

KRYLOV METHODS FOR LOW-RANK REGULARIZATION \*

SILVIA GAZZOLA<sup>†</sup>, CHANG MENG<sup>‡</sup>, AND JAMES G. NAGY<sup>‡</sup>

**Abstract.** This paper introduces new solvers for the computation of low-rank approximate solutions to large-scale linear problems, with a particular focus on the regularization of linear inverse problems. Although Krylov methods incorporating explicit projections onto low-rank subspaces are already used for well-posed systems that arise from discretizing stochastic or time-dependent PDEs, we are mainly concerned with algorithms that solve the so-called nuclear norm regularized problem, where a suitable nuclear norm penalization on the solution is imposed alongside a fit-to-data term expressed in the 2-norm: this has the effect of implicitly enforcing low-rank solutions. By adopting an iteratively reweighted norm approach, the nuclear norm regularized problem is reformulated as a sequence of quadratic problems, which can then be efficiently solved using Krylov methods, giving rise to an inner-outer iteration scheme. Our approach differs from the other solvers available in the literature in that: (a) Kronecker product properties are exploited to define the reweighted 2-norm penalization terms; (b) efficient preconditioned Krylov methods replace gradient (projection) methods; (c) the regularization parameter can be efficiently and adaptively set along the iterations. Furthermore, we reformulate within the framework of flexible Krylov methods both the new inner-outer methods for nuclear norm regularization and some of the existing Krylov methods incorporating low-rank projections. This results in an even more computationally efficient (but heuristic) strategy, that does not rely on an inner-outer iteration scheme. Numerical experiments including image deblurring, computed tomography and inpainting show that our new solvers are competitive with other state-of-the-art solvers for low-rank problems, and deliver reconstructions of increased quality with respect to other classical Krylov methods.

**Key words.** low-rank solver, nuclear norm regularization, Krylov methods, flexible Krylov methods, Kronecker product, imaging problems

22 AMS subject classifications. 65F20, 65F30

23 **1. Introduction.** Consider the following linear system

$$24 \quad (1.1) \quad \mathbf{A}\mathbf{x} = \mathbf{b}, \quad \text{where} \quad \mathbf{A} \in \mathbb{R}^{M \times N}, \quad \mathbf{x} \in \mathbb{R}^N, \quad \mathbf{b} = \mathbf{b}^{\text{ex}} + \boldsymbol{\eta} \in \mathbb{R}^M.$$

We are mainly interested in large-scale linear systems (1.1) arising from inverse problems, where  $\mathbf{A}$  is a discretization of the linear forward operator,  $\mathbf{x}$  is a quantity of interest, and  $\mathbf{b}$  is the observed perturbed data ( $\mathbf{b}^{\text{ex}} = \mathbf{A}\mathbf{x}^{\text{ex}}$  being the ideally exact data, and  $\boldsymbol{\eta}$  being unknown Gaussian white noise). Our focus is on two-dimensional imaging problems, where the unknown vector  $\mathbf{x} \in \mathbb{R}^N$  is obtained by stacking the columns of an unknown true image  $\mathbf{X}$  of size  $n \times n$ , with  $n = \sqrt{N}$  (this operation and its inverse are denoted by  $\mathbf{x} = \text{vec}(\mathbf{X})$  and  $\mathbf{X} = \text{vec}^{-1}(\mathbf{x})$ , respectively).

Discrete inverse problems are ill-posed in nature [13] and, because of the presence of noise in (1.1), regularization needs to be applied so that the solution of (1.1) is a meaningful approximation to  $\mathbf{x}^{\text{ex}}$ . One typically achieves regularization by replacing the original problem (1.1) with a closely related one that is less sensitive to perturbations: effective regularization methods do so by incorporating known or desired properties of  $\mathbf{x}$  into the solution process. In imaging applications, Tikhonov ( $\ell_2$ ) regularization,  $\ell_1$  regularization and total variation are typical techniques to be exploited, see, for example, [4, 7, 8, 9, 17]. In the field of geophysics,  $\ell_0$  regularization (also called compact regularization) is sometimes considered (e.g., [21, 34]).

\*Submitted to the editors DATE.

**Funding:** This work was funded by the National Science Foundation under grant no. DMS-1819042, and partially supported by the EPSRC under grant no. EP/T001593/1.

<sup>†</sup>Department of Mathematical Sciences, University of Bath, United Kingdom. (s.gazzola@bath.ac.uk).

<sup>‡</sup>Department of Mathematics, Emory University, Atlanta, GA, USA. (chang.meng@emory.edu, inagy@emory.edu)

39 In this paper we consider regularization methods that compute a low-rank approximate solution  
 40  $\mathbf{X} = \text{vec}^{-1}(\mathbf{x})$  of (1.1): this is generally meaningful when the unknown  $\mathbf{x}$  encodes a high-dimensional  
 41 quantity and, in particular, in the case of a two-dimensional image. Indeed, two-dimensional images  
 42 are often assumed to have low-rank or to be well-approximated by low-rank two-dimensional arrays  
 43 (see [27] and the references therein).

44 Numerical linear algebra solvers for the estimation of low-rank solutions to linear systems  
 45 have been developed in the literature, mainly targeting well-posed linear discrete problems, such as  
 46 those arising when considering the numerical solution of stochastic PDEs (see [22] and the references  
 47 therein). In particular, the authors of [22] devise a restarted GMRES-like method (RS-LR-GMRES)  
 48 that involves low-rank projections of the basis vectors of the solution subspace, as well as a low-rank  
 49 projection of the current solution at the end of each cycle. Since, in general, the basic operations  
 50 involved in standard GMRES (such as matrix-vector products and vector sums) increase the ranks  
 51 of the computed quantities, low-rank projections are needed to assure that the computed solution  
 52 is low-rank. In the framework of compressive sensing, the authors of [2] consider a modified version  
 53 of the conjugate gradient method that incorporates appropriate rank-truncation operations. All  
 54 the methods mentioned so far employ, often in a heuristic way, Krylov subspace methods together  
 55 with rank-reduction operations (e.g., projections onto a chosen set of low-rank matrices). Since  
 56 many Krylov subspace methods are iterative regularization methods for (1.1), this brings us to the  
 57 question of how incorporating rank-reduction operations would affect the solution of the discrete  
 58 inverse problem (1.1), with a particular focus on imaging applications.

