
IEEE TAC, VOL. XX, NO. XX, XXXX 2021 1

Synthesis of optimal multi-objective attack
strategies for controlled systems modeled by

probabilistic automata
Rômulo Meira-Góes, Raymond H. Kwong, Stéphane Lafortune

Abstract— We study the security of control systems in
the context of the supervisory control layer of stochastic
discrete-event systems. Control systems heavily rely on
correct communication between the plant and the con-
troller. In this work, we consider that such communication
is partially compromised by a malicious attacker. The at-
tacker has the ability to modify a subset of the sensor read-
ings and mislead the supervisor, with the goal of inducing
the system into an unsafe state. We consider this problem
from the attacker’s viewpoint and investigate the synthesis
of an attack strategy for systems modeled as probabilis-
tic automata. Specifically, we investigate the synthesis of
attack functions constrained by multiple objectives. We
proceed in two steps. First, we quantify each attack strategy
based on the likelihood of successfully reaching an unsafe
state. Based on this quantification, we study the problem
of synthesizing attack functions with the maximum like-
lihood of successfully reaching an unsafe state. Second,
we consider the problem of synthesizing attack functions
that have the maximum likelihood of successfully reaching
an unsafe state while minimizing a cost function, i.e., the
synthesis of attack functions is constrained by multiple
objectives. Our solution methodology is based on mapping
these problems to optimal control problems for Markov
decision processes, specifically, a probabilistic reachability
problem and a stochastic shortest path problem.

Index Terms— Discrete event systems; Supervisory con-
trol; Stochastic systems; Automata; Sensor deception at-
tacks.

I. INTRODUCTION

The correct behavior of control systems depends heavily on
correct communication between the plant and the controller.
Most works in the existing literature on control with robust
communication focus on random communication faults, such
as delays, information loss, and so forth. However, in recent
years, there has been interest in considering that a “smart”
agent, or attacker, could be responsible for communication
faults. In this paper, we consider such an attack model, where
the goal of the attacker is to induce the controller to steer

R.M.G. and S.L. are with the Department of EECS, University
of Michigan, MI 48109 USA (e-mail:{romulo,stephane}@umich.edu).
Their work is supported in part by US NSF grants CNS-1446298, CNS-
1738103 and CNS-1801342.

R.H.K. is with the ECE Department, University of Toronto, Toronto, ON
M5S 3G4, Canada (email: kwong@control.utoronto.ca) . His work was
supported by the Natural Sciences and Engineering Research Council
of Canada (grant RGPIN-2015-04273).

the system to an unsafe state by altering the communications
from the system sensors to the controller. Our analysis is at
the supervisory control layer; hence, we adopt a discrete event
modeling formalism, where system operation and communi-
cations are event-based and the controller is a supervisor. In
contrast to prior work on sensor deception attacks for Discrete
Event Systems (DES), where logical models are used, we
model the system as a Probabilistic Finite-State Automaton.
This allows us to quantify, in a probabilistic sense, attack
strategies.

As a consequence of the stochastic control system model
that we adopt, it is possible to quantify each attack strategy by
the likelihood of reaching an unsafe state of the plant. In this
manner, a quantitative measure is introduced in the synthesis
problem of attack strategies. First, we investigate the synthesis
of an attack function that generates the maximum likelihood
of reaching an unsafe state. This problem is denoted as the
probabilistic reachability attack function problem. In this prob-
lem, only a set of compromised sensor readings constrains the
attacker on how to alter the communication channel between
the system sensors and the supervisor. For this reason, we
investigate a second problem where the attacker is penalized
for each sensor modification. The second investigated prob-
lem is the synthesis of attack functions that satisfy multiple
objectives (multi-objective). The attack function must reach
an unsafe state with maximum probability while minimizing
a cost function based on the sensor modifications.

Our solution methodology employs results from the area of
stochastic control systems, more specifically Markov Decision
Processes (MDPs). First, we show how to build the “right”
MDP that captures the interaction of the attacker and the
controlled system. Next, we show that the solution of the
probabilistic reachability attack function problem is reducible
to the probabilistic reachability problem in MDPs [1], [2].
Based on the solution of the first problem, we trim the
previously constructed MDP to obtain a solution space for
the multi-objective attack function problem. Lastly, we show
that the solution of the multi-objective attack function problem
is reducible to the stochastic shortest path problem in MDPs
[1], [2].

The main contributions of this paper are in posing the new
multi-objective attack function problem, and in the solution
methodology of the two investigated problems. Although
reducing supervisory control problems to MDP problems is
not new [3], the solution methodology of reducing these two

2 IEEE TAC, VOL. XX, NO. XX, XXXX 2021

investigated problems in the area of cyber-security in stochas-
tic DES to well-known problems in the area of stochastic
control systems is new, to the best of our knowledge. By
showing this reduction, we can leverage the relevant theoretical
results in stochastic control, along with employing existing
software tools for MDPs to compute optimal solutions to these
problems.

In recent years, several works addressed problems of cyber-
security in the field of DES. We give a very brief overview of
the existing work and compare it to our paper. For a more
complete review of the area, please see [4]. Of particular
relevance to this paper is our previous work in [5]–[7]; we
use herein a similar framework for how attacks take place on
the communication channel from sensors to the supervisor. In
[5]–[7], an attacker has compromised a subset of the sensors
and is able to delete sensor readings or insert fictitious ones in
the communication channel. The problem investigated is the
synthesis of stealthy sensor deception attacks for a known log-
ical control system. In [7], we also considered the problem of
synthesizing sensor deception attacks for stochastic systems,
but only the probabilistic reachability attack function synthesis
problem was investigated. We leveraged results from the area
of stochastic games [8] to provide a solution methodology in
[7]. In this paper, we leverage results from the area of MDPs to
provide a solution methodology. Moreover, we also investigate
a completely new problem, the multi-objective attack function
synthesis problem. The works in [9]–[12] investigate synthesis
of attackers but none of them consider stochastic models.

In [13]–[17], the authors develop diagnostic tools to detect
when controlled systems are being attacked. Their work is
closely related to the work on fault diagnosis in DES, and it
applies to both sensor and/or actuator attacks. Moreover, [13],
[16], [17] consider stochastic models, while the other works
consider logical DES models. Our problem differs from the
problems considered in these works since we aim to compute
an attack function that successfully causes the system to reach
the critical state. Nonetheless, these diagnostic tools could be
incorporated into our framework in order to add additional
constraints to the attack function synthesis problems.

There is also a vast literature on robust control in DES
[18]. However, robustness in this literature is related to
communication delays or loss of information [19]–[22], or
model uncertainty [23]–[26]. Our work differs intrinsically
from the ones above as they treat unreliable communication
and uncertainty as “benign” malfunctions instead of mali-
cious attacks. The problem of synthesizing supervisors robust
against attacks is investigated in [9], [27]–[30]. These works
are complementary to ours since we focus on the attack side
(attack functions) while these works focus on the defense
side (robust supervisors). Moreover, these previous works only
consider logical DES models. The problem of synthesizing
supervisors that are robust against actuator deception attacks
is investigated in [31], [32].

Our work also shares some similarities with works investi-
gating the opacity property and its enforcement [33]–[38]. In
the opacity property, the attacker is normally considered to be
an eavesdropper without any means of altering the behavior
of the underlying system, i.e., the attacker is a passive entity.

Recently, active attackers have been considered for the opacity
problem, see [39]. Our work differs from these works on
opacity since they study information release properties of the
system, whereas our work assesses the impact of an active
attacker over physical parts of the controlled system.

It is also important to point out the difference between
our work and the work of [37] using edit functions and the
work of [35] using supervisory control as a means to enforce
opacity. Even though edit functions are similar to our definition
of attack functions, their usage is completely different since
they are applied in different contexts. Edit functions are used
in open-loop systems, i.e., no supervisor is present, whereas
attack functions are used in closed-loop systems. The use of
supervisory control to enforce opacity is comparable to the
works of synthesis of robust supervisors [9], [27], [29]. Lastly,
we are not aware of any work that combines the defense
mechanism of supervisory control and edit functions, i.e., they
are presented as two different and independent techniques to
enforce the opacity property.

Our presentation is organized as follows. Section II intro-
duces necessary background on Supervisory Control Theory.
The two investigated problems are formulated in Section III.
We briefly review necessary concepts about MDPs in Sec-
tion IV and present two well-known MDP problems: the
probabilistic reachability problem and the stochastic shortest
path problem. In Section V, we present the results on the
synthesis of maximal probability attack functions. Section VI
presents the results with respect to the multi-objective prob-
lem. An illustrative example is given in Section VII. Finally,
we conclude the paper in Section VIII.

II. MODELING OF CONTROLLED SYSTEMS

A. Supervisory Control

We consider the supervisory layer of a feedback control
system, where the uncontrolled system (plant) is modeled as a
Deterministic Finite-State Automaton (DFA) in the discrete-
event modeling formalism. A DFA is denoted by G :=
(XG,Σ, δG, x0,G), where XG is the finite set of states, Σ is
the finite set of events, δG : XG × Σ → XG is the partial
transition function and x0,G is the initial state. The function
δG is extended, in the usual manner, to the domain XG×Σ∗.
The language generated by G is defined by L(G) := {s ∈
Σ∗ | δG(x0,G, s)!}, where ! means that the function is defined
for these arguments. The set of feasible events in state x ∈ XG

is denoted as ΓG(x) := {e ∈ Σ | δ(x, e)!}.
In the context of supervisory control theory of DES [40],

the plant G is controlled by a supervisor that dynamically en-
ables/disables events. To model limited actuation capabilities,
the event set Σ is partitioned into the sets of controllable and
uncontrollable events, Σc and Σuc. Since uncontrollable events
cannot be disabled by the supervisor, the supervisor’s control
decisions are limited to the set Γ := {γ ⊆ Σ | Σuc ⊆ γ}.
Therefore, a supervisor is a mapping S : L(G)→ Γ defined to
satisfy specifications on G, e.g., make a state in G unreachable.
The closed-loop behavior of G under supervision of S is
denoted by S/G and generates the closed-loop language
L(S/G); see, e.g., [41]. Without loss of generality, we assume

R.MEIRA-GÓES et al.: IEEE TRANSACTIONS ON AUTOMATIC CONTROL (JAN. 2021) 3

that S is realized by an automaton R = (XR,Σ, δR, x0,R),
i.e., S(s) = ΓR(δR(x0,R, s)). Both notations S and R are
used interchangeably hereafter.

For any string s ∈ Σ∗, we use the following notation. We
denote by s[i] the ith event of s such that s = s[1]s[2] . . . s[|s|],
where |s| denotes the length of s. We denote by si the ith

prefix of s, namely si = s[1]s[2] . . . s[i] and s0 = ε. Moreover,
we denote by s̄ the set of all prefixes of s. Finally, we use N to
be the set of natural numbers, [n] and [n]+ to be, respectively,
the set of natural numbers and the set of positive natural
numbers both bounded by n ∈ N.

B. Stochastic Discrete Event Systems

We consider a stochastic DES modeled as a Probabilistic
Finite-State Automaton (PFA) that is defined similar to a DFA.
A PFA is defined by H := (XH ,Σ, P rH , x0,H), where the
probabilistic transition function (PTF) PrH : XH×Σ×XH →
[0, 1] replaces δG. This PTF specifies the probability of moving
from state x to state y with event e.

In this work, we limit H further than its general defini-
tion. First, we assume that each state in H transitions with
probability 1 or deadlocks, i.e.,

∑
e∈Σ

∑
y∈XH PrH(x, e, y) ∈

{0, 1} for any x. Nevertheless, our methodology can be easily
extended to the general case [42]. Next, we assume that
H is deterministic, i.e., @y, y∗ ∈ XH , y∗ 6= y such that
PrH(x, e, y) > 0 and PrH(x, e, y∗) > 0. For convenience,
we define the transition function δH as δH(x, e) := y if
PrH(x, e, y) > 0. Finally, we define the language generated
by H as L(H) := {s ∈ Σ∗ | δH(x0,H), s)!}.

