
Eta-equivalence in Core Dependent Haskell1

Anastasiya Kravchuk-Kirilyuk2

Princeton University3

ayk2@princeton.edu4

Antoine Voizard5

University of Pennsylvania6

voizard@seas.upenn.edu7

Stephanie Weirich8

University of Pennsylvania9

sweirich@cis.upenn.edu10

Abstract11

We extend the core semantics for Dependent Haskell with rules for η-equivalence. This semantics12

is defined by two related calculi, Systems D and DC. The first is a Curry-style dependently-typed13

language with nontermination, irrelevant arguments, and equality abstraction. The second, inspired14

by the Glasgow Haskell Compiler’s core language FC, is the explicitly-typed analogue of System D,15

suitable for implementation in GHC. Our work builds on and extends the existing metatheory for16

these systems developed using the Coq proof assistant.17

2012 ACM Subject Classification Software and its engineering → Functional languages; Software18

and its engineering → Polymorphism; Theory of computation → Type theory19

Keywords and phrases Dependent types, Haskell, Irrelevance, Eta-equivalence20

Digital Object Identifier 10.4230/LIPIcs.TYPES.2019.721

Funding This material is based upon work supported by the National Science Foundation under Grant22

No. 1521539 and Grant No. 1704041. Any opinions, findings, and conclusions or recommendations23

expressed in this material are those of the author and do not necessarily reflect the views of the24

National Science Foundation.25

1 Introduction26

In typed programming languages, the definition of type equality determines the expressiveness27

of the type system. If more types can (soundly) be shown to be equal, then more programs28

will type check. In dependently-typed languages, the definition of type equality relies on a29

definition of term equality, because terms may appear in types. Therefore, a dependently-30

typed language that can equate more terms can also admit more programs.31

Many dependently-typed programming languages, such as Coq (since version 8.4) and32

Agda (from its initial design) include rules for η-equivalence when comparing functions for33

equality. These rules benefit programmers. For example, if a function f has type34

f : P x → Int35

then it can be called with an argument of type36

P (λy. x y)37

because the term (λy. x x) is η-equivalent to x.38

Dependent Haskell [20, 47] is a proposal to add dependent types to the Haskell program-39

ming language, as implemented by the Glasgow Haskell Compiler. This design unifies the40

term and type languages of Haskell so that terms may appear directly in types, removing41

the need for awkward singleton encodings of richly-typed data structures [21, 27, 45].42

© Kravchuk-Kirilyuk, Voizard, and Weirich;
licensed under Creative Commons License CC-BY

25th International Conference on Types for Proofs and Programs (TYPES 2019).
Editors: Marc Bezem and Assia Mahboubi; Article No. 7; pp. 7:1–7:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ayk2@princeton.edu
mailto:voizard@seas.upenn.edu
https://orcid.org/0000-0002-6756-9168
mailto:sweirich@cis.upenn.edu
https://doi.org/10.4230/LIPIcs.TYPES.2019.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 Eta-equivalence in Core Dependent Haskell

The specification of this language extension [47] is founded on two related dependently43

typed core calculi, called Systems D and DC. These two systems differ in their annotations:44

the latter language, which is inspired by and extends the FC intermediate language of45

GHC [42, 46], includes enough information to support simple, syntax-directed type checking.46

On the other hand, System D, is a Curry-style language meant to model the runtime behavior47

of the language, and to inspire type inference for the source language. (At the source level,48

type inference for Dependent Haskell will require more annotations than System D, which49

includes no annotations, and many fewer than System DC, which annotates everything.)50

However, the specification of Systems D and DC, as presented in prior work, did not51

include rules for η-equivalence. The goal of this paper is to describe our experience with adding52

η-equivalence rules to these two systems, demonstrating that η-equivalence is compatible53

with Dependent Haskell.54

While this extension is small—it involves three new rules for System D and two new rules55

for DC—it was not at all clear that it would work out from the beginning. Both Systems D56

and DC include support for irrelevant arguments, i.e the marking of some lambda-bound57

variables as not relevant for run-time execution. For Dependent Haskell, this feature is58

essential. Haskellers expect a type-erasure semantics and GHC erases type arguments during59

compilation. Irrelevance generalizes this idea to include not just type arguments but all60

terms that are used irrelevantly, enabling the generation of efficient code.61

Unfortunately, η-equivalence, when combined with irrelevance in dependently-typed62

languages, is a subtle topic. Much prior work has laid out the issues, though in contexts that63

are not exactly the same as that found in Dependent Haskell. We describe this landscape in64

Section 6.3, and show how our work compares to and does not match any existing treatment65

of these features. In particular, our system features the type:type axiom, employs a typed66

definition of equivalence that ignores type annotations, supports large eliminations, includes67

a variant with decidable type checking, does not restrict how irrelevant arguments may be68

used in types, and comes with a completely mechanized type soundness proof.69

In particular, this work extends the type soundness proof that was developed in prior70

work with support for η-equivalence. Prior work included a mechanized formalization of the71

meta-properties of both Systems D and DC, developed using the Coq proof assistant [43]. In72

this work, we have extended that development with these new rules and have updated the73

proofs accordingly. This mechanized proof gives us complete confidence in our extension,74

even in the face of a few curious findings.75

As a result, this project also gives us a chance to report a success story for proof76

engineering. As the extension described in this paper is small compared to the overall system,77

we would expect the changes to the proof to be similarly minor, and they are. Furthermore,78

the three different forms of η-equivalence that we add are themselves quite similar to each79

other. Because of this relationship, a newcomer (the first author, an undergraduate at80

the time) could join the project and was able to adapt the changes needed for the usual81

η-equivalence rule to the novel ones for this setting. Although this process required careful82

understanding of binding representations, especially in the representation of the new rules,83

the mechanical proof served as an essential benefit to the overall research endeavor.84

2 Overview of System D and System DC85

This work presents and extends the languages Systems D and DC from prior work [47].86

Therefore, we begin our discussion with an overview of these systems and their properties.87

System D is an implicit language; its syntax only contains terms that are relevant88



Kravchuk-Kirilyuk, Voizard, and Weirich 7:3

D DC
Typing Γ ⊨ a : A Γ ⊢ a : A
Definitional equality (terms) Γ; ∆ ⊨ a ≡ b : A Γ; ∆ ⊢ γ : a ∼ b
Proposition well-formedness Γ ⊨ ϕ ok Γ ⊢ ϕ ok
Definitional equality (props) Γ; ∆ ⊨ ϕ1 ≡ ϕ2 Γ; ∆ ⊢ γ : ϕ1 ∼ ϕ2

Context well-formedness ⊨ Γ ⊢ Γ
Signature well-formedness ⊨ Σ ⊢ Σ

Primitive reduction ⊨ a > b
One-step reduction ⊨ a ⇝ b Γ ⊢ a ⇝ b

Figure 1 Summary of judgement forms

for computation. It is based on a Curry-style variant of a dependently-typed lambda89

calculus, with the type:type axiom. Functions are not annotated with their domain types90

and computations may not terminate. As a result, type checking in System D is undecidable.91

Compared to other Curry-style languages [32, 33], this language annotates the locations of92

irrelevant abstractions and irrelevant applications. Such generalizations and instantiations93

may occur only at the marked locations. Full Curry-style languages allow generalization and94

instantiation at any point in the derivation.95

In contrast, System DC is an explicit language. It extends System D with enough96

annotations so that type checking is not only decidable, it is straightforward through a simple97

syntax-directed algorithm. While System D is intended to serve as a specification of what98

Dependent Haskell should mean, System DC is intended to serve as a core implementation99

language for the Glasgow Haskell Compiler (GHC) [20, 22], when it is extended with100

dependent types. The annotations allow the compiler to check core language terms during101

compilation, eliminating potential sources of bugs during compilation.102

Because the annotated language DC is, in some sense, a reification of the derivations of103

D; DC can thus be seen as a syntax-directed version of D. To emphasize this connection in104

our formal system, we reuse the same metavariables for analogous syntactic forms in both105

languages.1 The judgement forms are summarized in Figure 1. By convention, judgements106

for D use a double turnstile (⊨) whereas judgements for DC use a single turnstile (⊢). As107

we make precise below, judgements in these two languages are connected: we can apply an108

erasure operation to DC derivations to produce analogous judgements in D, and given a109

derivation in D, it is possible to add enough annotations to produce an analogous judgement110

in DC.111

The judgement forms in these languages include the usual typing judgement, a typed112

equivalence relation (augmented in DC with an explicit proof witness in γ), a first-class113

notion of equality propositions ϕ, and a judgement when two propositions are equivalent114

(also augmented with a proof witness in DC), as well as well-formedness checks for typing115

contexts Γ and top-level signatures of recursive definitions Σ.116

Computation in both languages is specified operationally, using a small-step, call-by-name,117

evaluation relation ⇝. These one-step relations are decidable and produce a unique reduct in118

each case. This computation is also type sound, which we demonstrate through preservation119

1 In fact, our Coq development uses the same syntax for both languages and relies on the judgement
forms to identify the pertinent sets of constructs.

TYPES 2019



7:4 Eta-equivalence in Core Dependent Haskell

System D

terms, types a, b, A, B ::= type | x | F | λρx.b | a bρ | □ | Πρx :A.B
| Λc.a | a[γ] | ∀c :ϕ.A

coercions γ ::= •

values v ::= λ+x.a | λ−x.v | Λc.a
| type | Πρx :A.B | ∀c :ϕ.A

System DC

terms, types a, b, A, B ::= type | x | F | λρx : A .b | a bρ | Πρx :A.B
| Λc : ϕ .a | a[γ] | ∀c :ϕ.A
| a ▷ γ

coercions (excerpt) γ ::= c | refl a | sym γ | γ1; γ2 | red a b | . . .

eta a

values v ::= λ+x : A .a | λ−x : A .v | Λc : ϕ .a
| type | Πρx :A.B | ∀c :ϕ.A

Shared syntax

propositions ϕ ::= a ∼A b
relevance ρ ::= + | −

contexts Γ ::= ∅ | Γ, x : A | Γ, c : ϕ

available set ∆ ::= ∅ | ∆, c
signature Σ ::= ∅ | Σ ∪ {F ∼ a : A}

Figure 2 Syntax of D and DC. The syntactic differences between the two systems are highlighted
in yellow. The sole addition for η-equivalence (the coercion form eta a) is highlighted in green.

and progress theorems [49].120

The syntax of D, the implicit language, is shown at the top of Figure 2. This language,121

inspired by pure type systems [12], uses a shared syntax for terms and types. The language122

includes:123

a single sort (type) for classifying types,124

functions (λ+x.a) with dependent types (Π+x : A.B), and their associated application125

form (a b+),126

functions with irrelevant arguments (λ−x.a), their types (Π−x :A.B), and instantiation127

form (a □−),128

coercion abstractions (Λc.a), their types (∀c :ϕ.B), and instantiation form (a[•]),129

and top-level recursive definitions (F).130

In this syntax, term and type variables, x , are bound in the bodies of functions and their131

types. Similarly, coercion variables, c, are bound in the bodies of coercion abstractions and132



Kravchuk-Kirilyuk, Voizard, and Weirich 7:5

their types. (Technically, irrelevant variables and coercion variables are prevented by the133

typing rules from actually appearing in the bodies of their respective abstractions.) We use134

the same syntax for relevant and irrelevant functions, marking which one we mean with135

a relevance annotation ρ. We sometimes omit relevance annotations ρ from applications136

a bρ when they are clear from context. We also write nondependent relevant function types137

Π+x :A.B as A → B, when x does not appear free in B, and write nondependent coercion138

abstraction types ∀c :ϕ.A as ϕ ⇒ A, when c does not appear free in A.139

The metavariable ∆, called the available set, represents a set of coercion variables. This140

set is used to restrict the usage of coercion variables in certain situations; only variables141

appearing in the set are available.2 The operation ˜︁Γ returns the available set made of all the142

coercion variables in the domain of context Γ. In other words, it is the available set that143

permits the use of all coercion variables in Γ.144

The syntax of DC, also shown in the figure, includes the same features as D but with145

more typing annotations. In particular, this language removes the trivial argument for146

irrelevant instantiation (instead specifying the actual argument it stands for) and adds147

domain information to the bound variable in the abstraction forms. Finally, it replaces148

implicit type conversions by an explicit coercion term a ▷ γ as well as a language of coercion149

proofs (not completely shown in the figure). The addition of η-equivalence requires a new150

form of coercion proof, written eta a, that corresponds to all three new equivalence rules in151

