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A B S T R A C T   

Although the frequent monitoring of smart meters enables granular control over energy resources, it also increases 
the risk of leakage of private information such as income, home occupancy, and power consumption behavior that 
can be inferred from the data by an adversary. We propose a method of releasing modified smart meter data so 
specific private attributes are obscured while the utility of the data for use in an energy resource controller is 
preserved. The method privatizes data by injecting noise conditioned on the private attribute through a linear filter 
learned via a minimax optimization. The optimization contains the loss function of a classifier for the private 
attribute, which we maximize, and the energy resource controller’s objective formulated as a canonical form 
optimization, which we minimize. We perform our experiment on an aggregated dataset of household consump
tion with solar generation and another from the Commission for Energy Regulation (CER) that contains household 
smart meter data with sensitive attributes such as income and home occupancy. We demonstrate on the CER data 
that our method is able to reduce the ability of an adversary to classify a binary income label to that of random 
guessing while maintaining an objective value for an energy storage controller within 10% of optimal.   

1. Introduction 

Traditionally, the power grid has been managed by the producers 
and grid operators with information primarily exchanged among the 
large asset owners with little feedback from its end users. However, the 
push for renewable energy sources has brought about the rise of dis
tributed energy resources (DERs) that lie under the control of many 
smaller and disparate users, causing a paradigm shift in the flow of 
information. The successful operation of DERs and other smart grid 
technologies depends on the exchange of large amounts of data from 
many different end users [1–3]. Due to increased regulations [4], it may 
be unrealistic to assume data will be available without consideration of 
the data owners’ privacy. The increased granularity of data required for 
smart grid operation enables the inference of personal information [5] 
such as household income, which suggests data owners may be re
luctant to exchange their data without some effort towards preserving 
privacy. 

Many studies have investigated approaches to protect smart meter 
data privacy using a number of different techniques and metrics with 
detailed surveys given in [6–8]. The recent paper from Giaconi et al. [8] 
defines two general types of approaches, user demand shaping, and 
data manipulation, with the latter broken into further categories such 
as data obfuscation or aggregation. 

Some papers in the data manipulation category, [9] and [10], per
form a pre-processing step on the raw data in order to better prepare it 
for its end use; however, the pre-processing only considers conditioning 
the data for its utility without explicitly defining the objective of pre
serving privacy. Therefore, the pre-processing step may be insufficient 
to prevent sensitive information from being inferred from the processed 
data. On the other hand, the aggregation technique presented in [11] 
and [12], provides user privacy by aggregating data until the aggregate 
does not reflect on any specific meter data. However, the aggregation 
group size can be on the order of thousands and there is no con
sideration to the cost of data utility as a result of aggregation. The data 
obfuscation category of approaches often come with similar limitations. 
For example, many studies come from differential privacy (DP) [13], 
which is widely adopted in designing and analyzing privacy mechan
isms in the context of energy data [14–19]. Specifically, studies [14–16] 
proposed several frameworks for reducing the mutual information be
tween raw data and privatized data (e.g. power profiles), Eibl and Engel  
[17] investigated the differential privacy effect with some noise injec
tion (e.g. Laplace noise), and Zhou et al. [18] explored how much noise 
must be added to the data in order to achieve a certain level of dif
ferential privacy for an existing Laplace mechanism in the context of 
solving optimal power flow. Similarly to the aggregation approach and 
opposite to the pre-processing approaches, these DP approaches 

https://doi.org/10.1016/j.epsr.2020.106719 
Received 4 October 2019; Received in revised form 18 April 2020; Accepted 2 August 2020    

⁎ Corresponding author. 
E-mail addresses: markcx@stanford.edu (X. Chen), tnavidi@stanford.edu (T. Navidi), ramr@stanford.edu (R. Rajagopal). 

Electric Power Systems Research 189 (2020) 106719

Available online 08 August 2020
 2020 Elsevier B.V. All rights reserved.©0378-7796/ 

http://www.sciencedirect.com/science/journal/03787796
https://www.elsevier.com/locate/epsr
https://doi.org/10.1016/j.epsr.2020.106719
https://doi.org/10.1016/j.epsr.2020.106719
mailto:markcx@stanford.edu
mailto:tnavidi@stanford.edu
mailto:ramr@stanford.edu
https://doi.org/10.1016/j.epsr.2020.106719
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2020.106719&domain=pdf


typically only consider obfuscating the data for privacy without si
multaneously considering the utility of the data. Therefore, after 
achieving privacy, the data may be too obfuscated to be useful. One 
paper that avoids this issue is [19], which proposes a DP mechanism to 
release the state parameters of power networks with a guarantee of the 
feasibility of the alternating current (AC) power flow problem. By 
guaranteeing AC-feasibility of their data, they are making a step in 
ensuring the data still retains utility after privatization. 

