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ARTICLE INFO ABSTRACT

Keywords: Although the frequent monitoring of smart meters enables granular control over energy resources, it also increases
Smart meter the risk of leakage of private information such as income, home occupancy, and power consumption behavior that
Privacy can be inferred from the data by an adversary. We propose a method of releasing modified smart meter data so
Optimization

specific private attributes are obscured while the utility of the data for use in an energy resource controller is
preserved. The method privatizes data by injecting noise conditioned on the private attribute through a linear filter
learned via a minimax optimization. The optimization contains the loss function of a classifier for the private
attribute, which we maximize, and the energy resource controller’s objective formulated as a canonical form
optimization, which we minimize. We perform our experiment on an aggregated dataset of household consump-
tion with solar generation and another from the Commission for Energy Regulation (CER) that contains household
smart meter data with sensitive attributes such as income and home occupancy. We demonstrate on the CER data
that our method is able to reduce the ability of an adversary to classify a binary income label to that of random

Battery storage

guessing while maintaining an objective value for an energy storage controller within 10% of optimal.

1. Introduction

Traditionally, the power grid has been managed by the producers
and grid operators with information primarily exchanged among the
large asset owners with little feedback from its end users. However, the
push for renewable energy sources has brought about the rise of dis-
tributed energy resources (DERs) that lie under the control of many
smaller and disparate users, causing a paradigm shift in the flow of
information. The successful operation of DERs and other smart grid
technologies depends on the exchange of large amounts of data from
many different end users [1-3]. Due to increased regulations [4], it may
be unrealistic to assume data will be available without consideration of
the data owners’ privacy. The increased granularity of data required for
smart grid operation enables the inference of personal information [5]
such as household income, which suggests data owners may be re-
luctant to exchange their data without some effort towards preserving
privacy.

Many studies have investigated approaches to protect smart meter
data privacy using a number of different techniques and metrics with
detailed surveys given in [6-8]. The recent paper from Giaconi et al. [8]
defines two general types of approaches, user demand shaping, and
data manipulation, with the latter broken into further categories such
as data obfuscation or aggregation.

* Corresponding author.

Some papers in the data manipulation category, [9] and [10], per-
form a pre-processing step on the raw data in order to better prepare it
for its end use; however, the pre-processing only considers conditioning
the data for its utility without explicitly defining the objective of pre-
serving privacy. Therefore, the pre-processing step may be insufficient
to prevent sensitive information from being inferred from the processed
data. On the other hand, the aggregation technique presented in [11]
and [12], provides user privacy by aggregating data until the aggregate
does not reflect on any specific meter data. However, the aggregation
group size can be on the order of thousands and there is no con-
sideration to the cost of data utility as a result of aggregation. The data
obfuscation category of approaches often come with similar limitations.
For example, many studies come from differential privacy (DP) [13],
which is widely adopted in designing and analyzing privacy mechan-
isms in the context of energy data [14-19]. Specifically, studies [14-16]
proposed several frameworks for reducing the mutual information be-
tween raw data and privatized data (e.g. power profiles), Eibl and Engel
[17] investigated the differential privacy effect with some noise injec-
tion (e.g. Laplace noise), and Zhou et al. [18] explored how much noise
must be added to the data in order to achieve a certain level of dif-
ferential privacy for an existing Laplace mechanism in the context of
solving optimal power flow. Similarly to the aggregation approach and
opposite to the pre-processing approaches, these DP approaches
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typically only consider obfuscating the data for privacy without si-
multaneously considering the utility of the data. Therefore, after
achieving privacy, the data may be too obfuscated to be useful. One
paper that avoids this issue is [19], which proposes a DP mechanism to
release the state parameters of power networks with a guarantee of the
feasibility of the alternating current (AC) power flow problem. By
guaranteeing AC-feasibility of their data, they are making a step in
ensuring the data still retains utility after privatization.

The user demand shaping category of approaches often involves a
balance between utility and privacy since the privacy is achieved via
device operation as opposed to data manipulation [8]; however,
achieving privacy through device operation comes with limitations
such as its efficacy depends on the physical capabilities of the devices.