D.152

The erasure operation, written |a| translates terms from System DC to System D by153

removing all type annotations and coercion proofs. For example, rules of this function include154

|λρx :A.a| = λρx.|a| and |a ▷ γ| = |a|.155

2.1 Type checking in System D and System DC156

Unlike System D, System DC enjoys unique typing, meaning that any given term has at most157

one type. Thanks to this uniqueness property and to the presence of typing annotations,158

type checking is decidable in System DC. In fact, the syntax of System DC can be seen159

as encoding not just a D term, but a D typing derivation. That is, any DC term uniquely160

identifies a typing derivation for the underlying (erased) D term.161

In System D, type checking is undecidable due to two reasons. The first is that System162

D includes Curry-style System F as a sublanguage, where type checking is known to be163

undecidable [48, 36]. Since type arguments are implicit in Curry-style languages, irrelevant164

quantification is a feature of System D. The second reason for undecidable type checking in165

System D is the presence of an implicit conversion rule. In order to maintain decidable type166

checking in an environment where implicit conversion is allowed, System DC uses explicit167

coercion proofs whenever type conversion is performed. Below, we discuss these two features168

which contribute to the undecidability of type checking in System D. However, even though169

type checking is undecidable, we sketch what a partial type inference algorithm for System170

D might look like in Section 2.3.171

TYPES 2019



7:6 Eta-equivalence in Core Dependent Haskell

E-Pi
Γ, x : A ⊨ B : type

Γ ⊨ Πρx :A.B : type

An-Pi
Γ, x : A ⊢ B : type

Γ ⊢ Πρx :A.B : type

E-Abs
Γ, x : A ⊨ a : B
(ρ = +) ∨ (x ̸∈ fv a)

Γ ⊨ λρx.a : Πρx :A.B

An-Abs
Γ, x : A ⊢ a : B

(ρ = +) ∨ (x ̸∈ fv |a|)
Γ ⊢ λρx :A.a : Πρx :A.B

E-App
Γ ⊨ b : Π+x :A.B Γ ⊨ a : A

Γ ⊨ b a+ : B{a/x}

An-App
Γ ⊢ b : Πρx :A.B Γ ⊢ a : A

Γ ⊢ b aρ : B{a/x}

E-IApp
Γ ⊨ b : Π−x :A.B Γ ⊨ a : A

Γ ⊨ b □− : B{a/x}

Figure 3 Rules for relevant and irrelevant arguments in System D (left) and System DC (right).

2.1.1 Irrelevant quantification172

Because Haskell includes parametric polymorphism, which has a type erasure semantics,173

Dependent Haskell includes a way to indicate which terms should be erased before execution.3174

Thus, the rules that govern the treatment of irrelevant, or implicit, quantification appear in175

Figure 3.176

D and DC’s approach to implicit quantification follows ICC [32], ICC∗ [13], and EPTS [33].177

When possible, the typing rules use the metavariable ρ to generalize over the relevance of178

the abstraction. For example, irrelevance places no restrictions on the usage of the bound179

variable in the body of the dependent function type, so the same rule suffices in each case180

(see rules E-Pi and An-Pi).181

However, for abstractions, if the argument is irrelevant, then the variable cannot appear182

in the body of the System D term (rule E-Abs). On the other hand, System DC includes183

annotations, which are not relevant, so the DC rule only restricts the variable from appearing184

in the erasure of the body (rule An-Abs).185

In DC, an application term is type-checked in the same way no matter whether it is186

relevant or not, so we are able to use the same rule in both cases (rule An-App). However,187

in D, if the application is to an irrelevant argument, then the argument does not appear in188

the term. Instead, it must be replaced by the trivial term □ (rule E-IApp). Type-checking189

an irrelevant application in D thus requires guessing the actual argument used at this190

occurrence. Due to this, we need two separate rules for relevant and irrelevant application in191

D (rule E-App and rule E-IApp respectively).192

2 This is analogous to marking available coercion variables in the context.
3 Although it is possible to infer such information [14], we annotate it here to avoid a reliance on whole

program optimization.



Kravchuk-Kirilyuk, Voizard, and Weirich 7:7

2.1.2 Explicit coercions193

As mentioned previously, System D includes an implicit conversion rule, shown on the left194

below (rule E-Conv). This rule depends on the type equality judgement to allow the system195

to work up-to the definition of this type equality. At any point in a System D derivation, the196

type of a term can silently be replaced with an equivalent type.197

E-Conv
Γ ⊨ a : A Γ; ˜︁Γ ⊨ A ≡ B : type

Γ ⊨ a : B

An-Conv
Γ ⊢ a : A Γ; ˜︁Γ ⊢ γ : A ∼ B Γ ⊢ B : type

Γ ⊢ a ▷ γ : B
198

To enable decidable type checking, System DC includes an explicit justification γ in199

rule An-Conv, called a coercion proof, whenever type conversion is used. These coercions200

are reifications of the type equality derivations of System D; a coercion proof γ specifies201

a unique equality derivation. Equality is homogeneously typed in System D, if we have202

Γ; ∆ ⊨ a ≡ b : A, then both terms a and b must have type A. In DC the relationship is203

more nuanced. If we have a coercion proof Γ; ∆ ⊢ γ : a ∼ b where Γ ⊢ a : A and Γ ⊢ b : B,204

then there must exist an additional coercion proof witnessing the equality between types205

A and B. In other words, the types of coercible terms must be equal according to System206

D. For example, compare the reflexivity rule in System D below (rule E-Refl) with the207

two different reflexivity rules in System DC (rule An-Refl and rule An-EraseEq). While208

the first DC rule is the classic form of the reflexivity rule, we still need the second form to209

account for the case when two terms a and b have different type annotations. To derive210

reflexivity between a and b in this case, we must furthermore know that their types are211

equal, witnessed by the coercion proof γ. Note also that we cannot get away with having212

rule An-EraseEq alone, since rule An-Refl is the only rule which can derive reflexivity213

for type. For example, in order to prove Int ∼type Int with rule An-EraseEq, we need the214

base case rule An-Refl to prove type ∼type type.215

E-Refl
Γ ⊨ a : A

Γ; ∆ ⊨ a ≡ a : A

An-Refl
Γ ⊢ a : A

Γ; ∆ ⊢ refl a : a ∼ a

An-EraseEq
Γ ⊢ a : A Γ ⊢ b : B

|a| = |b| Γ; ˜︁Γ ⊢ γ : A ∼ B
Γ; ∆ ⊢ (a |=|γ b) : a ∼ b

216

The type equality judgement in System D includes primitive (i.e. β) reductions, shown217

in rule E-Beta below. The analogous rule in System DC uses an explicit coercion, red a1 a2218

in the coercion checking rule An-Beta to indicate a reduction. Both rules use the primitive219

reduction relation of System D, available in DC through erasure. Although this relation is220

deterministic, there are multiple ways to annotate a System D term. Thus, the coercion221

rule must annotate both terms, a1 and a2 involved in the redex. Furthermore, because these222

annotations may differ, these terms may have different types in DC, as long as those types223

are also related through erasure.224

E-Beta
Γ ⊨ a1 : B ⊨ a1 > a2

Γ; ∆ ⊨ a1 ≡ a2 : B

An-Beta
Γ ⊢ a1 : B0

Γ ⊢ a2 : B1 |B0| = |B1| ⊨ |a1| > |a2|
Γ; ∆ ⊢ red a1 a2 : a1 ∼ a2

225

The System D type equality judgement is undecidable because it includes the operational226

semantics and the language is nonterminating. This nontermination is due to the type:type227

TYPES 2019



7:8 Eta-equivalence in Core Dependent Haskell

axiom and general recursion, the latter already available in Haskell. Furthermore, because228

System D is nonterminating, types themselves may diverge and thus don’t necessarily have229

normal forms (this is already the case for GHC, in the presence of certain language extensions).230

2.2 Coercion abstraction231

D and DC inherit the coercion abstraction feature from System FC, the existing core language232

of GHC [42, 46]. This feature is primarily used to implement GADTs in GHC but is also233

available for explicit use by Haskell programmers.234

Coercion abstraction means that equality is first class. Terms may abstract over equality235

propositions (denoted by ϕ in rules E-CAbs and An-CAbs) and can discharge those236

assumptions in contexts where the proposition is derivable (rules E-CApp and An-CApp).237

Once an equality has been assumed in the context, it may contribute to an equivalence238

derivation as long as the coercion variable is available (i.e. found in the available set ∆).239

E-CAbs
Γ, c : ϕ ⊨ a : B

Γ ⊨ Λc.a : ∀c :ϕ.B

An-CAbs
Γ, c : ϕ ⊢ a : B

Γ ⊢ Λc :ϕ.a : ∀c :ϕ.B

E-CApp
Γ ⊨ a1 : ∀c : (a ∼A b).B1

Γ; ˜︁Γ ⊨ a ≡ b : A
Γ ⊨ a1[•] : B1{•/c}

An-CApp
Γ ⊢ a1 : ∀c :a ∼A1 b.B

Γ; ˜︁Γ ⊢ γ : a ∼ b
Γ ⊢ a1[γ] : B{γ/c}

E-Assn
⊨ Γ

c : (a ∼A b) ∈ Γ c ∈ ∆
Γ; ∆ ⊨ a ≡ b : A

An-Assn
⊢ Γ

c : a ∼A b ∈ Γ c ∈ ∆
Γ; ∆ ⊢ c : a ∼ b

240

The role of the set ∆ is to prevent the usage of certain coercion variables, namely those241

introduced in a congruence proof between two coercion abstraction types. More details about242

this issue are available in prior work [47].243

2.3 Type inference for System D244

Even though complete type inference for System D is undecidable, we still intend it to245

be a model for the source language of the Glasgow Haskell Compiler. Type inference246

in GHC currently elaborates implicitly-typed Source Haskell to an explicitly-typed core247

language, similar to System DC. This inference algorithm works by gathering constraints248

and then solving those constraints using a variant of mixed-prefix unification combined249

with type-family reduction [44]. This algorithm already supports numerous features related250

to System D, including GADTs, type-level computation, higher-rank polymorphism and251

the type:type axiom. There are also experimental extensions of this algorithm in support252

of type-level lambdas [26], higher-kinds [50], and first-class polymorphism [39]. The most253

straightforward extension of GHC’s algorithm with dependent types is based on parallel254

reduction; to determine whether two types are equivalent one must find a term that they255

both reduce to. In System D, this reduction may not terminate, so this process describes a256

semi-decision procedure.257



Kravchuk-Kirilyuk, Voizard, and Weirich 7:9

3 Adding η-equivalence to Systems D and DC258

Extending Systems D and DC with η-equivalence requires the addition of the following three259

rules to System D and two analogous rules in System DC. These three rules encode the usual260

η-equivalence properties for normal functions, irrelevant functions, and coercion abstractions.261

As our equivalence relation is typed, we must ensure that both left and right hand sides are262

well typed with the same type. This precondition also ensures that the bound variable does263

not appear free in b.264

E-EtaRel
Γ ⊨ b : Π+x :A.B

Γ; ∆ ⊨ λ+x.b x+ ≡ b : Π+x :A.B

E-EtaIrrel
Γ ⊨ b : Π−x :A.B

Γ; ∆ ⊨ λ−x.b □− ≡ b : Π−x :A.B

E-EtaC
Γ ⊨ b : ∀c :ϕ.B

Γ; ∆ ⊨ Λc.b[•] ≡ b : ∀c :ϕ.B

265

In the annotated language, we only need two rules for coercion proofs because we can266

unify the two application forms in the annotated language (i.e. we can generalize over ρ).267

An-Eta
Γ ⊢ b : Πρx :A.B

Γ; ∆ ⊢ eta b : λρx.b xρ ∼ b

An-EtaC
Γ ⊢ b : ∀c :ϕ.B

Γ; ∆ ⊢ eta b : Λc.b[c] ∼ b
268

We use the single marker eta b as the explicit proof witness for both rules. We can269

overload this form because the annotated term b includes enough information to recover its270

type, and the type of b is enough to determine which of the η-equivalence properties are271

needed.272

The five rules shown in this section are all that was needed to extend the definition of273

both languages with η-equivalence. Note that we do not include any η rules (i.e. reduction274

or expansion) in the operational semantics (i.e. the one step reduction relations ⊨ a ⇝ b275

and Γ ⊢ a ⇝ b). The computational behavior of the system is unchanged by this extension.276

