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Abstract

System-level logs play a critical role in computer forensics. They capture
interactions between programs and users in detail. However, a typical com-
puter generates more than 2.5 million system events hourly, making finding
malicious activities in such logs compute and time-intensive.

We introduce GrAALF a graphical system for efficiently loading, storing,
processing, querying, and displaying system events for computer forensics.
In comparison to similar systems, GrAALF offers the flexibility of storage,
intuitive querying, and the tracing power for longer sequences of events in
real-time to help identify attacks.

GrAALF is a robust solution for analysis to support computer forensics.
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1. Introduction

Provenance data contained in system logs offers a rich source of informa-
tion for computer forensics. The system logs can comprehensively capture
how processes controlled by an attacker interact with resources such as disk
and network. System events loggers such as Linux Audit [1], Sysdig [2],
DTrace [3], and Event Trace for Windows (ETW) [4] are often used to gen-
erate these logs. Although logs are frequently analyzed offline after an attack
has happened, real-time system monitoring can help the user in various ways:
if forensic logs can be analyzed in real-time, this rich source of information
allows investigation of ongoing abnormal behaviors and thus can protect the
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system more effectively. Also, timely attack investigations are essential to
protecting the system from similar future attacks.

However, we see three main challenges in developing a practical system
that can support (near) real-time analysis. First, system logs grow rapidly.
We observe that a single host generates more than 2.5 million system events
in an hour. Other studies [5, 6, 7] also reported that a single device generates
over 3 GB of audit log daily. This challenge has motivated previous research
into compression [5, 8, 9, 10, 11] and optimizing querying and pattern match-
ing [12, 13].

Next, there exist various logging systems for different operating systems
and architectures, and their definitions of the event entries, as well as output
formats, are often different. For instance, Linux and Unix systems frequently
use Linux Audit [1]. Windows systems mostly use Event Tracing for Windows
(ETW) [4] to record system events. Linux and Windows have completely
different system calls and system APIs. Furthermore, recent studies [14,
15, 16, 17] propose novel logging techniques to improve the effectiveness
and efficiency of computer forensics. For instance, BEEP [14] proposes a
technique to divide the long-running process into a finer-grain system object
called ezecution unit to improve forensic accuracy. This heterogeneity makes
it challenging to seamlessly support forensics on system logs generated by
various logging platforms.

Third, backward and forward tracking techniques [6, 7] are essential in
computer forensics to understand causal relations between system objects
(e.g., process) and subjects (e.g., file, network socket). They often require
tracking back to previous events to identify causal chains. In practice,
database solutions are often used to store sequences of system events, and
the user composes queries to identify causal relations between system com-
ponents. However, the response time of backtrack queries in these traditional
data stores is not acceptable as it takes over 20 minutes to extract causally
dependent system objects for only a couple of files from a two-day system
event log; thus can not provide the performance needed for real-time track-
ings. GrAALF flexibly offers the options of compressed in-memory storage, a
traditional relational database system, and a graph database for storing the
parsed audit logs. Because of their design nature, relational databases are
highly optimized for storing tabular data; they may not perform well with a
large number of chained joins. It can slow down operations that require an
event stored in the database to be backtracked to its origin.

On the other hand, graph databases are designed with relationships in
mind, making them much more efficient for backtracking relationships be-
tween events in a security log. However, graph databases tend to have low
insertion performances, due to which they are unable to keep up with high-



speed streams of logged data. Consequently, graph databases and in-memory
storage are well suited for (near) real-time forensics when mini-batches of
data are inserted, and fast query execution on graphs is needed. For post-
mortem analyses, the relational database is more appropriate as it allows
fast loading, indexing, and subsequent querying of large amounts of system
events.

GrAALF allows stored audit logs to be queried using a simple query lan-
guage whose syntax and semantics are close to those of SQL. Importantly,
and unlike SQL, this query language supports path queries and backtracking
to an arbitrary depth from an identified resource. We note that the latter
functionality is particularly crucial for successful forensics of prevalent com-
puter attacks such as data exfiltration and kernel injections. User queries
are parsed and interpreted by GrAALF’s query and visualization layer; then,
the satisfying data is displayed as a color-coded graph or tree that can be
rearranged, focused, and magnified for study.

GrAALF belongs to a growing family of systems that support forensic anal-
ysis, which include Elastic [18], AIQL [12], SAQL [13], and Loglens [19]. How-
ever, these previous systems support simple keyword- and regular-expression
based log data filtering only, and do not offer the useful backward trace query
functionality. Furthermore, systems such as AIQL and SAQL are proprietary
and not available for public use, in contrast with GrAALF, which is released
under GNU AGPL V3.0 license?.