We distinguish our studies by developing a methodology that learns
an optimal noise injection on the data that balances the trade off be-
tween privacy and data utility, thus, preserving as much utility in the
data as possible. Our method falls within the data obfuscation category,
but differs from strict differential privacy [13] because we use a general
notion of privacy that reduces the correlation between private attri-
butes and the data. This general notion of privacy gives us the flexibility
to maintain the utility of the data while still eliminating an adversary’s
ability to recognize certain private attributes. Since many applications
of smart meter data involve their use in optimization procedures, we
define the utility as the performance achieved when such data is used
for optimal control [20]. We consider a scenario where individual
owners of DERs, such as battery storage systems, wish to privatize their
data before releasing it to a DER aggregator to make optimal control
decisions on their behalf, which can have applications in the context
of [1-3],. This scenario makes our approach share some similarity to
the user demand shaping category of privatization methods in that we
provide balance between the utility of DERs and privacy; however, it
differs in that our privatization occurs on the data before the operation
of the DERs rather than on the actual power consumption after the
operation of DERs.

Our work contributes to the research of smart meter privacy in
following ways. We propose a minimax approach to generate realistic
meter data that is decorrelated from sensitive attributes while main-
taining limited performance loss of a cost minimization optimal control
algorithm using battery storage. Additionally, we developed a paralle-
lized method that can be easily incorporated in modern deep learning
architectures. The correlation of data privatized by our method with
sensitive attributes and the performance of a control algorithm is
evaluated on two real datasets of residential power demand: one with
synthetic sensitive labels and one with real labels. We demonstrate that
our method is able to decrease the classification accuracy of an ad-
versary by over 20% while maintaining the performance of the opti-
mization to within 10% over both datasets.

The rest of the paper is organized as follows: we describe the energy
resource control in Section 2, control with privatized data generated
from the minimax learning algorithm in Section 3, experiments and
results on the two datasets in Section 4, and the Conclusion in Section
Section 5.

2. Energy resource control
2.1. Notation

We use bold letters for vectors and matrices and regular letters for
scalars. Given two vectors x and y € R", x = y represents the element-
wise order x(i) =y(i) for ie[n] where [n] denotes the set
[7] = {1, ---,n}. And x = 0 means all elements in the vector are not less
than the scalar zero. We make the dependence on the underlying
probability distribution P when we write expectations (e.g. Ep[X ]| where
X denotes a random variable). The Frobenius norm of a matrix A is
||A||r. We write V,L(6; X) or dL(6; X), where we typically mean dif-
ferentiation of the loss function £ with respect to the parameter 6 € R".

N stands for Normal (or Gaussian) distribution and R , denotes the non-
negative real numbers. We use := to represent “define as.” All the
vectors are column vectors by default unless we explicitly address
otherwise in a specific context.

2.2. Battery storage control

2.2.1. Control with deterministic demand

Consider a basic battery control problem with the goal of mini-
mizing the energy cost given a prescribed price p € R¥, where H is the
time horizon, typically 24 for an hourly price. An uncontrollable elec-
tricity demand is specified as d € R . We denote the decision variables
for battery control to be x and expand it into X;,, Xou, X; € R¥ each of
which represents the charging, discharging, and the amount of charge
in storage, i.e. X" = [x;}, xJ,;, x]]. The battery optimal control is for-
mulated as follows (Problem 1):

min pT(xin — Xour + d)+ + ﬁ1||xin||% + ﬁz ”xout”%
x

+ ﬁg, ”xs - “B”% (la)

st %G+ 1) = %,0) = —Xow() + X () VJj € [H]

Nout (1b)
X;(1) = Binit (1c)
0 <X < cin (1d
0 < Xour < Cour (1e)
0<x,<B. an

The linear term (with respect to x) in the objective is the cost of
electricity when there is no value for selling the energy back to the grid.
This condition represents a situation where there are no net-metering
incentives. The quadratic penalty terms B, [|xi, |5 and B, |[xou |3 are
added to protect the battery state of health in the horizon [21]. The
term B [|x; — aB|f3 is added to set the battery state to be close to the
target value aB with B as the battery size and a € (0, 1). 1, 8-, B3 are
hyper-parameters to control these penalties. c;, and c,,, are the char-
ging-in and discharging-out power capacities. And the parameter #;,
and 7, denote the charging and discharging efficiency (between 0 and
1). The constraint (1b) indicates that the battery state in the next
timestep equals the current battery state adding up the net charging
amount (summing up charging and discharging together). Constraint
(1c) sets the initial state of the battery to be B;,;,. To simplify the no-
tation, we define a set X: ={x|(1b) — (1f)are feasible for somex € R3/}.
Hence, we use x € X to succinctly express that x satisfies the battery
constraints. We convert the problem (1) into a canonical convex form in
Appendix 6.2 and develop a paralleled algorithm that makes use of
automatic differentiation, open-source convex solvers, and pytorch
[22]-a popular deep learning framework.