Instead, our goal is to extend the systems’ reasoning about this existing computational277

behavior through the added equivalences. Although the rules for η-equivalence for relevant278

and irrelevant function have appeared in various prior work (see Section 6), the η-equivalence279

rule for coercion abstraction is new to this extension.280

4 Extending proofs281

The addition of the five rules above means that we must extend all existing proofs of Systems282

D and DC and show that after the inclusion of the new rules these systems retain the desired283

properties. The properties developed in prior work [47] include the following results.284

Consistency of definitional equality for System D285

Type soundness (progress and preservation) for both languages286

Decidable type checking for System DC287

Annotation and erasure lemmas relating the two languages288

In this section, we provide an overview of these proofs and discuss their interaction with289

this extension. In the formal statements of our results below, we include the source file and290

TYPES 2019



7:10 Eta-equivalence in Core Dependent Haskell

definition in our Coq proofs4 that justifies that result.291

The type soundness proof comes in two parts. We prove the progress lemma for System292

D, and then use the annotation lemma to translate that result to System DC. We prove293

the preservation lemmas for both systems directly, but it would also be possible to only294

prove preservation for System DC and then use the erasure lemma to translate that proof to295

System D.296

By far, the largest modification was needed for the proof of the progress lemma for System297

D, which in turn relies on the consistency of definitional equality.298

4.1 Progress lemma overview299

In order to show proof of progress, we must first show the consistency of definitional equality300

in our setting (see Corollary 7 below). Consistency means that in certain contexts, types301

that have different head forms cannot be proven definitionally equal.302

▷ Definition 1 (Consistent5). Two types A and B are consistent, written consistent A B,303

when it is not the case that they are types with conflicting head forms. We formalize this304

property with the following two judgements.305

hft(A) (Types with head forms)306

value-type-Star

hft(type)

value-type-Pi

hft(Πρx :A.B)

value-type-CPi

hft(∀c :ϕ.B)307

consistent a b (Types that do not differ in their heads)308

consistent-a-Star

consistent type type

consistent-a-Pi

consistent (Πρx1 :A1.B1) (Πρx2 :A2.B2)309

consistent-a-CPi

consistent (∀c1 :ϕ1.A1) (∀c2 :ϕ2.A2)

consistent-a-Step-R
¬(hft(b))

consistent a b

consistent-a-Step-L
¬(hft(a))

consistent a b310

We use two auxiliary relations, parallel reduction and joinability, when proving consistency.311

Parallel reduction, written ⊨ a ⇒ b, is not part of the specification of System D6. This312

relation is a strongly confluent, but not necessarily terminating, rewrite relation on terms.313

In one step of parallel reduction, multiple redexes in one term may be reduced at the same314

time. For example, we can reduce (z ((λx.x) 1) ((λy.y) 2)) to (z 1 2) in one step, even though315

two different beta-reductions need to be performed at the same time.316

Two types are joinable when they reduce to some common term using any number of317

steps of parallel reduction.318

▷ Definition 2 (Joinable7). Two types are joinable, written ⊢ a1 ⇔ a2, when there exists319

some b such that ⊢ a1 ⇒∗ b and ⊢ a2 ⇒∗ b.320

4 Available from https://github.com/sweirich/corespec/tree/master/src/FcEtt.
5 ett.ott:consistent
6 ett.ott:Par
7 ett.ott:join

https://github.com/sweirich/corespec/tree/master/src/FcEtt
ett.ott:consistent
ett.ott:Par
ett.ott:join


Kravchuk-Kirilyuk, Voizard, and Weirich 7:11

We use these two relations to prove consistency in two steps. First, we show that321

definitionally equal types are joinable. Second, we show that joinable types are consistent.322

In proving the first step, it is important to note that only some definitionally equal types323

are joinable. This is illustrated by the following example. If a has type type, and there324

is a coercion assumption a ∼type Int available in the context, then under this assumption325

a and Int are two definitionally equal types. However, these two types are not joinable.326

Because our consistency proof is based on parallel reduction, and because parallel reduction327

ignores assumed equality propositions, we state our result only for equality derivations with328

no available coercion assumptions. Thus, we restrict the set of all available assumptions we329

can use to derive equality to the empty set.330

▶ Theorem 3 (Equality implies Joinability8). If Γ;∅ ⊨ a ≡ b : A then ⊢ a ⇔ b331

This restriction in the lemma is necessary because the type system does not rule out332

clearly bogus assumptions, such as Int ∼type Bool. Because we cannot use such assumptions333

to derive equality, they cannot be allowed to appear in the context. As a result, in order to334

be able to prove that consistent types are definitionally equal, the context must not make335

any such assumptions available.336

To prove the second step, we use the fact that parallel reduction is a strongly confluent337

relation, and thus head forms must be preserved by parallel reduction. The confluence338

property is stated below.339

▶ Theorem 4 (Confluence9). If ⊨ a ⇒ a1 and ⊨ a ⇒ a2 then there exists b, such that340

⊨ a1 ⇒ b and ⊨ a2 ⇒ b.341

Our proof of confluence for System D follows the the proof of Church-Rosser for the342

untyped lambda calculus given in Barendregt [11], sections 3.2 and 3.2. The proof with343

β-reduction is attributed to Tait and Martin-Löf, and its extension with η-reduction is344

attributed to Hindley [25] and Rosen [38].345

The confluence property essentially shows that even if a term can take several reduction346

paths, those paths can never diverge to produce terms with conflicting head forms. Thus,347

since joinability is defined in terms of parallel reduction, and parallel reduction is strongly348

confluent, it is true that joinability implies consistency.349

▶ Lemma 5 (Joinability is transitive10). If ⊢ A1 ⇔ B and ⊢ B ⇔ A2 then ⊢ A1 ⇔ A2350

▶ Theorem 6 (Joinability implies consistency11). If ⊢ A ⇔ B then consistent A B.351

▶ Corollary 7 (Consistency). If Γ; ∆ ⊨ a ≡ b : A then consistent a b.352

The consistency result allows us to prove the progress lemma for System D. This progress353

lemma is stated with respect to the one-step reduction relation and the definition of value354

given in Figure 2.355

▶ Lemma 8 (Progress12). If Γ ⊨ a : A, Γ contains no coercion assumptions, and no term356

variable x in the domain of Γ occurs free in a, then either a is a value or there exists some357

a′ such that ⊨ a ⇝ a′.358

8 ext_consist.v:consistent_defeq
9 ext_consist.v:confluence
10 ext_consist.v:join_transitive
11 ext_consist.v:join_consistent
12 ext_consist.v:progress

TYPES 2019

ext_consist.v:consistent_defeq
ext_consist.v:confluence
ext_consist.v:join_transitive
ext_consist.v:join_consistent
ext_consist.v: progress


7:12 Eta-equivalence in Core Dependent Haskell

4.2 Progress lemma update359

The addition of η-equivalence required three new rules to be added to the parallel reduction360

relation. These rules encode η-reduction, meaning that any outer abstractions of the correct361

form can be removed. Because parallel reduction is an untyped relation, there is no analogous362

typing precondition as in the equivalence rules. However, these rules also have the condition363

that the bound variable not appear free in b or b′. (In our rules below, this condition is not364

explicitly mentioned because it is guaranteed by the usual Barendregt variable convention.365

We discuss how we maintain this property in our Coq development in Section 5.)366

Par-Eta
⊨ b ⇒ b′

⊨ λ+x.b x+ ⇒ b′

Par-EtaIrrel
⊨ b ⇒ b′

⊨ λ−x.b □− ⇒ b′

Par-EtaC
⊨ b ⇒ b′

⊨ Λc.b[•] ⇒ b′
367

We can view joinability as a semi-decision algorithm. Two terms are equal when they join368

to the same common reduct, though this process may diverge. This algorithm is a technical369

device only; we don’t suggest its direct use in any implementation. Indeed, in the presence of370

η-reduction, joinability could equate more terms than definitional equality because it doesn’t371

always preserve typing (see below).372

4.3 Parallel reduction and type preservation373

There are three types of reduction included in this development: primitive reduction ⊨ a > b,374

one-step reduction ⊨ a ⇝ b, and parallel reduction ⊨ a ⇒ b. In the original formulation of375

System D, all three of these reduction relations were type-preserving.376

The first two relations are unchanged by this extension, so type preservation still holds377

for those relations13.378

However, parallel reduction is an untyped relation. It does not depend on type information,379

even in the case of η-equivalence. As a result, after the addition of η-equivalence rules, the380

parallel reduction relation is no longer type-preserving.381

▶ Example 9 (Parallel reduction does not preserve types). There is some a such that Γ ⊨ a : A382

and ⊨ a ⇒ a′ where there is no derivation of Γ ⊨ a′ : A.383

This property fails in the case where λ+x.b x+ reduces to b, but x is required in the384

context for b to type check, even though it does not appear free in b.385

For example, let A be Π−x : type.Π+z : type.(x → x) and consider the following derivation386

of the application of some function y with this type to two arguments: an implicit one387

and then an explicit one. In both cases in the derivation, the argument is just x, which is388

abstracted in the conclusion of the derivation.389

∅, y : A, x : type ⊨ y : A ∅, y : A, x : type ⊨ x : type
∅, y : A, x : type ⊨ y □− : Π+z : type.(x → x) ∅, y : A, x : type ⊨ x : type

∅, y : A, x : type ⊨ y □− x+ : x → x
∅, y : A ⊨ λ+x.(y □−) x+ : Π+x : type.(x → x)390

Now, the term λ+x.y □− x+ reduces to y □− using rule Par-Eta. However, there is no391

implicit argument that we can fill in so that this term will have type Π+x : type.(x → x).392

13 ext_red.v:Beta_preservation, ext_red.v:reduction_preservation

ext_red.v:Beta_preservation
ext_red.v:reduction_preservation


Kravchuk-Kirilyuk, Voizard, and Weirich 7:13

Subject reduction also does not hold for η-reduction in the case of irrelevant arguments.14
393

In particular, there is a case where λ−x.b □− reduces to b and the two terms do not have394

the same type. This situation is not the same as above: the issue is that in a derivation of395

λ−x.b □− there is no requirement that the argument □ be the same type as x.396

For example, suppose y has type Γ ⊢ y : Π−x : A.B and we have f : A → A′ in the397

context Γ where the type A does not equal A′. Then we can construct a derivation of398

Γ ⊢ λ−x.(y □−) : Π−x : A′.B{f x/x} by using the term f x as the implicit argument. A399

similar counterexample also applies to η-reduction for coercion abstraction.400

Thus, in the presence of η-reduction, preservation does not hold for parallel reduction.401

However, this loss is not significant to the soundness of the type systems of System D and402

System DC. None of our results require this property. The only place where this may come403

up is in a parallel-reduction based type inference algorithm for GHC (see Section 2.3). In this404

case, parallel reduction must preserve enough type information during reduction to ensure405

that the result is still well-typed.406

4.4 Additional updates407

Other updates to the proof include new cases in the erasure and annotation lemmas and408

in the uniqueness and decidability of type checking in DC. These lemmas are proven by409

mutual induction on the typing derivations shown in Figure 1. As the new rules are for the410

definitional/provable equality judgements, we only list that part of the lemma statement.411

▶ Lemma 10 (Erasure15). If Γ; ∆ ⊢ γ : a ∼ b then for all A such that Γ ⊢ a : A, we have412

|Γ|; ∆ ⊨ |a| ≡ |b| : |A|.413

▶ Lemma 11 (Annotation16). If Γ; ∆ ⊨ a ≡ b : A then for all Γ0, such that |Γ0| = Γ, there414

exists some γ, a0, b0 and A0, such that Γ0; ∆ ⊢ γ : a0 ∼ b0 and Γ0 ⊢ a0 : A0 and Γ0 ⊢ b0 : A0415

where |a0| = a and |b0| = b and |A0| = A.416

▶ Lemma 12 (Unique typing for DC17). If Γ; ∆ ⊢ γ : A1 ∼ B1 and Γ; ∆ ⊢ γ : A2 ∼ B2, then417

A1 = A2 and B1 = B2.418

▶ Lemma 13 (Decidable typing for DC18). Given Γ, ∆, and γ, it is decidable whether there419

exists some A and B such that Γ; ∆ ⊢ γ : A ∼ B.420

5 Proof engineering421

The development of our Coq formalization for Systems D and DC was assisted with the use422

of two tools for mechanized reasoning about programming language metatheory. The first423

tool, Ott [40], takes as input a specification of the syntax and type system and produces424

both Coq definitions and LaTeX figures. The inference rules of this paper were typeset with425

this shared specification, though some rules in the main body of the paper have been slightly426

modified for clarity. We include the complete and unmodified specification of the system in427

Appendix A.428

14 This issue was previously observed in the implementation of the Agda compiler: see https://github.
com/agda/agda/issues/2464.