Although the language of PFA H is defined similarly as
for DFA G, each string in L(H) can be quantified by its
probability of execution. For this reason, language L(H) is
extended to the notion of probabilistic language (p-language)
[43]. Formally, the p-language Lp(H) : Σ∗ → [0, 1] is defined
recursively for s ∈ Σ∗ and e ∈ Σ as: Lp(H)(ε) := 1,
Lp(H)(se) := Lp(H)(s)PrH(x, e, y) if x = δH(x0,H , s),
e ∈ ΓH(x) and y = δH(x, e), and 0 otherwise. Intuitively,
Lp(H)(s) represents the probability of executing string s.

In the context of stochastic supervisory control theory, the
plant H is controlled by a supervisor as in the previously-
described supervisory control framework. Nonetheless, there
are different ways of studying its closed-loop behavior [42],
[44], [45]. In this paper, we use the results of supervisory
control of stochastic DES introduced in [42], where only the
plant behaves stochastically. That is, both the specification
and the supervisor are deterministic and defined as in the
previously-described logical supervisory control framework.
However, the supervisor alters the probabilistic behavior of the
plant via the control actions it takes (disabling events). Recall
that in the supervisory control framework, the event set of H
is partitioned into controllable, Σc, and uncontrollable, Σuc,
events, where the supervisor does not disable uncontrollable
events. Conditions for the existence of a supervisor for the
above control problem are provided in [42].

Formalizing the previous discussion, the plant modeled
by PFA H is controlled by a supervisor modeled by DFA
R. And although R is deterministic, its events disablement

proportionally increases the probability of the enabled ones.
Given a state x ∈ XH , a state y ∈ XR, and an event
e ∈ ΓH(x) ∩ ΓR(y), the probability of e being executed is
given by the standard normalization:

Prx,ye =
PrH(x, e, δH(x, e))∑

e′∈ΓH(x)∩ΓR(y)

PrH(x, e′, δH(x, e′))
(1)

The set ΓH(x) ∩ ΓR(y) describes the events that can be
executed by H in state x restricted by the events enabled by
R in state y. If every event in ΓH(x) is enabled by R in state
y, then their probabilities of execution remains unaltered, i.e.,
the denominator in Eq. (7) is equal to 1. However, if at least
one event in ΓH(x) is disabled by R in state y, its probability
of execution is proportionally redistributed to the remaining
enabled and executable events. Therefore, R/H generates a
p-language different, in general, than the p-language of H .

For simplicity and without loss of generality, we assume that
the plant H has one deadlock critical state and R ensures that
this state is not reachable in R/H . Specifically, we assume
that the language L(R/H) ⊆ {s ∈ L(H) | δH(x0,H , s) 6=
xcrit} where xcrit ∈ XH is the critical state and L(R/H)
is controllable, see, e.g., [41], [46]. Normally, one would
find a supervisor that generates the supremal controllable
sublanguage of {s ∈ L(H) | δH(x0,H , s) 6= xcrit}, but we
do not assume such a supervisor is selected, see Example II.1.
For the definition of the supremal controllable sublanguage
see, e.g., [41], [46]. Lastly, we define the set of unsafe strings
as Uuns = {s ∈ Σ∗ | δH(x0,H , s) = xcrit} and the
set of unsafe state pairs for the controlled system R/H by
Xuns := {xcrit} ×XR

Example II.1. Consider a robot that is navigating an area that
has been partitioned as a grid with two rows and two columns.
The robot is modeled by the PFA H shown in Fig. 1(a). Every
event is controllable and the probability transition function is
defined as PrH(x, e, y) = 1

2 for the transitions defined by
the model in Fig. 1(a). Moreover, we consider that xcrit = 4,
i.e., there is an obstacle in that region and the robot must
avoid the obstacle. We show a supervisor in Fig. 1(b) that
guarantees the safety of the robot. Note that this supervisor
is more restrictive than necessary, i.e., the language L(R/G)
is not the supremal controllable sublanguage. We select this
supervisor for illustrative purposes in the following sections.
Even though the self-loops in this supervisor do not create new
behavior with respect to the plant (enabling infeasible events),
they will be used in Example III.2.

(a) Robot in a 2 by 2 grid (b) Supervisor R

Fig. 1: Robot example

4 IEEE TAC, VOL. XX, NO. XX, XXXX 2021

III. PROBLEM FORMULATION

In this section, we pose the two problems that are solved
in this paper: the probabilistic reachability attack function
problem and the multi-objective optimal attack function. We
start by formally describing stochastic supervisory control
under sensor deception attacks. Following this description, we
pose these two problems over the newly described framework.
Table I summarizes the notation introduced in this section.

TABLE I: Table of Notation for Systems under Attack

Σa Set of compromised events - Σa ⊆ Σ
Σi Set of inserted events - {eins | e ∈ Σa}
Σd Set of deleted events - {edel | e ∈ Σa}
Σe

a Σi ∪ Σd

Σm Σ ∪ Σe
a

M(e) Removes subscripts ins and del from event e ∈ Σm

PH(e) Projects event e ∈ Σm to its actual execution in H
PS(e) Projects event e ∈ Σm to its actual observation by R
A(s) Attack function - Def. III.1
ΠA Set of complete and consistent attack functions

SA(s) Attacked supervisor - (S ◦ PS ◦A)(s)
SA/H Attacked system
winA Winning level of A - Eq. (2)
cost(s) Cumulative cost of executing string s in SA/H - Eq. (4)
Uns Set of strings that reach the critical state in SA/H
Unr Set of strings that cannot reach the critical state in SA/H

EA[cost(s)] Expected cost of generating a string in Uns ∪ Unr

A. Stochastic supervisory control under sensor
deception attacks

Our goal is to investigate the performance of R/H when
an attacker undermines the communication channel between
the plant and the supervisor, i.e, an attacker hijacks the sensor
readings. We define as Σa ⊆ Σ the set of compromised events.
Any event in Σa can be manipulated by the attacker, where
“manipulate” means the ability to insert fictitious events in
the channel or to erase events from the channel. Under this
unreliable communication model, the supervisor R may not
guarantee the unreachability of the critical state. This possible
unsafe behavior is the focus of our paper.

To identify attack actions from events generated by H , let
Σi = {eins | e ∈ Σa} and Σd = {edel | e ∈ Σa} be the set of
inserted events and the set of deleted events, respectively. We
assume that Σa,Σi,Σd are pairwise disjoint. For convenience,
we define Σea = Σi ∪ Σd and Σm = Σ ∪ Σea.

Although we can identify the attack actions, the supervisor
does not observe these decisions neither does the plant ex-
ecutes them. For example, an event deletion is not seen by
the supervisor whereas a compromised event is executed by
H before its possible deletion. We define projection operators
to identify how these attack actions are portrayed in H and
S. For example, event deletion edel is projected to ε by the
supervisor projection operator, while it is projected to e by the
plant projection operator. Formally, we define three projection
operators with Σm as domain and Σ as codomain
(1) M(eins) = M(edel) = M(e) = e for e ∈ Σa and
M(e) = e for e ∈ Σ \ Σa
(2) PH(e) =M(e) for e ∈ Σ∪Σd and PH(e) = ε for e ∈ Σi

(3) PS(e) =M(e) for e ∈ Σ∪Σi and PS(e) = ε for e ∈ Σd.
The maskM removes subscripts, when present, from events in
Σm, PH projects an event in Σm to its actual event execution
in H , and PS projects an event in Σm to its event observation
by R. Finally, we formally define the model of an attacker.

Definition III.1. An attacker that hijacks events in Σa ⊆ Σ
in the communication channel between the plant and the
supervisor is defined as a partial map A : Σ∗m × (Σ∪ {ε})→
Σ∗m, that satisfies for any t ∈ Σ∗m and e ∈ Σ ∪ {ε}:

1) A(ε, ε) ∈ Σi
∗ and A(t, ε) = ε for t 6= ε

2) If e ∈ Σa, then A(t, e) ∈ {e, edel}Σi∗
3) If e ∈ Σ\Σa, then A(t, e) ∈ {e}Σi∗

The attack function A defines a deterministic strategy given
the last event executed e and the previous attacker modification
t, i.e., the string A(t, e) substitutes event e executed by H .
For convenience and with an abuse of notation, we extend
the function A to recursively concatenate these modifica-
tions for any string s ∈ Σ∗. Let s ∈ Σ∗, then A(s) :=
A(s|s|−1)A(A(s|s|−1), s[|s|]) and A(ε) := A(ε, ε).

A new controlled behavior is generated when the attack
function A is placed in the communication channel between
the plant and the supervisor. Namely, a new supervisor denoted
by SA is defined, where SA(s) = (S ◦ PS ◦ A)(s) is the
resulting control action, under attack, after string s has been
executed by the system1. The language L(SA/H) ⊆ L(H) is
defined as usual [41] and SA/H is denoted as the attacked
system. This language is defined over Σ, and not Σm, due to
the projection PS of the attacker editions. Note that, SA/H
generates a p-language in the same manner as S/H .

Remark III.1. In the definition of the language of SA/H ,
the attacker completes its string modification without any
interruption of the plant H . In other words, the plant H does
not execute any event in the middle of the attacker editions
following each event executed by the plant.

Example III.2. Let us provide examples of attacked systems
based on Example II.1 and Σa = {rE}. First, we define
attack A1 as follows: A1(s) = rEinsrEinss for any s ∈
Σ∗. Note that attack A1 can insert event rE twice since
supervisor R has a self-loop with event rE in state 32.
The initial control decision is SA1(ε) = S(PS(A1(ε))) =
ΓR(3) = {rE, rW}, which allows the execution of event rE
in state 1 of the plant H with probability 1, i.e., Pr1,3

rE = 1.
It follows that L(SA1

/H) = {ε, rE, rErW, rErWrE, . . . }
since the attacker inserts rEinsrEins when the system is
initialized. This attacked system is depicted in Fig. 4(a),
where states are tuples in XH × XR. Similarly, we define
A2 as: A2(ε) = ε, A2(rEs) = rEdels, and A2(rNs) =
rNs for any s ∈ Σ∗. Then, it follows that L(SA2

/H) =
{ε, rE, rN, rErN, rNrS, rNrSrN, . . . }.

Before concluding this section, we introduce two assump-
tions on attack functions. First, we assume that the attacker

1◦ denotes the function composition operator.
2An intrusion detection module would be able to detect attack A1 since

the plant cannot execute rErE. For illustrative purposes of our example, we
assume that no intrusion detection module is deployed for this system.

R.MEIRA-GÓES et al.: IEEE TRANSACTIONS ON AUTOMATIC CONTROL (JAN. 2021) 5

always “knows” what to do when the plant executes a new
event. We say that the attack function is complete when it
is defined for every string in the new controlled behavior
L(SA/H). Moreover, we assume that the attacker does not
insert an event that is not allowed by the current supervisor’s
control decision. An attack function is consistent if its inser-
tions are consistent with the control decision of the supervisor.

Definition III.2. An attack function A is complete w.r.t. H
and S if for any s in L(SA/H), we have that A(s) is defined.
Moreover, A is consistent if for any e ∈ Σ, s ∈ L(SA/H) such
that se ∈ L(SA/H) with A(s, e) = t, then S(PS(A(s)ti))!
and t[i + 1] ∈ S(PS(A(s)ti)) for all i ∈ [|t| − 1]. We define
ΠA as the set of all complete and consistent attack functions
w.r.t. H and S.

Remark III.2. Although we did not consider a detection
module in this framework, one can be incorporated into the
supervisor if we slightly modify supervisor R. Namely, we
can introduce a supervisor that embeds an intrusion detection
module. Intuitively, R̃ := (XR̃ := XR ∪ {dead},Σ, δR̃, x0,R̃)
is a copy of R augmented with a deadlock state called dead
that is only reached via strings in Σ∗ \ L(R/H), see [6] for
more details. The state dead is used to capture an intrusion
detection mechanism, where an attacker is detected when the
supervisor reaches this state.

B. The maximal reachability problem

Since the controlled behavior under the influence of attack
function A is well defined by L(SA/H), we can define the
objective of the attacker based on this language. The attack
function is successful if the attacked system generates an
unsafe string, i.e., Uuns∩L(SA/H) 6= ∅. Because each unsafe
string in the attacked system is quantified by Lp(SA/H), we
quantify each attack function A by the total probability of
generating these unsafe strings. The winning level of A is
defined as the probability that SA/H generates unsafe strings.
Formally,

winA =
∑
s∈Uuns Lp(SA/H)(s) (2)

It follows from Uuns that winA ≤ 1 for any A ∈ ΠA, i.e.,
winA captures the probability that SA/H generates unsafe
strings.