2.2.2. Control with stochastic demand

When determining the control with an uncertain demand, we
minimize the expected cost under some demand distribution P. The
objective is slightly changed as follows (Problem 2):

min £,(x,d) : = minEg4.p [pT(xm = Xour + d)+]
P
+ 61 ”xin”% + ﬁz”xout ”% + 53 [lxs — OCB”% (2a)

st. x€eX. (2b)

Since there is uncertainty behind what the privatized demand will
be during training, we use the formulation of the stochastic problem to
motivate the minimax problem used for training in Section 3.2. The
details behind the training methodology is presented in the following
section.
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3. Control with privatized demand

Protecting privacy in our context means reducing the correlation
between the smart meter data and the sensitive attribute of the data
owner, e.g. income or square-footage of the house. We justify why such
a consideration of privacy protection is useful in practice in Section 3.1.

3.1. Revealing privacy from data

In this section, we consider a simple scenario in which the sensitive
information is a binary label, such as a small or large home, which can
be inferred from smart meter data. Given the raw demand d € R# and
sensitive label y € {0, 1}, the adversary builds a classifier f,, that takes in
demand d to estimate y with a prescribed loss function £,. Specifically,
we assume the adversary minimizes the classification loss

n'gnLa(fw (d)’ y)

to infer the private information y. A popular choice of classification loss
is cross-entropy loss (or log-loss) [23]. That is

n;in{—y log(f, () — (1 - y)log(l —f¢(d))}

when y is a binary variable. The classifier f,, is parameterized by y and
can be a neural network that outputs an estimate of the probability of
the positive label. Previous studies [24,25] showed that estimating a
sensitive label such as income or square-footage of the house reaches
69% accuracy using features of smart meter data and models like the
support vector machine or random forest. We use an alternative neural
network model that leverages the daily power consumption (demand)
and achieves state-of-the-art accuracy of the private label. More details
can be found in Section 4.

3.2. Control with private demand

Our goal is to minimize the cost of energy while incorporating
privacy protection. Specifically, we design a data generator that creates
a perturbed version of the raw demand data in a way that increases the
adversarial classification loss, while enabling an optimal controller to
minimize the energy cost. From a modeling perspective, we have a
minimax problem (Problem 3):

min Lu(;z*(d), d)—/la max £,(f,, (), y)
G ¥

(3a)
st. d=d+ G[;], e~ N, I)

(3b)
X*(d) = arg )r‘réi)gliu(x, d), 30)

where the parameter G is a matrix that affects the distribution of d. In
this case, we consider a linear transformation of Gaussian noise e¢.
Variable y is the one-hot encoding of the sensitive binary label, and f,, is
a classifier that takes in the perturbed demand data and predicts the
corresponding label. The £, stands for utility loss. It is important to
note that £, in the objective uses the raw demand to evaluate the cost
of the control decisions determined using the perturbed demand. This
represents the case where the storage unit acts on the perturbed in-
formation, but the real world value is based on the original raw data.

In order to solve the non-trivial optimization (3), we simplify the
constraints (further explained in Section 3.3)) and make use of adver-
sarial training, which is a common technique in studies of generative
adversarial networks (GAN) and their applications [26,27]. We add a
regularization term E ld —d|j? in the objective with an additional hyper-
parameter «,

Trial Version

minLu(i*(d), d) — 1 Lo(f(d), ¥) + xE ||d — d|3,
G ()]

which helps convergence of the training and preserves parts of the
demand that are not related to the privacy or utility loss instead of
allowing them to be perturbed arbitrarily.

We denote matrix G = [T, V] with T € R"*# and V € R¥*2, The
altered demand then becomes d = d + T's + Vy. By denoting  to be the
prior distribution of one-hot labels, e.g. 7 = [p, 1 — p]" where p is the
prior probability of a positive label, we can rewrite the distortion reg-
ularization as

E(lld-d|3) = E[||d + ' + Vy — d|}3]
=E[(Te + Vy) (T + Vy)]
=E(TTe + y'VIVy + yTVITe + £ TVy)
D [Tr(FeeTFT) ¥ Tr(VnyVT)]
(@)Tr(F[E [ee7]IT)
et
I

(.
+ Tr| | v1 V2 [ P pQ —p)}
| |[lp@=p @ -py

EDyT]

_ v] _
_ v] _
@)

="Tr(ITT) + |lpv1 + A — p)v2 |13
= ITIE + IVal} (5)

Equality (i) uses the fact that € has zero mean. Equality (ii) expands
out V as column vectors [v;, v;] and expresses

[EMT] =771 = p

1-p
equality (iii).