15 erase.v:typing_erase
16 erase.v:annotation_mutual
17 fc_unique.v:unique_mutual
18 fc_dec.v:FC_typechecking_decidable

TYPES 2019

https://github.com/agda/agda/issues/2464
https://github.com/agda/agda/issues/2464
erase.v: typing_erase
erase.v:annotation_mutual
fc_unique.v:unique_mutual
fc_dec.v:FC_typechecking_decidable


7:14 Eta-equivalence in Core Dependent Haskell

In addition to producing inductive definitions for the syntax and judgements, the Ott429

tool also produces substitution and free variable functions. To make working with these430

definitions more convenient, we also use the LNgen tool [9], that automatically states and431

proves many lemmas about these operations.432

This extension increased the overall size of the original development by about ten percent,433

just looking at the line counts of the two versions. In Figure 4 we order the proof files by434

largest difference in line count19 to see that the most significant effort was the update to435

the progress proofs for System D. The preservation proof file (ext_red.v) shrank due to the436

removal of the preservation lemma for the parallel reduction relation. The table includes437

some modifications (such as inserting a newline, or slight refactoring of proof scripts) that438

have no effect on the development. Files with unchanged line counts are omitted from this439

figure.440

The ett_ind.v file contains tactics that are tailored to our language development. These441

tactics automatically apply inference rules, pick fresh variables with respect to binders, etc.442

As we have added new rules to the language definition, we needed to update these tactics. To443

assist in the rest of this proof development, we developed a tactic for automatically rewriting444

a term given a hypothesis of the form found in the η-rules (and similar).445

The ext_invert.v file contains inversion lemmas for System D. New with this extension446

is the addition of a lemma that asserts that • is the only coercion proof found in System D447

terms.448

5.1 Stating rules for η-equivalence449

One issue that we faced in our development is the precise characterization of the new η-450

equivalence rules using Ott. In the end, our actual formalization specifies these rules in a451

slightly different form than as presented in Section 3. For example, rule Par-Eta reads as452

follows, where we have named the body of the abstraction a and constrain it to be equal to453

the application as a premise of the rule.454

Par-Eta
⊨ b ⇒ b′ a = b x+

⊨ λ+x.a ⇒ b′
455

Although informally, this is a minor change, the precise statement of the rule determines the456

definitions that will be produced in Coq.457

The generated Coq definition uses the locally nameless representation and co-finite458

quantification [8] for the bound variable inside the abstraction. Given any choice for the459

bound variable x (except for some variables that must be avoided in the set L), we can show460

that opening the body of the abstraction20 produces an application of b to that variable.461

Furthermore, because this equation must hold for almost any variable x, we know that x462

could not have appeared in the term b to begin with.463

464
Inductive Par : context -> available_set -> tm -> tm -> Prop :=465

...466

| Par_Eta : forall (L:vars) (G:context) (D:available_set) (a b' b:tm),467

Par G D b b' ->468

(forall x, x \notin L ->469

19 These numbers were calculated using the cloc tool, version 1.76, available from http://github.com/
AlDanial/cloc.

20 The process of replacing the bound variable, represented by an index, with a free one.

ext_red.v
ett_ind.v
ext_invert.v
http://github.com/AlDanial/cloc
http://github.com/AlDanial/cloc


Kravchuk-Kirilyuk, Voizard, and Weirich 7:15

File name (1) (1η) (2) (3) (3η)
Specification (generated) ett_ott.v 1337 1386 49 29 78

Progress (D) ext_consist.v 1427 2054 627 205 832
Progress (D) ett_par.v 660 1044 384 35 419
Erasure/annotation (D and DC) erase.v 2002 2182 180 2 182
Decidability (DC) fc_dec_fun.v 1561 1695 134 45 179
Progress (DC) fc_consist.v 768 901 133 48 181
Inversion and regularity (D) ext_invert.v 1057 1174 117 0 117
Inversion lemmas (DC) fc_invert.v 650 665 15 82 97
Dec. of type checking (DC) fc_get.v 774 844 70 1 71
General tactics ett_ind.v 439 493 54 8 62
Preservation (D) ext_red.v 290 241 -49 91 42
Context includes all vars (DC) fc_context_fv.v 221 257 36 0 36
Context includes all vars (D) ext_context_fv.v 143 178 35 0 35
Dec. of type checking (DC) fc_dec_aux.v 395 399 4 18 22
Substitution (DC) fc_subst.v 1270 1292 22 0 22
Unique typing (DC) fc_unique.v 261 277 16 0 16
Reduction determinism (D) ext_red_one.v 111 123 12 0 12
Substitution (D) ext_subst.v 550 561 11 1 12
Primitive reduction beta.v 71 78 7 4 11
Subst. prop. for coercions (DC) congruence.v 349 354 5 0 5
Weakening (D) ext_weak.v 139 141 2 3 5
Preservation (DC) fc_preservation.v 247 245 -2 4 2
Well-formedness (D) ext_wf.v 93 93 0 3 3
Dec. of type checking (DC) fc_dec_fuel.v 223 223 0 2 2
Erasure properties erase_syntax.v 486 486 0 1 1
General tactics tactics.v 182 182 0 1 1

Total 17499 19404 554 2445

Figure 4 Comparison between line counts in the original [47] and extended proof developments.
The columns are (1) - number of lines in the original, (1η) - number of lines in the extended version,
(2) - change in line counts between the versions, (3) - size of diff for original, and (3η) - size of diff
for the extended version. Files that are identical between the versions are not included in the table,
but appear in the total line count. Note, all line counts include only non-blank, non-comment lines
of code.

TYPES 2019



7:16 Eta-equivalence in Core Dependent Haskell

open a (Var_f x) = App b Rel (Var_f x)) ->470

Par G D (UAbs Rel a) b'471472

In the Ott version of the rule, we need not explicitly mention that x cannot appear free473

in b due to this use of cofinite quantification. Thus, the usual side condition on η-reduction474

is implied by our formulation of the rule in Ott and does not need to be stated again.475

5.2 Confluence proof update476

Updating the confluence proof with the new cases for these rules was fairly straightforward.477

In particular, Coq was easily able to point out the new cases that needed to be added.478

One wrinkle was that the new cases required a change from an induction on the syntax479

of the term to an induction on the height of the term. The reason for this modification is480

that the new η-rules reduce b, which is not an immediate subterm of λ+x.b x+. However, it481

is clear that in comparison to λ+x.b x+ the term b has a smaller height. The induction on482

height of term was also effective for the other cases where we were dealing with immediate483

subterms. Furthermore, our tool support (LNgen) already defined an appropriate height484

function for terms which we were able to use for this purpose. Consequently, although we485

needed to adjust the use of induction in each case, the overall modifications were minor.486

6 Related work487

6.1 Mechanized metatheory for dependent types488

Mechanical reasoning via proof assistants has long been applied to dependent type theories.489

We will not attempt to describe all results. However, we will mention two recent developments:490

Sozeau et al. [41] present the first implementation of a type checker for the kernel of Coq,491

which is proven correct in Coq with respect to its formal specification. More specifically,492

their work models an extension of the Predicative Calculus of (Co)-Inductive Constructions:493

a Pure Type System with an infinite hierarchy of universes, universe polymorphism, an494

impredicative sort, and inductive and co-inductive type families. However, although the495

Coq system includes η from version 8.4, this formalization does not include η-conversion.496

Like this work, their proofs of the metatheory of this system include a confluence proof of a497

parallel reduction relation, following Tait and Martin-Löf.498

In [3], Abel, Öhman and Vezzozi mechanically prove (in Agda) the correctness of an499

algorithm for deciding conversion in a dependent type theory with one universe, an inductive500

type, and η-equality for function types. The algorithm that they verify is similar to the one501

used by Agda and is derived from Harper and Pfenning’s definition of LF [24], as refined and502

extended by Scherer and Abel [4, 2]. The proof of correctness of this algorithm is based on a503

Kripke logical relations argument, parameterized by suitable notion of equivalence of terms.504

6.2 Dependent types, type:type and η-equivalence505

Similarly, the literature is rich with work pertaining to η-equivalence in type theories. Below,506

we will focus on the interaction with type:type systems. In the next subsection, we discuss507

the interactions with irrelevant arguments.508

Many versions of the type:type language do not include η-equivalence in the definition of509

conversion. For example, Coquand presents a semi-decision procedure for type checking a510

language with type:type [18]. This algorithm compares types for equality through weak-head511

normalization only. Similarly, Abel and Altenkirch [1] provide a more modern implementation512



Kravchuk-Kirilyuk, Voizard, and Weirich 7:17

of the type checking algorithm for a very similar language (still without η-conversion), and513

prove completeness on terminating terms (with a terminating type).514

One difficulty with η-reduction in this setting is the problem with confluence for Church-515

style calculi. To avoid a dependency between type checking and reduction, many dependent516

type systems rely on an untyped reduction relation. However, in Church-style systems,517

parallel reduction is only confluent for well-typed terms; ill-typed terms may not have a518

common reduct. For example, the term (λx : A.(λy : B.y) x) can η-convert to λy : B.y or519

β-convert to λx :A.x. These terms are only equal when A = B, but that is only guaranteed520

by well-typed terms. As System D is a Curry-style system however, it does not suffer from521

this issue.522

Two versions of type:type that include η-equivalence are Cardelli [15] and Coquand and523

Takeyama [19]. Both of these works justify the soundness of the type systems and the524

consistency of the conversion relation using a denotational semantics. Furthermore, in525

both of these systems, the denotational semantics ignores the annotated domain types of526

lambda-expressions.527

Coquand and Takeyama additionally provide a semi-decidable type checking algorithm.528

Their conversion algorithm is not based on parallel reduction; instead it follows Coquand’s529

algorithm[17], reducing expressions to their weak-head-normal-forms before a structural530

comparison. When one of the terms being compared is a lambda expression and the other is531

not, the algorithm invents a fresh variable, applies both terms to this fresh variable and then532

continues checking for conversion.533

6.3 Irrelevant quantification and η-equivalence534

In this section, we survey prior work on dependently-typed languages that include some form535

of irrelevant quantification and discuss their interaction with η-equivalence. The contents of536

this section are summarized in Figure 5, which compares these systems along the features537

described below.538

Note that the terms “irrelevance” and “irrelevant quantification” have multiple meanings539

in the literature. Our primary focus is on erasability, the ability for terms to quantify over540

arguments that need not be present at runtime. However, this terminology often includes541

compile-time irrelevance, or the blindness of type equality to such erasable parts of terms. It542

can also refer to erasability in the compile-time type equivalence algorithm. These terms are543

also related to, but not the same as, “parametricity” or “parametric quantification”, which544

characterizes functions that map equivalent arguments to equivalent results.545

Below, we describe the various columns in this table that we use to lay out the design546

space of dependent type systems with irrelevance. Our purpose in this taxonomy is merely547

to define terms and summarize properties that we discuss below. We do not intend this table548

to characterize the contributions of prior work.549

What form of type quantification is supported (Q)? First, we distinguish prior work by550

whether, and how, they support type quantification—that is, the ability for the system to551

quantify over types as well as terms. Type quantification is the foundation for parametric552

polymorphism, a key feature of modern programming languages, enabling modularity and553

code reuse. In dependent type systems, type quantification can take different forms, which554

have varying degrees of expressiveness. Prior work is based on the following foundations555

for type quantification:556

LF [23], variants of the Logical Framework. This system includes dependency on terms557

only and does not allow quantification over types.558

TYPES 2019



7:18 Eta-equivalence in Core Dependent Haskell

Q DC TE η-F η-T Π MM
P01 [37] LF ✓ ✓ ✓ ✓

AS12 [4] MLTT ✓ ✓ ✓ ✓

AVW17 [5] MLTT ✓ ✓ ✓ ✓ 2.
NVD17 [35] MLTT ✓ ✓ 3.
ND18 [34] MLTT 4. ✓ ✓ ✓ 3.
A18 [7] MLTT 4. ✓ 5. 5. ✓

M01 [32] ECC ✓ ✓

BB08 [13] ECC ✓ ✓ ✓

MLS08 [33] IPTS PTS ✓

MLS08 [33] EPTS PTS ✓ ✓

System D [47] TT ✓ 1. ✓ ✓

System DC [47] TT ✓ ✓ 1. ✓ ✓
Notes:
1. Contribution of the current paper.
2. Only arguments of type size can be used without restriction.
3. Includes several different quantifiers, some with restriction, some without.
4. Not explicitly discussed in the paper. (But there are enough annotations that type

checking is likely decidable.)
5. Definitional equality rules are not discussed in the paper, so the status is unclear.