59 Low-rank matrix estimation can be naturally formulated as a nonconvex optimization problem  
 60 having either: (i) a least-squares data fitting term as objective function and a rank constraint; (ii)  
 61 the rank of  $\mathbf{X} = \text{vec}^{-1}(\mathbf{x})$  as objective function and a constraint on the least-squares data fitting  
 62 term. The last instance is commonly referred to as *affine rank minimization problem*, and both  
 63 formulations are in general NP-hard [27]. In this paper we consider the unconstrained and convex  
 64 optimization problem

$$65 \quad (1.2) \quad \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\text{vec}^{-1}(\mathbf{x})\|_*,$$

66 where  $\lambda > 0$  is a regularization parameter and  $\|\cdot\|_*$  denotes the nuclear norm of  $\text{vec}^{-1}(\mathbf{x}) = \mathbf{X}$ ,  
 67 defined as the sum of the singular values of  $\mathbf{X}$ . Indeed, if the singular value decomposition (SVD)  
 68 of  $\mathbf{X}$  is given by  $\mathbf{X} = \mathbf{U}_\mathbf{X} \boldsymbol{\Sigma}_\mathbf{X} \mathbf{V}_\mathbf{X}^T$ , where  $\mathbf{U}_\mathbf{X}, \mathbf{V}_\mathbf{X} \in \mathbb{R}^{n \times n}$  are orthogonal matrices, and  $\boldsymbol{\Sigma}_\mathbf{X} \in \mathbb{R}^{n \times n}$   
 69 is the diagonal matrix whose diagonal entries are  $\sigma_1(\mathbf{X}) \geq \dots \geq \sigma_n(\mathbf{X}) \geq 0$ , then

$$70 \quad \|\mathbf{X}\|_* = \sum_{i=1}^n \sigma_i(\mathbf{X}).$$

71 Problem (1.2) is referred to as a *nuclear norm regularized (NNR) problem*. In particular, the nuclear  
 72 norm is a convex function that has been proven to be the best convex lower approximation of the  
 73 rank function over the set of matrices  $\mathbf{X}$  such that  $\|\mathbf{X}\|_2 \leq 1$  (see [27] and the references therein).  
 74 The nuclear norm has been used in many applications, such as low-rank matrix completion and  
 75 compressed sensing; see, e.g., [3, 10, 16, 24, 27], where the constrained formulation of problem (1.2)  
 76 has also been considered (note that, for a proper choice of  $\lambda > 0$ , constrained and unconstrained  
 77 formulations are equivalent; see, e.g., [29]). In the framework of compressive sensing, under the  
 78 assumption that the matrix  $\mathbf{A}$  satisfies a certain null-space property, recovery guarantees for the

79 affine rank minimization problem are proven in [5, 25]. We also consider the following formulation

80 (1.3) 
$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\text{vec}^{-1}(\mathbf{x})\|_{*,p}, \quad \text{where } \|\mathbf{X}\|_{*,p} = \sum_{i=1}^n (\sigma_i(\mathbf{X}))^p, \quad 0 < p \leq 1.$$

81 Problem (1.3) is referred to as *NNRp problem*, and it generalizes problem (1.2) (which is obtained  
82 taking  $p = 1$  in (1.3)). The constrained version of (1.3) is already considered in [25], where  
83 the authors empirically show an improved recovery performance of the constrained formulation  
84 of problem (1.3) with  $p < 1$  with respect to  $p = 1$ . Note, however, that the choice  $p < 1$  in (1.3)  
85 results in a nonconvex minimization problem.

86 Many different optimization methods, such as singular value thresholding (i.e., projected gradi-  
87 ent descent) and continuation methods [10], have been proposed for the solution of problem (1.2) or  
88 its constrained counterpart. In particular, the so-called IRLS(- $p$ ) (i.e., iteratively reweighted least  
89 squares) family of methods has recently attracted a lot of attention [5, 25, 27]. IRLS(- $p$ ) solves  
90 the affine rank minimization problem by solving a sequence of problems whose objective function  
91 only involves an iteratively updated weighted 2-norm term. The authors of [23] apply the IRLS(- $p$ )  
92 framework to the unconstrained problem (1.3), requiring the solution of a sequence of sub-problems

93 (1.4) 
$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{W}_k \text{vec}^{-1}(\mathbf{x})\|_F^2,$$

94 where  $\mathbf{W}_k$  is an appropriate weight matrix to be employed to solve the  $k$ th sub-problem, and  $\|\cdot\|_F$   
95 denotes the Frobenius norm of a matrix. A gradient (projection) algorithm is typically used to  
96 solve each sub-problem (1.4). Since an IRLS(- $p$ ) approach is also commonly applied to objective  
97 functions involving a quadratic fit-to-data term and a general  $p$ -norm penalization on  $\mathbf{x}$ , and since  
98 efficient strategies based on Krylov methods have been devised to solve each quadratic sub-problem  
99 in the IRLS(- $p$ ) sequence [28, 30], this brings us to the question of how Krylov methods can be best  
100 employed to solve each problem (1.4) (recall that  $\|\text{vec}^{-1}(\mathbf{x})\|_{*,p}$  can be regarded as a  $p$ -norm of the  
101 vector whose entries are the singular values of  $\mathbf{X} = \text{vec}^{-1}(\mathbf{x})$ ).