Therefore, we can equivalently penalize the Frobenius norm of I'
and I, norm of the vector Vi, i.e. |T||% + ||Vx|3, instead of taking the
empirical mean of the demand difference when performing the reg-
ularization. To summarize, the data generator determines the filter
weight G and outputs the perturbed demand d, while the adversary
takes in the altered demand d and private labels y to try to learn a
classifier.

][ p 1 — p]. Rearranging the expressions yields

3.3. Minimax learning

We construct two neural networks to perform the roles of the two
players, one is for the data generator and the other one is for the ad-
versary. To train the adversary, we minimize the cross-entropy loss £,
ie. min¢La(f¢ (d), y), which follows the loss function mentioned in
Section 3.1. For the generator, we decouple the training into two steps.
First, we leverage the loss that is passed from the adversary to update
the matrix weight G = [T, V], i.e.

(stepl)min — /IQLQ(J% (d +T'e + Vy), y)
G
+x(ITIE + [IVal3)

@ min - Aa log(l -1y (d +T'e+ Vy))

G=[I,V

+x(ITIE + IVal), (6)

where « is the hyper-parameter that penalizes the distance between d
and d implicitly. Equality (i) uses the log-loss as the classification loss
for the binary label. The next step is to use the privatized demand

d=d+ CAJ[ ;] to determine the control by running the following
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optimization:
(step2)arg min(E cno,n) B" ¥in — Xour + d)y
X
+ By 1% |5 + By %ot |5 + Bsllxs — aBl3} (7a)

st. xeX. (7b)

The optimal solution of the above convex problem (7) is X*, or more
specifically #*(d), because it is a function of the privatized demand,
which is aligned with Eq. (3c). The third step calculates the loss,
L£,(®*, d), using ¥*(d) and the original raw demand expressed as:

(step3) L£,Z*(d), d) = prEi(d) — %5,(d) + d),
+BIERIE + By 1%l + Bs 1% — aBl3. (8a)

We update G using gradient descent with the gradient determined
by the chain rule. Recall that the generator outputs a privatized demand
with reduced correlation to the sensitive label that is also used to yield

Algorithm 1: Minimax learning .

Trial Version

Remark : To summarize, Step 1 shown in Eq. (6) updates the matrix
G by minimizing the negative classification loss (equivalent to max-
imizing the classification loss) of the adversary, while maintaining the
constraint determined in (5). Step 2 calculates the optimal control of
the storage using the privatized demand. In Step 3, G is updated by
evaluating the gradient of the energy cost given the control based on
the privatized demand. The updates are expressed as

JAY -~
(update1)Giy1 = Gk — Vo La(f (), ¥)

(12a)
(update2)Gyyy = Gyyy — Vo Lu(F, d) (12b)
(adversary update)i, ,, = %, — 1,V La(f(d), y), (12c)

which run until convergence. We set the learning rates in each step to
be equal for simplicity. The training procedure is described in Algo-
rithm.

Input: Demand data D, label data YV, learning rate r;, parameters {B, @, 81, 32, 83}, and hyper-parameters «1, k»

Initialize Gy, ¥ at iteration k = 0 with batch size m;
while  or G has not converged do

1 | draw batches of pair (d®, y®) from demand and label datasets (D, Y), Vi=1,...,m;

3 Yrer 1= = UIE[VwLa(ft//(aN)s 1
4 Gt = Gr = mE[VeLa(fy(d), Y)I;

5 Gyt = 6k+l - nE[Vs L, (X, d)] where X* is optimal solution of (7)

return G and y

| (The expected gradient value is approximated as the sample mean of the batch.)

the storage control decisions. Those decisions are evaluated on the cost
given the raw demand, thus, the Jacobian of G is

8L, (®*, d) ox ad

= VoL, d) = xod
86 = VoLu(¥" d) ox  4d oG ©)

In the context of our storage control problem, the first term in (9) is

)

p
0L,(x,d) _ |Qx+ [—p], if Dx —d >0
ax - 0

Qx  otherwise (10)

where Q is given in the Appendix Eq. (21), I is the identity matrix, and
D=[1 -1 o]

The second term, i.e. %’ in (9) hinges on automatic differentiation
through a convex program|[28,29]. Because an optimization problem
can be viewed as a function mapping the problem data to the primal
and dual solutions, we can convert problem (7) to a conic form and
calculate the changes of the optimal solution given the perturbations of
the problem data. The transformed formulation leverages the idea of
finding a zero solution for the residual map of a homogeneous self-dual
embedding derived from the KKT conditions of the convex program
[29-31].

