\ [\Gamma \models \phi_1 \text{ ok}] \end{array}}{\Gamma; \Delta \models (\Lambda c. a) \equiv (\Lambda c. b) : \forall c : \phi_1. B}$	$\frac{\text{E-CAPP CONG} \quad \begin{array}{c} \Gamma; \Delta \models a_1 \equiv b_1 : \forall c : (a \sim_A b). B \\ \Gamma; \widetilde{\Gamma} \models a \equiv b : A \end{array}}{\Gamma; \Delta \models a_1[\bullet] \equiv b_1[\bullet] : B\{\bullet/c\}}$	

$\begin{array}{c} \text{E-CPiSND} \\ \Gamma; \Delta \models \forall c: (a_1 \sim_A a_2). B_1 \equiv \forall c: (a'_1 \sim_{A'} a'_2). B_2 : \text{type} \\ \frac{\Gamma; \tilde{\Gamma} \models a_1 \equiv a_2 : A \quad \Gamma; \tilde{\Gamma} \models a'_1 \equiv a'_2 : A'}{\Gamma; \Delta \models B_1 \{ \bullet / c \} \equiv B_2 \{ \bullet / c \} : \text{type}} \end{array}$	$\begin{array}{c} \text{E-CAST} \\ \Gamma; \Delta \models a \equiv b : A \\ \Gamma; \Delta \models a \sim_A b \equiv a' \sim_{A'} b' \\ \frac{}{\Gamma; \Delta \models a' \equiv b' : A'} \end{array}$	
$\begin{array}{c} \text{E-EQCONV} \\ \Gamma; \Delta \models a \equiv b : A \\ \Gamma; \tilde{\Gamma} \models A \equiv B : \text{type} \\ \frac{\Gamma; \Delta \models a \equiv b : B}{\Gamma; \Delta \models A \equiv A' : \text{type}} \end{array}$	$\begin{array}{c} \text{E-ETAREL} \\ \Gamma \models b : \Pi^+ x : A. B \\ a = b \ x^+ \\ \frac{}{\Gamma; \Delta \models \lambda^+ x. a \equiv b : \Pi^+ x : A. B} \end{array}$	
$\begin{array}{c} \text{E-ETAIRREL} \\ \Gamma \models b : \Pi^- x : A. B \\ a = b \ \square^- \\ \frac{}{\Gamma; \Delta \models \lambda^- x. a \equiv b : \Pi^- x : A. B} \end{array}$	$\begin{array}{c} \text{E-ETAC} \\ \Gamma \models b : \forall c : \phi. B \\ a = b[\bullet] \\ \frac{}{\Gamma; \Delta \models \Lambda c. a \equiv b : \forall c : \phi. B} \end{array}$	
$\boxed{\models \Gamma}$	$(context \ wellformedness)$	
$\begin{array}{c} \text{E-EMPTY} \\ \frac{}{\models \emptyset} \end{array}$	$\begin{array}{c} \text{E-CONSTM} \\ \models \Gamma \quad \Gamma \models A : \text{type} \\ \frac{x \notin \text{dom } \Gamma}{\models \Gamma, x : A} \end{array}$	$\begin{array}{c} \text{E-CONSCO} \\ \models \Gamma \\ \Gamma \models \phi \text{ ok} \quad c \notin \text{dom } \Gamma \\ \frac{}{\models \Gamma, c : \phi} \end{array}$
$\boxed{\models \Sigma}$	$(signature \ wellformedness)$	
$\begin{array}{c} \text{SIG-EMPTY} \\ \frac{}{\models \emptyset} \end{array}$	$\begin{array}{c} \text{SIG-CONSAx} \\ \models \Sigma \quad \emptyset \models A : \text{type} \\ \emptyset \models a : A \quad F \notin \text{dom } \Sigma \\ \frac{}{\models \Sigma \cup \{ F \sim a : A \}} \end{array}$	