The user demand shaping category of approaches often involves a 
balance between utility and privacy since the privacy is achieved via 
device operation as opposed to data manipulation [8]; however, 
achieving privacy through device operation comes with limitations 
such as its efficacy depends on the physical capabilities of the devices. 

We distinguish our studies by developing a methodology that learns 
an optimal noise injection on the data that balances the trade off be
tween privacy and data utility, thus, preserving as much utility in the 
data as possible. Our method falls within the data obfuscation category, 
but differs from strict differential privacy [13] because we use a general 
notion of privacy that reduces the correlation between private attri
butes and the data. This general notion of privacy gives us the flexibility 
to maintain the utility of the data while still eliminating an adversary’s 
ability to recognize certain private attributes. Since many applications 
of smart meter data involve their use in optimization procedures, we 
define the utility as the performance achieved when such data is used 
for optimal control [20]. We consider a scenario where individual 
owners of DERs, such as battery storage systems, wish to privatize their 
data before releasing it to a DER aggregator to make optimal control 
decisions on their behalf, which can have applications in the context 
of [1–3],. This scenario makes our approach share some similarity to 
the user demand shaping category of privatization methods in that we 
provide balance between the utility of DERs and privacy; however, it 
differs in that our privatization occurs on the data before the operation 
of the DERs rather than on the actual power consumption after the 
operation of DERs. 

Our work contributes to the research of smart meter privacy in 
following ways. We propose a minimax approach to generate realistic 
meter data that is decorrelated from sensitive attributes while main
taining limited performance loss of a cost minimization optimal control 
algorithm using battery storage. Additionally, we developed a paralle
lized method that can be easily incorporated in modern deep learning 
architectures. The correlation of data privatized by our method with 
sensitive attributes and the performance of a control algorithm is 
evaluated on two real datasets of residential power demand: one with 
synthetic sensitive labels and one with real labels. We demonstrate that 
our method is able to decrease the classification accuracy of an ad
versary by over 20% while maintaining the performance of the opti
mization to within 10% over both datasets. 

The rest of the paper is organized as follows: we describe the energy 
resource control in Section 2, control with privatized data generated 
from the minimax learning algorithm in Section 3, experiments and 
results on the two datasets in Section 4, and the Conclusion in Section  
Section 5. 

2. Energy resource control 

2.1. Notation 

We use bold letters for vectors and matrices and regular letters for 
scalars. Given two vectors x and y ,n x ≥ y represents the element- 
wise order x(i) ≥ y(i) for i ∈ [n] where [n] denotes the set 

=n n[ ] {1, , }. And x ≥ 0 means all elements in the vector are not less 
than the scalar zero. We make the dependence on the underlying 
probability distribution P when we write expectations (e.g. X[ ]P where 
X denotes a random variable). The Frobenius norm of a matrix A is 
||A||F. We write X( ; ) or d X( ; ), where we typically mean dif
ferentiation of the loss function with respect to the parameter n. 

stands for Normal (or Gaussian) distribution and + denotes the non- 
negative real numbers. We use  ≔  to represent “define as.” All the 
vectors are column vectors by default unless we explicitly address 
otherwise in a specific context. 

2.2. Battery storage control 

2.2.1. Control with deterministic demand 
Consider a basic battery control problem with the goal of mini

mizing the energy cost given a prescribed price p ,H where H is the 
time horizon, typically 24 for an hourly price. An uncontrollable elec
tricity demand is specified as +d H . We denote the decision variables 
for battery control to be x and expand it into +x x x, ,in out s

H each of 
which represents the charging, discharging, and the amount of charge 
in storage, i.e. =x x x x[ , , ]in out s . The battery optimal control is for
mulated as follows (Problem 1): 

+ + +

+

+p x x d x x

x B

min ( )
x

in out in out

s

1 2
2

2 2
2

3 2
2 (1a)  

+ = +x x x xj j j j j Hs.t. ( 1) ( ) 1 ( ) ( ) [ ]s s
out

out in in
(1b)  

=x B(1)s init (1c)  

x c0 in in (1d)  

x c0 out out (1e)  

x B0 .s (1f)  

The linear term (with respect to x) in the objective is the cost of 
electricity when there is no value for selling the energy back to the grid. 
This condition represents a situation where there are no net-metering 
incentives. The quadratic penalty terms xin1 2

2 and xout2 2
2 are 

added to protect the battery state of health in the horizon [21]. The 
term x Bs3 2