102 The goal of this paper is to propose new efficient Krylov methods for the estimation of low-rank  
103 solutions to (1.1). We will mainly consider an IRLS(- $p$ ) approach to problem (1.3) (rather than  
104 incorporating low-rank projections into a linear solver for (1.1)), the upside being that low-rank is  
105 implicitly enforced into the solution by penalizing the  $p$ -norm of the singular values for a suitable  
106 choice of  $\lambda$ . Our main contributions are the new IRN-GMRES-NNRp and IRN-LSQR-NNRp meth-  
107 ods for (1.3), where automatic strategies for choosing a suitable  $\lambda$  are naturally incorporated. Here  
108 and in the following, the IRN acronym indicates an iteratively reweighted norm (rather than an  
109 iteratively reweighted least squares problem, [30]). One of the key points in deriving the new meth-  
110 ods is expressing in matrix form the invertible linear operator mapping  $\mathbf{x}$  to the reweighted 2-norm  
111 of the singular values of  $\mathbf{X} = \text{vec}^{-1}(\mathbf{x})$ : this can be achieved in a computationally affordable way by  
112 exploiting Kronecker product properties. Each iteratively reweighted quadratic sub-problem of the  
113 form (1.4) can then be expressed as a Tikhonov regularization problem in general form, which can  
114 be straightforwardly transformed into standard form. In this way, the inverse of the linear operator  
115 mapping  $\mathbf{x}$  into the reweighted 2-norm of the singular values of  $\mathbf{X} = \text{vec}^{-1}(\mathbf{x})$  formally acts as a  
116 preconditioner for  $\mathbf{A}$ , and the so-called hybrid methods [26] based on the preconditioned Arnoldi (if  
117  $\mathbf{A}$  is square) or Golub-Kahan bidiagonalization algorithms can be used to efficiently approximate  
118 the solution of each problem of the form (1.4). Once a hybrid method is adopted, many automatic,  
119 adaptive, and efficient parameter choice strategies can be employed to choose a suitable  $\lambda$ ; see [18]  
120 for an overview. Therefore, contrarily to many existing methods for (1.3), IRN-GMRES-NNRp and

121 IRN-LSQR-NNR $p$  have the advantage of not requiring a regularization parameter (either  $\lambda$  or the  
 122 desired rank of the solution) to be available in advance of the iterations, nor the repeated solution  
 123 of (1.3) for different regularization parameters.

124 Although inherently efficient, both the IRN-GMRES-NNR $p$  and IRN-LSQR-NNR $p$  methods  
 125 are inner-outer iteration schemes, where each outer iteration requires running a “preconditioned”  
 126 Krylov subspace method until convergence (inner iteration) before updating the weights (and there-  
 127 fore the “preconditioner”) in the next outer iteration. In order to avoid inner-outer iterations and  
 128 with the aim of generating only one approximation subspace for the solution of (1.3), where a new  
 129 “preconditioner” is incorporated as soon as a new approximate solution becomes available (i.e., at  
 130 each iteration), we propose to solve (1.3) using flexible Krylov subspace methods, such as those based  
 131 on the flexible Arnoldi [31] and Golub-Kahan [4] algorithms. The use of flexible Krylov methods for  
 132  $p$ -norm regularization of inverse problems was already proposed in [4, 7]; however, differently from  
 133 the available solvers, our new approach involves iteratively defining both weights and transform  
 134 matrices (i.e., the linear operator mapping  $\text{vec}^{-1}(\mathbf{x})$  into its singular values). Switching from IRN-  
 135 GMRES-NNR $p$  and IRN-LSQR-NNR $p$  to their flexible counterparts (dubbed FGMRES-NNR $p$  and  
 136 FLSQR-NNR $p$ , respectively) allows for savings in computations and, although FGMRES-NNR $p$   
 137 and FLSQR-NNR $p$  are purely heuristic, it leads to approximate solutions whose accuracy on many  
 138 test problems is comparable to the ones of other well established solvers for (1.2). Motivated by  
 139 the same idea of avoiding inner-outer iteration cycles while adaptively incorporating (low-rank)  
 140 information into the approximation subspace for the solution, we also propose a flexible version  
 141 of the projected and restarted Krylov subspace methods (such as RS-LR-GMRES, [22]) that were  
 142 originally devised for square matrices, considering also extensions to rectangular matrices  $\mathbf{A}$ .

143 This paper is organized as follows. In Section 2 we review the available low-rank Krylov methods  
 144 for square linear systems and, after surveying the available flexible Krylov solvers, we formulate  
 145 new low-rank flexible Krylov solvers for both square and rectangular problems, where the basis  
 146 vectors for the approximation subspace are truncated to low-rank. In Section 3 we derive the new  
 147 iteratively reweighted methods for (1.3) as fixed-point methods, and we describe how to efficiently  
 148 solve each reweighted problem of the form (1.4) using preconditioned Krylov methods: this leads  
 149 to the IRN-GMRES-NNR $p$  and IRN-LSQR-NNR $p$  methods; their flexible counterparts (FGMRES-  
 150 NNR $p$  and FLSQR-NNR $p$ , respectively) are also derived. Some implementation details, such as  
 151 stopping criteria and regularization parameter choice strategies for the new methods, are unfolded  
 152 in Section 4. Numerical results on image deblurring, computed tomography and inpainting are  
 153 presented in Section 5, including comparisons between the proposed methods, low-rank projection  
 154 methods, projected gradient methods, and standard Krylov subspace methods. Conclusions are  
 155 drawn in Section 6.

