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Purpose: To develop and test the feasibility of a two-pass iterative reconstruction algorithm with
material decomposition designed to obtain quantitative iodine measurements in digital breast
tomosynthesis.
Methods: Contrast-enhanced mammography has shown promise as a cost-effective alternative to
magnetic resonance imaging for imaging breast cancer, especially in dense breasts. However, one
limitation is the poor quantification of iodine contrast since the true three-dimensional lesion shape
cannot be inferred from the two-dimensional (2D) projection. Use of limited angle tomography can
potentially overcome this limitation by segmenting the iodine map generated by the first-pass recon-
struction using a convolutional neural network, and using this segmentation to restrict the iodine dis-
tribution in the second pass of the reconstruction. To evaluate the performance of the algorithms, a
set of 2D digital breast phantoms containing targets with varying iodine concentration was used. In
each breast phantom, a single simulated lesion with a random size (4 to 8 mm) was placed in a ran-
dom location within each phantom, with the iodine distribution defined as either homogeneous or
rim-enhanced and blood iodine concentration set between 1.4 and 5.6 mg/mL. Limited angle projec-
tion data of these phantoms were simulated for wide and narrow angle geometries, and the proposed
reconstruction and segmentation algorithms were applied.
Results: The median Dice similarity coefficient of the segmented masks was 0.975 for the wide
angle data and 0.926 for the narrow angle data. Using these segmentations during the second recon-
struction pass resulted in an improvement in the concentration estimates (mean estimated-to-true con-
centration ratio, before and after second pass: 48% to 73% for wide angle; 30% to 73% for narrow
angle), and a reduction in the coefficient of variation of the estimates (55% to 27% for wide angle;
54% to 35% for narrow angle).
Conclusion: We demonstrate that the proposed two-pass reconstruction can potentially improve
accuracy and precision of iodine quantification in contrast-enhanced tomosynthesis. © 2020 The
Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of
Physicists in Medicine. [https://doi.org/10.1002/mp.14400]
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1. INTRODUCTION

Digital breast tomosynthesis (DBT) is a pseudo-three-dimen-
sional (3D) imaging technique that keeps the high in-plane
spatial resolution of digital mammography while adding
some vertical resolution that improves visualization of over-
lapping structures. However, DBT images are still only mor-
phological; the tumor detection is based on differences in
attenuation and distortions in the shape of tissues, and there-
fore are of limited utility after initial diagnosis. Obtaining
functional information of the breast would allow for not only
an increase in the detection and diagnostic performance of
DBT, but more importantly could have a significant impact

for postdiagnosis clinical tasks, with several studies indicat-
ing that dual-energy contrast-enhanced (DECE) DBT can
provide information consistent with dynamic contrast-en-
hanced magnetic resonance imaging (DCE-MRI).1–3 How-
ever, unlike x-ray tomography where attenuation increases
linearly with iodine concentration, the relationship between
gadolinium concentration and MRI signal intensity is nonlin-
ear,4 complicating computation of kinetic parameters. This
leads to a potential advantage in using DBT, provided the
limitations of the limited angle acquisition can be overcome.

Functional breast imaging is almost exclusively performed
by MRI,5 an accurate but expensive modality, both in terms of
equipment and installation costs, and especially in terms of

4906 Med. Phys. 47 (10), October 2020 0094-2405/2020/47(10)/4906/11

© 2020 The Authors. Medical Physics published by Wiley
Periodicals LLC on behalf of American Association of Physicists in
Medicine. This is an open access article under the terms of the Crea
tive Commons Attribution-NonCommercial License, which permits

use, distribution and reproduction in any medium, provided the
original work is properly cited and is not used for commercial

purposes.