2 is added to set the battery state to be close to the 
target value αB with B as the battery size and α ∈ (0, 1). β1, β2, β3 are 
hyper-parameters to control these penalties. cin and cout are the char
ging-in and discharging-out power capacities. And the parameter ηin 

and ηout denote the charging and discharging efficiency (between 0 and 
1). The constraint (1b) indicates that the battery state in the next 
timestep equals the current battery state adding up the net charging 
amount (summing up charging and discharging together). Constraint  
(1c) sets the initial state of the battery to be Binit. To simplify the no
tation, we define a set = x xb f: { |(1 ) (1 )are feasible for some }H3 . 
Hence, we use x to succinctly express that x satisfies the battery 
constraints. We convert the problem (1) into a canonical convex form in  
Appendix 6.2 and develop a paralleled algorithm that makes use of 
automatic differentiation, open-source convex solvers, and pytorch 
[22]–a popular deep learning framework. 

2.2.2. Control with stochastic demand 
When determining the control with an uncertain demand, we 

minimize the expected cost under some demand distribution P. The 
objective is slightly changed as follows (Problem 2): 

= +

+ + +

+x d p x x d

x x x B

min ( , ) : min ( )
x

du P in out

in out s1 2
2

2 2
2

3 2
2 (2a)  

xs.t. . (2b)  

Since there is uncertainty behind what the privatized demand will 
be during training, we use the formulation of the stochastic problem to 
motivate the minimax problem used for training in Section 3.2. The 
details behind the training methodology is presented in the following 
section. 
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3. Control with privatized demand 

Protecting privacy in our context means reducing the correlation 
between the smart meter data and the sensitive attribute of the data 
owner, e.g. income or square-footage of the house. We justify why such 
a consideration of privacy protection is useful in practice in Section 3.1. 

3.1. Revealing privacy from data 

In this section, we consider a simple scenario in which the sensitive 
information is a binary label, such as a small or large home, which can 
be inferred from smart meter data. Given the raw demand +d H and 
sensitive label y {0, 1}, the adversary builds a classifier fψ that takes in 
demand d to estimate y with a prescribed loss function a. Specifically, 
we assume the adversary minimizes the classification loss 

df ymin ( ),a

to infer the private information y. A popular choice of classification loss 
is cross-entropy loss (or log-loss) [23]. That is 

d dy f y fmin log( ( )) (1 )log 1 ( )

when y is a binary variable. The classifier fψ is parameterized by ψ and 
can be a neural network that outputs an estimate of the probability of 
the positive label. Previous studies [24,25] showed that estimating a 
sensitive label such as income or square-footage of the house reaches 
69% accuracy using features of smart meter data and models like the 
support vector machine or random forest. We use an alternative neural 
network model that leverages the daily power consumption (demand) 
and achieves state-of-the-art accuracy of the private label. More details 
can be found in Section 4. 

3.2. Control with private demand 

Our goal is to minimize the cost of energy while incorporating 
privacy protection. Specifically, we design a data generator that creates 
a perturbed version of the raw demand data in a way that increases the 
adversarial classification loss, while enabling an optimal controller to 
minimize the energy cost. From a modeling perspective, we have a 
minimax problem (Problem 3): 

x d d d yfmin ˜*( ˜), max ( ( ˜), )
G

u a a
(3a)  

= +d d G y Is.t. ˜ , (0, )
(3b)  

=x d x d˜*( ˜) arg min ( , ˜),
x

u (3c) 

where the parameter G is a matrix that affects the distribution of d̃. In 
this case, we consider a linear transformation of Gaussian noise ε. 
Variable y is the one-hot encoding of the sensitive binary label, and fψ is 
a classifier that takes in the perturbed demand data and predicts the 
corresponding label. The u stands for utility loss. It is important to 
note that u in the objective uses the raw demand to evaluate the cost 
of the control decisions determined using the perturbed demand. This 
represents the case where the storage unit acts on the perturbed in
formation, but the real world value is based on the original raw data. 

In order to solve the non-trivial optimization (3), we simplify the 
constraints (further explained in Section 3.3)) and make use of adver
sarial training, which is a common technique in studies of generative 
adversarial networks (GAN) and their applications [26,27]. We add a 
regularization term d d˜

2
2 in the objective with an additional hyper- 

parameter κ, 

+x d d d y d dfmin ˜*( ˜), ( ( ˜), ) ˜ ,
G

u a a 2
2

(4) 

which helps convergence of the training and preserves parts of the 
demand that are not related to the privacy or utility loss instead of 
allowing them to be perturbed arbitrarily. 