156 *Definitions and notations.* Matching lower and upper case letters are used to denote the  
 157 “vectorized” and “matricized” versions of a given quantity, respectively; e.g.,  $\mathbf{c} = \text{vec}(\mathbf{C})$  and  
 158  $\mathbf{C} = \text{vec}^{-1}(\mathbf{c})$ . We denote the  $i$ th entry of a vector  $\mathbf{c}$  by  $[\mathbf{c}]_i$ , and the  $(i, j)$ th entry of a matrix  $\mathbf{C}$   
 159 by  $[\mathbf{C}]_{ij}$  or, using MATLAB-like notations,  $[\mathbf{c}]_i = \mathbf{c}(i)$ ,  $[\mathbf{C}]_{ij} = \mathbf{C}(i, j)$ . Using again MATLAB-like  
 160 notations,  $\mathbf{d} = \text{diag}(\mathbf{C})$  defines a vector  $\mathbf{d}$  whose entries are the diagonal elements of a matrix  
 161  $\mathbf{C}$ .  $\text{Tr}(\mathbf{C})$  denotes the trace of a matrix  $\mathbf{C}$ .  $\mathcal{R}(\mathbf{C})$  denotes the range (or column space) of a  
 162 matrix  $\mathbf{C}$ , and  $\mathcal{K}_m(\mathbf{A}, \mathbf{b})$  denotes the  $m$ -dimensional Krylov subspace defined by  $\mathbf{A}$  and  $\mathbf{b}$ , i.e.,  
 163  $\mathcal{K}_m(\mathbf{A}, \mathbf{b}) = \text{span}\{\mathbf{b}, \mathbf{Ab}, \mathbf{A}^2\mathbf{b}, \dots, \mathbf{A}^{m-1}\mathbf{b}\}$ . We denote by  $\mathbf{I} \in \mathbb{R}^{d \times d}$  the identity matrix of order  
 164  $d$ , and by  $\mathbf{e}_i$  the  $i$ th canonical basis vector of  $\mathbb{R}^d$ , where  $d$  should be clear from the context. Note  
 165 that, in the following, we will quite often interchange  $\mathbf{x}$  and  $\mathbf{X}$  and, with a slight abuse of notations,  
 166 we will denote the action of a linear operator on  $\mathbf{x}$  or  $\mathbf{X}$  by  $\mathcal{A}(\mathbf{X}) = \mathbf{AX} = \mathbf{Ax}$ , and the action of

167 the adjoint operator by  $\mathcal{A}^*(\mathbf{Y}) = \mathcal{A}^*\mathbf{Y} = A^T \text{vec}(\mathbf{Y})$ .

168 **2. Low-rank projection methods: classical and new approaches.** As recalled in Section  
 169 1, when solving square well-posed linear systems coming from the discretization of some instances  
 170 of stochastic or time-dependent PDEs, a suitable rearrangement of the solution is expected to be  
 171 low-rank: for this reason, schemes that incorporate low-rank projections within the basis vectors  
 172 and the approximate solution obtained by a Krylov method have been proposed in the literature. In  
 173 the following we summarize the working ideas underlying the so-called restarted low-rank-projected  
 174 GMRES (RS-LR-GMRES) method proposed in [22].

175 The starting points for the derivation of RS-LR-GMRES are the basic properties and rela-  
 176 tions underlying GMRES. Indeed, one can define GMRES for the solution of (1.1) with a square  
 177  $\mathbf{A} \in \mathbb{R}^{N \times N}$  and initial guess  $\mathbf{x}_0 = \mathbf{0}$  by generating a matrix  $\mathbf{V}_m = [\mathbf{v}_1, \dots, \mathbf{v}_m] \in \mathbb{R}^{N \times m}$  with or-  
 178 orthonormal columns, such that  $\mathcal{R}(\mathbf{V}_m) = \mathcal{K}_m(\mathbf{A}, \mathbf{b})$ , and imposing that the residual  $\mathbf{r}_m = \mathbf{b} - \mathbf{A}\mathbf{x}_m$   
 179 is orthogonal to  $\mathbf{U}_m = \mathbf{A}\mathbf{V}_m$ . In practice, at the  $k$ th iteration of GMRES, one computes

180 (2.1) 
$$\mathbf{u}_k = \mathbf{A}\mathbf{v}_{k-1} \quad \text{and} \quad \|\mathbf{v}_k\|_2 \mathbf{v}_k = (\mathbf{I} - \mathbf{V}_{k-1} (\underbrace{\mathbf{V}_{k-1}^T \mathbf{V}_{k-1}}_{=\mathbf{I}})^{-1} \mathbf{V}_{k-1}^T) \mathbf{u}_k,$$

181 and the approximate solution is computed as

182 (2.2) 
$$\mathbf{x}_k = \mathbf{V}_k \mathbf{y}_k, \quad \text{where} \quad (\mathbf{U}_k^T \mathbf{A} \mathbf{V}_k) \mathbf{y}_k = \mathbf{U}_k^T \mathbf{b}.$$

183 This procedure is mathematically equivalent to the somewhat more standard procedure that, at the  
 184  $k$ th iteration of GMRES, updates the partial Arnoldi factorization and computes the approximate  
 185 solution as follows:

186 (2.3) 
$$\mathbf{A} \mathbf{V}_k = \mathbf{V}_{k+1} \mathbf{H}_k, \quad \mathbf{x}_k = \mathbf{V}_k \mathbf{y}_k, \quad \text{where} \quad \mathbf{y}_k = \arg \min_{\mathbf{y} \in \mathbb{R}^k} \|\mathbf{H}_k \mathbf{y} - \|\mathbf{b}\|_2 \mathbf{e}_1\|_2.$$

187 Note that, in particular, the matrix  $\mathbf{V}_k$  appearing in (2.2) coincides with the matrix  $\mathbf{V}_k$  appearing  
 188 in (2.3). However, since matrix-vector products and vector sums of low-rank vectorized matrices  
 189 increase the rank of the latter, relations (2.1) and (2.2) obviously do not guarantee that the new  
 190 basis vectors  $\mathbf{v}_k$  for the solution nor the new solution  $\mathbf{x}_k$  are low-rank. To force the basis vector  
 191 for the solution and the approximate solution to be low-rank, a truncation operator should be  
 192 incorporated into the GMRES algorithm. Given a vectorized matrix  $\mathbf{c} = \text{vec}(\mathbf{C})$ , and given a  
 193 desired low-rank  $\kappa$  for  $\mathbf{C}$ , one can define a truncation operator  $\tau_\kappa(\mathbf{c})$  by the following standard  
 194 operations:

195 (2.4) 
$$\left[ \begin{array}{l} 1. \quad \text{Take } \mathbf{C} = \text{vec}^{-1}(\mathbf{c}); \\ 2. \quad \text{Compute the SVD of } \mathbf{C}, \mathbf{C} = \mathbf{U}_C \mathbf{\Sigma}_C \mathbf{V}_C^T; \\ 3. \quad \text{Compute } \mathbf{C}_\kappa = \mathbf{U}_C(:, 1 : \kappa) \mathbf{\Sigma}_C(1 : \kappa, 1 : \kappa) \mathbf{V}_C(:, 1 : \kappa)^T; \\ 4. \quad \text{Take } \tau_\kappa(\mathbf{c}) = \text{vec}(\mathbf{C}_\kappa). \end{array} \right]$$