896 E Full system specification: System DC type system

$\boxed{\Gamma \vdash a : A}$	$(typing)$
$\begin{array}{c} \text{AN-STAR} \\ \vdash \Gamma \\ \frac{}{\Gamma \vdash \text{type} : \text{type}} \end{array}$	$\begin{array}{c} \text{AN-PI} \\ \Gamma, x : A \vdash B : \text{type} \\ \frac{[\Gamma \vdash A : \text{type}]}{\Gamma \vdash \Pi^\rho x : A. B : \text{type}} \end{array}$
$\begin{array}{c} \text{AN-APP} \\ \Gamma \vdash b : \Pi^\rho x : A. B \\ \Gamma \vdash a : A \\ \frac{\Gamma \vdash b \ a^\rho : B\{a/x\}}{\Gamma \vdash a^\rho : B\{a/x\}} \end{array}$	$\begin{array}{c} \text{AN-CONV} \\ \Gamma \vdash a : A \\ \Gamma; \tilde{\Gamma} \vdash \gamma : A \sim B \\ \Gamma \vdash B : \text{type} \\ \frac{\Gamma \vdash a \triangleright \gamma : B}{\Gamma \vdash a^\rho : B\{a/x\}} \end{array}$
$\begin{array}{c} \text{AN-CAPP} \\ \Gamma \vdash a_1 : \forall c : a \sim_{A_1} b. B \\ \Gamma; \tilde{\Gamma} \vdash \gamma : a \sim b \\ \frac{\Gamma \vdash a_1[\gamma] : B\{\gamma/c\}}{\Gamma \vdash a^\rho : B\{a/x\}} \end{array}$	$\begin{array}{c} \text{AN-FAM} \\ \vdash \Gamma \quad F \sim a : A \in \Sigma_1 \\ \frac{[\emptyset \vdash A : \text{type}]}{\Gamma \vdash F : A} \end{array}$

<p>901 $\Gamma \vdash \phi \text{ ok}$</p>	$\text{AN-WFF} \quad \frac{\Gamma \vdash a : A \quad \Gamma \vdash b : B \quad A = B }{\Gamma \vdash a \sim_A b \text{ ok}}$
<p>902</p>	
<p>903 $\Gamma; \Delta \vdash \gamma : \phi_1 \sim \phi_2$</p>	$\text{coercion between props}$
<p>904</p>	$\text{AN-PROPCONG} \quad \frac{\Gamma; \Delta \vdash \gamma_1 : A_1 \sim A_2 \quad \Gamma; \Delta \vdash \gamma_2 : B_1 \sim B_2 \quad \Gamma \vdash A_1 \sim_A B_1 \text{ ok} \quad \Gamma \vdash A_2 \sim_A B_2 \text{ ok}}{\Gamma; \Delta \vdash (\gamma_1 \sim_A \gamma_2) : (A_1 \sim_A B_1) \sim (A_2 \sim_A B_2)}$
<p>905</p>	$\text{AN-CP1FST} \quad \frac{\Gamma; \Delta \vdash \gamma : \forall c : \phi_1. A_2 \sim \forall c : \phi_2. B_2}{\Gamma; \Delta \vdash \mathbf{cp1Fst} \gamma : \phi_1 \sim \phi_2}$
<p>906</p>	$\text{AN-ISOSYM} \quad \frac{\Gamma; \Delta \vdash \gamma : \phi_1 \sim \phi_2}{\Gamma; \Delta \vdash \mathbf{sym} \gamma : \phi_2 \sim \phi_1}$
<p>907</p>	$\text{AN-IsoConv} \quad \frac{\Gamma; \Delta \vdash \gamma : A \sim B \quad \Gamma \vdash a_1 \sim_A a_2 \text{ ok} \quad \Gamma \vdash a'_1 \sim_B a'_2 \text{ ok} \quad a_1 = a'_1 \quad a_2 = a'_2 }{\Gamma; \Delta \vdash \mathbf{conv} (a_1 \sim_A a_2) \sim_\gamma (a'_1 \sim_B a'_2) : (a_1 \sim_A a_2) \sim (a'_1 \sim_B a'_2)}$
<p>908</p>	$\text{AN-ERASEEQ} \quad \frac{\Gamma \vdash a : A \quad \Gamma \vdash b : B \quad a = b }{\Gamma; \Delta \vdash \mathbf{refl} a : a \sim a}$
<p>909</p>	$\text{AN-TRANS} \quad \frac{\Gamma; \Delta \vdash \gamma_1 : a \sim a_1 \quad \Gamma; \Delta \vdash \gamma_2 : a_1 \sim b \quad [\Gamma \vdash a : A] \quad [\Gamma \vdash a_1 : A_1] \quad [\Gamma; \widetilde{\Gamma} \vdash \gamma_3 : A \sim A_1]}{\Gamma; \Delta \vdash \mathbf{sym} \gamma : a \sim b} \quad \text{AN-BETA} \quad \frac{\Gamma \vdash a_1 : B_0 \quad \Gamma \vdash a_2 : B_1 \quad B_0 = B_1 \quad \models a_1 > a_2 }{\Gamma; \Delta \vdash \mathbf{red} a_1 a_2 : a_1 \sim a_2}$
<p>910</p>	$\text{AN-PICONG} \quad \frac{\Gamma; \Delta \vdash \gamma_1 : A_1 \sim A_2 \quad \Gamma, x : A_1; \Delta \vdash \gamma_2 : B_1 \sim B_2 \quad B_3 = B_2 \{x \triangleright \mathbf{sym} \gamma_1 / x\} \quad \Gamma \vdash \Pi^\rho x : A_1. B_1 : \text{type} \quad \Gamma \vdash \Pi^\rho x : A_2. B_3 : \text{type} \quad \Gamma \vdash (\Pi^\rho x : A_1. B_2) : \text{type}}{\Gamma; \Delta \vdash \Pi^\rho x : \gamma_1. \gamma_2 : (\Pi^\rho x : A_1. B_1) \sim (\Pi^\rho x : A_2. B_3)}$