4906



operational cost. Other modalities, such as dedicated breast
PET and SPECT6,7 and contrast-enhanced dedicated breast
CT,8 are used to a lesser degree or are still under development,
but these also require their own dedicated hardware and, in the
case of nuclear medicine applications, extensive radiation pro-
tection precautions. In comparison, functional imaging with
mammography or DBT would be considerably cheaper and
more accessible. However, contrast-enhanced (CE) mammog-
raphy and DBT lack quantitative capability, making it chal-
lenging to accurately and repeatedly measure the functional
response of the investigated breast tissue. This is especially
important for longitudinal evaluation, such as therapy response
monitoring, where it could be important to compare changes
in tumor perfusion metrics across several months.

Initial work in contrast-enhanced DBT was based on tem-
poral subtraction,9 but later the focus moved to dual energy
subtraction techniques aiming to avoid patient motion.10,11

Visual image quality could be improved by optimizing the
exposure parameters for dual energy images, including spec-
trum choice and dose distribution between high and low
energy images,12–14 but to the best of our knowledge, no
attempts to improve the quantitative measurements of the
visualized iodine maps have been published.

The limitations that need to be overcome for DECE-DBT
to become a quantitative modality are demonstrated in Fig. 1,
where it is clear that targets with equal iodine content but dif-
ferent sizes and locations within the reconstruction field of
view are reconstructed with varying apparent amounts of
iodine content. As a consequence of these size- and location-
dependent variations, measures such as the slope of the time-
enhancement curve, which is indicative of malignancy, can-
not be used because of the large influence of lesion size and
location on the apparent contrast.

In this work, we propose an approach combining a maxi-
mum likelihood-based polychromatic reconstruction algo-
rithm including material decomposition with a deep learning-
based segmentation method to allow for better estimation of
iodine concentration from limited angle tomography data and
demonstrate its effectiveness in simulated data.

2. MATERIALS AND METHODS

The selected approach for our method is to perform a two-
pass reconstruction with material decomposition where the

iodine component resulting from the first-pass reconstruction
is segmented with a deep learning convolutional neural net-
work. This segmentation is then used as a mask in the second
pass. We assume that the segmentation problem can be
solved in practice due to the expected sparsity of the iodine
component. The reconstruction and segmentation methods
are described in Sections 2.B and 2.C, respectively. Sections
2.A and 2.D describe the simulation and analysis of a set of
phantoms used to evaluate the algorithm.

2.A. Phantom simulation

To evaluate the reconstruction algorithm, we simulated a
total of 1124 breast phantom images. To limit the computa-
tional cost, the phantoms consisted of 2D coronal slices
extracted from a total sample of 50 3D phantoms generated
with the algorithm described by Lau et al.15 An example is
shown in Fig. 2. These phantoms were indexed with labels
for four different materials: skin, adipose tissue, fibro-glandu-
lar tissue, and Cooper’s ligaments.

To allow inclusion of background parenchymal enhance-
ment (BPE), the adipose and fibro-glandular components
were simulated as mixtures containing 10% and 20% of
blood by volume, respectively.16

The elemental compositions of these tissues are obtained
from the work of Hammerstein et al.,17 except for the compo-
sition of blood, for which values from ICRU report 4418 were
used. These were then used to calculate the energy-dependent
attenuation coefficients, lðeÞ, using the software from Boone
and Chavez.19 The composition of Cooper’s ligaments was
assumed to be identical to that of fibro-glandular tissue. The
resulting phantoms represented compressed breast thick-
nesses from 3.0 to 5.6 cm and widths from 5.8 to 18.0 cm
with an isotropic voxel size of 0.1 mm90.1 mm.

The iodinated contrast-enhanced lesions were simulated as
ellipsoids and inserted into the generated phantoms. Each
background contained a single ellipsoid with a random shape
and location within the phantom. Four different groups of
lesions were simulated: homogeneously enhanced targets and
rim enhanced targets, each split between targets located
< 20 mm from the lateral edges and those closer to the mid-
dle of the phantom. Except for the criterion of being close or
far from the phantom edge, the location of the target was ran-
dom. Each phantom background was reused for each of the

FIG. 1. To demonstrate the absence of quantitative reconstructed attenuation values in limited angle tomography, we simulated a homogeneous phantom com-
posed of fibro-glandular tissue containing lesions of different sizes and a phantom with lesions at different locations, but all with the same iodine concentration.
These phantoms are shown on the left side. In the reconstructed iodine maps on the right, it is clear that the reconstructed concentrations depend on both the size
of the lesion and the location of the lesion within the reconstructed volume.
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four groups, resulting in a total of 4496 phantom images. The
relative over-representation of targets near the lateral edges
was generated because preliminary results had shown that the
segmentation of those targets was more difficult and therefore
more of those cases were needed to properly train the net-
work performing the segmentation.