196 RS-LR-GMRES is a restarted version of the standard GMRES method where the basis vectors  
 197 for the solution are truncated at each inner iteration, and the solution itself is truncated at the  
 198 beginning of each outer iteration. Note that truncating the basis vectors does not guarantee that  
 199 the solution has low rank (which is the reason we still need to truncate the approximate solution).  
 200 The reason for truncating the basis vectors is to keep the original solution rank from increasing  
 201 drastically, since it is computed as a linear combination of basis vectors. More precisely, at the  $\ell$ th

202 outer iteration of RS-LR-GMRES, one takes  $\mathbf{v}_1 = \mathbf{r}_{\ell-1}/\|\mathbf{r}_{\ell-1}\|_2$ , where  $\mathbf{r}_{\ell-1} = \mathbf{b} - \mathbf{A}\mathbf{x}_{\ell-1}$ , and, at  
203 the  $k$ th inner iteration, one computes

$$204 \quad (2.5) \quad \mathbf{u}_k = \mathbf{A}\mathbf{v}_{k-1} \quad \text{and} \quad \|\mathbf{v}_k\|_2 \mathbf{v}_k = \tau_\kappa \left( (\mathbf{I} - \mathbf{V}_{k-1}(\mathbf{V}_{k-1}^T \mathbf{V}_{k-1})^{-1} \mathbf{V}_{k-1}^T) \mathbf{u}_k \right).$$

205 Once  $m$  inner iterations are performed, the approximate solution at the  $\ell$ th outer iteration is  
206 computed as

$$207 \quad (2.6) \quad \mathbf{x}_\ell = \tau_\kappa (\mathbf{x}_{\ell-1} + \mathbf{V}_m \mathbf{y}_m), \quad \text{where} \quad (\mathbf{U}_m^T \mathbf{A} \mathbf{V}_m) \mathbf{y}_m = \mathbf{U}_m^T \mathbf{r}_{\ell-1}.$$

208 The operations in (2.5) and (2.6) heavily depend on the value  $\kappa$  of the truncated rank, which  
209 eventually coincides with the rank of the approximate solution. In the framework of stochastic  
210 PDEs, a suitable estimate for  $\kappa$  can be obtained by first performing coarse-grid computations (see  
211 [22] for details, and [19, 33] for similar approaches). Comparing (2.5) and (2.1) one can see that,  
212 as in standard GMRES, RS-LR-GMRES computes a new basis vector for the solution by applying  
213 the linear operator  $\mathbf{A}$  to the previous basis vector  $\mathbf{v}_{k-1}$  and orthogonalizing it against the previous  
214 basis vectors  $\mathbf{v}_i$ ,  $i = 1, \dots, k-1$ . However, since the basis vectors are truncated to low rank,  
215 the matrix  $\mathbf{V}_k$  does not have orthonormal columns anymore, and  $\mathcal{R}(\mathbf{V}_m)$  is not a Krylov subspace  
216 anymore. This remark leads us to the derivation of alternative low-rank projection solvers, which  
217 can be (re)casted into the framework of flexible Krylov methods and can work with both square  
218 and rectangular systems (1.1).

219 *Low-rank flexible GMRES (LR-FGMRES) and low-rank flexible LSQR (LR-FLSQR).* Flexible  
220 Krylov methods are a class of linear solvers that can handle iteration-dependent preconditioners:  
221 they were originally introduced in [31] for FGMRES, where a preconditioner for GMRES was al-  
222 lowed to change from one iteration to the next (either because at each iteration the preconditioner  
223 is implicitly defined by applying an iterative linear solver, or because the preconditioner can be  
224 updated with newly-computed information; see [32] for an overview). In the framework of regular-  
225 izing linear solvers, flexible Krylov methods were proposed in [4, 7, 9], where the iteration-dependent  
226 “preconditioner” was associated to an iteratively reweighted norm approach to Tikhonov-like reg-  
227 ularized problems involving penalization terms expressed in some  $p$ -norm,  $0 < p \leq 1$  (and, indeed,  
228 these “preconditioners” have the effect of enforcing specific regularity into the approximation sub-  
229 space for the solution, rather than accelerating the convergence of the iterative solvers). Leveraging  
230 flexible Krylov subspaces in this setting comes with the upside of avoiding restarts of the itera-  
231 tive solver, which is the approach commonly used when adopting an iteratively reweighted norm  
232 method. When considering low-rank projections of the basis vectors within RS-LR-GMRES, we  
233 enforce the basis vectors to have low-rank, so to better reproduce available information about the  
234 solution of (1.1) (i.e., the solution should be low-rank). It is therefore natural to consider flexible  
235 Krylov methods that involve truncation of the basis vectors at each iteration, as a computationally  
236 cheaper alternative to RS-LR-GMRES that does not involve restarts.

237 Considering first the case of a square  $\mathbf{A} \in \mathbb{R}^{N \times N}$ , we can use the flexible Arnoldi algorithm  
238 [31] to naturally incorporate low-rank basis vectors for the solution of (1.1). In general, starting  
239 with  $\mathbf{x}_0 = \mathbf{0}$ , at the  $k$ th iteration, FGMRES updates a partial flexible Arnoldi factorization and  
240 computes the  $k$ th approximate solution as follows:

$$241 \quad (2.7) \quad \mathbf{A}\mathbf{Z}_k = \mathbf{V}_{k+1}\mathbf{H}_k, \quad \mathbf{x}_k = \mathbf{Z}_k \mathbf{y}_k, \quad \text{where} \quad \mathbf{y}_k = \arg \min_{\mathbf{y} \in \mathbb{R}^k} \|\mathbf{H}_k \mathbf{y} - \|\mathbf{b}\|_2 \mathbf{e}_1\|_2,$$