	AN-ABSCONG
	$\Gamma; \Delta \vdash \gamma_1 : A_1 \sim A_2$
	$\Gamma, x : A_1; \Delta \vdash \gamma_2 : b_1 \sim b_2$
	$b_3 = b_2 \{x \triangleright \mathbf{sym} \gamma_1/x\}$
	$[\Gamma \vdash A_1 : \mathbf{type}]$
	$\Gamma \vdash A_2 : \mathbf{type}$
	$(\rho = +) \vee (x \notin \mathbf{fv} b_1)$
	$(\rho = +) \vee (x \notin \mathbf{fv} b_3)$
	$[\Gamma \vdash (\lambda^\rho x : A_1.b_2) : B]$
911	$\Gamma; \Delta \vdash (\lambda^\rho x : \gamma_1.\gamma_2) : (\lambda^\rho x : A_1.b_1) \sim (\lambda^\rho x : A_2.b_3)$
	AN-APPCONG
	$\Gamma; \Delta \vdash \gamma_1 : a_1 \sim b_1$
	$\Gamma; \Delta \vdash \gamma_2 : a_2 \sim b_2$
	$\Gamma \vdash a_1 \ a_2^\rho : A$
	$\Gamma \vdash b_1 \ b_2^\rho : B$
	$[\Gamma; \tilde{\Gamma} \vdash \gamma_3 : A \sim B]$
	$\Gamma; \Delta \vdash \gamma_1 \ \gamma_2^\rho : a_1 \ a_2^\rho \sim b_1 \ b_2^\rho$
	AN-PI SND
	$\Gamma; \Delta \vdash \gamma_1 : \Pi^\rho x : A_1.B_1 \sim \Pi^\rho x : A_2.B_2$
	$\Gamma; \Delta \vdash \gamma_2 : a_1 \sim a_2$
	$\Gamma \vdash a_1 : A_1$
	$\Gamma \vdash a_2 : A_2$
912	$\frac{\text{AN-PIFST} \quad \Gamma; \Delta \vdash \gamma : \Pi^\rho x : A_1.B_1 \sim \Pi^\rho x : A_2.B_2}{\Gamma; \Delta \vdash \mathbf{piFst} \ \gamma : A_1 \sim A_2}$
	$\frac{\Gamma; \Delta \vdash \gamma_1 @ \gamma_2 : B_1 \{a_1/x\} \sim B_2 \{a_2/x\}}{\Gamma; \Delta \vdash \gamma_1 @ \gamma_2 : B_1 \{a_1/x\} \sim B_2 \{a_2/x\}}$
	AN-CPICONG
	$\Gamma; \Delta \vdash \gamma_1 : \phi_1 \sim \phi_2$
	$\Gamma, c : \phi_1; \Delta \vdash \gamma_3 : B_1 \sim B_2$
	$B_3 = B_2 \{c \triangleright \mathbf{sym} \gamma_1/c\}$
	$\Gamma \vdash \forall c : \phi_1.B_1 : \mathbf{type}$
	$[\Gamma \vdash \forall c : \phi_2.B_3 : \mathbf{type}]$
	$\Gamma \vdash \forall c : \phi_1.B_2 : \mathbf{type}$
913	$\frac{}{\Gamma; \Delta \vdash (\forall c : \gamma_1.\gamma_3) : (\forall c : \phi_1.B_1) \sim (\forall c : \phi_2.B_3)}$
	AN-CABSCONG
	$\Gamma; \Delta \vdash \gamma_1 : \phi_1 \sim \phi_2$
	$\Gamma, c : \phi_1; \Delta \vdash \gamma_3 : a_1 \sim a_2$
	$a_3 = a_2 \{c \triangleright \mathbf{sym} \gamma_1/c\}$
	$\Gamma \vdash (\Lambda c : \phi_1.a_1) : \forall c : \phi_1.B_1$
	$\Gamma \vdash (\Lambda c : \phi_2.a_3) : \forall c : \phi_2.B_2$
	$\Gamma \vdash (\Lambda c : \phi_1.a_2) : B$
	$\Gamma; \tilde{\Gamma} \vdash \gamma_4 : \forall c : \phi_1.B_1 \sim \forall c : \phi_2.B_2$
914	$\frac{}{\Gamma; \Delta \vdash (\lambda c : \gamma_1.\gamma_3 @ \gamma_4) : (\Lambda c : \phi_1.a_1) \sim (\Lambda c : \phi_2.a_3)}$
	AN-CAPPCONG
	$\Gamma; \Delta \vdash \gamma_1 : a_1 \sim b_1$
	$\Gamma; \tilde{\Gamma} \vdash \gamma_2 : a_2 \sim b_2$
	$\Gamma; \tilde{\Gamma} \vdash \gamma_3 : a_3 \sim b_3$
	$\Gamma \vdash a_1[\gamma_2] : A$
	$\Gamma \vdash b_1[\gamma_3] : B$
	$[\Gamma; \tilde{\Gamma} \vdash \gamma_4 : A \sim B]$
	$\frac{}{\Gamma; \Delta \vdash \gamma_1(\gamma_2, \gamma_3) : a_1[\gamma_2] \sim b_1[\gamma_3]}$
	AN-CPISND
	$\Gamma; \Delta \vdash \gamma_1 : (\forall c_1 : a \sim_A a'.B_1) \sim (\forall c_2 : b \sim_B b'.B_2)$
	$\Gamma; \tilde{\Gamma} \vdash \gamma_2 : a \sim a'$
	$\Gamma; \tilde{\Gamma} \vdash \gamma_3 : b \sim b'$
915	$\frac{}{\Gamma; \Delta \vdash \gamma_1 @ (\gamma_2 \sim \gamma_3) : B_1 \{\gamma_2/c_1\} \sim B_2 \{\gamma_3/c_2\}}$
	AN-CAST
	$\Gamma; \Delta \vdash \gamma_1 : a \sim a'$
	$\Gamma; \Delta \vdash \gamma_2 : a \sim_A a' \sim b \sim_B b'$
	$\frac{}{\Gamma; \Delta \vdash \gamma_1 \triangleright \gamma_2 : b \sim b'}$
	AN-ISO SND
	$\Gamma; \Delta \vdash \gamma : (a \sim_A a') \sim (b \sim_B b')$
916	$\frac{}{\Gamma; \Delta \vdash \mathbf{isoSnd} \ \gamma : A \sim B}$
	AN-ETA
	$\Gamma \vdash b : \Pi^\rho x : A.B$
	$a = b \ x^\rho$
	$\frac{}{\Gamma; \Delta \vdash \mathbf{eta} \ b : (\lambda^\rho x : A.a) \sim b}$