The third term in (9) is

dg: =94 _ [dj ... dd dd L‘i] € RHX(H+2),

To¢ le T wm e o1-p an

since dd = dG ;: . Thus, all three terms in Eq. (9) can be evaluated in

the backward pass of the generator training and we can update the filter
weight G using stochastic gradient decent[32]: Gi4+1: =Gy — 1,85 Where
k is the iteration step and 7, is the learning rate.

3.4. Convergence of the filter

This subsection focuses on the stability and boundedness of the
iterates in our back-propagation that leverage stochastic gradient
methods (or some related variants of first-order gradient methods).
Using the subgradient property [33, Chapter 9.1], g is a subgradient of f
at x if

fO)2fx) +(gy—x) Vy, (13)

and assuming G* is a local optimal point; when we apply the stepl and
step3 updates Gy, = Gy — n,(k)VLEIk) - nl(k)Lﬂ‘) at the k-th iteration, we
can obtain the following relationship

E[lIGs1 — G*|3] (14a)
=E[|G, — P VLY + VLY) - 6¥3] (14b)
= E[|IG: - G¥B] - 20PE(VLY + VLP, G - G6¥)
+ @ VLE + vLPIB
IVLa" + VLl
& (140)
()]
Z'E[||IG, — G*|3] - 2nPE(VLE, G, - G¥)
- an(k)[E(VL(uk), G — G¥) + (nl(k))zakz (14d)
(i< ) .
E [IG - G*I3] — 20| Lo(GY) — L}
- 2m® (LG — LD + ;)82 (14e)

Equality (i) expands the inner product of the loss gradients and
iterates using 8 for the norm of the sum of loss gradients. The in-
equality (ii) uses the subgradient condition in Eq. (13),
L(Gy) — L(G*) > (VL®, G, — G*) (both for £, and £L,). Rearranging
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Eq. (14a) and Eq. (14f), we get

2771(k) (La(GY) — LD + 2771()() (Lu(Gy) — LD
<E[l|G: — G*B] ~ E[[IGksr — G*B] + (V752 as

By summing iterates up to step K, we get

K
2( 2 nﬂ”]min [£La(Gy) — L] + min[£,(Gy) — L]
k=1 kelk] kelk]

(16a)
s &
2 Y 0P 1LG) = L3+ [LuGW) — L]]
Pt (16b)
L 2
<Gy — G*F + 3 ()6
’ g? ’ (160)

where (iii) is valid since we take the minimum over all iterations and
(iv) is derived from the summation of Eq. (15). Then, arranging
Eq. (16a) and Eq. (16c) gives

min[£,(Gy) — L7] + min[L,(Gy) — L3]

ke[k] kelk]

I G1—G* 1§ + Xf_; (n®)%62
< K (k)
2%=1M

(17a)

Thus, if the 2-norm of the vectorized version of G; — G* is bounded
by r, and with learning rate ¥, 7’ > oo but 3, (n*’)? < oo, the right
2+ 3 )%

25,7 ®
gradient updates in stepl and step3 minimizes the losses L,, £, and
converges to a local optimal point.

hand-side of Eq. (17a) becomes — 0. Therefore, using the

4. Experiments

In this section, we evaluate the capability of our linear filter to (1)
generate perturbed smart meter data that reduces the prediction ac-
curacy of sensitive attributes; (2) maintain the minimum energy cost
from an optimal control decision using the perturbed data; (3) integrate
into a contemporary deep learning architecture with parallelism. The
code for our experiments is available at https://github.com/markex/
DER_ControlPrivateTimeSeries.