The major axis of the lesion varied between 4 and 8 mm,
the minor axis varied between 2 mm and the size of the major
axis, and rotation was allowed in any direction. Two types of
rim enhancement were simulated, 75% of cases had a uni-
form 1 mm thin rim, and the remaining 25% had a wider rim
with thickness equal to half the minor axis.

The lesion composition and its iodine enhancement were
based on the values in the work of Kiarashi et al.16 The target
lesions were simulated as a mixture of 60% fibro-glandular
tissue and 40% blood by volume. Blood iodine concentration
was set at 1.4 mg/mL in the normal adipose and fibro-glan-
dular regions. Within the simulated lesions, blood iodine
concentrations were sampled from a uniform distribution of
values between 1.4 and 5.6 mg/mL. For the rim-enhanced
lesions, concentrations were restricted to between 2.8 and
5.6 mg/mL in the rim, and between 1.4 and 2.8 mg/mL in
the lesion center. These blood iodine concentrations corre-
spond to tissue concentration values of 0.16 and 0.28 mg/mL
for adipose and fibro-glandular tissues respectively, and val-
ues between 0.57 and 2.27 mg/mL for the ellipsoid target
regions.

The 2D phantoms were projected onto a one-dimensional
detector array by simulating a limited angle fan-beam geom-
etry with the center of rotation placed at the bottom center
of the phantom. The x-ray source was placed 650 mm
above the center of rotation, and the source-detector dis-
tance was 700 mm. Two different angular ranges were
investigated, one wide and one narrow. For the wide angle
setup, a total of 25 equally spaced projections between
#24$ and 24$ were selected, while for the narrow angle
setup 15 equally spaced projections between #7:5$ and 7:5$

were used. In both instances, the detector moved together
with the source.

The forward model in Eq. (1) was used with a low energy
35 kV tungsten spectrum filtered by 50 lm of rhodium20

sampled at 0.5 keV intervals, and a high energy 49 kV tung-
sten spectrum filtered by 1.0 mm of titanium21 sampled at
1.0 keV intervals. The detector was simulated as a perfect
energy integrating detector with pixel pitch of 0.1 mm. No
resolution effects, quantum noise, or x-ray scatter were added
to the simulated projection data.

2.B. Reconstruction algorithm

We applied a modification of a previously published
reconstruction method by Bustamante et al.22 This method
consists of a maximum likelihood method with material
decomposition, which features the polychromatic forward
model in Eq. (1) and allows decomposition into a set of base
materials. All symbols are listed in Table I.

ŷiðw~Þ ¼
X

e

Iði;eÞ0 exp #
X

a

lðeÞa

X

j

lijwaj

 !

(1)

To determine the update step Dw~ needed to optimize the
log-likelihood cost function L in Eq. (2), we approximated
it with its second order Taylor expansion at the current
weights vector w~ðnÞ and then applied an optimization trans-
fer to a separable quadratic surrogate function for each ele-
ment waj of w~. This can be optimized in a single step,
shown in Eq. (3), where aaj & 0 is a design parameter intro-
duced by Fessler et al.23 This parameter was used to add
the information of the segmented iodine image to the

FIG. 2. Four coronal breast phantoms based on the same background structure, each contains the following materials (from darkest gray to white): adipose tissue,
Cooper’s ligaments, fibro-glandular tissue, skin, and iodine enhanced lesion center and rim.