$$\begin{array}{c}
 \text{AN-ETAC} \\
 \Gamma \vdash b : \forall c : \phi. B \\
 a = b[c] \\
 \hline
 \Gamma; \Delta \vdash \text{eta } b : (\Lambda c : \phi. a) \sim b
 \end{array}
 \quad 917$$

$$\begin{array}{c}
 918 \quad \boxed{\vdash \Gamma} \quad (\text{context wellformedness}) \\
 \begin{array}{c}
 \text{AN-EMPTY} \\
 \hline
 \vdash \emptyset
 \end{array}
 \quad
 \begin{array}{c}
 \text{AN-CONSTM} \\
 \vdash \Gamma \quad \Gamma \vdash A : \text{type} \\
 x \notin \text{dom } \Gamma \\
 \hline
 \vdash \Gamma, x : A
 \end{array}
 \quad
 \begin{array}{c}
 \text{AN-CONSCO} \\
 \vdash \Gamma \\
 \Gamma \vdash \phi \text{ ok} \quad c \notin \text{dom } \Gamma \\
 \hline
 \vdash \Gamma, c : \phi
 \end{array}
 \end{array}$$

$$\begin{array}{c}
 920 \quad \boxed{\vdash \Sigma} \quad (\text{signature wellformedness}) \\
 \begin{array}{c}
 \text{AN-SIG-EMPTY} \\
 \hline
 \vdash \emptyset
 \end{array}
 \quad
 \begin{array}{c}
 \text{AN-SIG-CONSTAX} \\
 \vdash \Sigma \quad \emptyset \vdash A : \text{type} \\
 \emptyset \vdash a : A \quad F \notin \text{dom } \Sigma \\
 \hline
 \vdash \Sigma \cup \{F \sim a : A\}
 \end{array}
 \end{array}$$