We denote matrix =G V[ , ] with ×H H and ×V H 2. The 
altered demand then becomes = + +d d Vy˜ . By denoting π to be the 
prior distribution of one-hot labels, e.g. = p p[ , 1 ] where p is the 
prior probability of a positive label, we can rewrite the distortion reg
ularization as 

= + +
= + +
= + + +

= +

=

+

= + +
= +

d d d Vy d
Vy Vy

y V Vy y V Vy

Vyy V

v v

v
v
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V

p p p
p p p

p p

( ˜ ) [ ]
[( ) ( )]
( )

Tr( ) Tr( )

Tr( [ ] )

Tr
| |

| |

(1 )
(1 ) (1 )

Tr( ) (1 )

I

yy

i

ii T

iii

F

2
2

2
2

(( ))

(( ))

1 2
2

2

[ ]

1

2

(( ))
1 2 2

2

2
2
2 (5) 

Equality (i) uses the fact that ε has zero mean. Equality (ii) expands 
out V as column vectors [v1, v2] and expresses 

= =yy
p
p p p[ ] 1 [ 1 ]. Rearranging the expressions yields 

equality (iii). 
Therefore, we can equivalently penalize the Frobenius norm of Γ 

and l2 norm of the vector Vπ, i.e. + V ,F
2

2
2 instead of taking the 

empirical mean of the demand difference when performing the reg
ularization. To summarize, the data generator determines the filter 
weight G and outputs the perturbed demand d̃, while the adversary 
takes in the altered demand d̃ and private labels y to try to learn a 
classifier. 

3.3. Minimax learning 

We construct two neural networks to perform the roles of the two 
players, one is for the data generator and the other one is for the ad
versary. To train the adversary, we minimize the cross-entropy loss ,a
i.e. df ymin ( ( ˜), ),a which follows the loss function mentioned in  
Section 3.1. For the generator, we decouple the training into two steps. 
First, we leverage the loss that is passed from the adversary to update 
the matrix weight =G V[ , ], i.e. 

+ +

+ +

= + +

+ +
=

d Vy y

V

d Vy

V

f

f

step1( )min ,

( )

min log 1

( ),

G

G V

a a

F

i
a

F

2
2
2

(( ))

[ , ]

2
2
2 (6) 

where κ is the hyper-parameter that penalizes the distance between d̃
and d implicitly. Equality (i) uses the log-loss as the classification loss 
for the binary label. The next step is to use the privatized demand 

= +d d G y˜ ^ to determine the control by running the following 
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optimization: 

+

+ + +

+p x x d

x x x B

step2( )arg min { ( ˜)

}
x

I in out

in out s

(0, )

1 2
2

2 2
2

3 2
2 (7a)  

xs.t. . (7b)  

The optimal solution of the above convex problem (7) is x̃*, or more 
specifically x d˜*( ˜), because it is a function of the privatized demand, 
which is aligned with Eq. (3c). The third step calculates the loss, 

x d( ˜*, ),u using x d˜*( ˜) and the original raw demand expressed as: 

= +
+ + +

+x d d p x d x d d
x x x B

step3( ) ( ˜*( ˜), ) ( ˜ *( ˜) ˜* ( ˜) )
˜ * ˜* ˜* .

u in out

in out s1 2
2

2 2
2

3 2
2 (8a)  

We update G using gradient descent with the gradient determined 
by the chain rule. Recall that the generator outputs a privatized demand 
with reduced correlation to the sensitive label that is also used to yield 

the storage control decisions. Those decisions are evaluated on the cost 
given the raw demand, thus, the Jacobian of G is 

= =x d x d
x

x
d

d
G

g ( ˜*, ) ( ˜*, )
˜

˜
.G G u

u
(9) 

In the context of our storage control problem, the first term in (9) is 

= + >x d
x

Qx
p
p
0

Dx d

Qx

( , ) , if 0

otherwise

,u

(10) 

where Q is given in the Appendix Eq. (21), I is the identity matrix, and 
=D I I 0[ ]. 
The second term, i.e. ,x

d̃ in (9) hinges on automatic differentiation 
through a convex program[28,29]. Because an optimization problem 
can be viewed as a function mapping the problem data to the primal 
and dual solutions, we can convert problem (7) to a conic form and 
calculate the changes of the optimal solution given the perturbations of 
the problem data. The transformed formulation leverages the idea of 
finding a zero solution for the residual map of a homogeneous self-dual 
embedding derived from the KKT conditions of the convex program 
[29–31]. 

The third term in (9) is 

d d d d d= = × +G d
G

:
˜

,d d d d
p p

H H˜ ˜ ˜ ˜
1

( 2)
H1 (11) 

since d d=d G y˜ . Thus, all three terms in Eq. (9) can be evaluated in 

the backward pass of the generator training and we can update the filter 
weight G using stochastic gradient decent[32]: =+G G g: Gk k l1 where 
k is the iteration step and ηl is the learning rate. 