TABLE I. List of symbols.

yi Measurement for projection line i

ŷiðw~Þ Forward model for projection line i

Iði;eÞ0 Source spectrum for projection line i

a, b Indices over the set of base materials

j, k Indices over the reconstructed voxels

lðeÞa Linear attenuation of material a at energy e

lij Intersection between projection line i and voxel j

waj Weight of material a in voxel j, element of w~

Lðw~Þ Log-likelihood cost function
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reconstruction by setting it equal to 1 inside the segmented
target, and equal to 0 outside.

Lðw~Þ ¼
X

i

yi ln ŷi # ŷi (2)
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The first derivative in the numerator results in
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and the second derivative in the denominator is
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If we can assume that ŷ ( y, which is the case after a good
initialization, then the second derivative can be approximated
as follows:
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Putting everything together results in the update step in
Eq. (9).
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In practice the update steps for each material a and each
energy bin e were calculated and applied sequentially, with
the loop over the materials within the loop over the energy
bins. When using subsets, data from low and high energy
spectra were not mixed within a single subset.

We selected adipose tissue, fibro-glandular tissue, and
iodine as the three base materials for the reconstruction. To
improve convergence, and to push the solution of this
underdetermined system towards realistic possibilities, the
initial iterations only used two base materials (adipose and
fibro-glandular tissue) and included a constraint pushing the
sum of the material weight fractions within each voxel

towards one. This constraint, shown in Eq. (10), was added as
a prior cost function P w~ð Þ with weight b ¼ 105 chosen
empirically.

Pðw~Þ ¼ # b
2

X

j

1#
X

a

waj

 !2

(10)

The iodine component of the reconstruction includes
both background and lesion enhancement. In the second
pass, only values in the segmented region can be updated,
so voxels outside of this region were set to a constant
value to account for iodine present outside of the target
lesion. This fixed background iodine concentration was
set to the median of the pixel values in the first-pass
iodine map outside of the segmented lesion and its pro-
jection shadow.

The overall two-pass reconstruction workflow, including
the segmentation described in Section 2.C, is summarized in
the flowchart in Fig. 3.

To further help convergence near the breast edge, the
object contour was also used as an additional constraint, as
per our previous work.24,25 In this instance, the free parame-
ter aaj was used as a material specific mask, combining the
overall object contour with the material specific segmentation
for the iodine component. Including this mask helped to cor-
rect the artifacts near the lateral phantom edge seen in Fig. 1.
The updated reconstruction with mask is shown in Fig. 4.

The exact phantom contour was used as a binary recon-
struction mask a~ for all materials in the first-pass reconstruc-
tion, and for the adipose and glandular components in the
second pass reconstruction. The segmentation resulting from
the method described in Section 2.C was used as mask for
the iodine component image in the second pass reconstruc-
tion.

Because it is not possible to iterate to convergence for full-
sized data, we evaluated the phantom data after a reasonable
number of iterations instead of at or near convergence. There-
fore, the convergence of the reconstruction was investigated
to determine the number of iterations to be used in the experi-
ment.

A random selection of 100 cases was examined for this
purpose, checking log-likelihood and proportion of recon-
structed iodine up to iteration 100 for the two-material initial-
ization with the prior from Eq. (10), and up to iteration 2000
for the three-material reconstruction. The two-material initial-
ization was performed with 10 subsets (five for each spec-
trum) and the three-material reconstruction was performed
with two subsets (one for each spectrum). A few of the cases
were also inspected visually as an extra check on conver-
gence.

FIRST PASS
1) Ini aliza on

- 2 materials (∑a waj = 1)
2) Reconstruc on

- 3 materials

SECOND PASS
1) Ini aliza on

- 2 materials (∑a waj = 1)
2) Reconstruc on

- 3 materials + iodine mask

CNN
SEGMENTATION

FIG. 3. Reconstruction flowchart.
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2.C. Convolutional neural network based
segmentation

The segmentation model was applied locally to each simu-
lated iodine target independently within the complete phan-
tom image. Regions of interest (ROIs) of 256 9 256 pixels
(25.6 mm 9 25.6 mm) were automatically extracted around
each iodine target (both in the first-pass reconstruction of the
iodine map and in the original ground truth simulated image).
In total, 4400 iodine targets were randomly selected from the
set of 4496 cases, and they were split into training (3520,
80%), validation (440, 10%), and evaluation (440, 10%) data-
sets of the model. The model was a deep learning convolu-
tional neural network (CNN) with modified u-net
architecture,26 detailed in Fig. 5.