2. Overview of GrAALF

We illustrate the high-level overview of GrAALF in Fig. 1. GrAALF consists
of three layers: log ingestion, log storage, and query and visualization layers.
The log ingestion layer receives streaming system logs from hosts in the
enterprise and processes them. The output of this layer will be formatted
data that represent causal relations between system subjects (e.g., process,
thread) and objects (e.g., file, network socket).

The log storage layer stores the output from the log ingestion layer into a
permanent database. GrAALF supports both relational and graph databases
and allows a user to choose whichever is appropriate. GrAALF also has in-
memory buffer storage to enable the processing of enormous streaming data
from multiple sources.

The query and visualization layer interacts with a user to receive queries
and provide output as an interactive graph. The user can iteratively make
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Figure 1: A high level overview of GrAALF.

queries based on the prior output graphs. The output graph visualizes causal
relations in the system elements as well as interactions between different
machines. More importantly, GrAALF supports (near) real-time backward
and forward queries through which the user can easily understand the origin
of each system component and how one affects other components as the
changes happen. We carefully design the storage layer and query interpreter
for querying in-memory storage with the permanent database seamlessly. As
soon as the ingestion layer processes the logs and delivers the output to
in-memory storage, they are ready for querying.

The query and visualization layer also accepts queries to monitor the
system for both stability and security purposes; this module will continuously
monitor graphs produced by these queries and will notify the user when
changes happen in any of them. This enables automated monitoring as well
as automated detection of potential security incidents as they happen.

3. Impact

Cyber threats are increasingly sophisticated and destructive. An im-
portant aspect of cyber attack investigation is understanding the details of
attacks, what damage is caused, and who is responsible for the attack. It is
essential to fully recover from past intrusions and for building more robust



defenses against future incidents. GrAALF benefits national security by ad-
vancing the state-of-the-art in cyber forensics and real-time threat detection.
First, GrAALF enables a detailed reconstruction and understanding of
advanced cyber attacks. It will provide the foundations to fully recover from
past intrusions and to build more robust defenses against future incidents.
Second, GrAALF provides real-time analysis that allows investigation of
ongoing abnormal behaviors to protect the system timely and effectively.
A user can use backward and forward queries to understand the origin of a
system component and how one affects other system components in real-time.
Next, GrAALF’s source code, toolsets, and datasets are disseminated to
the public under GNU AGPL V3.0 license for empowering future research in
this area. This system has been used in a recent study that focuses on iden-
tifying the phases of a cyber attack [20]. The result obtained using GrAALF
shows that an attack phase can be classified with over 90% accuracy. An-
other study [21] leverages GrAALF to automatically extract behavior patterns
that arc used to study a cyber attacker’s behavior and detect their intent.

4. Related Work

Tools such as Elastic Stack are widely adopted in industry and academia
for their agility and high performance when dealing with logs. Plaso [22] and
SOF ELK [23] are two of the tools built on Elastic Stack; these tools have
rich visualization and parsing features.Such tools are not an effective tool
for forensics and provenance tracking. They provide statistics-based reports,
not provenance graph models, nor they provide users with much queryabilty
beyond filtering.

Other tools such as [24, 22, 25] provide models based on artificial intel-
ligence which will assist the forensics expert in monitoring the system and
detecting malicious behaviors based on known patterns; however, these tools
are not designed for manual forensics tasks such as whole system provenance
tracking and are often bound to one scheme of proprietary data stream.

GrAALF is designed to give the user more flexibility in both data source
and data exploration while maintaining features present in other works such
as pattern matching on the streaming data and provenance tracking capa-
bilities. Table 1 shows a comparison of GrAALF with some related works by
their capabilities.

Several causality analysis techniques exist [6, 7, 26, 27, 28], which use
system call loggers to record important system events at run time and ana-
lyze recorded events to find causal relations between system subjects (e.g.,
process) and system objects (e.g., file or network socket). For instance, Back-
Tracker [6] and Taser 7] propose backward and forward analysis techniques



Table 1: GrAALF compared to related systems. X shows lack of support, O shows support
with limited functionality, and B shows full support. S shows streaming analysis capability;
PG, provenance tracking of long causal sequences; F schema flexibility; O openly available;
G granularity smaller than process level; @Q support for a query language.A automatic
anomaly detection.
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in order to analyze system call logs and construct causal graphs for effec-
tive attack investigation. Recently, a series of works [14, 8, 29, 30, 31] have
proposed to provide accurate and fine-grained attack analysis. They divide
long-running processes into multiple autonomous execution units and iden-
tify causal dependencies between them. LDX [32] proposes a dual execution-
based causality inference technique. When a user executes a process, LDX
automatically starts a slave execution by mutating input sources. Then
LDX identifies causal dependencies between the input source and outputs
by comparing the outputs from the original execution and the slave execu-
tion. MCI [30] leverages LDX [32] to build a model-based causality inference
technique for audit logs to infer causal relations between system calls.