Remark : To summarize, Step 1 shown in Eq. (6) updates the matrix 
G by minimizing the negative classification loss (equivalent to max
imizing the classification loss) of the adversary, while maintaining the 
constraint determined in (5). Step 2 calculates the optimal control of 
the storage using the privatized demand. In Step 3, G is updated by 
evaluating the gradient of the energy cost given the control based on 
the privatized demand. The updates are expressed as 

=+G G d yf(update1) ^ ( ( ˜), )k k l
k

G a1
( )

(12a)  

=+ +G G x d(update2) ^ ( ˜*, )k k l
k

G u1 1
( ) (12b)  

=+ d yf(adversary update) ( ( ˜), ),k k l a1 (12c) 

which run until convergence. We set the learning rates in each step to 
be equal for simplicity. The training procedure is described in Algo
rithm.  

3.4. Convergence of the filter 

This subsection focuses on the stability and boundedness of the 
iterates in our back-propagation that leverage stochastic gradient 
methods (or some related variants of first-order gradient methods). 
Using the subgradient property [33, Chapter 9.1], g is a subgradient of f 
at x if 

+f y f x g y x y( ) ( ) , , (13) 

and assuming G* is a local optimal point; when we apply the step1 and 
step3 updates =+G Gk k l

k
a
k

l
k

u
k

1
( ) ( ) ( ) ( ) at the k-th iteration, we 

can obtain the following relationship 

+G G[ * ]k 1 2
2 (14a)  

= +G G[ ( ) * ]k l
k

a
k

u
k( ) ( ) ( )

2
2 (14b)  

= +
+ +
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a
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k

l
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a
k

u
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2
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2
2

k
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+
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i
k l

k
a
k

k

l
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u
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k
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2
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+
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2 ( ( ) *) ( ) .

k l
k

a k a

l
k

u k u l
k

k

(ii)
2
2 ( )

( ) ( ) 2 2
(14e)  

Equality (i) expands the inner product of the loss gradients and 
iterates using δk for the norm of the sum of loss gradients. The in
equality (ii) uses the subgradient condition in Eq. (13), 
G G G G( ) ( *) , *k

k
k

( ) (both for a and u). Rearranging  

Algorithm 1: Minimax learning .
Input: Demand dataD, label data Y, learning rate ηl, parameters {B, α, β1, β2, β3}, and hyper-parameters κ1, κ2
Initialize Gk, ψk at iteration k = 0 with batch size m;
while ψ or G has not converged do

1 draw batches of pair (d(i), y(i)) from demand and label datasets (D,Y), ∀i = 1, . . . ,m;
2 Sample batch of Gaussian random vectors ε(1),...,(m) ∼ N(0, I);
3 ψk+1 := ψk − ηlE[∇ψLa( fψ(d̃), y)];
4 Ĝk+1 := Gk − ηlE[∇GLa( fψ(d̃), y)];
5 Gk+1 := Ĝk+1 − ηlE[∇GLu(x̃∗, d)] where x̃∗ is optimal solution of (7)

(The expected gradient value is approximated as the sample mean of the batch.)
return G and ψ
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Eq. (14a) and Eq. (14f), we get 

+
++

G G
G G G G

2 ( ( ) *) 2 ( ( ) *)
[ * ] [ * ] ( ) .

l
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a k a l
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u k u

k k l
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2
2

1 2
2 ( ) 2 2 (15) 

By summing iterates up to step K, we get 

+
=

G G2 min[ ( ) *] min[ ( ) *]
k

K

l
k

k k
a k a

k k
u k u

1

( )
[ ] [ ] (16a)  

+
=

G G2 [ ( ) *] [ ( ) *]
k

K

l
k

a k a u k u
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1
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(16b)  

+
=

G G* ( )
k

K

l
k

k
(iv) 1 2

2

1

( ) 2 2

(16c) 

where (iii) is valid since we take the minimum over all iterations and 
(iv) is derived from the summation of Eq. (15). Then, arranging  
Eq. (16a) and Eq. (16c) gives 

+

+ =

=

G Gmin[ ( ) *] min[ ( ) *]

G G

k k
k

k k
k

[ ]
1 1

[ ]
2 2

* ( )

2
k
K

l
k

k

k
K

l
k

1 2
2

1
( ) 2 2

1
( ) (17a)  

Thus, if the 2-norm of the vectorized version of G G*1 is bounded 
by r, and with learning rate k l

k( ) but <( ) ,k l
k( ) 2 the right 

hand-side of Eq. (17a) becomes 
+ 0r ( )

2
k l

k
k

k l
k

2 ( ) 2 2

( ) . Therefore, using the 

gradient updates in step1 and step3 minimizes the losses ,a u and 
converges to a local optimal point. 