Figure 5 Dependent type systems with irrelevance

MLTT [30, 31], variants of Martin-Löf Type Theory. These systems feature predicative559

polymorphism only, where types are stratified into an infinite hierarchy of universes.560

A type from one universe can quantify only over types from lower universes.561

ECC [16, 28], variants of the extended calculus of constructions. These systems feature562

an impredicative sort (called Prop), in addition to an infinite hierarchy of predicative563

universes. The types in the impredicative sort can quantify over themselves, all others564

must be stratified.565

TT [29, 15], variants of core systems that include the type:type axiom. In these systems566

there is only a single sort of type, which includes types that quantify over all types.567

Systems D and DC include this form of quantification to make the system simpler for568

Haskell programmers, who are used to the impredicative polymorphism of System F.569

PTS [10], pure type systems. These systems do not fix a single regime of type quantifica-570

tion. Instead, they may be instantiated with many different treatments of quantification,571

including all of the forms described above.572

Is type checking decidable (DC)? Next, we distinguish systems based on whether they573

support decidable type checking (✓) or not ( ). Some calculi include enough annotations574

so that a decidable type checking algorithm can be defined, others merely specify when575

terms are well-typed. Sometimes the “same” system can be cast in two different variants.576

For example, System D does not support decidable type checking, System DC augments577

the syntax of terms with annotations for this purpose.21
578

21 Note, one typical location of annotation is the type of bound variables. Systems are often called
“Church”-style when they include this annotation and “Curry”-style when they do not. However, this
annotation is independent of the decidability of the type system, and many type systems that do not
include this annotation support complete typing algorithms.



Kravchuk-Kirilyuk, Voizard, and Weirich 7:19

Is the definition of equality typed (TE)? Does the conversion rule in the type system use579

a typed (✓) or untyped ( ) definition of equivalence? A typed equivalence requires a580

typed judgemental equality ([6]) and each transitive step used in the derivation to be581

between well-typed terms. In contrast, an untyped equivalence is usually defined in terms582

of β- or βη- conversion of terms, only checking that the endpoints are well typed.583

This distinction can affect expressiveness in both directions. On the one hand, an untyped584

relation might equate terms with different types, or justify an equality using ill-typed585

terms. There may be no analogous derivation in a typed relation. On the other hand,586

some equivalence rules (like η for the unit type, see below) can only be included in the587

system when type information is present, thus expanding the relation.588

The inclusion of typed equivalence relation means that the algorithm used for type589

checking may depend not just on the syntax of terms but also on their types during590

execution. This type information may be used to prevent two terms from being equated591

(for example, if one of the terms doesn’t type check), or it may be used to enable two592

terms to be equated (such as in the case of the η-equivalence rule for the unit type).593

Does the equality include η-equivalence rules for functions (η-F)? In this column, we in-594

clude rules for functions regardless of whether they take relevant or irrelevant arguments.595

Note that some systems ([32]) do not mark the introduction and elimination sites of596

functions with irrelevant arguments. As a result, the corresponding equivalence rules597

are unnecessary. Similarly to other features, η-F (as well as η-T below) is important for598

programming as it may be used to derive equalities between types that mention functions,599

and thus to type-check more programs.600

Does the equality include η-equivalence rules for products and unit (η-T)? Does the601

equality include type-directed η-equivalence rules for products or the unit type? For602

example, the rule for the unit type equates all terms of this type. Because this rule603

is type dependent, it can only be added to systems that use a typed definition of604

equivalence. These rules are typically implemented in the type system through a type-605

directed equivalence algorithm [24, 2].606

At a high-level, the type-directed algorithm works in two stages. First, in the type-directed607

phase, if the terms being compared have function types, the two terms are applied to a608

fresh variable. This process takes care of η-equality. If the terms do not have function609

types, then the algorithm continues by converting both terms to weak-head normal form.610

If their heads match, then the algorithm recurses with the type-directed stage again on611

each of the corresponding subterms.612

Is the codomain of the irrelevant Π-type unrestricted (Π)? In some systems, the type of613

an irrelevant abstraction is restricted so that the dependent argument must also be614

used irrelevantly. In other systems, the variable can appear freely without restrictions.615

Still others only allow unrestricted use for certain types of variables [5], or give users a616

choice [35, 34]. We discuss systems that include such restrictions, and their reasons for it,617

in Section 6.4. Systems D and DC do not restrict the codomain of irrelevant Π-types.618

Mechanized metatheory (MM)? Have the metatheoretic results in the paper been devel-619

oped and checked using a proof assistant? Our work is unique in this respect compared620

to similar systems.621

6.4 Irrelevant quantification and restrictions on Π types622

In this paper, we use irrelevance to mean erasure—i.e. the property that some arguments623

may be removed from the term without affecting the runtime behavior of the operational624

semantics. However, there is also a question of what happens to these arguments during625

TYPES 2019



7:20 Eta-equivalence in Core Dependent Haskell

type checking. Do these arguments affect the definition of type equality? If not, can they626

similarly be erased as part of a type checking algorithm?627

Abel and Scherer [4] noted that although some arguments are irrelevant at run-time, they628

can still be relevant when determining type equality. If the definitional equality of the type629

system is typed, and if the type system allows large eliminations, i.e. the definition of a type630

via case analysis, then it can be difficult to incorporate type erasure into a type-directed631

equivalence algorithm. Fundamentally, the algorithm is driven by type information (instead632

of the structure of terms) and if irrelevant arguments can influence those types, they cannot633

be erased.634

The key difficulty is demonstrated by the following example, taken from Abel and635

Scherer [4]. In the presence of large eliminations, and without any other restrictions, one636

would be able to type check the following term t, reproduced below in the syntax of DC637

extended with booleans.22
638

T : Bool → type
T = λ+x :Bool.if x then (Bool → Bool) else Bool

t = λ−F : Π−x :Bool.(T x → T x) → type.

λ+f : (F False− (λ+x :Bool.x)+) → Bool.
λ+n : F True− (λ+x : (Bool → Bool).λ+y :Bool.x y+)+.

f (n ▷ γ)+

639

The DC coercion proof γ marks the point where conversion must be used in this example.640

This term is well-typed in a setting where the type system can derive an equality between the641

type of the parameter to f and the type of the argument n. These two types differ in only642

their irrelevant components, so they should be equated. In System DC, which, like ICC∗,643

includes rules that erase types as part of type equivalence, we can define a coercion proof γ644

that witnesses the equality between the two types. Such a proof is composed transitively645

by first using the erasure-based reflexivity rule (rule An-EraseEq) to change the implicit646

argument to F , and then using η-equivalence with the explicit argument.647

|F False− (λ+x :Bool.x)+| = F □− (λ+x.x)+

=βη F □− (λ+x.λ+y.x y+)+

= |F True− (λ+x : (Bool → Bool).λ+y :Bool.x y+)+|
648

This example causes no difficulty for type checking in DC because it does not use a type-649

directed equivalence algorithm. Indeed, all of the information required by the algorithm is650

already present in the term.651

However, it is difficult to extend a type-directed equivalence algorithm, particularly652

one that includes the η-equivalence rule for the unit type, so that it can equate these two653

types. Therefore, Abel and Scherer proposed restrictions on the use of irrelevantly quantified654

variables, not just in abstractions, but also in the codomain of irrelevant quantifiers. These655

restrictions were lifted in [5] for sized types, on the observation that they were irrelevant to656

the shape of types and therefore were not relevant to the operation of the type-equivalence657

algorithm. Nuyts and Devriese [35] expand on this idea and develop a modal type theory658

22 Note that many systems support the large elimination needed for this example, even in the absence of
inductive types. For example, in Systems D and DC we can use a Church-style encoding of booleans.



Kravchuk-Kirilyuk, Voizard, and Weirich 7:21

that includes, along with other modalities, irrelevance and shape-irrelevance in a unified659

framework.660

However, note that the issue with this example is the desire to use erasure as part of661

a type-directed algorithm, not in the use of a typed equivalence in the language definition662

itself, nor the fact that the definition of type-equivalence ignores irrelevant components.663

Because System DC does not rely on this sort of algorithm, it demonstrates that decidable664

type checking, irrelevance and large eliminations are compatible. Indeed, System DC requires665

the use of erasure in one of its key coercion proofs. On the other hand, one could worry666

that this example would cause trouble for System D. The fact that type checking is already667

undecidable in that language is not an excuse: a compiler like GHC will need to implement668

some type inference algorithm and should identify some subset of the language that it will669

support. This example demonstrates that type-directed algorithms are not a good fit for this670

setting, but does not rule out the algorithms sketched in Section 2.3.671

7 Conclusion672

Overall, this work demonstrates the benefits of developing the metatheory of type systems673

using a proof assistant. Although establishing the original development in prior work [47]674

took significant effort, we are able to build on that foundation when considering extensions675

of the system.676

Furthermore, the availability of this sort of proof as a software engineering artifact makes it677

easier to bring on new collaborators. Because all of the proofs are machine-checked, newcomers678

can easily find what parts of the system need extension, even without understanding all679

details of how everything fits together. As a result, this sort of effort can be shared among680

many more collaborators, who can assist in maintaining the results.681

Finally, the confidence gained from machine-checked proofs is also important. The failure682

of preservation for parallel η-reduction is obvious only in hindsight, and could have been683

easily overlooked in a pen-and-paper proof. At the same time, the automatic reassurance684

that this failure does not interact with the main soundness and decidability results is also685

welcome.686

References687

1 Andreas Abel and Thorsten Altenkirch. A partial type checking algorithm for Type:Type.688

Electronic Notes in Theoretical Computer Science, 229(5):3 – 17, 2011. Proceedings of the689

Second Workshop on Mathematically Structured Functional Programming (MSFP 2008).690

doi:10.1016/j.entcs.2011.02.013.691

2 Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by evaluation for Martin-692

Löf type theory with typed equality judgements. In 22nd Annual IEEE Symposium on Logic693

in Computer Science (LICS 2007), pages 3–12. IEEE, 2007.694

3 Andreas Abel, Joakim Öhman, and Andrea Vezzosi. Decidability of conversion for type theory695

in type theory. Proceedings of the acm on programming languages, 2(POPL):23, 2017.696

4 Andreas Abel and Gabriel Scherer. On irrelevance and algorithmic equality in predicative type697

theory. Logical Methods in Computer Science, 8(1), 2012. doi:10.2168/LMCS-8(1:29)2012.698

5 Andreas Abel, Andrea Vezzosi, and Théo Winterhalter. Normalization by evaluation for sized699

dependent types. PACMPL, 1(ICFP):33:1–33:30, 2017. doi:10.1145/3110277.700

6 ROBIN ADAMS. Pure type systems with judgemental equality. Journal of Functional701

Programming, 16(2):219–246, 2006. doi:10.1017/S0956796805005770.702

TYPES 2019

https://doi.org/10.1016/j.entcs.2011.02.013
https://doi.org/10.2168/LMCS-8(1:29)2012
https://doi.org/10.1145/3110277
https://doi.org/10.1017/S0956796805005770


7:22 Eta-equivalence in Core Dependent Haskell

7 Robert Atkey. The syntax and semantics of quantitative type theory. In LICS ’18: 33rd703

Annual ACM/IEEE Symposium on Logic in Computer Science, July 9–12, 2018, Oxford,704

United Kingdom, 2018. doi:10.1145/3209108.3209189.705

8 Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie706

Weirich. Engineering formal metatheory. In ACM SIGPLAN-SIGACT Symposium on Principles707

of Programming Languages (POPL), pages 3–15, January 2008.708

9 Brian Aydemir and Stephanie Weirich. LNgen: Tool support for locally nameless represen-709

tations. Technical Report MS-CIS-10-24, Computer and Information Science, University of710

Pennsylvania, June 2010.711

10 H. P. Barendregt. Lambda Calculi with Types, page 117–309. Oxford University Press, Inc.,712

USA, 1993.713

11 Hendrik Pieter Barendregt. The Lambda Calculus - its Syntax and Semantics, volume 103 of714

Studies in logic and the foundations of mathematics. North-Holland, 1985.715

12 Henk Barendregt. Introduction to generalized type systems. J. Funct. Program., 1(2):125–154,716

1991.717

13 Bruno Barras and Bruno Bernardo. The implicit calculus of constructions as a programming718

language with dependent types. In Roberto Amadio, editor, Foundations of Software Science719

and Computational Structures, pages 365–379, Berlin, Heidelberg, 2008. Springer Berlin720