The definition of the value winA makes it possible to
compare attack functions. For example, attack A1 in Ex-
ample III.2 has a winning level of 0, winA1

= 0, since
Uuns ∩ L(SA/H) = ∅. Whereas, attack A2 in Example III.2
has a winning level of 0.5 since Uuns∩L(SA/H) = {rErN}
and Lp(SA2/H)(rErN) = 0.5. Given two attack functions A
and A′, if winA ≥ winA′ , then it means that strategy A is
equally or more likely to reach the critical state of H than A′.
A natural question to ask is if there exists an attack function
that is more likely to reach the critical state than any other
attack function. Formally, the problem is posed as follows.

Problem III.1. [The probabilistic reachability attack function
problem] Given a plant modeled as PFA H , a supervisor
modeled as DFA R, and the set of compromised events

Σa ⊆ Σ, synthesize Amax ∈ ΠA, if it exists, such that:

winAmax = sup
A∈ΠA

winA (3)

Remark III.3. As was mentioned in the introduction, the
definition of attack functions resembles the definition of edit
functions in [37], [47]. Because of this similarity, the problem
statements of synthesizing edit functions and of synthesizing
attack functions appear similar from a high-level perspective.
However, these problems differ in an important way. The
attack function of this paper affects the behavior executed
by the plant and the behavior observed by the supervisor.
In the case of opacity, although the edit function affects the
observed behavior of the considered model, it does not affect
the behavior executed by this model.

C. The multi-objective problem
In Problem III.1, the attacker is “eager” to reach the critical

state and it is not constrained, except by Σa, in how to
do so. Finding a cost-optimal attack function would be a
natural extension for the investigated problem [48], [49], when
insertions and deletions are costly actions by the attacker.
Nonetheless, the reachable-optimal and the cost-optimal prob-
lems are conflicting. In this manner, we investigate a multiple-
objective problem, i.e., maximal reachability and minimal
expected cost.

In this paper, we follow a similar approach as in [50],
[51] where objectives have priorities. Namely, the attacker
has multiple objectives to satisfy: (i) maximize the probability
of reaching the critical state; (ii) minimize the expected
cost while performing (i). First, the attacker prioritizes the
probability of reaching the critical state and finds all attack
functions that maximize this probability. Second, within these
maximal attack functions, it searches for an attack function
with the minimum expected cost.

We start by assuming that the cost of a string modified by
the attacker is given by summing the cost of each insertion and
deletion in this string. We assume that the attacker terminates
its attack in two cases: (1) when it reaches the critical state; (2)
when it cannot reach the critical state. Therefore, we define
the expected cost on the modification of strings that meet one
of two termination criteria.

To depict this idea, we again use Example III.2 with
attacker A2. In SA2

/H , we know that string rErN reaches
the critical state, whereas the execution of string rN removes
any chance of the attacker to reach the critical state. In this
example, the expected cost is defined based on executing
these two strings and their modifications, i.e., A2(rErN) and
A2(rN). Namely, the probability of executing rErN is given
by Lp(SA2

/H)(rErN) = 0.5 and let the cost of A2(rErN)
be 2. On the other hand, the probability of executing rN is
given by Lp(SA2/H)(rN) = 0.5 and A2(rN) has zero cost
for the attacker since A2(rN) = rN . In this case, the expected
cost of A2 is defined as 2× 0.5 + 0× 0.5 = 1.

Formalizing the above discussion, let w : Σm → [0,∞)
define the cost of each event, i.e., w(e) ≥ 0 if e is an insertion
or deletion event, otherwise w(e) := 0. Next given a string
t ∈ Σ∗m, the cost of t is

∑|t|
i=1 w(t[i]). Following this, we

6 IEEE TAC, VOL. XX, NO. XX, XXXX 2021

define the terminating language based on the two described
termination criteria. The first criterion is met by strings in
Uns := L(SA/H) ∩ Uuns. The second criterion is met by
strings that cannot reach the critical state. These strings are
defined by Unr := {s ∈ L(SA/H) \ Uns | s|s|−1 ∈ Uns}.
Since Unr and Uns are defined over Σ∗, we must define a
cost function over Σ∗ and not Σ∗m. Formally, the cost function
cost : Σ∗ → [0,∞) is defined for s ∈ Σ∗ as follows:

cost(s) =

{ ∑|A(s)|
i=1 w

(
A(s)[i]

)
if A(s)!

0 otherwise
(4)

Since we are interested in the expected cost value of strings
in Uns ∪ Unr, we define the expected cost value, as in [43],
based on this set of strings and Lp(SA/H). It follows that any
string in Uns∪Unr is not a prefix of any other string in this
language and

∑
s∈Uns∪Unr Lp(SA/H)(s) = 1 for any A ∈

ΠA. In this manner, we can define a probability mass function
on Uns ∪ Unr based on Lp(SA/H) [43], [52]. Intuitively,
we “force” the termination of L(SA/H) since only strings in
Uns ∪ Unr are of interest. The expected value is defined as
follow:

EUns∪Unr,SA/H [cost(s)] =
∑

s∈Uns∪Unr
cost(s)Lp(SA/H)(s)

(5)
where string s ∈ L(SA/H) is a random variable.

Posing a minimization problem based on this cost function
is an ill-posed problem since an attacker that does not attack
is a solution. Thus, this cost function only works, because the
minimization problem is preceded by a maximization problem.

Problem III.2. [Multi-Objective Optimal Attack Function
Synthesis Problem] Given a plant H , a supervisor R, the set
of compromised events Σa ⊆ Σ, a solution of Problem III.1
Amax, and the cumulative cost function cost, synthesize
Amulti, if it exists, such that winAmulti = winAmax and

EA
multi

[cost(s)] = inf
A∈ΠA s.t.

winA=winAmax

EA[cost(s)] (6)

where EA is an abbreviation for EUns∪Unr,SA/H as in Eq. (5).

We search for an attack function in ΠA that satisfies
Problem III.1 and produces the minimal expected cumulative
cost. This problem is well-posed since we search for an attack
function that generates the minimum expected cost within the
policies that reach the critical state with the maximum winning
level. Therefore, the two problems we pose (Problems III.1
and III.2) can be solved in sequence.

IV. MARKOV DECISION PROCESSES

We briefly review concepts and notations of Markov
decision processes (MDPs). An MDP is a tuple M :=
(Q,Act, δM , q0,M), where Q is a finite set of states, q0,M ∈ Q
is an initial state, Act is a finite set of actions, and δM : Q×
Act×Q→ [0, 1] is a PTF, where

∑
q′∈Q δM (q, a, q′) ∈ {0, 1}

for all q ∈ Q and a ∈ Act.
An infinite run in M is an infinite sequence of pairs (state,

action) that satisfies the PTF, i.e., ρ := q0a0q1a1 . . . such that
δM (qj , aj , qj+1) > 0 for all j ∈ N. The set of all infinite

runs in M initialized at state q is defined as Runsq(M), and
Runs(M) := Runsq0,M (M). Similarly, a finite run ρ in M is
a finite prefix of an infinite run ending in a state. The length
of a finite run ρ, denoted by |ρ|, is defined by the number of
actions in this run, e.g., |ρ| = 1 for ρ = q0a0q1. The set of all
finite runs in M initialized at state q is defined as Prefq(M),
and Pref(M) := Prefq0,M (M).

Connecting the worlds of PFA and MDPs, a PFA can be
seen as an MDP with only one action and labeled transitions,
i.e., a Markov chain with labeled transitions [53]. Since there
is a single action, only the environment stochastically decides
a labeled transition to execute. However, MDPs possibly
have more than one action to be selected by an “agent”.
Only after the “agent” selects an action will the environment
stochastically decide a transition to execute. Therefore, the
environment’s stochastic decision is coupled to the decision
made by the “agent”.

This “agent” is defined by a deterministic strategy π :
∪q∈QPrefq(M) → Act that maps finite runs into actions.
The set of all (deterministic) strategies of M is defined as
ΠM . Under a fixed strategy π ∈ ΠM , the behavior of M
is fully probabilistic and it can be represented by an induced
discrete-time Markov chain [49], [53]. This fixed strategy leads
us to the standard definition of a probability measure PrπM,q

(PrπM) over Runsq(M) (Runs(M)) [49]. We use the nota-
tion Runsπq (M), Runsπ(M), P refπq (M), and Prefπ(M) to
denote the set of runs generated by the MDP with π ∈ ΠM .

Again connecting PFA and MDPs, the definitions of the
probability measures Lp(H) and PrπM are almost identical.
The measure PrπM is only defined for infinite runs [49],
whereas Lp(H) is defined for finite and infinite strings [43].

In this paper, we are interested in two MDP problems, the
probabilistic reachability problem [2], [48] and the stochastic
shortest path problem [1], [2]. First, we define the probability
of reaching an absorbing set Qabs ⊆ Q from state q ∈ Q as:

pπM,q(Qabs) :=PrπM,q({ρ ∈ Runsπq (M)|∃j ∈ N, qj ∈ Qabs})
(7)

Similar to the definition of runs, we define pπM (Qabs) =
pπM,q0,M

(Qabs). Policies π ∈ ΠM that reach Qabs with
probability 1 are denoted as proper policies [1]. Intuitively, the
probabilistic reachability problem searches for the maximal
probability of reaching a set of absorbing states.

Problem IV.3. Given an MDP M and a set of absorbing states
Qabs ⊆ Q, find

p∗M (Qabs) := sup
π∈ΠM

pπM (Qabs) (8)

Let EπM,q(f) denote the expected value of a measurable
function f : Runsq(M)→ [0,∞] with respect to PrπM,q , see,
e.g., [48], [49] for details. Intuitively, the stochastic shortest
path problem searches for the minimal expected cost to reach
a set of absorbing states.

Problem IV.4. [1] Given an MDP M , a set of absorbing
states Qabs ⊆ Q, and a cost function c : Q × Act → [0,∞],
find

c∗M (Qabs) := inf
π∈ΠM

EπM [cumul(Qabs, ρ)] (9)

R.MEIRA-GÓES et al.: IEEE TRANSACTIONS ON AUTOMATIC CONTROL (JAN. 2021) 7

where ρ ∈ Runs(M) and

cumul(Qabs, ρ) =


jρ∑
k=0

c(qk, ak) if ∃j ∈ N s.t. qj ∈ Qabs
∞ otherwise

and jρ = min{j ∈ N | qj ∈ Qabs}.

Problem IV.4 has a finite solution if and only if there exists
at least one strategy that reaches the absorbing set with proba-
bility 1, i.e., c∗M <∞ if and only if supπ∈ΠM pπM (Qabs) = 1.

Both problems can be solved using standard MDP algo-
rithms, e.g., value iteration, policy iteration, or linear pro-
gramming, see [1], [2], [49]. The computational complexity
of solving these problems is pseudo-polynomial via the linear
programming method [48] Moreover, both problems accept
memoryless and deterministic strategies as solutions [1], [49].

V. SOLUTION OF THE PROBABILISTIC REACHABILITY
ATTACK FUNCTION PROBLEM

The syntax of Problems III.1 and IV.3 is identical when
we compare Eqs. (3) and (8). However, these problems are
semantically different since they are defined in two different,
though similar, frameworks (PFA vs. MDP). In this section,
we reduce Problem III.1 to Problem IV.3 showing that they
are semantically equivalent with the right MDP construction.

A. Construction of the MDP

As was mentioned, a PFA can be seen as an MDP with only
one action and labeled transitions. Similarly, a PFA can be
seen as an MDP with a given strategy and labeled transitions.
Therefore, a given attacked controlled system SA/H can be
seen as an MDP under a fixed strategy defined based on
an attack function. Since our goal is to synthesize attack
functions, we construct an MDP where actions represent
attacker actions in some attacked controlled system.

(a) States in the MDP (b) Delete or not delete actions

(c) Insert or not insert actions (d) Insert or not insert actions

Fig. 2: States and Actions in the MDP

Let us intuitively describe the construction of this MDP
that simulates the behavior of attacked systems. Figure 2(a)
depicts the information in each MDP state. The variables xH
and xR represent states of the plant H and the supervisor R,
which are necessary since the evolution of the plant depends
on them, see Eq. (1). The variable e represents the last event
executed by the plant since the attacker needs to identify them,
see Def. III.1.