4. Experiments 

In this section, we evaluate the capability of our linear filter to (1) 
generate perturbed smart meter data that reduces the prediction ac
curacy of sensitive attributes; (2) maintain the minimum energy cost 
from an optimal control decision using the perturbed data; (3) integrate 
into a contemporary deep learning architecture with parallelism. The 
code for our experiments is available at https://github.com/markcx/ 
DER_ControlPrivateTimeSeries. 

4.1. Setup 

We build up two neural networks to form the adversarial classifier 
and generator. The adversarial classifier is composed of two fully con
nected layers with ELU (Exponential Linear Unit) activation to estimate 
the sensitive attribute from demand. The first layer contains the same 
number of neurons as the time steps of the meter data series used by the 
battery optimal controller, and the second layer has half of the neuron 
numbers of the first layer and outputs a two dimensional vector re
presenting the probability of the associated categories of the label. The 
generator module is composed of a single linear layer that takes a stan
dard normal random vector and the private labels as inputs, and outputs 
noise to be added to the original demand. The parameters of the single 
linear layer form matrix G. Additionally, we specify G to be block di
agonal to reduce the number of learning parameters, i.e. =G V[ , ]
where Γ is a diagonal matrix. Given the number of columns in our weight 
matrix is cw (e.g. the cw for G is 26 for the solar dataset and 50 in our 
residential experiments), we use uniform initialization[34] between 
( , )c c

1 1
w w

for both the adversary and generator networks. We use 85% of 
the data for training and the remaining 15% for testing the performance 
of the filter. Later in Section 4.4, we demonstrate that our method is 
robust to different training and testing splits. We set hyper-parameters 
= = = =10 , 101 2 3

5 3 throughout the experiments. The learning 
rate for the classifier is 10 3 and the learning rate for the generator starts 
from 0.1 and decays 20% for every 100 steps. We present the classifi
cation accuracy to indicate the correlation, as a lower accuracy implies a 

lower value of mutual information[35], thus, there is less correlation 
between the demand and sensitive labels. We set the initial battery state 
of charge to 1% of its maximum energy capacity, i.e. =B B0.01init . We 
use a time-of-use price structure with two tiers: a high price of $0.463 per 
KWh from 4pm-9pm and $0.202 per KWh for the rest of the day. 

4.2. Examples 

4.2.1. Deployment of storage on aggregated demand with solar generation 
For our first experiment, we aggregated 24-hour demand consumption 

from thousands of homes into groups of 100–200 homes and added solar 
generation. The aggregations represent the demand seen at a secondary 
transformer from the perspective of a utility company. The goal is to 
minimize the energy cost for the aggregation of homes by running the 
optimal charging and discharging controls for battery storage located at 
the secondary transformer given a prescribed price. Before the experiment, 
each demand profile is assigned a binary label indicating if it is from a 
high- or low-income group, with high-income groups having a peak de
mand above a certain threshold. During the experiment, we wish to pri
vatize the demand before sending it to the storage operator to perform cost 
minimization, so the operator cannot infer whether the aggregation of 
customers comes from a high or low-income group. The upper panel of  
Fig. 1 shows the income attribute can be easily inferred from the raw 
demand as the height of the peaks are clearly distinguishable. The lower 
panel of Fig. 1 shows that the privatized demands are perturbed such that 
two labels overlap making it harder to tell which demand has high or low 
income. However, there is a trade-off between privacy and utility when 
perturbing the data. We use the hyper-parameter λa to balance the ad
versarial loss and the utility loss i.e. smaller λa means less weight for 
privacy and more for utility, as shown in Fig. 2. When λa increases from 8 
to 128, the classification accuracy of the income label drops from 89.4% to 
73% as we expected. The raw classification accuracy with zero weight is 
95.2%. The loss of performance of the cost minimization by using 

Fig. 1. A batch of 24-hour demand with solar generation that is net negative in 
certain hours allowing storage to minimize the cost through an optimal charge 
and discharge sequence. The upper panel shows the raw demand. The lower 
panel shows the privatized demand. 
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privatized demand instead of raw demand ranges from 2.5% at = 8a to 
almost 5% at = 128a on average, which shows that high privacy comes 
with a performance cost for this battery control problem. 