Heidelberg.721

14 Edwin Brady. Practical Implementation of a Dependently Typed Functional Programming722

Language. PhD thesis, Durham University, 2005.723

15 Luca Cardelli. A polymorphic λ-calculus with Type:Type. Technical report, DEC SRC, 1986.724

URL: http://lucacardelli.name/Papers/TypeType.A4.pdf.725

16 Thierry Coquand. A calculus of constructions. manuscript, November 1986.726

17 Thierry Coquand. An algorithm for testing conversion in type theory. In Gérard Huet and727

Gordon Plotkin, editors, Logical Frameworks, pages 255–279. Cambridge University Press,728

New York, NY, USA, 1991.729

18 Thierry Coquand. An algorithm for type-checking dependent types. Science of computer730

programming., 26(1-3):167,177, 1996-05.731

19 Thierry Coquand and Makoto Takeyama. An implementation of type: type. In International732

Workshop on Types for Proofs and Programs, pages 53–62. Springer, 2000.733

20 Richard A. Eisenberg. Dependent Types in Haskell: Theory and Practice. PhD thesis, University734

of Pennsylvania, 2016.735

21 Richard A. Eisenberg and Stephanie Weirich. Dependently typed programming with singletons.736

In ACM SIGPLAN Haskell Symposium, 2012.737

22 Adam Gundry. Type Inference, Haskell and Dependent Types. PhD thesis, University of738

Strathclyde, 2013.739

23 Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. J. ACM,740

40(1):143–184, January 1993. doi:10.1145/138027.138060.741

24 Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type theory.742

ACM Trans. Comput. Logic, 6(1):61–101, January 2005. doi:10.1145/1042038.1042041.743

25 J. Roger Hindley. The Church-Rosser property and a result in combinatory logic. PhD thesis,744

University of Newcastle upon Tyne, 1964.745

26 Csongor Kiss, Tony Field, Susan Eisenbach, and Simon Peyton Jones. Higher-order type-level746

programming in haskell. Proc. ACM Program. Lang., 3(ICFP), July 2019. doi:10.1145/747

3341706.748

27 Sam Lindley and Conor McBride. Hasochism: the pleasure and pain of dependently typed749

Haskell programming. In ACM SIGPLAN Haskell Symposium, 2013.750

28 Z. Luo. ECC, an extended calculus of constructions. In [1989] Proceedings. Fourth Annual751

Symposium on Logic in Computer Science, pages 386–395, 1989.752

29 Per Martin-Löf. A theory of types. Unpublished manuscript, 1971.753

https://doi.org/10.1145/3209108.3209189
http://lucacardelli.name/Papers/TypeType.A4.pdf
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/1042038.1042041
https://doi.org/10.1145/3341706
https://doi.org/10.1145/3341706
https://doi.org/10.1145/3341706


Kravchuk-Kirilyuk, Voizard, and Weirich 7:23

30 Per Martin-Löf. An intuitionistic theory of types: predicative part. In H.E. Rose and J.C.754

Shepherdson, editors, Logic Colloquium ’73, Proceedings of the Logic Colloquium, volume 80755

of Studies in Logic and the Foundations of Mathematics, pages 73–118. North-Holland, 1975.756

31 Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Bibliopolis,757

1984.758

32 Alexandre Miquel. The implicit calculus of constructions: Extending pure type systems with759

an intersection type binder and subtyping. In Proceedings of the 5th International Conference760

on Typed Lambda Calculi and Applications, TLCA’01, pages 344–359, Berlin, Heidelberg, 2001.761

Springer-Verlag.762

33 Nathan Mishra-Linger and Tim Sheard. Erasure and polymorphism in pure type systems. In763

Roberto M. Amadio, editor, Foundations of Software Science and Computational Structures,764

11th International Conference, FOSSACS 2008, Held as Part of the Joint European Conferences765

on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29 - April 6,766

2008. Proceedings, volume 4962 of Lecture Notes in Computer Science, pages 350–364. Springer,767

2008. doi:10.1007/978-3-540-78499-9\_25.768

34 Andreas Nuyts and Dominique Devriese. Degrees of relatedness: A unified framework for769

parametricity, irrelevance, ad hoc polymorphism, intersections, unions and algebra in dependent770

type theory. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual771

ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,772

2018, pages 779–788. ACM, 2018. doi:10.1145/3209108.3209119.773

35 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. Parametric quantifiers for dependent774

type theory. Proc. ACM Program. Lang., 1(ICFP):32:1–32:29, August 2017. doi:10.1145/775

3110276.776

36 Frank Pfenning. On the undecidability of partial polymorphic type reconstruction. Technical777

report, Carnegie Mellon University, Pittsburgh, PA, USA, 1992.778

37 Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal type theory. In779

J. Halpern, editor, Proceedings of the 16th Annual Symposium on Logic in Computer Science780

(LICS’01), pages 221–230, Boston, Massachusetts, June 2001. IEEE Computer Society Press.781

38 Barry K. Rosen. Tree-manipulating systems and Church-Rosser theorems. J. ACM, 20(1):160–782

187, January 1973. doi:10.1145/321738.321750.783

39 Alejandro Serrano, Jurriaan Hage, Dimitrios Vytiniotis, and Simon Peyton Jones. Guarded784

impredicative polymorphism. In Jeffrey S. Foster and Dan Grossman, editors, Proceedings of785

the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation,786

PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pages 783–796. ACM, 2018. doi:787

10.1145/3192366.3192389.788

40 Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit789

Sarkar, and Rok Strniša. Ott: Effective tool support for the working semanticist. Journal of790

Functional Programming, 20(1), January 2010.791

41 Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter.792

Coq coq correct! verification of type checking and erasure for coq, in coq. Proc. ACM Program.793

Lang., 4(POPL):8:1–8:28, 2020. doi:10.1145/3371076.794

42 M. Sulzmann, M. Chakravarty, S. Peyton Jones, and K. Donnelly. System F with type equality795

coercions. In François Pottier and George C. Necula, editors, Proceedings of TLDI’07: 2007796

ACM SIGPLAN International Workshop on Types in Languages Design and Implementation,797

Nice, France, January 16, 2007, pages 53–66. ACM, 2007.798

43 The Coq Development Team. The Coq proof assistant, version 8.8.0, April 2018. doi:799

10.5281/zenodo.1219885.800

44 Dimitrios Vytiniotis, Simon L. Peyton Jones, Tom Schrijvers, and Martin Sulzmann. Out-801

sidein(x) modular type inference with local assumptions. J. Funct. Program., 21(4-5):333–412,802

2011. doi:10.1017/S0956796811000098.803

45 Stephanie Weirich. Depending on types, 2014. Invited keynote given at ICFP 2014.804

TYPES 2019

https://doi.org/10.1007/978-3-540-78499-9_25
https://doi.org/10.1145/3209108.3209119
https://doi.org/10.1145/3110276
https://doi.org/10.1145/3110276
https://doi.org/10.1145/3110276
https://doi.org/10.1145/321738.321750
https://doi.org/10.1145/3192366.3192389
https://doi.org/10.1145/3192366.3192389
https://doi.org/10.1145/3192366.3192389
https://doi.org/10.1145/3371076
https://doi.org/10.5281/zenodo.1219885
https://doi.org/10.5281/zenodo.1219885
https://doi.org/10.5281/zenodo.1219885
https://doi.org/10.1017/S0956796811000098


7:24 Eta-equivalence in Core Dependent Haskell

46 Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. System FC with explicit kind805

equality. In Proceedings of The 18th ACM SIGPLAN International Conference on Functional806

Programming, ICFP ’13, pages 275–286, Boston, MA, September 2013.807

47 Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo de Amorim, and Richard A.808

Eisenberg. A specification for dependent types in Haskell. Proc. ACM Program. Lang.,809

1(ICFP):31:1–31:29, August 2017. doi:10.1145/3110275.810

48 J.B. Wells. Typability and type checking in System F are equivalent and undecidable. Annals811

of Pure and Applied Logic, 98(1):111 – 156, 1999. doi:10.1016/S0168-0072(98)00047-5.812

49 A.K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf. Comput.,813

115(1):38–94, November 1994. doi:10.1006/inco.1994.1093.814

50 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira. Kind inference for datatypes.815

Proc. ACM Program. Lang., 4(POPL):53:1–53:28, 2020. doi:10.1145/3371121.816

https://doi.org/10.1145/3110275
https://doi.org/10.1016/S0168-0072(98)00047-5
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/3371121


Kravchuk-Kirilyuk, Voizard, and Weirich 7:25

A Complete system specification817

The complete type system appears in here including the actual rules that we used, auto-818

matically generated by Ott. For presentation purposes, we have removed some redundant819

hypotheses from these rules in the main body of the paper when they were implied via820

regularity. We have proven (in Coq) that these additional premises are admissible, so their821

removal does not change the type system.23 These redundant hypotheses are marked by822

square brackets in the complete system below.823

We need to include these redundant hypotheses in our rules for two reasons. First,824

sometimes these hypotheses simplify the reasoning and allow us to prove properties more825

independently of one another. For example, in the rule E-Beta rule, we require a2 to have826

the same type as a1. However, this type system supports the preservation lemma so this827

typing premise will always be derivable. But, it is convenient to prove the regularity property828

early, so we include that hypothesis in the definition of the type system.829

Another source of redundancy comes from our use of the Coq proof assistant. Some of830

our proofs require the use of induction on judgements that are not direct premises, but are831

derived from other premises via regularity. These derivations are always the same height or832

shorter than the original, so this use of induction is justified. However, while Coq natively833

supports proofs by induction on derivations, it does not natively support induction on the834

heights of derivations. Therefore, to make these induction hypotheses available for reasoning,835

we include them as additional premises.836

Finally, instead of the usual syntactic distinction of values (as in Figure 2), our formal-837

ization identifies values using the judgement [Value a], overloaded for both System D and838

System DC terms.839

B Top-level signatures840

Our results are proven with respect to the following top-level signatures:841

Σ1 = ∅ ∪ {Fix ∼ λ−x : type.λ+y :x.(y (Fix[x] y)) : Π−x : type.(x → x) → x}842

Σ0 = |Σ1|843

However, our Coq proofs use these signature definitions opaquely. As a result, any pair844

of top-level signatures are compatible with the definition of the languages as long as they845

satisfy the following properties.846

1. ⊨ Σ0847

2. ⊢ Σ1848

3. Σ0 = |Σ1|849

23 ext_invert.v:E_Pi2,E_Abs2,E_CPi2,E_CAbs2,E_Fam2, ext_invert.v:E_Wff2,E_PiCong2,E_
AbsCong2,E_CPiCong2,E_CAbsCong2, ext_red.v:E_Beta2, fc_invert.v:An_Pi_exists2,An_Abs_
exists2,An_CPi_exists2,An_CAbs_exists2,An_Fam2, fc_invert.v:An_Sym2,An_Trans2,An_
AbsCong_exists2, fc_invert.v:An_AppCong2,An_CPiCong_exists2,An_CAppCong2

TYPES 2019

ext_invert.v:E_Pi2,E_Abs2,E_CPi2,E_CAbs2,E_Fam2
ext_invert.v:E_Wff2,E_PiCong2,E_AbsCong2,E_CPiCong2,E_CAbsCong2
ext_invert.v:E_Wff2,E_PiCong2,E_AbsCong2,E_CPiCong2,E_CAbsCong2
ext_red.v:E_Beta2
fc_invert.v:An_Pi_exists2,An_Abs_exists2,An_CPi_exists2,An_CAbs_exists2,An_Fam2
fc_invert.v:An_Pi_exists2,An_Abs_exists2,An_CPi_exists2,An_CAbs_exists2,An_Fam2
fc_invert.v:An_Sym2,An_Trans2,An_AbsCong_exists2
fc_invert.v:An_Sym2,An_Trans2,An_AbsCong_exists2
fc_invert.v:An_AppCong2,An_CPiCong_exists2,An_CAppCong2


7:26 Eta-equivalence in Core Dependent Haskell

C Reduction relations850

C.1 Primitive reduction851

⊨ a > b (primitive reductions on erased terms)852

Beta-AppAbs

⊨ (λ+x.v) b+ > v{b/x}

Beta-AppAbsIrrel
[Value (λ−x.v)]