4.1. Setup

We build up two neural networks to form the adversarial classifier
and generator. The adversarial classifier is composed of two fully con-
nected layers with ELU (Exponential Linear Unit) activation to estimate
the sensitive attribute from demand. The first layer contains the same
number of neurons as the time steps of the meter data series used by the
battery optimal controller, and the second layer has half of the neuron
numbers of the first layer and outputs a two dimensional vector re-
presenting the probability of the associated categories of the label. The
generator module is composed of a single linear layer that takes a stan-
dard normal random vector and the private labels as inputs, and outputs
noise to be added to the original demand. The parameters of the single
linear layer form matrix G. Additionally, we specify G to be block di-
agonal to reduce the number of learning parameters, i.e. G = [I, V]
where I is a diagonal matrix. Given the number of columns in our weight
matrix is c,, (e.g. the ¢, for G is 26 for the solar dataset and 50 in our
residential experiments), we use uniform initialization[34] between
(—i, i) for both the adversary and generator networks. We use 85% of
the data for training and the remaining 15% for testing the performance
of the filter. Later in Section 4.4, we demonstrate that our method is
robust to different training and testing splits. We set hyper-parameters
B, =B, = B; =107>, x = 1073 throughout the experiments. The learning
rate for the classifier is 1073 and the learning rate for the generator starts
from 0.1 and decays 20% for every 100 steps. We present the classifi-
cation accuracy to indicate the correlation, as a lower accuracy implies a

Trial Version

raw demand
attribute
200 —— high-income
low-income

Power (KW)
S
o

0
0 5 10 15 20
Time (hr)
privatized demand
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200 —— high-income
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S
o

o

0 5 10 15 20
Time (hr)

Fig. 1. A batch of 24-hour demand with solar generation that is net negative in
certain hours allowing storage to minimize the cost through an optimal charge
and discharge sequence. The upper panel shows the raw demand. The lower
panel shows the privatized demand.

lower value of mutual information[35], thus, there is less correlation
between the demand and sensitive labels. We set the initial battery state
of charge to 1% of its maximum energy capacity, i.e. Bj,; = 0.01B. We
use a time-of-use price structure with two tiers: a high price of $0.463 per
KWh from 4pm-9pm and $0.202 per KWh for the rest of the day.

4.2. Examples

4.2.1. Deployment of storage on aggregated demand with solar generation

For our first experiment, we aggregated 24-hour demand consumption
from thousands of homes into groups of 100-200 homes and added solar
generation. The aggregations represent the demand seen at a secondary
transformer from the perspective of a utility company. The goal is to
minimize the energy cost for the aggregation of homes by running the
optimal charging and discharging controls for battery storage located at
the secondary transformer given a prescribed price. Before the experiment,
each demand profile is assigned a binary label indicating if it is from a
high- or low-income group, with high-income groups having a peak de-
mand above a certain threshold. During the experiment, we wish to pri-
vatize the demand before sending it to the storage operator to perform cost
minimization, so the operator cannot infer whether the aggregation of
customers comes from a high or low-income group. The upper panel of
Fig. 1 shows the income attribute can be easily inferred from the raw
demand as the height of the peaks are clearly distinguishable. The lower
panel of Fig. 1 shows that the privatized demands are perturbed such that
two labels overlap making it harder to tell which demand has high or low
income. However, there is a trade-off between privacy and utility when
perturbing the data. We use the hyper-parameter A, to balance the ad-
versarial loss and the utility loss i.e. smaller A, means less weight for
privacy and more for utility, as shown in Fig. 2. When 2, increases from 8
to 128, the classification accuracy of the income label drops from 89.4% to
73% as we expected. The raw classification accuracy with zero weight is
95.2%. The loss of performance of the cost minimization by using
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Fig. 2. The trade-off between privacy and utility controlled by parameter A,,
which places weight on the private attribute classification loss.
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Fig. 3. The trade-off between the utility and privacy for the CER dataset [36].
The privacy label indicates a large or small home. A, weighs the privacy loss.

privatized demand instead of raw demand ranges from 2.5% at 1, = 8 to
almost 5% at 4, = 128 on average, which shows that high privacy comes
with a performance cost for this battery control problem.