4.2.2. Deployment of storage on residential users 
The second experiment considers residential customers adopting 

batteries to minimize their energy cost without selling excess to the grid. 
The control of the battery is performed by an outside program, so the 
owner wishes to privatize their demand before sending it to the con
troller. The dataset is from the Irish CER Smart Metering Project [24,36]. 
We select a year of meter data for meters that contain a record indicating 
if they belong to a large or small home and partition it into daily se
quences with 48 entries for each day. We end up with 54,478 records in 
total. Recall that our goal is to create altered demand that won’t degrade 
the cost savings while removing the correlation between the demand and 
the attribute indicating a small or large home. Differences between this 
experiment and the previous one are that this experiment uses data from 
only a single home versus an aggregation of homes, and this experiment 
uses real world labeled data instead of synthetic labels. Fig. 3 depicts the 
trade-off between utility degradation and privacy gain for different 
weights on privacy loss. The accuracy of classifying large or small homes 
based on the raw demand is 77.5%. When we have low weight on the 
privacy loss (e.g. = 0.5a ), the classification accuracy only drops a little 
to 75%, with a greater sacrifice on cost saving performance (e.g. increased 
to 8% more cost on average). In the high privacy weight scenario, the 
classification accuracy drops down to 50% as desired, while the utility 
performance gap only increases up to 12%. When comparing this ex
periment to the previous one, we find that the adversary has more diffi
culty determining home size for individual homes than for aggregations of 
homes with comparable loss of cost minimization performance. 

4.2.3. Integration into real world systems 
This approach can be integrated into existing storage control sys

tems such as those proposed in [2,3] in the following manner. First, the 
privacy filter is trained offline using an anonymous batch of private 
data from many sources before the installation of the storage system 
and control algorithm. Then, the learned filter weights are given to the 
data owner who wishes to use the system. Next, during operation, the 
data owner locally privatizes the power demand data by locally com
puting the matrix product between the learned filter weights and the 
power demand data. The matrix product can be computed locally with 
minimal computation since the filter weight matrix is diagonal. Finally, 
the storage control algorithm receives the privatized data that is com
puted locally and performs the cost minimization optimization on the 
privatized data just as it would with raw data. 

4.3. Parallelism 

The training for the experiments in this section are run on a six-core 
Intel Core i7 CPU @2.2GHz. Current standard solvers like Gurobi or 
Mosek without support of in-batch parallelism can be computationally 
expensive for solving a quadratic problem. Our filter makes use of au
tomatic differentiation for a cone program (DIFFCP) [29] and leverages 
multiprocessing to speed up the forward and backward calculations. 

Fig. 4 displays the mean and standard deviation of running each trial 
8 times, showing that our batched module outperforms Gurobi or Mosek, 
which are highly tuned commercial solvers for reasonable batch sizes. 
For a minibatch size of 128, we solve all problems in an average of 1.31 s, 
whereas Gurobi takes an average of 11.7 s. This speed improvement for a 
single minibatch makes the difference between a practical and an unu
sable solver in the context of training a deep learning architecture. 

4.4. Sensitivity analysis 

In this section, we evaluate the sensitivity of our method to: (i) the 
inherent trade-off between data privacy and utility, and (ii) the ratio of 
training data to testing data. First, we summarize our findings on the 
trade-off between data privacy and utility. As discussed, the tunable 
hyper-parameter, λa, allows us to scale the importance of privacy. In the 
first example, when λa increases from 8 to 128, the classification ac
curacy of the income label drops from 89.4% to 73% while loss of 
performance of the cost minimization increases from 2.5% to almost 5% 
on average as seen in Fig. 2. In the second example, when λa increases 
from 0.5 to 4, the classification accuracy drops from 75% to 50% while 
loss of cost saving performance increases from 8% to 12% as seen 
in Fig. 3. These performance values represent a Pareto optimal set 
parameterized by λa with the best point depending on the specific ex
ternal values assigned to privacy and utility for the given scenario. 

Fig. 2. The trade-off between privacy and utility controlled by parameter λa, 
which places weight on the private attribute classification loss. 

Fig. 3. The trade-off between the utility and privacy for the CER dataset [36]. 
The privacy label indicates a large or small home. λa weighs the privacy loss. 

Fig. 4. CPU run time of a batched optimization using Gurobi v8.1.0, Mosek 
v8.1.0.60, and our parallel module. 
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Here, we demonstrate the robustness of our method to the training 
data by evaluating the performance of battery control on the residential 
dataset via various ratios of training/testing split with fixed = 2a . The 
results are shown in Table 1. We find that the classification accuracy of 
the private attribute and the sacrificed cost gap are consistently around 
57–61% and 9–12% respectively. This difference is small compared to 
other sources of variation such as the choice of λa, and comparable to 
the variation seen from different batches within the data. Such a result 
indicates our approach is relatively robust to different training and 
testing splits of the dataset. 