Moving on, the actions in this MDP represent the attacker
actions in an attacked controlled system. The attacker can
insert events (Σi), delete events (Σd), not delete events (nd),
or allow the system to execute events (τ). These actions are
the only possible actions in this MDP.

Next, using Example II.1 and Σa = {rE}, we describe the
possible transitions in this MDP. In Fig. 2(b), the last event
executed is rE ∈ Σa, for which the attacker can decide to
delete (rEdel) or to not delete (nd) this event. These two
actions are only possible after the execution of a compromised
event. In Fig. 2(c), the plant did not execute an event (e = ε)
in the last transition. Therefore, the attacker can insert rEins
since rE ∈ ΓR(1) or allow the plant to execute an event with
decision τ . If the attacker selects τ , the plant can execute
either rN or rE, in blue3, in this current state. Similarly in
Fig. 2(d), the attacker can insert rEins or let the plant proceed
with action τ . Note that only action τ introduces randomness
since the plant H randomly execute events (nondeterminism
in Fig. 2(c)).

Finally, we can formally introduce the MDP as follows.

Definition V.3. Given plant H , supervisor R, and compro-
mised event set Σa, the MDP M = (Q,Act, δM , q0,M) is
constructed in the following manner.
• Q ⊆ XH ×XR× (Σ∪ {ε}). For a state q, we denote by
qH , qR and qe the plant state, the supervisor state, and
the last executed event, i.e., q = (qH , qR, qe).

• The set Act := {τ, nd} ∪ Σi ∪ Σd.
• The initial state q0,M := (xH,0, xR,0, ε).
• The PTF δM is defined as follows:
For action τ and x, y ∈ Q:

δM (x, τ, y) :=


PrxH ,xRye if ye ∈ Σ \ Σa, yH = δH(xH , ye)

yR = δR(xR, ye)
PrxH ,xRye if ye ∈ Σa, yH = δH(xH , ye)

ye ∈ ΓR(xR), yR = xR
0 otherwise

(10)
For action nd and x, y ∈ Q:

δM (x, nd, y) :=

 1 if xe ∈ Σa, yH = xH ,
yR = δR(xR, xe), ye = ε

0 otherwise
(11)

Lastly, for action a ∈ Σea and x, y ∈ Q:

δM (x, a, y) :=


1 if a ∈ Σi, (xH , xR) 6∈ Xuns,

y = (xH , δR(xR, P
S(a)), ε)

1 if a ∈ Σd, (xH , xR) 6∈ Xuns,
xe =M(a), y = (xH , xR, ε)

0 otherwise

(12)

• Post-Processing: for any x ∈ Q such that∑
y∈Q δM (x, a, y) = 0 for all a ∈ Act \ Σi, δM is

augmented for x by defining: δM (x, τ, (xH , xR, ε)) := 1
and δM ((xH , xR, ε), τ, (xH , xR, ε)) := 1.

Equation (10) provides conditions for the τ action, which
are divided into two cases based on compromised or not com-
promised events. If the event executed is not compromised,

3The information in blue is not part of the τ action. We show it here to
illustrate which events can be executed.

8 IEEE TAC, VOL. XX, NO. XX, XXXX 2021

then the states of H and R are updated. When the event
executed is compromised, then only the state of H is updated;
the attacker must decide next to delete or not delete this event.
Equation (11) represents the attacker’s choice of not deleting
the just executed compromised event; and the state of R gets
updated. The delete action is specified in the second case of
Eq. (12), where the states of H and R are not updated. Lastly,
the first case of Eq. (12) represents an insertion of a fictitious
event; only the state of R transitions.

Using our running example, we explain Def. V.3 in detail,
where we interpret Eqns. (10-12) and connect them with our
previous discussion on the construction of M .

Example V.3. In order to illustrate the construction of M , we
use Example II.1 with compromised event set Σa = {rE}.
The MDP M for this example is depicted in Fig. 3. In Fig. 3,
the transition function is represented by the directed edges
with a respective action and probability value. We can fully
see the attacker actions and their results compared to our initial
discussion with Fig. 2. From state (2, 1, rE), the attacker can
either delete or not delete the last executed event rE. Delete
implies that the supervisor remains in the same state, Eq. (12),
as seen in the finite run (1, 1, ε)τ(2, 1, rE)rEdel(2, 1, ε). On
the other hand, not delete implies that the supervisor receives
event rE and moves to state 3, Eq. (11), as seen in the finite
run (1, 1, ε)τ(2, 1, rE)nd(2, 3, ε). We also analyze the action
τ in state (1, 1, ε), where the plant can either execute event
rN with probability Pr1,1

rN = 1/2 (first case in Eq. 10) or
rE with probability Pr1,1

rE = 1/2 (second case in Eq. 10).
The insertion rEins in state (1, 1, ε) only alters the supervisor
state, Eq. (12), as seen in the run (1, 1, ε)rEins(1, 3, ε). Lastly,
state (4, 2, ε) is added in the post-processing phase since state
(4, 2, rN) was a deadlock state. The post-processing can also
provide an action to break possible infinite insertion cycles in
M . For example, if action τ was not defined in state (1, 3, ε)
by Eq. (10), then the post-processing would add a self-loop
with action τ in this state.

Fig. 3: MDP for controlled system R/H and Σa = {rE}

To connect the MDP M to attacked system SA/H , we ex-
tract two strings from a given finite run in M . In Example V.3,
let ρ = (1, 1, ε)τ(2, 1, rE)rEdel(2, 1, ε)rEins(2, 3, ε), then
sρ = ε rE ε ε = rE is the string executed by H while
tρ = ε rEdel rEins = rEdelrEins is the string modified by
the attacker. Namely, string sρ concatenates the events in each
state of run ρ, i.e., sρ := q0

eq
1
e . . . q

|ρ|
e for ρ ∈ Pref(M).

On the other hand, string tρ contains the modifications made
by an attacker, i.e., it defines the modification on sρ for
ρ ∈ Pref(M). For ρ ∈ Pref(M) such that q|ρ|e 6∈ Σa, we
define tρ = e0e1 . . . e|ρ|−1 where

ei =


ai if ai ∈ Σea
qi+1
e if qi+1

e ∈ Σ \ Σa or qi+1
e ∈ Σa and ai+1

ρ = nd
ε otherwise

(13)
Note that in the construction of tρ, to confirm that an event
in H is executed between states i and i+ 1 we look at qi+1

e .
Lastly, we define the objective set Obj as the set of absorbing
states where the attacker has reached its goal.

Obj = {(qH , qR, ε) ∈ Q | (qH , qR) ∈ Xuns} (14)

B. Maximal reachability attack function
The definition of winning level is directly related to an

attack function A. In other words, once an attack function A
is fixed, we obtain the language L(SA/H) and consequently
the value of winA. The same idea applies to the MDP M ;
once a strategy π is fixed, we can calculate the probability of
reaching the states in Obj. The construction of MDP M and
the set Obj ties these two problems together. The following
theorem connects the solution of Problem IV.3 for MDP M
and set Obj with the solution of Problem III.1.

Theorem V.1. Consider the MDP M and the set Obj, then

winAmax = p∗M (Obj) (15)

Although Problem IV.3 and Problem III.1 have similarities,
to formally prove Theorem V.1 a sequence of intermediate
results is needed. These intermediate results are intuitively
stated in the following subsection and their formal proofs are
attached in Appendix I-A. Recall that the solution procedure
of Problem IV.3 not only outputs the maximum probability
p∗M (Qabs) but also outputs p∗M,q(Qabs) for all q ∈ Q. Since
in Theorem V.1 Qabs = Obj, one can use standard methods
to extract an optimal strategy π∗ that achieves pπ

∗

M (Obj) =
p∗M (Obj). In Section V-C, we show how to construct an attack
function Amax based on π∗ such that Amax is a solution of
Problem III.1.

Example V.4. We solve Problem IV.3 for the MDP depicted
in Fig. 3. The solution procedure of Problem IV.3 outputs
p∗q(Obj) for each q ∈ Q; these values are shown in blue in
Fig. 3. The probability of reaching the set Obj = {4, 2, ε}
(in green) is p∗M (Obj) = 0.5, which implies that there exists
Amax such that winAmax = 0.5. In fact, attacker A2 defined
in Example III.2 is this attacker since winA2

= 0.5 This is of
course the expected solution for Problem III.1 since deleting
event rE after its execution leads the supervisor to allow a
move to the critical state 4.

Remark V.4. The construction of the MDP is defined in a
similar manner as the construction of graph-games in [6], [29]
when we ignore the probabilistic part of the MDP. An MDP
is a special case of a graph-game where only one player is
present [8], [54]. Therefore, our results related to the logical
part (without probabilities) of the MDP are not surprising

R.MEIRA-GÓES et al.: IEEE TRANSACTIONS ON AUTOMATIC CONTROL (JAN. 2021) 9

since they are similar to results in [6], [29]. Nonetheless,
the similarities stop at the logical part. Thus, one of the
key contributions of our paper is to bridge the gap in the
probabilistic part of the MDP by showing that we can fully
use our MDP construction since we connect both the logical
and probabilistic parts of it to the investigated problem.

C. Discussion on Theorem V.1
In order to prove Theorem V.1, we present a sequence of

equivalences between an attacked system and the MDP M
instantiated by a strategy π ∈ ΠM .

Although attack functions can only generate finite insertions
(arbitrarily long), see Def. III.1, the construction of M allows
strategies that represent infinite sequences of insertions. For
example, a strategy that selects action rEins in state (1, 3, ε)
in M of Fig. 3 would simulate the attacker inserting infinitely
many events. Fortunately, there exist optimal strategies that do
not generate these infinite insertions sequences.

First, we show in Lemma V.1 that states caught in an infinite
cycle of insertion actions cannot reach the objective set Obj,
i.e., they have probability zero of reaching Obj. Intuitively, the
infinite cycle of insertion actions prevents runs from leaving
this cycle once in it. Since none of the states in this cycle is
in the objective set, the runs cannot reach this objective set.
In Markov chain notation, these states form a closed class in
the Markov chain generated by this strategy [53].

Lemma V.1. Let π ∈ ΠM . For all ρ ∈ Runsπ(M) such that
(∃j ∈ N)(∀k ≥ j)[π(q0 . . . qk) ∈ Σi], then pπM,qj (Obj) = 0.

Let Πf
M be the set of all strategies of M that do not generate

infinite insertions, i.e., Πf
M = {π ∈ ΠM | ρ ∈ Runsπ(M)⇒

(∀j ∈ N)(∃k ≥ j)[π(q0 . . . qk) 6∈ Σi]}. Based on Lemma V.1,
Prop. V.1 states that there exists an optimal strategy in Πf

M .

Proposition V.1. p∗M (Obj) = maxπ∈ΠfM
pπM (Obj).

The proof of Proposition V.1 also provides that a memo-
ryless strategy in Πf

M achieves p∗M (Obj) since a memoryless
strategy in ΠM achieves p∗M (Obj) [1], [49]. Consequently,
an optimal strategy can be found in the space of memoryless
strategies in Πf

M .

(a) Attacked system SA1
/H (b) MDP M under strategy

πA1

Fig. 4: Connection attacked system SA1
/H with M

Our next step will connect the set of strategies in Πf
M

to the set of attack functions in ΠA. Recall the defini-
tion of A1 in Example III.2, where SA1

/H is shown in

Fig. 4(a). Taking string ε with its modification A1(ε) =
rEinsrEins, we can map this pair of strings to the finite run
(1, 1, ε)rEins(1, 3, ε)rEins(1, 3, ε) in M , Fig. 3. Actually, we
define a strategy πA1

that generates this run: πA1
((1, 1, ε)) =

rEins and πA1
((1, 1, ε)rEins(1, 3, ε)) = rEins. Strategy πA1

is completely defined by selecting a string s in L(SA1
/H) and

its modification A1(s), mapping this pair (s,A1(s)) to a finite
run in M , and defining strategy πA1 for this run. Figure 4(b)
depicts the MDP M under strategy πA1

. In fact, the reverse
direction is also feasible, in which a strategy in M defines an
attack function, i.e., strategy πA1

defines attack function A1.
Our next steps shows that this discussion is indeed possible.