4.2.2. Deployment of storage on residential users

The second experiment considers residential customers adopting
batteries to minimize their energy cost without selling excess to the grid.
The control of the battery is performed by an outside program, so the
owner wishes to privatize their demand before sending it to the con-
troller. The dataset is from the Irish CER Smart Metering Project [24,36].
We select a year of meter data for meters that contain a record indicating
if they belong to a large or small home and partition it into daily se-
quences with 48 entries for each day. We end up with 54,478 records in
total. Recall that our goal is to create altered demand that won’t degrade
the cost savings while removing the correlation between the demand and
the attribute indicating a small or large home. Differences between this
experiment and the previous one are that this experiment uses data from
only a single home versus an aggregation of homes, and this experiment
uses real world labeled data instead of synthetic labels. Fig. 3 depicts the
trade-off between utility degradation and privacy gain for different
weights on privacy loss. The accuracy of classifying large or small homes
based on the raw demand is 77.5%. When we have low weight on the
privacy loss (e.g. 4, = 0.5), the classification accuracy only drops a little
to 75%, with a greater sacrifice on cost saving performance (e.g. increased
to 8% more cost on average). In the high privacy weight scenario, the
classification accuracy drops down to 50% as desired, while the utility
performance gap only increases up to 12%. When comparing this ex-
periment to the previous one, we find that the adversary has more diffi-
culty determining home size for individual homes than for aggregations of
homes with comparable loss of cost minimization performance.
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Fig. 4. CPU run time of a batched optimization using Gurobi v8.1.0, Mosek
v8.1.0.60, and our parallel module.

4.2.3. Integration into real world systems

This approach can be integrated into existing storage control sys-
tems such as those proposed in [2,3] in the following manner. First, the
privacy filter is trained offline using an anonymous batch of private
data from many sources before the installation of the storage system
and control algorithm. Then, the learned filter weights are given to the
data owner who wishes to use the system. Next, during operation, the
data owner locally privatizes the power demand data by locally com-
puting the matrix product between the learned filter weights and the
power demand data. The matrix product can be computed locally with
minimal computation since the filter weight matrix is diagonal. Finally,
the storage control algorithm receives the privatized data that is com-
puted locally and performs the cost minimization optimization on the
privatized data just as it would with raw data.

4.3. Parallelism

The training for the experiments in this section are run on a six-core
Intel Core i7 CPU @2.2GHz. Current standard solvers like Gurobi or
Mosek without support of in-batch parallelism can be computationally
expensive for solving a quadratic problem. Our filter makes use of au-
tomatic differentiation for a cone program (DIFFCP) [29] and leverages
multiprocessing to speed up the forward and backward calculations.

Fig. 4 displays the mean and standard deviation of running each trial
8 times, showing that our batched module outperforms Gurobi or Mosek,
which are highly tuned commercial solvers for reasonable batch sizes.
For a minibatch size of 128, we solve all problems in an average of 1.31 s,
whereas Gurobi takes an average of 11.7 s. This speed improvement for a
single minibatch makes the difference between a practical and an unu-
sable solver in the context of training a deep learning architecture.

4.4. Sensitivity analysis

In this section, we evaluate the sensitivity of our method to: (i) the
inherent trade-off between data privacy and utility, and (ii) the ratio of
training data to testing data. First, we summarize our findings on the
trade-off between data privacy and utility. As discussed, the tunable
hyper-parameter, A, allows us to scale the importance of privacy. In the
first example, when A, increases from 8 to 128, the classification ac-
curacy of the income label drops from 89.4% to 73% while loss of
performance of the cost minimization increases from 2.5% to almost 5%
on average as seen in Fig. 2. In the second example, when A, increases
from 0.5 to 4, the classification accuracy drops from 75% to 50% while
loss of cost saving performance increases from 8% to 12% as seen
in Fig. 3. These performance values represent a Pareto optimal set
parameterized by A, with the best point depending on the specific ex-
ternal values assigned to privacy and utility for the given scenario.
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Table 1
Evaluation of performance on various train/test splits of the Irish CER data
when 1, = 2.

Train/Test(%) baseline 65/35 70/30 75/25 80/20 85/15
acc. (%)" 77.5 63.3 61.1 57.6 58.5 56.9
cost gap (%)* 0 11.7 9.4 12.2 10.0 10.9

* Accuracy of private attribute. * Gap above optimal energy cost of controlling
batteries with raw data. Lower values are preferred for accuracy and optimal
objective gap.

Here, we demonstrate the robustness of our method to the training
data by evaluating the performance of battery control on the residential
dataset via various ratios of training/testing split with fixed 1, = 2. The
results are shown in Table 1. We find that the classification accuracy of
the private attribute and the sacrificed cost gap are consistently around
57-61% and 9-12% respectively. This difference is small compared to
other sources of variation such as the choice of A,, and comparable to
the variation seen from different batches within the data. Such a result
indicates our approach is relatively robust to different training and
testing splits of the dataset.