5. Conclusion 

We have presented a method for the privatization of personal data 
that maintains its utility in the optimal control of energy resources. Our 
method comprises a small linear filter that adds random noise to the data 
conditional on the private attributes we wish to protect. The linear filter 
is trained using a minimax optimization procedure that balances the 
trade-off between classifcation accuracy of the private attributes and the 
performance of an optimal controller. Additionally, we include a dis
tortion penalty to preserve aspects of the data that are not specified by 
the utility or privacy functions in order to avoid adding arbitrary noise. 
We have demonstrated that this method is effective in two datasets and 
easy to integrate into real world DER control solutions. In the first dataset 
on aggregations of homes, the private label accuracy dropped by 26% 
while the utility performance gap only increased by 5%. The second 
dataset on individual homes saw the classification accuracy for the 
binary label drop down to the minimum of 50%, while the utility per
formance gap only increased up to 12%. Limitations of this method in
clude the requirement to solve an optimization in the training loop, 
which can be computationally intensive for large problems; however, we 
suspect only a few iterations of the optimization are needed to achieve 
the desired gradients, which will dramatically reduce the computation 
required. Future work will look intro reducing the training computation 
time with fewer optimization iterations, increasing the variety of ex
periments with additional private labels and utility optimizations, and 
the consideration of additional noise due to poor data quality. 

6. Appendix 

6.1. Battery control details 

We present a snapshot of the results for the storage control based on 
raw and private demand data. Fig. 5 displays the storage control for our 
experiment with aggregated homes and solar generation. The upper-left 
and lower-left panel show the 24-hour charging and discharging deci
sions with each color representing one sample in a batch. The control 
decisions made with raw versus privatized demand data are closely 
aligned in general, but have different charging and discharging 
amounts of power due to perturbation. However, such an altered 
charging profile doesn’t increase the minimum cost of energy too much 
as we can see from the upper-right and lower-right panels of Fig. 5. The 
electricity cost increases by a maximum of $22 USD per day given that 
the highest daily cost is around US $390 USD. (Each bin spans the range 

of $2.5 USD for Fig. 5.) Fig. 6 shows the same information, but for the 
second experiment on individual home data. 

6.2. Quadratic problem 

A canonical form of the quadratic constrained minimization pro
blem (QP) is expressed as follows: 

+x Qx q xmin 1
2x

T T
(18a)  

=Ax bs.t (18b)  

Gx h. (18c)  

We first show that the basic battery storage problem can be con
sidered as a special case of QP. We start with the 24-hour horizon 
storage problem in Problem 1. We can express the constraints from  
Eq. (1d) to Eq. (1f) as 
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We add a constraint that the net of the demand and storage is 
greater than or equal to 0, so we can formulate the objective as a QP. 
This constraint does not modify the original problem as long as it is 
feasible because the optimal solution will implicitly make the net of 
demand and storage greater than or equal to 0. The constraints in  

Table 1 
Evaluation of performance on various train/test splits of the Irish CER data 
when = 2a .         

Train/Test(%) baseline 65/35 70/30 75/25 80/20 85/15  

acc. (%)† 77.5 63.3 61.1 57.6 58.5 56.9 
cost gap (%)⁎ 0 11.7 9.4 12.2 10.0 10.9 

⁎ Accuracy of private attribute. ⁎ Gap above optimal energy cost of controlling 
batteries with raw data. Lower values are preferred for accuracy and optimal 
objective gap.  

Fig. 5. Analysis of storage control for the aggregated homes experiment with 
= 128a . The upper- and lower-left panel show the charging and discharging 

power in kilowatts (KW). Different colored curves represent different samples in 
the batch. The upper-right panel shows the daily electricity cost when oper
ating the battery using raw or private demand (x-axis is the sample number, y- 
axis is in dollars ($)). The lower-right panel shows a histogram of the loss gap. 
(The x-axis is the increased cost in $; the y-axis is the number of days that show 
similar cost increases in a batch.) . 

Fig. 6. Analysis of storage control for the CER data experiment with = 8a . 
Each panel has the same x- and y-axis as Fig. 5. 
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Eq. (1b)-Eq. (1c) are expressed as 

=

=

I I I I
x
x
x

B

Ax b

0 0 1, 0
[ , 0] [ , 0] [ , 0] [0, ] 0

,

in

A

in
out
s

init1
out

(20) 

with ×I[ , 0] 23 24. The objective Eq. (1a) can be converted to a stan
dard QP by letting 

= =Q
I

I
I

q
p
p
B1

0 0
0 0
0 0

,
2

.
1

2

3 3 (21) 

Therefore, it is straightforward to discover that +x Qx q xT T is the new 
form of the objective. 
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