First, we show that a string s in L(SA/H) and its modifi-
cation A(s) are mapped to a finite run in M . In this manner,
we can always find a finite run for a given pair (s,A(s)) for
s ∈ L(SA/H). The converse is also true, where a given finite
run generates a pair (s,A(s)) for some attacked system SA/H .

Proposition V.2. Given A ∈ ΠA, for any s ∈ L(SA/H) and
t = A(s), there exists a unique ρ ∈ Pref(M) such that
s = sρ, t = tρ, and (ai = τ ⇒ qi+1

e 6= ε) for any i ∈ [|ρ|−1].

The condition (ai = τ ⇒ qi+1
e 6= ε) eliminates the

“superfluous” behavior introduced by the post-processing.
For example, using attacker A2 of Example III.2, string
rErN ∈ L(SA2/H) and A2(rErN) = rEdelrN can
be mapped to more than one finite run in M , e.g., ρ =
(1, 1, ε)τ(2, 1, rE)rEdel(2, 1, ε)τ(4, 2, rN) and ρτ(4, 2, ε).
However, transition (4, 2, rN)τ(4, 2, ε) was introduced in
the post-processing to make M live. Thus, only the run
(1, 1, ε)τ(2, 1, rE)rEdel(2, 1, ε)τ(4, 2, rN) satisfies the con-
dition on Prop. V.2.

Using this map between (s,A(s)) and finite runs in M , we
construct a strategy for M that simulates the attacked system
SA/H . For example, the pair (rE, rEinsrEinsrE) for SA1

/H
is mapped to run (1, 1, ε)rEins . . . τ(2, 3, rE), for which we
define πA1((1, 1, ε)) = rEins, πA1((1, 1, ε)rEins(1, 3, ε)) =
rEins, and so on. For completeness, we complete the defini-
tion of this strategy for unmapped finite runs, which include
the “superfluous” finite runs and finite runs that are not
generated with this strategy.

Definition V.4. Given A ∈ ΠA, we define πA ∈ Πf
M using

the result of Prop. V.2. Let s ∈ L(SA/H), πA is defined along
the unique ρ ∈ Pref(M) mapped to the pair (s,A(s)) as in
Prop. V.2:

πA(q0a0q1 . . . qj) = aj , j ∈ [|ρ| − 1] (16)

For any other ρ ∈ Pref(M), then πA(ρ) = τ if q|ρ|e /∈ Σa
and πA(ρ) = nd if q|ρ|e ∈ Σa.

Conversely, we construct an attack function based on a
strategy in Πf

M . Recall that action τ in M represents the
attacker allowing the system to execute an event. There-
fore, action τ delineates the end of the attacker’s modifi-
cation for the last executed event. For example, let π ∈
Πf
M be the strategy depicted in Fig. 4(b), for which

π((1, 1, ε)rEins(1, 3, ε)rEins(1, 3, ε)) = τ . Since the string
ε is executed by this run and rEinsrEins is the string
modification, we can define Aπ(ε) = rEinsrEins. Hence,

10 IEEE TAC, VOL. XX, NO. XX, XXXX 2021

given a strategy π ∈ Πf
M , we define an attack function based

on runs in ρ ∈ Prefπ(M) where π(ρ) = τ , i.e., the next
action after ρ is τ . Note that these runs always exist since we
select π from Πf

M , i.e., no infinite insertions.

Definition V.5. Let π ∈ Πf
M and ρ ∈ Prefπ(M) such that

π(ρ) = τ , then we define Aπ ∈ ΠA as:

Aπ(sρ) = tρ (17)

Until this point, we have connected finite runs in M to
strings in attacked systems and vice versa, i.e., connecting
the logical part between M and attacked systems SA/H .
The next step is to show that the probabilistic part of
these two frameworks also coincides. For example, given
the attack function A1 of Example III.2, we know that
Lp(SA1

/H)(rE) = Pr1,3
rE = 1. Based on A1 and Def. V.4,

we construct strategy πA1 , which generates the finite run
ρ = (1, 1, ε)rEins(1, 3, ε)rEins(1, 3, ε)τ(2, 3, rE). The prob-
ability of generating ρ is defined as:

Pr
πA1

M (〈ρ〉) = δM (q0, a0, q1)δM (q1, a1, q2)δM (q2, a2, q3)

= 1× 1× Pr1,3
rE = 1

where 〈ρ〉 is the set of infinite runs extended from ρ
since the probability measure Pr

πA1

M computes measures of
sets with infinite runs. Although we have only shown that
Lp(SA1

/H)(rE) = Pr
πA1

M (〈ρ〉), these steps are extended
to any s ∈ L(SA1

/H), which shows the equivalence of
Lp(SA1/H) and PrπA1

M .
Therefore, we show that the measure Lp(SA/H) coincides

with PrπAM for a given attack function A. Conversely, we
also show that the probability measure PrπM is equivalent
to Lp(SAπ/H) for a given strategy π ∈ Πf

M . This result is
shown in Prop. V.3. But first, let us formalize, as in [49], the
probability of generating a finite run ρ ∈ Prefπ(M) for a
given strategy π ∈ Πf

M :

PrπM (〈ρ〉) =
∏

j∈[|ρ|−1]

δM (qj , aj , qj+1) (18)

where 〈ρ〉 = {q∗0a∗0 · · · ∈ Runsπ(M) | q∗j = qj , ∀j ∈
[|ρ|] ∧ a∗k = ak, ∀k ∈ [|ρ| − 1]}.

Proposition V.3. Given A ∈ ΠA, then for any s ∈ L(SA/H):

Lp(SA/H)(s) = PrπAM (〈ρ〉) (19)

where ρ ∈ PrefπA(M), s = sρ, and A(s) = tρ. Conversely,
given π ∈ Πf

M , then for any ρ ∈ Prefπ(M):

PrπM (〈ρ〉) = Lp(SAπ/H)(sρ) (20)

Finally, we state a proposition which is a direct consequence
of Prop. V.3. This proposition states that the winning level of
an attack function is equal to the probabilitity of reaching the
objective set in M using the strategy generated by this attack
function. Similarly, the probability of reaching the objective
set in M via a given strategy is equal to the winning level of
the attack function generated by this strategy.

Proposition V.4. Given a strategy π ∈ Πf
M , then pπM (Obj) =

winAπ . Conversely, let A ∈ ΠA, then winA = pπAM (Obj).

Finally, the proof of Theorem V.1 follows directly from
Prop. V.4. Let π∗ ∈ Πf

M be a strategy such that p∗M (Obj) =
pπ
∗

M (Obj), then winAπ∗ = pπ
∗

M (Obj). For any A ∈ ΠA, we
have that winA = pπAM (Obj) ≤ p∗M (Obj) = pπ

∗

M (Obj) =
winAπ∗ . Consequently, winAmax = winAπ∗ and Aπ∗ is a
solution of Problem III.1.

VI. SOLUTION OF THE MULTI-OBJECTIVE PROBLEM

A. Construction of the MDP
As was mentioned before, Problems III.1 and III.2 can

be solved in sequence. In this manner, MDP M is trimmed
such that only strategies that are a solution of Problem IV.3
remain. Based on this trimmed MDP, we are going to relate
Problem IV.4 to Problem III.2 as in Section V.

In Problem IV.3, we obtain the maximum probability of
reaching the absorbing state set Qabs from the initial state of
an MDP. In fact, we also obtain the maximum probability of
reaching the absorbing set for each q ∈ Q, i.e., p∗M,q(Qabs).

Back to our specific MDP M as in Definition V.3, we obtain
p∗M,q(Obj) for all q ∈ Q by solving Problem IV.3 for the
absorbing state set Obj. The trimmed MDP is defined based
on actions that guarantee the optimal value p∗M,q(Obj) in state
q ∈ Q. Namely, we use the principle of optimality to identify
optimal actions at any given state q ∈ Q. We also create a
fictitious state called qabs that aggregates states of Q such
that p∗M,q(Obj) = 0, i.e., states that cannot reach the set Obj.
Formally, the trimmed MDP is defined as follows:

Definition VI.6. Given the MDP M as in Def. V.3, the
set Obj, and the values p∗M,q(Obj) obtained by solving
Problem IV.3, we construct the trimmed MDP Mtr =
(Qtr, Act, δtr, q0,tr) as follows:
• Qtr ⊆ Q ∪ {qabs} is defined as Qtr = ∪j≥1Qj ∪ {qabs}

for Qj defined recursively as:

Q1 ={q0,M}
Qj+1 = {q ∈ Q | δM (q′, a∗, q) > 0 for q′ ∈ Qj ,

a∗ ∈ arg max
a∈Act

N(q′, a), p∗M,q(Obj) 6= 0}

where N(q′, a) =
∑
q∈Q p

∗
M,q(Obj)δM (q′, a, q). By

the principle of optimality maxa∈ActN(q′, a) =
p∗M,q′(Obj).

• The set Act = {τ, nd} ∪ Σi ∪ Σd.
• The initial state q0,tr = q0,M .
• The PTF δtr is defined for x, y ∈ Qtr \{qabs} and action
a ∈ Act:

δtr(x, a, y) = δM (x, a, y) (21)

δtr(x, τ, qabs) = 1−
∑

q∈Qtr\{qabs}

δtr(x, τ, q) (22)

δtr(qabs, τ, qabs) = 1 (23)

Remark VI.5. Equation (22) is only defined for the τ action
since all other actions occur with probability 1 as defined in
Eqs. (11-12).

Example VI.5. Let M be the MDP depicted in Fig. 3, where
p∗M,q for q ∈ Q is given as in Example V.4. In this manner,

R.MEIRA-GÓES et al.: IEEE TRANSACTIONS ON AUTOMATIC CONTROL (JAN. 2021) 11

we construct Mtr as specified in Def. VI.6. The trimmed
MDP is depicted in Fig. 5. States (1, 3, ε), (2, 3, ε), (1, 5, rW),
(1, 5, rW), (2, 5, rE), and (2, 5, ε) are not part of Qtr since
they are reached by nonoptimal actions. On the other hand,
states (3, 2, rN) and (1, 4, rS) are replaced by state qabs since
they are reachable by an optimal action but both cannot reach
the set Obj.

Fig. 5: Trimmed MDP Mtr

In order to have a complete instance of Problem IV.4 for
Mtr, a cost function must be defined. Since we want to connect
Problem IV.4 to Problem III.2, we define c based on the
weight function w for events in Σm.

c(q, a) =

{
w(a) if a ∈ Σae
0 otherwise (24)

We finalize this section by providing important properties of
MDP Mtr. The first property states that there exists a strategy
in ΠMtr

that reaches the set Obj ∪ {qabs} with probability
1, i.e., there exists at least one proper strategy. Recall that
Problem IV.4 has a finite solution if and only if it has at least
one proper strategy with respect to Qabs. The second property
ties the maximum probability of reaching the set Obj in M
with the probability of reaching Obj in Mtr with a proper
strategy. Its proof is in Appendix I-B.

Proposition VI.5. Given Mtr, then:
(1) maxπ∈ΠMtr

pπMtr
(Obj ∪ {qabs}) = 1;

(2) pπMtr
(Obj) = p∗M (Obj) for any π ∈ ΠMtr such that

pπMtr
(Obj ∪ {qabs}) = 1.

Proposition VI.5 states that Problem IV.4 for Mtr, Obj ∪
{qabs}, and c as Eq. (24) has a finite solution. Moreover, the
strategy that provides the optimal solution for this problem
can be extended to M and provide an optimal solution for
Problem IV.3.

B. Solution Procedure

We follow a similar methodology as in Section V but
we connect Problem III.2 to Problem IV.4. Once an attack
function A that is a solution of Problem III.2 is fixed, we
obtain the language L(SA/H) and consequently the value
of EA[cost(s)]. The same idea applies to the MDP Mtr;
once a proper strategy is fixed, we can calculate the expected
cumulative cost value EπMtr

[cumul(Obj ∪ {qabs}, ρ)]. The
construction of MDP Mtr and the set Obj ties these two prob-
lems together. The following theorem connects the solution of
Problem IV.4 for Mtr, the set Qabs = Obj ∪ {qabs}, and the
cost function c with the solution of Problem III.2.