⊨ (λ−x.v) □− > v{□/x}

Beta-CAppCAbs

⊨ (Λc.a′)[•] > a′{•/c}853

Beta-Axiom
F ∼ a : A ∈ Σ0

⊨ F > a854

C.2 System D one-step reduction855

⊨ a ⇝ b (single-step head reduction for implicit language)856

E-AbsTerm
⊨ a ⇝ a′

⊨ λ−x.a ⇝ λ−x.a′

E-AppLeft
⊨ a ⇝ a′

⊨ a b+ ⇝ a′ b+

E-AppLeftIrrel
⊨ a ⇝ a′

⊨ a □− ⇝ a′ □−

E-CAppLeft
⊨ a ⇝ a′

⊨ a[•]⇝ a′[•]857

E-AppAbs

⊨ (λ+x.v) a+ ⇝ v{a/x}

E-AppAbsIrrel
[Value (λ−x.v)]

⊨ (λ−x.v) □− ⇝ v{□/x}

E-CAppCAbs

⊨ (Λc.b)[•]⇝ b{•/c}858

E-Axiom
F ∼ a : A ∈ Σ0

⊨ F ⇝ a859

C.3 System DC one-step reduction860

Γ ⊢ a ⇝ b (single-step, weak head reduction to values for annotated language)861

An-AppLeft
Γ ⊢ a ⇝ a′

Γ ⊢ a bρ ⇝ a′ bρ

An-AppAbs
[Value (λρx :A.w)]

Γ ⊢ (λρx :A.w) aρ ⇝ w{a/x}

An-CAppLeft
Γ ⊢ a ⇝ a′

Γ ⊢ a[γ]⇝ a′[γ]862

An-CAppCAbs

Γ ⊢ (Λc :ϕ.b)[γ]⇝ b{γ/c}

An-AbsTerm
Γ ⊢ A : type

Γ, x : A ⊢ b ⇝ b′

Γ ⊢ (λ−x :A.b)⇝ (λ−x :A.b′)

An-Axiom
F ∼ a : A ∈ Σ1

Γ ⊢ F ⇝ a863

An-ConvTerm
Γ ⊢ a ⇝ a′

Γ ⊢ a ▷ γ ⇝ a′ ▷ γ

An-Combine
[Value v]

Γ ⊢ (v ▷ γ1) ▷ γ2 ⇝ v ▷ (γ1; γ2)864

An-Push
[Value v]

Γ; ˜︁Γ ⊢ γ : Πρx1 :A1.B1 ∼ Πρx2 :A2.B2
b′ = b ▷ sym (piFst γ)

γ′ = γ@(b′ |=|(piFst γ) b)
Γ ⊢ (v ▷ γ) bρ ⇝ (v b′ρ) ▷ γ′

An-CPush
[Value v]

Γ; ˜︁Γ ⊢ γ : ∀c1 :ϕ1.A1 ∼ ∀c2 :ϕ2.A2
γ′

1 = γ1 ▷ sym (cpiFst γ)
γ′ = γ@(γ′

1 ∼ γ1)
Γ ⊢ (v ▷ γ)[γ1]⇝ (v[γ′

1]) ▷ γ′
865



Kravchuk-Kirilyuk, Voizard, and Weirich 7:27

C.4 Parallel reduction866

⊨ a ⇒ b (parallel reduction (implicit language))867

Par-Refl

⊨ a ⇒ a

Par-Beta
⊨ a ⇒ (λ+x.a′)
⊨ b ⇒ b′

⊨ a b+ ⇒ a′{b′/x}

Par-BetaIrrel
⊨ a ⇒ (λ−x.a′)
⊨ a □− ⇒ a′{□/x}

Par-App
⊨ a ⇒ a′ ⊨ b ⇒ b′

⊨ a b+ ⇒ a′ b′+
868

Par-AppIrrel
⊨ a ⇒ a′

⊨ a □− ⇒ a′ □−

Par-CBeta
⊨ a ⇒ (Λc.a′)
⊨ a[•] ⇒ a′{•/c}

Par-CApp
⊨ a ⇒ a′

⊨ a[•] ⇒ a′[•]

Par-Abs
⊨ a ⇒ a′

⊨ λρx.a ⇒ λρx.a′
869

Par-Pi
⊨ A ⇒ A′ ⊨ B ⇒ B′

⊨ Πρx :A.B ⇒ Πρx :A′.B′

Par-CAbs
⊨ a ⇒ a′

⊨ Λc.a ⇒ Λc.a′

Par-CPi
⊨ A ⇒ A′ ⊨ B ⇒ B′

⊨ a ⇒ a′ ⊨ A1 ⇒ A′
1

⊨ ∀c :A ∼A1 B.a ⇒ ∀c :A′ ∼A′
1

B′.a′
870

Par-Axiom
F ∼ a : A ∈ Σ0

⊨ F ⇒ a

Par-Eta
⊨ b ⇒ b′ a = b x+

⊨ λ+x.a ⇒ b′

Par-EtaIrrel
⊨ b ⇒ b′ a = b □−

⊨ λ−x.a ⇒ b′

Par-EtaC
⊨ b ⇒ b′ a = b[•]
⊨ Λc.a ⇒ b′

871

D Full system specification: System D type system872

Γ ⊨ a : A (typing)873

E-Star
⊨ Γ

Γ ⊨ type : type

E-Var
⊨ Γ x : A ∈ Γ

Γ ⊨ x : A

E-Pi
Γ, x : A ⊨ B : type

[Γ ⊨ A : type]
Γ ⊨ Πρx :A.B : type

E-Abs
Γ, x : A ⊨ a : B
[Γ ⊨ A : type]

(ρ = +) ∨ (x ̸∈ fv a)
Γ ⊨ λρx.a : Πρx :A.B874

E-App
Γ ⊨ b : Π+x :A.B

Γ ⊨ a : A
Γ ⊨ b a+ : B{a/x}

E-IApp
Γ ⊨ b : Π−x :A.B

Γ ⊨ a : A
Γ ⊨ b □− : B{a/x}

E-Conv
Γ ⊨ a : A

Γ; ˜︁Γ ⊨ A ≡ B : type
[Γ ⊨ B : type]

Γ ⊨ a : B

E-CPi
Γ, c : ϕ ⊨ B : type

[Γ ⊨ ϕ ok]
Γ ⊨ ∀c :ϕ.B : type875

E-CAbs
Γ, c : ϕ ⊨ a : B

[Γ ⊨ ϕ ok]
Γ ⊨ Λc.a : ∀c :ϕ.B

E-CApp
Γ ⊨ a1 : ∀c : (a ∼A b).B1

Γ; ˜︁Γ ⊨ a ≡ b : A
Γ ⊨ a1[•] : B1{•/c}

E-Fam
⊨ Γ F ∼ a : A ∈ Σ0

[∅ ⊨ A : type]
Γ ⊨ F : A876

Γ ⊨ ϕ ok (Prop wellformedness)877

E-Wff
Γ ⊨ a : A Γ ⊨ b : A

[Γ ⊨ A : type]
Γ ⊨ a ∼A b ok878

TYPES 2019



7:28 Eta-equivalence in Core Dependent Haskell

Γ; ∆ ⊨ ϕ1 ≡ ϕ2 (prop equality)879

E-PropCong
Γ; ∆ ⊨ A1 ≡ A2 : A
Γ; ∆ ⊨ B1 ≡ B2 : A

Γ; ∆ ⊨ A1 ∼A B1 ≡ A2 ∼A B2

E-IsoConv
Γ; ∆ ⊨ A ≡ B : type
Γ ⊨ A1 ∼A A2 ok
Γ ⊨ A1 ∼B A2 ok

Γ; ∆ ⊨ A1 ∼A A2 ≡ A1 ∼B A2880

E-CPiFst
Γ; ∆ ⊨ ∀c :ϕ1.B1 ≡ ∀c :ϕ2.B2 : type

Γ; ∆ ⊨ ϕ1 ≡ ϕ2881

Γ; ∆ ⊨ a ≡ b : A (definitional equality)882

E-Assn
⊨ Γ c : (a ∼A b) ∈ Γ

c ∈ ∆
Γ; ∆ ⊨ a ≡ b : A

E-Refl
Γ ⊨ a : A

Γ; ∆ ⊨ a ≡ a : A

E-Sym
Γ; ∆ ⊨ b ≡ a : A
Γ; ∆ ⊨ a ≡ b : A

E-Trans
Γ; ∆ ⊨ a ≡ a1 : A
Γ; ∆ ⊨ a1 ≡ b : A
Γ; ∆ ⊨ a ≡ b : A883

E-Beta
Γ ⊨ a1 : B

[Γ ⊨ a2 : B] ⊨ a1 > a2

Γ; ∆ ⊨ a1 ≡ a2 : B

E-PiCong
Γ; ∆ ⊨ A1 ≡ A2 : type

Γ, x : A1; ∆ ⊨ B1 ≡ B2 : type
[Γ ⊨ A1 : type]

[Γ ⊨ Πρx :A1.B1 : type]
[Γ ⊨ Πρx :A2.B2 : type]

Γ; ∆ ⊨ (Πρx :A1.B1) ≡ (Πρx :A2.B2) : type884

E-AbsCong
Γ, x : A1; ∆ ⊨ b1 ≡ b2 : B

[Γ ⊨ A1 : type]
(ρ = +) ∨ (x ̸∈ fv b1)
(ρ = +) ∨ (x ̸∈ fv b2)

Γ; ∆ ⊨ (λρx.b1) ≡ (λρx.b2) : Πρx :A1.B

E-AppCong
Γ; ∆ ⊨ a1 ≡ b1 : Π+x :A.B

Γ; ∆ ⊨ a2 ≡ b2 : A
Γ; ∆ ⊨ a1 a2

+ ≡ b1 b2
+ : B{a2/x}885

E-IAppCong
Γ; ∆ ⊨ a1 ≡ b1 : Π−x :A.B

Γ ⊨ a : A
Γ; ∆ ⊨ a1 □

− ≡ b1 □
− : B{a/x}

E-PiFst
Γ; ∆ ⊨ Πρx :A1.B1 ≡ Πρx :A2.B2 : type

Γ; ∆ ⊨ A1 ≡ A2 : type886

E-PiSnd
Γ; ∆ ⊨ Πρx :A1.B1 ≡ Πρx :A2.B2 : type

Γ; ∆ ⊨ a1 ≡ a2 : A1

Γ; ∆ ⊨ B1{a1/x} ≡ B2{a2/x} : type

E-CPiCong
Γ; ∆ ⊨ ϕ1 ≡ ϕ2

Γ, c : ϕ1; ∆ ⊨ A ≡ B : type
[Γ ⊨ ϕ1 ok]

[Γ ⊨ ∀c :ϕ1.A : type]
[Γ ⊨ ∀c :ϕ2.B : type]

Γ; ∆ ⊨ ∀c :ϕ1.A ≡ ∀c :ϕ2.B : type887

E-CAbsCong
Γ, c : ϕ1; ∆ ⊨ a ≡ b : B

[Γ ⊨ ϕ1 ok]
Γ; ∆ ⊨ (Λc.a) ≡ (Λc.b) : ∀c :ϕ1.B

E-CAppCong
Γ; ∆ ⊨ a1 ≡ b1 : ∀c : (a ∼A b).B

Γ; ˜︁Γ ⊨ a ≡ b : A
Γ; ∆ ⊨ a1[•] ≡ b1[•] : B{•/c}888



Kravchuk-Kirilyuk, Voizard, and Weirich 7:29

E-CPiSnd
Γ; ∆ ⊨ ∀c : (a1 ∼A a2).B1 ≡ ∀c : (a′

1 ∼A′ a′
2).B2 : type

Γ; ˜︁Γ ⊨ a1 ≡ a2 : A
Γ; ˜︁Γ ⊨ a′

1 ≡ a′
2 : A′

Γ; ∆ ⊨ B1{•/c} ≡ B2{•/c} : type

E-Cast
Γ; ∆ ⊨ a ≡ b : A

Γ; ∆ ⊨ a ∼A b ≡ a′ ∼A′ b′

Γ; ∆ ⊨ a′ ≡ b′ : A′
889

E-EqConv
Γ; ∆ ⊨ a ≡ b : A

Γ; ˜︁Γ ⊨ A ≡ B : type
Γ; ∆ ⊨ a ≡ b : B

E-IsoSnd
Γ; ∆ ⊨ a ∼A b ≡ a′ ∼A′ b′

Γ; ∆ ⊨ A ≡ A′ : type

E-EtaRel
Γ ⊨ b : Π+x :A.B

a = b x+

Γ; ∆ ⊨ λ+x.a ≡ b : Π+x :A.B890

E-EtaIrrel
Γ ⊨ b : Π−x :A.B

a = b □−

Γ; ∆ ⊨ λ−x.a ≡ b : Π−x :A.B

E-EtaC
Γ ⊨ b : ∀c :ϕ.B

a = b[•]
Γ; ∆ ⊨ Λc.a ≡ b : ∀c :ϕ.B891

⊨ Γ (context wellformedness)892

E-Empty

⊨ ∅

E-ConsTm
⊨ Γ Γ ⊨ A : type

x ̸∈ dom Γ
⊨ Γ, x : A

E-ConsCo
⊨ Γ

Γ ⊨ ϕ ok c ̸∈ dom Γ
⊨ Γ, c : ϕ893

⊨ Σ (signature wellformedness)894

Sig-Empty

⊨ ∅

Sig-ConsAx
⊨ Σ ∅ ⊨ A : type

∅ ⊨ a : A F ̸∈ dom Σ
⊨ Σ ∪ {F ∼ a : A}895

E Full system specification: System DC type system896

Γ ⊢ a : A (typing)897

An-Star
⊢ Γ

Γ ⊢ type : type

An-Var
⊢ Γ x : A ∈ Γ

Γ ⊢ x : A

An-Pi
Γ, x : A ⊢ B : type

[Γ ⊢ A : type]
Γ ⊢ Πρx :A.B : type

An-Abs
[Γ ⊢ A : type]