GrAALF can support all of the proposed logging techniques with the
proper definition of subjects, objects, and relations. We can process their
logs in real-time and provide GrAALF’s query interface to the user to enable
interactive investigation and monitoring of the system.

5. Conclusion

We present GrAALF, a graphical forensic analysis system for efficient load-
ing, storing, processing, querying, and displaying of causal relations extracted
from system events to support computer forensics. GrAALF offers the flexi-
bility of choice between a relational database (e.g., PostgreSQL) and a graph
database (e.g., Neodj) for backend storage. GrAALF’s in-memory storage
can be seamlessly integrated with either backend and provides (near) real-
time forensic analysis of streaming system event logs. GrAALF provides a
simple query language whose syntax and semantics are close to SQL. The
user can compose a query to perform a backward and forward analysis to
identify causal relations between system subjects and objects. We use an
extensive system call audit log that contains realistic attacks to demonstrate



the practical utility of GrAALF. We will release the source code of GrAALF
as open-source software.

Acknowledgements

This research is funded in part by grant # W911NF-18-1-0288 from the

Army Research Office. Authors would also like to thank Sean Frankum,
Aditya Shinde and Muhammed AbuOdeh for their valuable inputs.

References

1]

2]

R. Inc., Redhat linux audit, https://people.redhat.com/sgrubb/
audit/, [Online; accessed 25 May 2019] (2019).

I. sysdig, Sysdig, https://sysdig.com/, [Online; accessed 25 May 2019]
(2019).

Dtrace, http://dtrace.org/blogs/about, [Online; accessed 25 May
2019] (2019).

Event tracing for windows, https://docs.microsoft.com/en-us/
windows/desktop/etw/event-tracing-portal, [Online; accessed 25
May 2019] (2019).

K. H. Lee, X. Zhang, D. Xu, Loggc: garbage collecting audit log, in:
Proceedings of the 2013 ACM SIGSAC conference on Computer & com-
munications security, ACM, 2013, pp. 1005-1016.

S. T. King, P. M. Chen, Backtracking intrusions, ACM SIGOPS Oper-
ating Systems Review 37 (5) (2003) 223-236.

A. Goel, K. Po, K. Farhadi, Z. Li, E. De Lara, The taser intrusion
recovery system, ACM SIGOPS Operating Systems Review 39 (5) (2005)
163-176.

S. Ma, X. Zhang, D. Xu, Protracer: Towards practical provenance trac-
ing by alternating between logging and tainting., in: Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2016.

Z.Xu, Z. Wu, 7. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, G. Jiang,
High fidelity data reduction for big data security dependency analyses,
in: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ACM, 2016, pp. 504-516.



[10]

[11]

[12]

[13]

[14]

[15]

[18]

[19]

M. N. Hossain, J. Wang, O. Weisse, R. Sekar, D. Genkin, B. He, S. D.
Stoller, G. Fang, F. Piessens, E. Downing, et al., Dependence-preserving
data compaction for scalable forensic analysis, in: 27th USENIX Secu-
rity Symposium (USENIX Security 18), 2018, pp. 1723-1740.

Y. Tang, D. Li, Z. Li, M. Zhang, K. Jee, X. Xiao, Z. Wu, J. Rhee,
F. Xu, Q. Li, Nodemerge: Template based efficient data reduction for
big-data causality analysis, in: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ACM, 2018,
pp- 1324-1337.

P. Gao, X. Xiao, Z. Li, F. Xu, S. R. Kulkarni, P. Mittal, Aiql: Enabling
efficient attack investigation from system monitoring data, in: 2018
USENIX Annual Technical Conference (USENIX ATC 18), USENIX,
2018, pp. 113-126.

P. Gao, X. Xiao, D. Li, Z. Li, K. Jee, Z. Wu, C. H. Kim, S. R. Kulka-
rni, P. Mittal, Saql: A stream-based query system for real-time abnor-

mal system behavior detection, in: 27th USENIX Security Symposium
(USENIX Security 18), USENIX, 2018, pp. 639-656.

K. H. Lee, X. Zhang, D. Xu, High accuracy attack provenance via
binary-based execution partition., in: Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2013.

D. J. Pohly, S. McLaughlin, P. McDaniel, K. Butler, Hi-fi: collecting
high-fidelity whole-system provenance, in: Proceedings of the 28th An-
nual Computer Security Applications Conference, ACM, 2012, pp. 259—
268.

A. Bates, D. J. Tian, K. R. Butler, T. Moyer, Trustworthy whole-system
provenance for the linux kernel, in: 24th USENIX Security Symposium
(USENIX Security 15), 2015, pp. 319-334.