242 where  $\mathbf{V}_{k+1} = [\mathbf{v}_1, \dots, \mathbf{v}_{k+1}] \in \mathbb{R}^{N \times (k+1)}$  has orthonormal columns,  $\mathbf{H}_k \in \mathbb{R}^{(k+1) \times k}$  is upper  
243 Hessenberg, and  $\mathbf{Z}_k = [\mathbf{P}_1 \mathbf{v}_1, \dots, \mathbf{P}_k \mathbf{v}_k] \in \mathbb{R}^{N \times k}$  has columns that span the approximation subspace

244 for the solution ( $\mathbf{P}_i$  is an iteration-dependent preconditioner that is applied to  $\mathbf{v}_i$  and, in the  
 245 particular case of low-rank truncation,  $\mathbf{P}_i \mathbf{v}_i = \tau_{\kappa_B}(\mathbf{v}_i)$ , is the truncation operator defined in (2.4),  
 246 so that  $\text{rank}(\text{vec}^{-1}(\mathbf{Z}_k \mathbf{e}_i)) = \kappa_B$ ,  $i = 1, \dots, k$ ). The subscript  $B$  for the truncation rank  $\kappa_B$   
 247 suggests that the truncation is done on the original basis vectors  $\mathbf{v}_i$ 's. The resulting algorithm  
 248 is dubbed “LR-FGMRES”, and it is summarized in Algorithm 2.1. Note that the approximate  
 249 solution computed as in (2.7) is also truncated to guarantee rank  $\kappa$  (in general, we assume  $\kappa_B \neq \kappa$ ).  
 250 Also LR-FGMRES is started with  $\mathbf{x}_0 = \mathbf{0}$ , to guarantee that the basis vectors for the solution  
 251 (rather than a correction thereof) are low-rank.

---

**Algorithm 2.1** LR-FGMRES
 

---

- 1: Inputs:  $\mathbf{A}$ ,  $\mathbf{b}$ ,  $\tau_{\kappa_B}$ ,  $\tau_\kappa$
- 2: Take  $\mathbf{v}_1 = \mathbf{b}/\|\mathbf{b}\|_2$
- 3: **for**  $i = 1, 2, \dots$  until a stopping criterion is satisfied **do**
- 4:   Compute  $\mathbf{z}_i = \tau_{\kappa_B}(\mathbf{v}_i)$  and  $\mathbf{w} = \mathbf{A}\mathbf{z}_i$
- 5:   Compute  $h_{ji} = \mathbf{w}^T \mathbf{v}_j$  for  $j = 1, \dots, i$  and set  $\mathbf{w} = \mathbf{w} - \sum_{j=1}^i h_{ji} \mathbf{v}_j$
- 6:   Compute  $h_{i+1,i} = \|\mathbf{w}\|_2$ , and if  $h_{i+1,i} \neq 0$ , take  $\mathbf{v}_{i+1} = \mathbf{w}/h_{i+1,i}$
- 7: **end for**
- 8: Compute  $\mathbf{y}_k = \arg \min_{\mathbf{y}} \|\mathbf{H}_k \mathbf{y} - \|\mathbf{b}\|_2 \mathbf{e}_1\|_2^2$  and take  $\mathbf{x}_k = \tau_\kappa(\mathbf{Z}_k \mathbf{y}_k)$

---

252 A few remarks are in order. Differently from the  $k$ th iteration in the inner cycle of the RS-  
 253 LR-GMRES method (2.5), the  $k$ th iteration of LR-FGMRES expands the approximation subspace  
 254 by modifying (i.e., truncating) the previous orthonormal basis vector for the space  $\mathcal{R}([\mathbf{b}, \mathbf{A}\mathbf{Z}_k])$ .  
 255 Analogously to RS-LR-GMRES, the basis vectors for the approximate LR-FGMRES solution are  
 256 all of rank  $\kappa_B$ , are not orthogonal, and do not span a Krylov subspace. Differently from RS-LR-  
 257 GMRES, the basis vector for the space  $\mathcal{R}([\mathbf{b}, \mathbf{A}\mathbf{Z}_k])$  are orthogonal. Also, the  $k$ th LR-FGMRES  
 258 approximate solution is obtained by solving an order- $k$  projected least squares problem that is  
 259 formally analogous to the GMRES one (see (2.3) and (2.7)).

260 With LR-FGMRES in place, the extension to more general matrices  $\mathbf{A} \in \mathbb{R}^{M \times N}$ , with  $M$   
 261 not necessarily equal to  $N$ , can be naturally devised considering the flexible Golub-Kahan (FGK)  
 262 process [4]. Taking  $\mathbf{x}_0 = \mathbf{0}$  as initial guess, the  $k$ th FGK iteration updates partial factorizations of  
 263 the form

264 (2.8) 
$$\mathbf{A}\mathbf{Z}_k = \mathbf{U}_{k+1}\mathbf{M}_k \quad \text{and} \quad \mathbf{A}^T\mathbf{U}_{k+1} = \mathbf{V}_{k+1}\mathbf{T}_{k+1},$$

265 where the columns of  $\mathbf{U}_{k+1} \in \mathbb{R}^{M \times (k+1)}$ ,  $\mathbf{V}_{k+1} \in \mathbb{R}^{N \times (k+1)}$  are orthonormal,  $\mathbf{M}_k \in \mathbb{R}^{(k+1) \times k}$  is  
 266 upper Hessenberg,  $\mathbf{T}_{k+1} \in \mathbb{R}^{(k+1) \times (k+1)}$  is upper triangular, and  $\mathbf{Z}_k = [\mathbf{P}_1 \mathbf{v}_1, \dots, \mathbf{P}_k \mathbf{v}_k] \in \mathbb{R}^{N \times k}$   
 267 has columns that span the approximation subspace for the solution ( $\mathbf{P}_i$  is an iteration-dependent  
 268 preconditioner that is applied to  $\mathbf{v}_i$  and, in the particular case of low-rank truncation,  $\mathbf{P}_i \mathbf{v}_i =$   
 269  $\tau_{\kappa_B}(\mathbf{v}_i)$ , as defined in (2.4), so that  $\text{rank}(\text{vec}^{-1}(\mathbf{Z}_k \mathbf{e}_i)) = \kappa_B$ ,  $i = 1, \dots, k$ ). The flexible LSQR  
 270 method (FLSQR) uses the FGK process (2.8) to generate iterates of the form  $\mathbf{x}_k = \mathbf{Z}_k \mathbf{y}_k$ , where  
 271 the vector  $\mathbf{y}_k$  is computed as  $\mathbf{y}_k = \arg \min_{\mathbf{y}} \|\mathbf{M}_k \mathbf{y} - \|\mathbf{b}\|_2 \mathbf{e}_1\|_2^2$ . When rank-truncation of the  
 272 basis vectors takes place at each iteration, and the final approximate solution is rank-truncated  
 273 as well, the resulting algorithm is dubbed “LR-FLSQR”, and it is summarized in Algorithm 2.2.  
 274 Note that, similarly to RS-LR-GMRES, both LR-FGMRES and LR-FLSQR are quite heuristic.  
 275 Although the low-rank projection idea can be formulated in the flexible framework, we lack a formal