5. Conclusion

We have presented a method for the privatization of personal data
that maintains its utility in the optimal control of energy resources. Our
method comprises a small linear filter that adds random noise to the data
conditional on the private attributes we wish to protect. The linear filter
is trained using a minimax optimization procedure that balances the
trade-off between classifcation accuracy of the private attributes and the
performance of an optimal controller. Additionally, we include a dis-
tortion penalty to preserve aspects of the data that are not specified by
the utility or privacy functions in order to avoid adding arbitrary noise.
We have demonstrated that this method is effective in two datasets and
easy to integrate into real world DER control solutions. In the first dataset
on aggregations of homes, the private label accuracy dropped by 26%
while the utility performance gap only increased by 5%. The second
dataset on individual homes saw the classification accuracy for the
binary label drop down to the minimum of 50%, while the utility per-
formance gap only increased up to 12%. Limitations of this method in-
clude the requirement to solve an optimization in the training loop,
which can be computationally intensive for large problems; however, we
suspect only a few iterations of the optimization are needed to achieve
the desired gradients, which will dramatically reduce the computation
required. Future work will look intro reducing the training computation
time with fewer optimization iterations, increasing the variety of ex-
periments with additional private labels and utility optimizations, and
the consideration of additional noise due to poor data quality.

6. Appendix
6.1. Battery control details

We present a snapshot of the results for the storage control based on
raw and private demand data. Fig. 5 displays the storage control for our
experiment with aggregated homes and solar generation. The upper-left
and lower-left panel show the 24-hour charging and discharging deci-
sions with each color representing one sample in a batch. The control
decisions made with raw versus privatized demand data are closely
aligned in general, but have different charging and discharging
amounts of power due to perturbation. However, such an altered
charging profile doesn’t increase the minimum cost of energy too much
as we can see from the upper-right and lower-right panels of Fig. 5. The
electricity cost increases by a maximum of $22 USD per day given that
the highest daily cost is around US $390 USD. (Each bin spans the range
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Fig. 5. Analysis of storage control for the aggregated homes experiment with
Aq = 128. The upper- and lower-left panel show the charging and discharging
power in kilowatts (KW). Different colored curves represent different samples in
the batch. The upper-right panel shows the daily electricity cost when oper-
ating the battery using raw or private demand (x-axis is the sample number, y-
axis is in dollars ($)). The lower-right panel shows a histogram of the loss gap.
(The x-axis is the increased cost in $; the y-axis is the number of days that show
similar cost increases in a batch.) .
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Fig. 6. Analysis of storage control for the CER data experiment with 4, = 8.
Each panel has the same x- and y-axis as Fig. 5.

of $2.5 USD for Fig. 5.) Fig. 6 shows the same information, but for the
second experiment on individual home data.

6.2. Quadratic problem

A canonical form of the quadratic constrained minimization pro-
blem (QP) is expressed as follows:

5 l T, T.
nim 2x Qx+q'x (18a)
st Ax=b (18b)
Gx < h. (18¢)

We first show that the basic battery storage problem can be con-
sidered as a special case of QP. We start with the 24-hour horizon
storage problem in Problem 1. We can express the constraints from
Eq. (1d) to Eq. (1f) as

I 0 O Cin

-I 0 O 0

o I 0 Xin Cout

0 -I 0 |:xout:| < 0 < Gx < h.
0o 0 I Xs B

0o 0 -I 0

-1 I 0 d

G (19)

We add a constraint that the net of the demand and storage is
greater than or equal to 0, so we can formulate the objective as a QP.
This constraint does not modify the original problem as long as it is
feasible because the optimal solution will implicitly make the net of
demand and storage greater than or equal to 0. The constraints in
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Eq. (1b)-Eq. (1c) are expressed as

0 0 1, ---0 Xin B..
1 xout — init
[m:,1, 0 [——1, 0] [I, 0] — [0, I] 0
Tout Xs
A
< Ax =b, (20)

with [I, 0] € R%3*24, The objective Eq. (1a) can be converted to a stan-
dard QP by letting

Bl 0 0 p
Q=0 BI 0|, g= -P
~26,aB1
0 0 BI Byt @1

Therefore, it is straightforward to discover that x"Qx + ¢'x is the new
form of the objective.
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