The u-net was trained using the simulated iodine-only
phantom ROIs as ground truth binary masks. The loss

function was composed of two metrics with equal weight into
the final loss value: pixel-wise binary cross entropy [BCE,
Eq. (11)] and a Dice similarity coefficient [DSC, Eq. (12)].
The training was performed during 200 epochs (the batch
size was 10 images) with a starting learning rate of
5 ) 10#4, which was reduced by a factor of 2 if the valida-
tion loss did not improve for at least 10 epochs.

BCE ¼ 1
Npixels

XNpixels

N¼1

#TruthN ) lnðModelNÞ

þ ð1# TruthNÞ ) lnð1#ModelNÞ
(11)

DSC ¼ 2jMaskModel \MaskTruthj
jMaskModeljþ jMaskTruthj

(12)

The trained network was applied to the 440 images in the
evaluation dataset, and the resulting segmentation probability
map was used to create a binary mask for the iodine compo-
nent in the second pass reconstruction by setting a threshold
at 0.1.

2.D. Data analysis

The accuracy of the segmentation model was evaluated
using the Dice similarity coefficient in Eq. (12), which equals
1 for a perfect segmentation and is lower otherwise, with a
minimum value of 0. The effects of lesion type (homoge-
neous vs rim-enhanced), size, orientation, location within the
phantom, presence of BPE, and angular range of the acquisi-
tion were examined separately.

FIG. 4. Continuing the example shown in Fig. 1, the effect of adding the
object contour on the iodine component of the reconstruction is shown. In
the reconstruction without object contour (left), the targets near the lateral
edges now appear near the bottom of the phantom, while they appear in the
correct location in the image on the right, after adding the contour informa-
tion.

FIG. 5. Schematic overview of the u-net-based architecture26 used to segment the iodine targets on the reconstructed images. Each 3 9 3 convolution was fol-
lowed by a batch normalization layer27 and a leaky rectified linear unit activation layer. The last 1 9 1 convolution was followed by a sigmoid activation layer.
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To be able to distinguish between the effects of the segmen-
tation and the reconstruction algorithm, the second pass recon-
structions were performed without masking the iodine
component, with the CNN-based segmentation, and with the
true target segmentation. All evaluations were performed on
each of these three method variants and only simulations that
included BPE were included in the remainder of the evalua-
tion.

In the reconstruction results, we first evaluated if the detec-
tion of rim enhancement was improved when including the
segmentation. This was done by calculating the proportion of
the reconstructed iodine concentration in the lateral edges (re-
gion 1 in Fig. 6) and in the central region (region 2 in Fig. 6).
The true rim thickness was used for the rim enhanced targets
and a value of 1.0 mm was used for the homogeneous targets.
The resulting ROC curves were analyzed using the Dorfman-
Berbaum-Metz method for fixed reader and random cases
implemented in the RJafroc package.28 This evaluation was
performed for both thewide- and narrow-angle data.

After this, we evaluated the overall accuracy and precision
(repeatability) of the method by comparing the median iodine
concentration in each lesion with the simulated ground truth.
Here we prefer higher precision over higher accuracy, because
it is easier to include a calibration factor than to account for
large variations between consecutive scans when, for example,
following up patients during the course of their treatment. For
the reconstructions including the CNN segmentation-based
mask and the true target mask, the median concentration was
measured within the region determined by their respective
masks. For reconstructions without target segmentation, the
true target mask was used. The reconstructed iodine fraction
was then calculated by dividing the measured median by the
ground truth. Data from the wide and narrow-angle simula-
tions were analyzed separately, and sub-analyses were per-
formed evaluating results as function of DSC, iodine
concentration, and target size.