Γ, x : A ⊢ a : B
(ρ = +) ∨ (x ̸∈ fv |a|)

Γ ⊢ λρx :A.a : Πρx :A.B898

An-App
Γ ⊢ b : Πρx :A.B

Γ ⊢ a : A
Γ ⊢ b aρ : B{a/x}

An-Conv
Γ ⊢ a : A

Γ; ˜︁Γ ⊢ γ : A ∼ B
Γ ⊢ B : type
Γ ⊢ a ▷ γ : B

An-CPi
[Γ ⊢ ϕ ok]

Γ, c : ϕ ⊢ B : type
Γ ⊢ ∀c :ϕ.B : type

An-CAbs
[Γ ⊢ ϕ ok]

Γ, c : ϕ ⊢ a : B
Γ ⊢ Λc :ϕ.a : ∀c :ϕ.B899

An-CApp
Γ ⊢ a1 : ∀c :a ∼A1 b.B

Γ; ˜︁Γ ⊢ γ : a ∼ b
Γ ⊢ a1[γ] : B{γ/c}

An-Fam
⊢ Γ F ∼ a : A ∈ Σ1

[∅ ⊢ A : type]
Γ ⊢ F : A900

TYPES 2019



7:30 Eta-equivalence in Core Dependent Haskell

Γ ⊢ ϕ ok (prop wellformedness)901

An-Wff
Γ ⊢ a : A

Γ ⊢ b : B |A| = |B|
Γ ⊢ a ∼A b ok902

Γ; ∆ ⊢ γ : ϕ1 ∼ ϕ2 (coercion between props)903

An-PropCong
Γ; ∆ ⊢ γ1 : A1 ∼ A2
Γ; ∆ ⊢ γ2 : B1 ∼ B2
Γ ⊢ A1 ∼A B1 ok
Γ ⊢ A2 ∼A B2 ok

Γ; ∆ ⊢ (γ1 ∼A γ2) : (A1 ∼A B1) ∼ (A2 ∼A B2)

An-CPiFst
Γ; ∆ ⊢ γ : ∀c :ϕ1.A2 ∼ ∀c :ϕ2.B2

Γ; ∆ ⊢ cpiFst γ : ϕ1 ∼ ϕ2904

An-IsoSym
Γ; ∆ ⊢ γ : ϕ1 ∼ ϕ2

Γ; ∆ ⊢ sym γ : ϕ2 ∼ ϕ1905

An-IsoConv
Γ; ∆ ⊢ γ : A ∼ B
Γ ⊢ a1 ∼A a2 ok
Γ ⊢ a′

1 ∼B a′
2 ok

|a1| = |a′
1| |a2| = |a′

2|
Γ; ∆ ⊢ conv (a1 ∼A a2) ∼γ (a′

1 ∼B a′
2) : (a1 ∼A a2) ∼ (a′

1 ∼B a′
2)906

Γ; ∆ ⊢ γ : A ∼ B (coercion between types)907

An-Assn
⊢ Γ

c : a ∼A b ∈ Γ c ∈ ∆
Γ; ∆ ⊢ c : a ∼ b

An-Refl
Γ ⊢ a : A

Γ; ∆ ⊢ refl a : a ∼ a

An-EraseEq
Γ ⊢ a : A

Γ ⊢ b : B |a| = |b|
Γ; ˜︁Γ ⊢ γ : A ∼ B

Γ; ∆ ⊢ (a |=|γ b) : a ∼ b908

An-Sym
Γ ⊢ b : B Γ ⊢ a : A

[Γ; ˜︁Γ ⊢ γ1 : B ∼ A]
Γ; ∆ ⊢ γ : b ∼ a

Γ; ∆ ⊢ sym γ : a ∼ b

An-Trans
Γ; ∆ ⊢ γ1 : a ∼ a1
Γ; ∆ ⊢ γ2 : a1 ∼ b

[Γ ⊢ a : A]
[Γ ⊢ a1 : A1]

[Γ; ˜︁Γ ⊢ γ3 : A ∼ A1]
Γ; ∆ ⊢ (γ1; γ2) : a ∼ b

An-Beta
Γ ⊢ a1 : B0
Γ ⊢ a2 : B1
|B0| = |B1|
⊨ |a1| > |a2|

Γ; ∆ ⊢ red a1 a2 : a1 ∼ a2909

An-PiCong
Γ; ∆ ⊢ γ1 : A1 ∼ A2

Γ, x : A1; ∆ ⊢ γ2 : B1 ∼ B2
B3 = B2{x ▷ sym γ1/x}
Γ ⊢ Πρx :A1.B1 : type
Γ ⊢ Πρx :A2.B3 : type

Γ ⊢ (Πρx :A1.B2) : type
Γ; ∆ ⊢ Πρx :γ1.γ2 : (Πρx :A1.B1) ∼ (Πρx :A2.B3)910



Kravchuk-Kirilyuk, Voizard, and Weirich 7:31

An-AbsCong
Γ; ∆ ⊢ γ1 : A1 ∼ A2

Γ, x : A1; ∆ ⊢ γ2 : b1 ∼ b2
b3 = b2{x ▷ sym γ1/x}

[Γ ⊢ A1 : type]
Γ ⊢ A2 : type

(ρ = +) ∨ (x ̸∈ fv |b1|)
(ρ = +) ∨ (x ̸∈ fv |b3|)
[Γ ⊢ (λρx :A1.b2) : B]

Γ; ∆ ⊢ (λρx :γ1.γ2) : (λρx :A1.b1) ∼ (λρx :A2.b3)

An-AppCong
Γ; ∆ ⊢ γ1 : a1 ∼ b1
Γ; ∆ ⊢ γ2 : a2 ∼ b2

Γ ⊢ a1 a2
ρ : A

Γ ⊢ b1 b2
ρ : B

[Γ; ˜︁Γ ⊢ γ3 : A ∼ B]
Γ; ∆ ⊢ γ1 γρ

2 : a1 a2
ρ ∼ b1 b2

ρ
911

An-PiFst
Γ; ∆ ⊢ γ : Πρx :A1.B1 ∼ Πρx :A2.B2

Γ; ∆ ⊢ piFst γ : A1 ∼ A2

An-PiSnd
Γ; ∆ ⊢ γ1 : Πρx :A1.B1 ∼ Πρx :A2.B2

Γ; ∆ ⊢ γ2 : a1 ∼ a2
Γ ⊢ a1 : A1
Γ ⊢ a2 : A2

Γ; ∆ ⊢ γ1@γ2 : B1{a1/x} ∼ B2{a2/x}912

An-CPiCong
Γ; ∆ ⊢ γ1 : ϕ1 ∼ ϕ2

Γ, c : ϕ1; ∆ ⊢ γ3 : B1 ∼ B2
B3 = B2{c ▷ sym γ1/c}

Γ ⊢ ∀c :ϕ1.B1 : type
[Γ ⊢ ∀c :ϕ2.B3 : type]
Γ ⊢ ∀c :ϕ1.B2 : type

Γ; ∆ ⊢ (∀c :γ1.γ3) : (∀c :ϕ1.B1) ∼ (∀c :ϕ2.B3)913

An-CAbsCong
Γ; ∆ ⊢ γ1 : ϕ1 ∼ ϕ2

Γ, c : ϕ1; ∆ ⊢ γ3 : a1 ∼ a2
a3 = a2{c ▷ sym γ1/c}

Γ ⊢ (Λc :ϕ1.a1) : ∀c :ϕ1.B1
Γ ⊢ (Λc :ϕ2.a3) : ∀c :ϕ2.B2

Γ ⊢ (Λc :ϕ1.a2) : B
Γ; ˜︁Γ ⊢ γ4 : ∀c :ϕ1.B1 ∼ ∀c :ϕ2.B2

Γ; ∆ ⊢ (λc :γ1.γ3@γ4) : (Λc :ϕ1.a1) ∼ (Λc :ϕ2.a3)

An-CAppCong
Γ; ∆ ⊢ γ1 : a1 ∼ b1

Γ; ˜︁Γ ⊢ γ2 : a2 ∼ b2

Γ; ˜︁Γ ⊢ γ3 : a3 ∼ b3
Γ ⊢ a1[γ2] : A
Γ ⊢ b1[γ3] : B

[Γ; ˜︁Γ ⊢ γ4 : A ∼ B]
Γ; ∆ ⊢ γ1(γ2, γ3) : a1[γ2] ∼ b1[γ3]914

An-CPiSnd
Γ; ∆ ⊢ γ1 : (∀c1 :a ∼A a′.B1) ∼ (∀c2 :b ∼B b′.B2)

Γ; ˜︁Γ ⊢ γ2 : a ∼ a′

Γ; ˜︁Γ ⊢ γ3 : b ∼ b′

Γ; ∆ ⊢ γ1@(γ2 ∼ γ3) : B1{γ2/c1} ∼ B2{γ3/c2}

An-Cast
Γ; ∆ ⊢ γ1 : a ∼ a′

Γ; ∆ ⊢ γ2 : a ∼A a′ ∼ b ∼B b′

Γ; ∆ ⊢ γ1 ▷ γ2 : b ∼ b′
915

An-IsoSnd
Γ; ∆ ⊢ γ : (a ∼A a′) ∼ (b ∼B b′)

Γ; ∆ ⊢ isoSnd γ : A ∼ B

An-Eta
Γ ⊢ b : Πρx :A.B

a = b xρ

Γ; ∆ ⊢ eta b : (λρx :A.a) ∼ b916

TYPES 2019



7:32 Eta-equivalence in Core Dependent Haskell

An-EtaC
Γ ⊢ b : ∀c :ϕ.B

a = b[c]
Γ; ∆ ⊢ eta b : (Λc :ϕ.a) ∼ b917

⊢ Γ (context wellformedness)918

An-Empty

⊢ ∅

An-ConsTm
⊢ Γ Γ ⊢ A : type

x ̸∈ dom Γ
⊢ Γ, x : A

An-ConsCo
⊢ Γ

Γ ⊢ ϕ ok c ̸∈ dom Γ
⊢ Γ, c : ϕ919

⊢ Σ (signature wellformedness)920

An-Sig-Empty

⊢ ∅

An-Sig-ConsAx
⊢ Σ ∅ ⊢ A : type

∅ ⊢ a : A F ̸∈ dom Σ
⊢ Σ ∪ {F ∼ a : A}921


	Introduction
	Overview of System D and System DC
	Type checking in System D and System DC
	Irrelevant quantification
	Explicit coercions

	Coercion abstraction
	Type inference for System D

	Adding η-equivalence to Systems D and DC
	Extending proofs
	Progress lemma overview
	Progress lemma update
	Parallel reduction and type preservation
	Additional updates

	Proof engineering
	Stating rules for η-equivalence
	Confluence proof update

	Related work
	Mechanized metatheory for dependent types
	Dependent types, type:type and η-equivalence
	Irrelevant quantification and η-equivalence
	Irrelevant quantification and restrictions on Π types

	Conclusion
	Complete system specification
	Top-level signatures
	Reduction relations
	Primitive reduction
	System D one-step reduction
	System DC one-step reduction
	Parallel reduction

	Full system specification: System D type system
	Full system specification: System DC type system