**Algorithm 2.2** LR-FLSQR

---

```

1: Inputs:  $\mathbf{A}$ ,  $\mathbf{b}$ ,  $\tau_{\kappa_B}$ ,  $\tau_\kappa$ 
2: Take  $\mathbf{u}_1 = \mathbf{b}/\|\mathbf{b}\|_2$ 
3: for  $i = 1, 2, \dots$ , until a stopping criterion is satisfied do
4:   Compute  $\mathbf{w} = \mathbf{A}^T \mathbf{u}_i$ ,  $t_{ji} = \mathbf{w}^T \mathbf{v}_j$  for  $j = 1, \dots, i-1$ 
5:   Set  $\mathbf{w} = \mathbf{w} - \sum_{j=1}^{i-1} t_{ji} \mathbf{v}_j$ , compute  $t_{ii} = \|\mathbf{w}\|$  and take  $\mathbf{v}_i = \mathbf{w}/t_{ii}$ 
6:   Compute  $\mathbf{z}_i = \tau_{\kappa_B}(\mathbf{v}_i)$  and  $\mathbf{w} = \mathbf{A} \mathbf{z}_i$ 
7:   Compute  $m_{ji} = \mathbf{w}^T \mathbf{u}_j$  for  $j = 1, \dots, i$  and set  $\mathbf{w} = \mathbf{w} - \sum_{j=1}^i m_{ji} \mathbf{u}_j$ 
8:   Compute  $m_{i+1,i} = \|\mathbf{w}\|$  and take  $\mathbf{u}_{i+1} = \mathbf{w}/m_{i+1,i}$ 
9: end for
10: Compute  $\mathbf{y}_k = \arg \min_{\mathbf{y}} \|\mathbf{M}_k \mathbf{y} - \|\mathbf{b}\|_2 \mathbf{e}_1\|_2^2$  and take  $\mathbf{x}_k = \tau_\kappa(\mathbf{Z}_k \mathbf{y}_k)$ 

```

---

276 formulation of the problem that is being solved, and also a justification of why they work. Strategies  
 277 for selecting  $\kappa_B$  and  $\kappa$  are not so clear either. To stabilize the behavior of LR-FGMRES as the  
 278 iterations proceed, one may consider imposing additional Tikhonov regularization on the projected  
 279 least-squares problem in (2.7), in a hybrid fashion; the same holds for LR-FLSQR (see Sections 3.3  
 280 and 5 for more details).

281 **3. Proposed Method.** In this section, we first derive the IRN method for the solution of the  
 282 NNRp problem (1.3). The starting point for our derivations is the approximation of the nondifferentiable  
 283 nuclear norm regularizer by a smooth Schatten function (similarly to what is proposed in [25]  
 284 for the affine rank minimization problem). The optimality conditions associated to the smoothed  
 285 problem give rise to a nonlinear system of equations in  $\mathbf{X}$ , which is handled by a fixed-point it-  
 286 eration scheme. We show that each iteration amounts to the solution of a Tikhonov-regularized  
 287 problem involving an iteratively reweighted 2-norm regularization term, which can be efficiently  
 288 solved employing “preconditioned” Krylov methods. Flexible Krylov methods are introduced to  
 289 approximate the solution of the IRN problem within only one adaptively defined approximation  
 290 subspace for the solution, bypassing the inner-outer iteration scheme required by standard Krylov  
 291 methods.

292 **3.1. Derivation.** Define the smooth Schatten- $p$  function as

293 
$$\mathcal{S}_p^\gamma(\mathbf{X}) = \text{Tr}((\mathbf{X}^T \mathbf{X} + \gamma \mathbf{I})^{p/2}), \quad \text{with } \gamma > 0.$$

294 Note that  $\mathcal{S}_p^\gamma(\mathbf{X})$  is differentiable for  $p > 0$  and convex for  $p \geq 1$ . In particular, for  $p = 1$  and  $\gamma = 0$   
 295 (i.e., no smoothing),

$$296 \quad \mathcal{S}_1^0(\mathbf{X}) = \text{Tr}((\mathbf{X}^T \mathbf{X})^{1/2}) = \|\mathbf{X}\|_*.$$

297 We start by considering the following smooth approximation to (1.3):

298 (3.1) 
$$\min_{\mathbf{X} \in \mathbb{R}^{n \times n}} \|\mathcal{A}(\mathbf{X}) - \mathbf{B}\|_F^2 + \lambda \mathcal{S}_p^\gamma(\mathbf{X}).$$

299 The following derivations are valid for  $p > 0$  (and we keep them generic, being aware that  $p = 1$   
 300 approximates (1.2)). The optimality conditions associated to (3.1) read

301 
$$0 = \nabla_{\mathbf{X}} (\|\mathcal{A}(\mathbf{X}) - \mathbf{B}\|_F^2 + \lambda \mathcal{S}_p^\gamma(\mathbf{X}))$$

302 (3.2) 
$$= 2\mathcal{A}^*(\mathcal{A}(\mathbf{X}) - \mathbf{B}) + \lambda p(\mathbf{X} \mathbf{X}^T + \gamma \mathbf{I})^{p/2-1} \mathbf{X},$$