For the latter two variables, the reconstructions were split
into three groups of approximately equal size for each vari-
able: low ( < 1.2 mg/mL), medium (≥1.2 mg/mL and
< 1.8 mg/mL), and high (≥1.8 mg/mL) concentration, and
small (\ 40mm2), medium (& 40mm2 and \ 80mm2),
and large (& 80mm2) sizes.

3. RESULTS

3.A. Convergence

For both the two-material initialization and the three-
material reconstruction we found that convergence speed

had slowed down after 200 volume updates, correspond-
ing to 20 full iterations for the initialization and 100 full
iterations for the reconstruction when taking subsets into
account. At this point, the difference between log-likeli-
hood and its maximum was reduced by an order of mag-
nitude. On the other hand, visual inspection of the iodine
component images showed little difference after only 10
iterations (20 volume updates). Therefore, the analyses
were performed for reconstructions after 10 and 100 itera-
tions, both with a 20-iteration initialization. Because the
difference between the reconstructed iodine fraction at
these two convergence points turned out to be < 2%,
only the results after 10 iterations are presented here.

3.B. Segmentation

The median DSC of the segmented masks in cases with
wide and narrow angular range, and with and without BPE,
were compared using the Kruskal-Wallis test followed by
Dunn’s multiple comparison test. Overall, the scores were
significantly different, with P < 0.001, and all paired compar-
isons also showed significant differences. In particular, the
median DSC [interquartile range (IQR)] in the wide angle
case without BPE was 0.980 [0.954–0.991], which was
reduced to 0.975 [0.938–0.986] after including BPE
(P = 0.029). The segmentation results had a lower DSC in
the narrow angle case, with median scores of 0.952 [0.900–
0.974] and 0.926 [0.849–0.967], before and after including
BPE (P = 0.018), respectively. These results are also shown
in Fig. 7 in the form of an ROC curve formed by placing the
DSC values in ascending order. Segmentations of four exam-
ple cases including BPE are shown in Fig. 8 together with
their second pass reconstructions.

In the reconstructions generated from phantoms with-
out BPE, there was no significant difference in the seg-
mentation accuracy between targets that were
homogeneously enhanced and those that had rim
enhancement, as determined by the Mann-Whitney test.
After adding BPE, lesions with edge enhancement were
somewhat easier to segment than homogeneous lesions.
This trend was significant for the narrow angle case
(P < 0.001), but not for the wide angle case (P = 0.062).
The numerical results are listed in Table II.

Spearman correlation coefficients were calculated
between the DSC and target iodine concentration, size,
location in vertical and horizontal directions (parallel and
perpendicular to the line connecting source and detector,
respectively), and angle of the major axis of the lesion with
the detector plane, in order to gauge the influence of these
parameters on the accuracy of the segmentation. Many cor-
relations have significant but small influence on the seg-
mentation quality, but the only factor showing correlations
larger than 0.25 is the orientation of the axis of the ellipse,
where targets elongated parallel to the detector result in
lower DSC than those elongated perpendicular to it. Over-
all, no correlations larger than 0.5 are found, as can be
seen in Table III.FIG. 6. Measurement regions within an edge-enhanced simulated target.
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3.C. Reconstruction

From this point, only results for simulations that included
BPE are shown. The addition of the reconstruction mask was
found to improve detection of rim enhancement in the simu-
lated targets. This improvement was significant in both wide
and narrow angle cases (P = 0.022 and P < 0.001, respec-
tively). For the wide angle case, the area under the curve
(AUC) [95% CI] improved from 0.915 [0.887–0.943] to
0.934 [0.908–0.960] when adding the segmentation-based
mask, and to 0.954 [0.933–0.975] for the ground-truth mask,
with only the difference between no mask and the true mask
being significant (P = 0.006). For the narrow angle case,
AUC improved from 0.803 [0.761–0.845] to 0.899 [0.866–
0.933] and 0.962 [0.943–0.981], and in this case all differ-
ences were significant (P ≤ 0.001).