Theorem VI.2. Consider the MDP Mtr, the set Qabs = Obj∪
{qabs}, and the cost function c, then

EAmulti [cost(s)] = c∗Mtr
(Qabs) (25)

Again, the proof of the above theorem needs to be written
with care even though it appears plausible that the solu-
tion of Problem IV.4 provides a solution for Problem III.2.
We intuitively provided intermediate results in the follow-
ing subsection and their formal proofs are attached in Ap-
pendix I-B. Similar to Problem IV.3, the solution procedure
of Problem IV.4 not only outputs the minimum expected cost
c∗Mtr

(Qabs) but also outputs the minimum cost c∗Mtr,q
(Qabs)

for each q ∈ Q. In this manner, one can use standard methods
to extract an optimal strategy π∗ that achieves c∗Mtr

(Qabs).
Therefore, an attack function Amulti based on π∗ such that
Amulti is a solution of Problem III.2 can be constructed based
on Def. V.5.

Example VI.6. We return to our running example, where
we solve Problem IV.4 for the MDP depicted in Fig. 5. For
simplicity, we assume that c(q, a) = 2 if a ∈ Σea. In this case,
only one strategy remains in MDP Mtr, i.e., only one strategy
reaches Obj with probability 0.5. It follows that c∗Mtr

(Qabs) =

2 × 0.5 = 1, which implies that EAmulti [cost(s)] = 1.
The attack function Amulti is the same as Amax defined in
Example V.4. This expected cost is the attacker’s average cost
to reach the critical state (set Obj) or to reach a state where
the critical state is unreachable (state qabs).

C. Discussion on Theorem VI.2
Since Mtr is constructed directly from M , it is clear that

any strategy in Mtr can be extended to a strategy in M . With
an abuse of notation, we apply Defs. V.4 and V.5 for strategies
in ΠMtr instead of Πf

M .
Recall that in Section III-C, we assumed that an attacker

stops its attack once a string in Uns is executed (the attacker
reached the critical state), or a string in Unr is executed (the
attacker cannot reach the critical state at this point). In order to
prove Theorem VI.2, we first show that there is a one-to-one
map between the strings in Uns ∪ Unr to finite runs in Mtr

that reach the absorbing set Qabs. Strings in Uns are mapped
to finite runs that reach the objective set Obj, whereas strings
in Unr are mapped to finite runs that reach state qabs. Let the
set Rπabs represent the set of all finite runs that reach Qabs.
Formally, this set is defined as:

Rπabs={ρ ∈ Prefπ(Mtr) | q|ρ| ∈ Qabs∧q|ρ|−1 6∈ Qabs} (26)

Proposition VI.6. Given a proper strategy π ∈ ΠMtr with
respect to Qabs, there exists a bijection between Rπabs and
Uns ∪ Unr constructed based on Aπ . Conversely, given an
attack function A ∈ ΠA such that winA = winAmax , there
exists a bijection between RπAabs and Uns ∪ Unr.

Based on Prop. VI.6, we relate the expected cost for
attacked systems with the expected cost for MDPs. Let
cπMtr

(Qabs) = EπMtr
[cumul(Qabs, ρ)] denote the expected

cost given strategy π ∈ ΠMtr
.

12 IEEE TAC, VOL. XX, NO. XX, XXXX 2021

Proposition VI.7. Given a strategy π ∈ ΠMtr
such that

π is proper with respect to Qabs = Obj ∪ {qabs}, then
cπMtr

(Qabs) = EAπ [cost(s)]. Conversely, given a solution of
Problem III.1 A ∈ ΠA, then EA[cost(s)] = cπAMtr

(Qabs).

Finally, the proof of Theorem VI.2 follows directly from
Props. VI.5 and VI.7. Let π∗ ∈ ΠMtr

be a strategy such that
cπ
∗

Mtr
(Qabs) = c∗Mtr

(Qabs), then cπ
∗

Mtr
(Qabs) = EAπ∗ [cost(s)]

and pπ
∗

M (Obj) = winAmax . It follows that for any A ∈ ΠA

such that winA = winAmax , EA[cost(s)] = cπAMtr
(Qabs) ≥

c∗Mtr
(Qabs) = cπ

∗

Mtr
(Qabs) = EAπ∗ [cost(s)]. Consequently,

EAmulti [cost(s)] = EAπ∗ [cost(s)] and Amulti = Aπ∗ is a
solution of Problem III.2.

VII. EXAMPLE

We developed a tool to automatically construct the MDP
M , described in Definition V.3, as input to the PRISM model
checker [55] and to construct an attack function based on the
optimal strategy outputted by PRISM. PRISM has support for
solving both MDP Problems IV.3 and IV.4. In fact, PRISM
supports multi-objective strategy generation [56]. The tool
includes efficient model checking engines, e.g., binary decision
diagrams, and supports different MDP solution methods, e.g.,
linear programming, value iteration, etc. Our evaluation was
done on a Linux machine with 2.2GHz CPU and 16GB
memory. Our software tool and the complete models of the
example described in this section are available at: https://
gitlab.eecs.umich.edu/M-DES-tools/desops.

We consider the thermostat system described in [57]. The
system has four modes with dynamics described by differential
equations as depicted in Fig. 6(a), where x denotes the room
temperature and y denotes the temperature of the heater.
Moreover, it transitions among the different modes in the
order shown in 6(a). This system is abstracted to a discrete
model based on the partition plane with 7 regions as shown in
Fig. 6(b). The discrete model has 7 uncontrollable events (R1-
R7) and 4 controllable events (OFF, Heating, ON, Cooling).
The transition relation among the regions in each mode is
obtained based on its dynamics.

Differently from [57], we consider a probabilistic transition
relation among these regions, where the probability captures
the likelihood of transitioning between regions. In [57], a
supervisor guarantees that the controlled system never reaches
region 7 (R7). A simulation result illustrating a continuous
implementation of this supervisor is shown in Fig. 7(a). The
system starts in the ON mode in region 6 (R6). Moreover, the
plant has 62 states and the supervisor has 20 states.

First, we synthesize a maximal reachability attack function
assuming that the attacker can manipulate both the room
temperature and the heater temperature. As expected, there
exists an attack function that reaches region 7 with probability
one. One attack function is depicted in Fig. 8. The attacker
waits for the system to reach region 4 and then deletes the
reading R4 and replaces it by R5 until the system reaches R7.
A simulation result illustrating a continuous implementation of
this attacked system is shown in Fig. 7(b). The attack starts at
time 1375 and by time 1460 the controlled system has reached
region 7.

(a) Thermostat system dynamics

y
-h

e
a
te

r
 te

m
p

18 2019

20

22

21

R1

R3

R2

R5

R6

R4

x-room temp

R7

(b) State space partition

Fig. 6: Four-mode thermostat system

0 500 1000 1500

time (s)

18.5

19

19.5

20

20.5

21

21.5

22

te
m

p
 (

C
)

x

y

(a) Simulation without attack

0 500 1000 1500

time (s)

15

16

17

18

19

20

21

22

te
m

p
 (

C
)

x

y

(b) Simulation with max. reach.
attack

Fig. 7: Four-mode thermostat simulation

Next we consider the synthesis of an attack function based
on multiple-objectives (Section VI). We consider that each
attack modification has weight one, i.e., w(e) = 1 if e ∈ Σea. In
this manner, we can synthesize an attack function that reaches
region 7 with probability one and with an expected cost of
8.5, i.e., it takes on average 8.5 edits until the system reaches
region 7.

In this example, the MDP M has 427 states while Mtr

has 22 states. Moreover, it takes 3.50 seconds to obtain a
solution of Problem III.1 while it takes 7.93 seconds to obtain
a solution of Problem III.2.

0

1 3

8 7

6

542

Fig. 8: Max. reach. attack function encoded as automaton

VIII. CONCLUSION

We have considered the synthesis of attack functions for
sensor deception attacks at the supervisory layer of feedback
control systems, where the system is modeled as a probabilis-
tic finite-state automaton controlled by a given deterministic

https://gitlab.eecs.umich.edu/M-DES-tools/desops
https://gitlab.eecs.umich.edu/M-DES-tools/desops

R.MEIRA-GÓES et al.: IEEE TRANSACTIONS ON AUTOMATIC CONTROL (JAN. 2021) 13

supervisor. Given the stochastic nature of the system model,
attack functions are quantified by the likelihood of reaching
the critical state. We investigated the problem of synthesizing
attack functions with the maximum likelihood of reaching the
critical state. In order to constrain the attacker behavior, we
posed a second problem where each attack edit is costly. In
the second problem, the attacker has two objectives: (i) reach
the critical state with the maximum likelihood; (ii) minimize
the expected cost while performing (i).

In order to solve these problems, we leveraged techniques
from MDPs. We reduced these problems to two well-known
problems in MDPs: the probabilistic reachability problem and
the stochastic shortest path problem. Finally, we presented a
computational example to demonstrate the results of our paper.

In the future, it would be of interest to investigate defense
measures for the supervisor to prevent such attacks from
succeeding. In a similar manner, we could further improve the
synthesis of supervisors by quantifying them based on similar
likelihood criteria as the ones adopted in this paper.

APPENDIX I
PROOFS

A. Section V

Proof of Lemma V.1.

Proof. Let ρ ∈ Runsπ(M) such that (∃j ∈ N)(∀k ≥
j)[π(q0 . . . qk) ∈ Σi]. Then pπM,qj (Obj) < 1 otherwise ∃k ≥ j
such that π(q0 . . . qk) = τ . It implies that qj 6∈ Obj and
qjH 6= xcrit. Moreover, π(q0 . . . qk) ∈ Σi for all k ≥ j, then by
construction of M we have δM (qk, π(q0 . . . qk), qk+1) = 1.
Again by construction of M , qkH 6= xcrit for all k ≥ j. It
follows that pπM,qk(Obj) = 0.

Proof of Proposition V.1

Proof. We show that if π ∈ ΠM is optimal and it has infinite
insertions, then we can construct a πf ∈ Πf

M based on π that
is also optimal. Assume π ∈ ΠM \ Πf

M and pπM (Obj) =
p∗M (Obj). Let I be the set of runs ρ ∈ Runsπ(M) that
satisfies (∃j ∈ N)(∀k ≥ j)[π(q0 . . . qk) ∈ Σi]. By Lemma V.1,
for any ρ ∈ I then there exists j ∈ N such that pπM,qj (Obj) =
0. This implies that we can modify π for prefixes of runs in I
without altering the probabibility of reaching Obj. Without
loss of generality, we can assume that π is a memoryless
strategy [1], [49]. Let πf be defined in the following manner
for any q ∈ Q: πf (q) = τ , if ∀ρ ∈ Runsπq (M).aj ∈ Σi for
all j ∈ N; πf (q) = π(q), otherwise. It follows that πf ∈ Πf

M

and pπ
f

M (Obj) = pπM (Obj) = p∗M (Obj).

Proof of Proposition V.2.

Proof. We use induction on the length of s to prove the result
the existence of ρ ∈ Pref(M).

Induction basis: s = ε ∈ L(SA/H) and t = A(ε).
By the definition of A, the string t is finite. Let aj−1 = t[j]

for j ∈ [|t|]+, by Def. III.1 each t[j] ∈ Σi. Also, let qj =
(x0,H , δR(x0,R, t

j), ε) for j ∈ [|t|]. Each qj ∈ Q since A
is consistent, δR(x0,R, t

j)!, and by construction of M . Thus,

δM (qj , aj , qj+1) = 1 by construction of M . Therefore, ρ =

q0a0 . . . q|t| ∈ Pref(M), q|t|e 6∈ Σa, sρ = s and tρ = t.
Induction hypothesis: The proposition holds for all s ∈

L(SA/H) with |s| ≤ n.
Induction step: Let |s| = n+ 1.
From the induction hypothesis, ∃ρ ∈ Pref(M) such

that the proposition holds for sn. Recall that A(s) =
A(sn)A(sn, s[n + 1]). Let t∗ = A(sn, s[n + 1]), then it is
enough to show that ∃ρ∗ = q∗0a∗0 . . . q∗|ρ

∗| ∈ Prefq|ρ|(M)

such that s[n + 1] = q∗1e = q∗1e . . . q
∗|ρ∗|
e and t∗ = tρ∗ . It is

enough to find ρ∗, because we concatenate ρ with a∗0 . . . q∗|ρ
∗|

to produce the finite run of A(s), where the first state q∗0 is
removed since q∗0 = q|ρ|. Based on Def. III.1, t∗[1] ∈ Σ∪Σd
and M(t∗[1]) = s[n+ 1].