K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, M. I. Seltzer,
Provenance-aware storage systems., in: USENIX Annual Technical Con-
ference, General Track, 2006, pp. 43-56.

E. B.V., Elasticsearch, https://www.elastic.co/, [Online; accessed
25 May 2019] (2019).

B. Debnath, M. Solaimani, M. A. G. Gulzar, N. Arora, C. Lumezanu,
J. Xu, B. Zong, H. Zhang, G. Jiang, L. Khan, Loglens: A real-time
log analysis system, in: 2018 IEEE 38th International Conference on

8



[24]

[25]

[20]

[27]

28]

Distributed Computing Systems (ICDCS), IEEE, IEEE, 2018, pp. 1052—
1062.

M. AbuOdeh, C. Adkins, O. Setayeshfar, P. Doshi, K. H. Lee, A novel
ai-based methodology for identifying cyber attacks in honey pots, in:
TAAT-2021, AAAT, 2021.

A. P. Shinde, Active cyber deception and attacker intent recognition
using factored interactive pomdps, Ph.D. thesis, University of Georgia
(2020).

Plaso, https://plaso.readthedocs.io/en/latest/, [Online; ac-
cessed 25 May 2019] (2019).

L. Lewes Technology Consulting, Sof-elk@®) virtual machine distri-
bution, https://github.com/philhagen/sof-elk/blob/master/VM_
README.md, [Online; accessed 25 May 2019] (2019).

W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, A. Bates, Nodoze:
Combatting threat alert fatigue with automated provenance triage., in:

NDSS, 2019.

[. Carbon Black, Cb liveops, https://www.carbonblack.com/
products/cb-1liveops/, [Online; accessed 25 May 2019] (2019).

T. Kim, X. Wang, N. Zeldovich, M. F. Kaashoek, Intrusion recovery
using selective re-execution, in: Proceedings of the 9th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’10,
USENIX Association, Berkeley, CA, USA, 2010, pp. 89-104.

URL http://dl.acm.org/citation.cfm?id=1924943.1924950

S. T. King, Z. M. Mao, D. G. Lucchetti, P. M. Chen, Enriching intrusion
alerts through multi-host causality, in: Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2005.

S. Krishnan, K. Z. Snow, F. Monrose, Trail of bytes: efficient support for
forensic analysis, in: E. Al-Shaer, A. D. Keromytis, V. Shmatikov (Eds.),
Proceedings of the 17th ACM Conference on Computer and Communi-
cations Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010,
ACM, 2010, pp. 50-60. doi:10.1145/1866307.1866314.

URL https://doi.org/10.1145/1866307 .1866314



[29]

[30]

31]

32]

S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, D. Xu, Mpi: Multiple
perspective attack investigation with semantic aware execution parti-
tioning, in: 26th USENIX Security Symposium (USENIX Security 17),
2017, pp. 1111-1128.

Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma, X. Zhang,
D. Xu, S. Jha, G. F. Cretu-Ciocarlie, A. Gehani, V. Yegneswaran, Mci :
Modeling-based causality inference in audit logging for attack investiga-

tion, in: Proceedings of the Network and Distributed System Security
Symposium (NDSS), NDSS 18, 2018.

S. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Zhang, G. Ciocarlie, A. Gehani,
V. Yegneswaran, D. Xu, S. Jha, Kernel-supported cost-effective audit
logging for causality tracking, in: 2018 USENIX Annual Technical
Conference (USENIX ATC 18), USENIX Association, Boston, MA,
2018, pp. 241-254.

URL https://www.usenix.org/conference/atc18/presentation/
ma-shiqing

Y. Kwon, D. Kim, W. N. Sumner, K. Kim, B. Saltaformaggio, X. Zhang,
D. Xu, LDX: causality inference by lightweight dual execution, in:
T. Conte, Y. Zhou (Eds.), Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 16, Atlanta, GA, USA, April 2-6, 2016,
ACM, 2016, pp. 503-515. doi:10.1145/2872362.2872395.

URL https://doi.org/10.1145/2872362.2872395

Required Metadata

Current code version
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Nr. | Code metadata description Please fill in this column

C1 | Current code version v3.0

C2 | Permanent link to code/repository | https://github.com/omid-s/
used for this code version cyber_deception/

C3 | Permanent link to Reproducible
Capsule

C4 | Legal Code License GNU AGPL V3.0

C5 | Code versioning system used git

C6 | Software code languages, tools, and | Java
services used

C7 | Compilation requirements, operat- | Cross Platform, Java Runtime Envi-
ing environments & dependencies ronment 8+ needed

C8 | If available Link to developer docu- | For example:  https://github.
mentation/manual com/omid-s/cyber_deception/

C9 | Support email for questions kyuhlee@uga.edu, omid.s@Quga.edu

Table 2: Code metadata
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