The reconstructed iodine proportions of the homoge-
neously enhanced targets are shown in Fig. 9 for reconstruc-
tions without mask, with CNN-based mask, and with the true
mask, and means and standard deviations are listed in
Table IV. Because the measured proportions were not nor-
mally distributed, differences in group means and coefficients

0% 50% 100%
0.0

0.5

1.0

Fraction of total cases

Di
ce

Co
ef

fic
ie

nt

Wide angle, no background enhancement
Narrow angle, no background enhancement
Wide angle, enhanced background
Narrow angle, enhanced background

FIG. 7. DSC values placed in ascending order for segmentations from recon-
structions of wide and narrow angle projection data, with and without BPE.

FIG. 8. Four example segmentation and reconstruction results for the wide angle case, showing ground truth on the top row, iodine component of the first-pass
reconstruction in the second row, CNN-based segmentation on the third row, and iodine component of the second pass reconstruction on the bottom row. From
left to right, the Dice scores are 0.767, 0.910, 0.956, and 0.995, representing the 4th, 15th, 30th, and 95th percentiles of the scores.
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of variation (CV) were determined by bootstrapping the data.
Measured data were resampled with replacement 1000 times,
and mean and CV were calculated for each sample. These
bootstrapped distributions approximated the normal distribu-
tion so that significance in group differences could be deter-
mined by ANOVA followed by Tukey’s multiple comparisons
test. This procedure was also used for all remaining compar-
isons in this section. Means and CV were compared for
reconstructions without mask, with CNN-based mask, and
with the true mask, and this was done separately for the nar-
row and wide angle simulations. The choice of mask was
found to have a significant effect in both cases and on both
mean and CV, with P < 0.001 in each instance. Further com-
parison showed that the differences were significant between
all groups (P < 0.001), except between the CNN-based mask
and the true mask for the narrow angle simulation
(P = 0.062).

Correlations between the reconstructed iodine proportion
using the CNN-based masks and segmentation DSC, target
iodine concentration, and target size were examined and can
be seen in Figs. 10,11, and 12. Spearman correlations are
listed in Table V. It should be noted that correlations between
iodine proportion and simulated iodine concentration were
#0.014 (P = 0.849) and #0.020 (P = 0.776) when using the
true mask instead of the CNN-based mask.

To further examine correlations with iodine concentration
and target size, reconstructions using the true lesion mask
were split into three groups of approximately equal size for
each variable. These results are shown in Figs. 13 and 1, and
means and coefficients of variation within each group, again
determined via bootstrapping, are listed in Tables VI and VII.

TABLE II. Comparison between median DSC and IQR of homogeneous and edge-enhanced cases, with and without BPE, and for wide and narrow angle simula-
tions. P-values were calculated using the Mann-Whitney test.

Without BPE Including BPE

Median [IQR]
P-value

Median [IQR]
P-value

Target enhancement Homogeneous Rim-enhanced Homogeneous Rim-enhanced

Wide angle 0.980 [0.954–0.991] 0.980 [0.953–0.991] 0.967 0.975 [0.937–0.986] 0.978 [0.952–0.989] 0.062

Narrow angle 0.952 [0.898–0.974] 0.948 [0.888–0.969] 0.195 0.926 [0.849–0.967] 0.955 [0.907–0.977] < 0.001

TABLE III. Spearman correlation coefficients between DSC and listed param-
eters.

Without BPE Including BPE

Wide
angle

Narrow
angle

Wide
Angle

Narrow
angle

Iodine
concentration

0.22* 0.13 0.20* 0.11

Target size 0.13* 0.23* 0.18* 0.14*

Axis orientation 0.34* 0.26* 0.42* 0.25*

Horizontal
position

0.15* 0.02 0.13* 0.18*

Vertical position #0.01 #0.05 #0.01 0.03

Values marked with * are significant (P < 0.05).
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FIG. 9. Retrieved iodine proportions from different reconstruction masks for
narrow and wide angle simulations. The boxplot lines are at the 25th, 50th,
and 75th percentiles, and the whiskers are at the 2.5th and 97.5th percentiles.