Assume that t∗[1] ∈ Σ \ Σa and let a∗0 = τ . Since s ∈
L(SA/H) and by the induction hypothesis we have:

δH(x0,H , s) = δH(δH(x0,H , s
n), s[n+ 1]) = δH(q∗0H , t

∗[1])

:= qH

δR(x0,R, A(sn)t∗[1]) = δR(q∗0R , t
∗[1])

:= qR

Thus, δM (q∗0, τ, q∗1) > 0 by construction of M , where
q∗1 = (qH , qR, s[n+1]). Since t∗[j+1] ∈ Σi for j ∈ [|t∗|−1]+

by Def. III.1, we can apply the same strategy as in the
induction basis. Namely, a∗j+1 = t∗[j + 2] and q∗j+2 =
(qH , δR(qR, t

∗j+2), ε) ∈ Q for j ∈ [|t∗|−2]. Again since A is
consistent, it follows that δM (q∗j+1, a∗j+1, q∗j+2) = 1 for j ∈
[|t∗|−2]. In this manner ρ∗ = q∗0a∗0 . . . q∗|t

∗| ∈ Prefq|ρ|(M)

and ρa∗0 . . . q∗|t
∗| ∈ Pref(M) such that sρa∗0...q∗|t∗| = s

and tρa∗0...q∗|t∗| = A(sn)t∗ = A(s). Similar arguments can
be made when t∗[1] ∈ Σa ∪ Σd. In this case, t∗[1] defines
q∗0, q∗1, q∗2, a∗0 and a∗1 while q∗j+3 and a∗j+2 are defined
based on t∗[j + 2] for j ∈ [|t∗| − 2]. This concludes the first
assertion of the proof.

The condition (aj = τ ⇒ qj+1
e 6= ε) for any j ∈ [|ρ|]

is satisfied by the construction of ρ in the induction proof.
Finally, uniqueness follows from the fact that A, H and R are
deterministic.

Proof of Proposition V.3.

Proof. We start with Eq. (19). The equality trivially holds
when s = ε. Let s ∈ L(SA/H) such that |s| > 0, then

Lp(SA/H)(s) =
∏

j∈[|s|]+
Pr

δH(x0,H ,s
j−1),δR(x0,R,A(sj−1))

s[j]

(27)

Using Def. V.4, let ρ ∈ PrefπA(M) such that s = sρ and
tρ = A(s). Such ρ always exists since we can construct as
in Def. V.4. Then for j ∈ [|s|] there exists k ≥ j such that
δH(x0,H , s

j) = qkH , δR(x0,R, A(sj)) = qkR, sj = sq0a0...qk ,
and A(sj) = tq0a0...qk . It follows that:

Lp(SA/H)(s)
Def. V.3

=
∏

j∈[|ρ|−1] s.t. qj+1
e ∈Σ

Pr
qjH ,q

j
R

qj+1
e

(28)

Def. V.3
=

∏
j∈[|ρ|−1]

δM (qj , aj , qj+1) (29)

14 IEEE TAC, VOL. XX, NO. XX, XXXX 2021

Eq. (18)
= PrπAM (〈ρ〉) (30)

This concludes the first part of the proof.
We now show Eq. (20). The equality trivially holds for ρ ∈

Prefπ(M) such that π(ρ) = τ and (∀j ∈ [|ρ|])[qje = ε]. Let
ρ ∈ Prefπ(M) such that π(ρ) = τ and (∃j ∈ [|ρ|])[qje ∈ Σ]

PrπM (〈ρ〉)Eq. (18)
=

∏
j∈[|ρ|−1]

δM (qj , aj , qj+1) (31)

Def. V.3
=

∏
j∈[|ρ|−1] s.t. qj+1

e ∈Σ

Pr
qjH ,q

j
R

qj+1
e

(32)

Using Def. V.3 and Def. V.5, we have that for j ≤ |ρ| such
that qje ∈ Σ, qj−1

H = δH(x0,H , sq0a0...qj−1) and qj−1
R =

δR(x0,R, tq0a0...qj−1) = δR(x0,R, Aπ(sq0a0...qj−1)) and sρ ∈
L(SAπ/H). Hence

=
∏

j∈[|ρ|−1] s.t.
qj+1
e ∈Σ

Pr
δH(x0,H ,sq0a0...qj),δR(x0,R,Aπ(sq0a0...qj))

qj+1
e

(33)

=
∏

j∈[|sρ|−1]

Pr
δH(x0,H ,s

j
ρ),δR(x0,R,Aπ(sjρ))

sρ[j+1] = Lp(SAπ/H)(sρ)

(34)

This concludes our proof.

Proof of Proposition V.4.

Proof. First, we show that pπM (Obj) = winAπ for any strategy
π ∈ Πf

M . Define the set Winπ = {ρ ∈ Prefπ(M) | q|ρ| ∈
Obj∧q|ρ|−1 6∈ Obj}. Let 1A(x) for any given set A denote the
indicator function, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0
otherwise. Then, the value pπM (Obj) can be obtained by:

pπM (Obj) = EπM [1Winπ (ρ)] (35)

Next, we show that there is a one-to-one map between
Winπ and Uns. For that, let LW := {s ∈ L(H) | ∃ρ ∈
Winπ. sρ = s}. Using Def. V.5, it can be shown that
LW = Uns. Therefore, we need to show that any s ∈ LW
is generated by a unique run ρ ∈ Winπ . But, this last
statement is true, because the strategy π and the plant H are
deterministic. Now, since Winπ is countable, it follows:

pπM (Obj)
Eq.(35)

=
∑

ρ∈Winπ

PrπM (〈ρ〉) (36)

Def.V.5
=

∑
s∈Uns

Lp(SAπ/H)(s) (37)

=
∑

s∈Uuns

Lp(SAπ/H)(s)
Eq.(2)

= winAπ (38)

In the same manner, we can show that for a given attack
function A and its derived strategy πA, the equality winA =
pπAM (Obj) holds. The steps are the same as in the first part of
the proof.

B. Section VI

Proof of Proposition VI.5

Proof. We first prove (1). Let π ∈ Πf
M such that pπM,q(Obj) =

p∗q(Obj) for all q ∈ Q. Similar to the proof of Lemma V.1,
we can show that for any ρ ∈ Runsπ(M) either ∃j ∈ N such
that qj ∈ Obj or pπM,qj (Obj) = 0, or the set of runs that
do not satisfy the first condition has probability zero of being
generated. By construction of Mtr and since π is optimal, we
can convert π to be in ΠMtr

and pπMtr
(Obj ∪ {qabs}) = 1. It

follows that maxπ∈ΠMtr
pπMtr

(Obj∪{qabs}) = 1. The second
property follows from (1) and the construction of Mtr.

Proof of Proposition VI.6

Proof. Let us define the set Lπabs = {s ∈ L(H) | s = sρ for
ρ ∈ Rπabs}. It is enough to show Lπabs = Unr∪Uns since each
ρ ∈ Rπabs generate a unique string in Lπabs. The last statement
follows since π is deterministic.

First, we show that Lπabs ⊆ Unr ∪ Uns. Assume that s ∈
Lπabs is generated by ρ ∈ Rπabs such that q|ρ| = qabs. Since
pπM,qabs

(Obj) = 0 and pπ
M,q|ρ|−1(Obj) > 0, it follows that

s ∈ Unr. Now, assume that s ∈ Lπabs is generated by ρ ∈ Rπabs
such that q|ρ| ∈ Obj. Then q

|ρ|
H = xcrit, and, by Def. V.5,

s ∈ Uns.
Showing that Unr ∪ Uns ⊆ Lπabs follows the same steps.

Let s ∈ Unr∪Uns, then Aπ(s) is bounded since π is proper.
Using Prop. V.2 and Def. V.5, ∃ρ ∈ Prefπ(Mtr) such that
sρ = s and tρ = Aπ(s). If s ∈ Unr, then q|ρ| = qabs which
implies that s ∈ LπAabs. If s ∈ Uns, then ρ′ = ρτ(q

|ρ|
H , q

|ρ|
R , ε) ∈

Rπabs and sρ′ = sρε = s ∈ Lπabs.
The second equality Unr∪Uns∩L(SA/H) = LπAabs follows

in the same manner.

Proof of Proposition VI.7

Proof. Given π ∈ ΠMtr
, π being a proper strategy, then since

Rπabs is countable:

cπMtr
(Qabs) = EπMtr

[cumul(Qabs, ρ)] (39)

pπMtr (Qabs)=1
= EπMtr

[

min{k:qk∈Qabs}∑
j=0

c(qj , aj)] (40)

Eq.(26)
=

∑
ρ∈Rπabs

|ρ|−1∑
j=0

c(qj , aj)PrπMtr
(〈ρ〉) (41)

Prop.V.3
=

∑
ρ∈Rπabs

|ρ|−1∑
j=0

c(qj , aj)Lp(SAπ/H)(sρ)

(42)
Prop.VI.6
Eq.(24)

=
∑

s∈Lπabs

|A(s)|∑
j=1

w(A(s)[j])Lp(SAπ/H)(s)

(43)
Eq.(4)

=
∑

s∈Lπabs

cost(s)Lp(SAπ/H)(s) (44)

= EAπ [cost(s)] (45)

R.MEIRA-GÓES et al.: IEEE TRANSACTIONS ON AUTOMATIC CONTROL (JAN. 2021) 15

The equality EA[cost(s)] = cπAMtr
(Qabs) follows by re-

versing the previous steps, i.e., starting from Eq. (45) to
Eq. (39). Reversing the previous steps, we can show that for
a given attack function A and its derived strategy πA, then
EA[cost(s)] = cπAMtr

(Qabs).

REFERENCES

[1] L. de Alfaro, “Computing minimum and maximum reachability times in
probabilistic systems,” in CONCUR’99 Concurrency Theory. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 66–81.

[2] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. II,
3rd ed. Athena Scientific, 2007.

[3] J. N. Tsitsiklis, “On the control of discrete-event dynamical systems,”
in 26th IEEE Conference on Decision and Control, vol. 26, 1987, pp.
419–422.

[4] A. Rashidinejad, B. Wetzels, M. Reniers, L. Lin, Y. Zhu, and R. Su, “Su-
pervisory control of discrete-event systems under attacks: An overview
and outlook,” in 2019 18th European Control Conference (ECC), June
2019, pp. 1732–1739.

[5] R. Meira-Góes, E. Kang, R. Kwong, and S. Lafortune, “Stealthy
deception attacks for cyber-physical systems,” in 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), Dec. 2017, pp. 4224–4230.

[6] R. Meira-Góes, E. Kang, R. H. Kwong, and S. Lafortune, “Synthesis
of sensor deception attacks at the supervisory layer of cyber–physical
systems,” Automatica, vol. 121, p. 109172, 2020.

[7] R. Meira-Góes, R. Kwong, and S. Lafortune, “Synthesis of sensor
deception attacks for systems modeled as probabilistic automata,” in
2019 American Control Conference (ACC), July 2019.

[8] A. Condon, “The complexity of stochastic games,” Information and
Computation, vol. 96, no. 2, pp. 203 – 224, 1992.

[9] R. Su, “Supervisor synthesis to thwart cyber attack with bounded sensor
reading alterations,” Automatica, vol. 94, pp. 35 – 44, 2018.

[10] Q. Zhang, Z. Li, C. Seatzu, and A. Giua, “Stealthy attacks for partially-
observed discrete event systems,” in 2018 IEEE 23rd International
Conference on Emerging Technologies and Factory Automation (ETFA),
vol. 1, 2018, pp. 1161–1164.

[11] Y. Wang and M. Pajic, “Supervisory control of discrete event systems
in the presence of sensor and actuator attacks,” in 2019 IEEE 58th
Conference on Decision and Control (CDC), 2019, pp. 5350–5355.