TABLE IV. Mean, standard deviation, and coefficient of variation (CV) of the
reconstructed iodine proportions for the different masks and angular ranges.

Narrow angle Wide angle

Mean St. Dev. CV Mean St. Dev. CV

No mask 0.300 0.162 54% 0.476 0.262 55%

CNN mask 0.734 0.257 35% 0.729 0.197 27%

True mask 0.736 0.191 26% 0.756 0.166 22%

0.0001 0.001 0.01 0.1 0.3 0.5 0.7 0.9 0.99 0.999 0.9999
0.0

0.5

1.0

1.5

2.0

Dice Similarity Coefficient

Re
co

ns
tru

ct
ed

pr
op

or
tio

n

Narrow angle
Wide angle

FIG. 10. Retrieved iodine proportion as a function of the Dice similarity coef-
ficient for reconstruction with the CNN-based mask.
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The three groups for each variable were compared separately
for narrow and wide angle simulations using ANOVA fol-
lowed by Tukey’s multiple comparisons test. The simulated
iodine concentration was found to have a significant effect on
the mean reconstructed iodine proportion (P < 0.001) and its
coefficient of variation (P < 0.001), and all individual com-
parisons were found to be significant as well (P < 0.001 for
all). The same results were found for the effect of the target
size, with only the difference between CV of small and med-
ium sized targets in the wide angle case having a slightly lar-
ger P-value of 0.012.

4. DISCUSSION AND CONCLUSION

The presented simulation results show that including the
CNN segmentation of the iodine region to constrain the
reconstruction improved quantification of iodine content,

TABLE V. Spearman correlation coefficients between reconstructed iodine
proportion and listed parameters.

Narrow angle Wide angle
Reconstructed proportion vs Spearman r Spearman r

Dice similarity coefficient #0.056 0.208*

Iodine concentration #0.243* 0.111

Target size 0.021 0.030

Values marked with * are significant (P < 0.05)
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FIG. 12. Retrieved iodine proportion as a function of the simulated lesion
size for reconstruction with the CNN-based mask.
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FIG. 11. Retrieved iodine proportion as a function of the simulated iodine
concentration for reconstruction with the CNN-based mask.
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FIG. 13. Retrieved iodine proportions from different iodine concentration
groups for reconstructions from narrow and wide angle simulations using the
true target mask. The boxplot lines are at the 25th, 50th, and 75th percentiles,
and the whiskers are at the 2.5th and 97.5th percentiles.
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FIG. 14. Retrieved iodine proportions from different target size groups for
reconstructions from narrow and wide angle simulations using the true target
mask. The boxplot lines are at the 25th, 50th, and 75th percentiles, and the
whiskers are at the 2.5th and 97.5th percentiles.

TABLE VI. Mean, standard deviation, and coefficient of variation of the
reconstructed iodine proportions for the different iodine concentration groups
and angular ranges.

Narrow angle Wide angle

Mean St.Dev. (CV) Mean St.Dev. (CV)

Low 0.771 0.285 (37%) 0.768 0.230 (30%)

Medium 0.715 0.114 (16%) 0.754 0.113 (15%)

High 0.723 0.108 (15%) 0.742 0.096 (13%)

TABLE VII. Mean, standard deviation, and coefficient of variation of the
reconstructed iodine proportions for the different target size groups and angu-
lar ranges.

Narrow angle Wide Angle

Mean St. Dev. (CV) Mean St. Dev. (CV)

Small 0.757 0.242 (32%) 0.770 0.177 (23%)

Medium 0.729 0.204 (28%) 0.771 0.170 (22%)

High 0.724 0.101 (14%) 0.728 0.138 (19%)
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