[12] L. Lin, S. Thuijsman, Y. Zhu, S. Ware, R. Su, and M. Reniers, “Synthesis
of supremal successful normal actuator attackers on normal supervisors,”
in 2019 American Control Conference (ACC), 2019, pp. 5614–5619.

[13] D. Thorsley and D. Teneketzis, “Intrusion detection in controlled discrete
event systems,” in Proceedings of the 45th IEEE Conference on Decision
and Control, Dec. 2006, pp. 6047–6054.

[14] L. K. Carvalho, Y. C. Wu, R. Kwong, and S. Lafortune, “Detection
and mitigation of classes of attacks in supervisory control systems,”
Automatica, vol. 97, pp. 121 – 133, 2018.

[15] P. M. Lima, M. V. S. Alves, L. K. Carvalho, and M. V. Moreira, “Security
against communication network attacks of cyber-physical systems,”
Journal of Control, Automation and Electrical Systems, vol. 30, no. 1,
pp. 125–135, Feb. 2019.

[16] Z. Wang, R. Meira-Góes, S. Lafortune, and R. Kwong, “Mitigation of
classes of attacks using a probabilistic discrete event system framework,”
in 15th IFAC Workshop on Discrete Event Systems WODES 2020, 2020.

[17] R. Meira-Góes, C. Keroglou, and S. Lafortune, “Towards probabilistic
intrusion detection in supervisory control of discrete event systems,” in
21st IFAC World Congress (to appear), 2020.

[18] Y. Zhu, L. Lin, R. Tai, and R. Su, “Overview of networked supervisory
control with imperfect communication channels,” arXiv:2010.11491,
2020.

[19] K. Rohloff, “Bounded sensor failure tolerant supervisory control,” 11th
IFAC Workshop on Discrete Event Systems, vol. 45, no. 29, pp. 272 –
277, 2012.

[20] F. Lin, “Control of networked discrete event systems: Dealing with
communication delays and losses,” SIAM Journal on Control and
Optimization, vol. 52, no. 2, pp. 1276–1298, 2014.

[21] F. Wang, S. Shu, and F. Lin, “Robust networked control of discrete event
systems,” IEEE Transactions on Automation Science and Engineering,
vol. 13, no. 4, pp. 1528–1540, 2016.

[22] M. V. S. Alves, A. E. C. da Cunha, L. K. Carvalho, M. V. Moreira,
and J. C. Basilio, “Robust supervisory control of discrete event sys-
tems against intermittent loss of observations,” International Journal of
Control, vol. 0, no. 0, pp. 1–13, 2019.

[23] F. Lin, “Robust and adaptive supervisory control of discrete event
systems,” IEEE Transactions on Automatic Control, vol. 38, no. 12,
pp. 1848–1852, Dec. 1993.

[24] J. Cury and B. Krogh, “Robustness of supervisors for discrete-event
systems,” IEEE Transactions on Automatic Control, vol. 44, no. 2, pp.
376–379, 1999.

[25] S. Takai, “Maximizing robustness of supervisors for partially observed
discrete event systems,” Automatica, vol. 40, no. 3, pp. 531 – 535, 2004.

[26] S. Xu and R. Kumar, “Discrete event control under nondeterministic par-
tial observation,” in 2009 IEEE International Conference on Automation
Science and Engineering, Aug. 2009, pp. 127–132.

[27] M. Wakaiki, P. Tabuada, and J. P. Hespanha, “Supervisory control of
discrete-event systems under attacks,” Dynamic Games and Applica-
tions, Sep. 2018.

[28] Y. Wang and M. Pajic, “Attack-resilient supervisory control with in-
termittently secure communication,” in 2019 IEEE 58th Conference on
Decision and Control (CDC), 2019, pp. 2015–2020.

[29] R. Meira-Góes, S. Lafortune, and H. Marchand, “Synthesis of super-
visors robust against sensor deception attacks,” IEEE Transactions on
Automatic Control, 2021.

[30] R. Meira-Góes, H. Marchand, and S. Lafortune, “Towards resilient
supervisors against sensor deception attacks,” in 2019 IEEE 58th Annual
Conference on Decision and Control (CDC), Dec. 2019.

[31] L. Lin, Y. Zhu, and R. Su, “Towards bounded synthesis of resilient
supervisors,” in 2019 IEEE 58th Conference on Decision and Control
(CDC), 2019, pp. 7659–7664.

[32] Y. Zhu, L. Lin, and R. Su, “Supervisor obfuscation against actuator
enablement attack,” in 2019 18th European Control Conference (ECC),
2019, pp. 1760–1765.

[33] A. Saboori and C. N. Hadjicostis, “Notions of security and opacity
in discrete event systems,” in 46th IEEE Conference on Decision and
Control, Dec 2007, pp. 5056–5061.

[34] F. Lin, “Opacity of discrete event systems and its applications,” Auto-
matica, vol. 47, no. 3, pp. 496–503, Mar. 2011.

[35] J. Dubreil, P. Darondeau, and H. Marchand, “Supervisory control for
opacity,” IEEE Transactions on Automatic Control, vol. 55, no. 5, pp.
1089–1100, 2010.

[36] F. Cassez, J. Dubreil, and H. Marchand, “Synthesis of opaque systems
with static and dynamic masks,” Formal Methods in System Design,
vol. 40, no. 1, pp. 88–115, 2012.

[37] Y.-C. Wu and S. Lafortune, “Synthesis of insertion functions for en-
forcement of opacity security properties,” Automatica, vol. 50, no. 5,
pp. 1336 – 1348, 2014.

[38] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event
systems opacity: Models, validation, and quantification,” Annual Reviews
in Control, vol. 41, pp. 135 – 146, 2016.

[39] L. Hélouet, H. Marchand, and L. Ricker, “Opacity with powerful
attackers,” 14th IFAC Workshop on Discrete Event Systems WODES
2018, vol. 51, no. 7, pp. 464 – 471, 2018, 14th IFAC Workshop on
Discrete Event Systems WODES 2018.

[40] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Control Optim., vol. 25, no. 1, pp.
206–230, Jan. 1987.

[41] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2008.

[42] R. Kumar and V. K. Garg, “Control of stochastic discrete event systems
modeled by probabilistic languages,” IEEE Transactions on Automatic
Control, vol. 46, no. 4, pp. 593–606, Apr. 2001.

[43] V. K. Garg, R. Kumar, and S. I. Marcus, “A probabilistic language
formalism for stochastic discrete-event systems,” IEEE Transactions on
Automatic Control, vol. 44, no. 2, pp. 280–293, Feb. 1999.

[44] M. Lawford and W. M. Wonham, “Supervisory control of probabilistic
discrete event systems,” in Proceedings of 36th Midwest Symposium on
Circuits and Systems, Aug. 1993, pp. 327–331.

[45] V. Pantelic, S. M. Postma, and M. Lawford, “Probabilistic supervisory
control of probabilistic discrete event systems,” IEEE Transactions on
Automatic Control, vol. 54, no. 8, pp. 2013–2018, 2009.

[46] W. M. Wonham and K. Cai, Supervisory Control of Discrete-Event
Systems. Springer International Publishing, 2018.

[47] Y. Ji, X. Yin, and S. Lafortune, “Opacity enforcement using non-
deterministic publicly known edit functions,” IEEE Transactions on
Automatic Control, vol. 64, no. 10, pp. 4369–4376, 2019.

[48] C. Derman, Finite State Markovian Decision Processes. Orlando, FL,
USA: Academic Press, Inc., 1970.

[49] H. Kushner, Introduction to Stochastic Control. Holt, Rinehart and
Winston, 1971.

16 IEEE TAC, VOL. XX, NO. XX, XXXX 2021

[50] A. Kolobov, Mausam, and D. S. Weld, “A theory of goal-oriented mdps
with dead ends,” in Proceedings of the Twenty-Eighth Conference on
Uncertainty in Artificial Intelligence, ser. UAI’12, 2012, pp. 438–447.

[51] B. Lacerda, D. Parker, and N. Hawes, “Optimal policy generation for
partially satisfiable co-safe ltl specifications,” in Proceedings of the
24th International Conference on Artificial Intelligence, ser. IJCAI’15.
AAAI Press, 2015, p. 1587–1593.

[52] W. Feller, An introduction to probability theory and its applications,
3rd ed., ser. Wiley series in probability and mathematical statistics.
Wiley, 1967.

[53] J. R. Norris, Markov Chains, ser. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 1997.

[54] A. Condon, “On algorithms for simple stochastic games,” in Advances
in Computational Complexity Theory, volume 13 of DIMACS Series in
Discrete Mathematics and Theoretical Computer Science. American
Mathematical Society, 1993, pp. 51–73.

[55] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification of
probabilistic real-time systems,” in Computer Aided Verification. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 585–591.

[56] V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, and H. Qu, “Quan-
titative multi-objective verification for probabilistic systems,” in Tools
and Algorithms for the Construction and Analysis of Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 112–127.

[57] J. Liu, N. Ozay, U. Topcu, and R. M. Murray, “Synthesis of reactive
switching protocols from temporal logic specifications,” IEEE Transac-
tions on Automatic Control, vol. 58, no. 7, pp. 1771–1785, July 2013.

Rômulo Meira-Góes received the B.Eng de-
gree from Universidade Tecnológica Federal do
Paraná-Curitiba in 2015, the M.Eng degree from
the University of Michigan in 2017, all in electri-
cal engineering, and the Ph.D. degree in Elec-
trical and Computer Engineering at the Univer-
sity of Michigan. As of January 2021, he is a
Postdoctoral Researcher with joint appointments
at the Institute for Software Research at the
Carnegie Mellon University and the Department
of Electrical Engineering and Computer Science

at the University of Michigan. His research interests include supervisory
control of discrete event systems, formal methods and game theory,
specially, their application in cyber security of cyber-physical systems.

Raymond H. Kwong received the S.B., S.M.
and Ph.D. degrees in Electrical Engineering from
the Massachusetts Institute of Technology, Cam-
bridge, in 1971, 1972, and 1975, respectively.

From 1975 to 1977, he was a visiting Assis-
tant Professor of Electrical Engineering at McGill
University and a Research Associate at the Cen-
tre de Recherches Mathématiques, Université
de Montréal, Montreal, Canada. Since August
1977, he has been with the Edward S. Rogers
Sr. Department of Electrical and Computer En-

gineering at the University of Toronto, where he is a Professor. He has
held visiting professor positions at University of Rennes, University of
Maryland, and University of Michigan. His current research interests
include estimation and stochastic control, fault diagnosis and fault-
tolerant control, discrete event systems, and cyber-security of control
systems.

Stéphane Lafortune received the B.Eng de-
gree from École Polytechnique de Montréal in
1980, the M.Eng degree from McGill University
in 1982, and the Ph.D degree from the University
of California at Berkeley in 1986, all in electri-
cal engineering. Since September 1986, he has
been with the University of Michigan, Ann Arbor,
where he is the N. Harris McClamroch Collegiate
Professor of Electrical Engineering and Com-
puter Science. Dr. Lafortune is a Fellow of the
IEEE (1999) and of IFAC (2017). He received

the Presidential Young Investigator Award from the National Science
Foundation in 1990 and the Axelby Outstanding Paper Award from the
Control Systems Society of the IEEE in 1994 (for a paper co-authored
with S.-L. Chung and F. Lin) and in 2001 (for a paper co-authored with G.
Barrett). Dr. Lafortune’s research interests are in discrete event systems
and include multiple problem domains: modeling, diagnosis, control,
optimization, and applications to computer and software systems.

	Introduction
	Modeling of Controlled Systems
	Supervisory Control
	Stochastic Discrete Event Systems

	Problem Formulation
	Stochastic supervisory control under sensor deception attacks
	The maximal reachability problem
	The multi-objective problem

	Markov Decision Processes
	Solution of the probabilistic reachability attack function problem
	Construction of the MDP
	Maximal reachability attack function
	Discussion on Theorem V.1

	Solution of the Multi-Objective Problem
	Construction of the MDP
	Solution Procedure
	Discussion on Theorem VI.2

	Example
	Conclusion
	Appendix I: Proofs
	Section V
	Section VI

	References
	Biographies
	Rômulo Meira-Góes
	Raymond H. Kwong
	Stéphane Lafortune