303 where we have used that

304 
$$\nabla_{\mathbf{X}} \text{Tr}((\mathbf{X}^T \mathbf{X} + \gamma \mathbf{I})^{p/2}) = p \mathbf{X} (\mathbf{X}^T \mathbf{X} + \gamma \mathbf{I})^{p/2-1} = p(\mathbf{X} \mathbf{X}^T + \gamma \mathbf{I})^{p/2-1} \mathbf{X}.$$

305 Equivalently, the nonlinear system of equations (3.2) with respect to  $\mathbf{X}$  can be expressed as

306 
$$\mathbf{X} = \left( \mathcal{A}^* \mathcal{A} + \hat{\lambda} (\mathbf{X} \mathbf{X}^T + \gamma \mathbf{I})^{p/2-1} \right)^{-1} \mathcal{A}^* \mathbf{B}$$
  
307 
$$= \left( \mathcal{A}^* \mathcal{A} + \hat{\lambda} ((\mathbf{X} \mathbf{X}^T + \gamma \mathbf{I})^{p/4-1/2})^T (\mathbf{X} \mathbf{X}^T + \gamma \mathbf{I})^{p/4-1/2} \right)^{-1} \mathcal{A}^* \mathbf{B}, \quad \text{with } \hat{\lambda} = \lambda p/2,$$

308 which is naturally associated to the following fixed-point iteration scheme

309 (3.3) 
$$\mathbf{X}_{k+1} = \left( \mathcal{A}^* \mathcal{A} + \hat{\lambda} ((\mathbf{X}_k \mathbf{X}_k^T + \gamma \mathbf{I})^{p/4-1/2})^T (\mathbf{X}_k \mathbf{X}_k^T + \gamma \mathbf{I})^{p/4-1/2} \right)^{-1} \mathcal{A}^* \mathbf{B},$$

310 which leads to the solution of (3.1). Equivalently,

311 
$$\mathbf{X}_{k+1} = \arg \min_{\mathbf{X}} \left\| \begin{bmatrix} \mathcal{A} \\ \sqrt{\hat{\lambda}} (\mathbf{X}_k \mathbf{X}_k^T + \gamma \mathbf{I})^{p/4-1/2} \end{bmatrix} \mathbf{X} - \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix} \right\|_F^2,$$

312 i.e., (3.3) are the normal equations associated to the penalized least squares problem written above  
313 or, equivalently,

314 (3.4) 
$$\mathbf{X}_{k+1} = \arg \min_{\mathbf{X}} \|\mathcal{A} \mathbf{X} - \mathbf{B}\|_F^2 + \hat{\lambda} \|(\mathbf{X}_k \mathbf{X}_k^T + \gamma \mathbf{I})^{p/4-1/2} \mathbf{X}\|_F^2.$$

315 We now reformulate problem (3.4) in vectorial form.

316 Let  $\mathbf{U}_{\mathbf{X}_k} \mathbf{\Sigma}_{\mathbf{X}_k} \mathbf{V}_{\mathbf{X}_k}^T = \mathbf{X}_k$  be the SVD of  $\mathbf{X}_k$ ; thanks to the invariance of the Frobenius norm  
317 under orthogonal transformations, the regularization term in the above problem can be rewritten  
318 as

319 
$$\|(\mathbf{X}_k \mathbf{X}_k^T + \gamma \mathbf{I})^{p/4-1/2} \mathbf{X}\|_F^2 = \|\mathbf{U}_{\mathbf{X}_k} (\mathbf{\Sigma}_{\mathbf{X}_k}^2 + \gamma \mathbf{I})^{p/4-1/2} \mathbf{U}_{\mathbf{X}_k}^T \mathbf{X}\|_F^2 = \|(\mathbf{\Sigma}_{\mathbf{X}_k}^2 + \gamma \mathbf{I})^{p/4-1/2} \mathbf{U}_{\mathbf{X}_k}^T \mathbf{X} \mathbf{V}_{\mathbf{X}_k}\|_F^2.$$

320 Using well-known Kronecker product properties

321 
$$\|(\mathbf{\Sigma}_{\mathbf{X}_k}^2 + \gamma \mathbf{I})^{p/4-1/2} \mathbf{U}_{\mathbf{X}_k}^T \mathbf{X} \mathbf{V}_{\mathbf{X}_k}\|_F^2 = \|\text{vec}((\mathbf{\Sigma}_{\mathbf{X}_k}^2 + \gamma \mathbf{I})^{p/4-1/2} \mathbf{U}_{\mathbf{X}_k}^T \mathbf{X} \mathbf{V}_{\mathbf{X}_k})\|_2^2$$
  
322 
$$= \left\| \left( \mathbf{V}_{\mathbf{X}_k}^T \otimes ((\mathbf{\Sigma}_{\mathbf{X}_k}^2 + \gamma \mathbf{I})^{p/4-1/2} \mathbf{U}_{\mathbf{X}_k}^T) \right) \mathbf{x} \right\|_2^2 = \left\| \left( \mathbf{I} \otimes (\mathbf{\Sigma}_{\mathbf{X}_k}^2 + \gamma \mathbf{I})^{p/4-1/2} \right) (\mathbf{V}_{\mathbf{X}_k}^T \otimes \mathbf{U}_{\mathbf{X}_k}^T) \mathbf{x} \right\|_2^2.$$

323 Problem (3.4) is therefore equivalent to

324 (3.5) 
$$\mathbf{x}_{k+1} = \arg \min_{\mathbf{x}} \|\mathbf{A} \mathbf{x} - \mathbf{b}\|_2^2 + \hat{\lambda} \left\| \underbrace{\left( \mathbf{I} \otimes (\mathbf{\Sigma}_{\mathbf{X}_k}^2 + \gamma \mathbf{I})^{p/4-1/2} \right)}_{=: (\mathbf{W}_p^\gamma)_k} \underbrace{(\mathbf{V}_{\mathbf{X}_k}^T \otimes \mathbf{U}_{\mathbf{X}_k}^T)}_{=: \mathbf{S}_k} \mathbf{x} \right\|_2^2.$$

325 In the above formulation,  $(\mathbf{W}_p^\gamma)_k$  is a diagonal weighting matrix and  $\mathbf{S}_k$  is an orthogonal matrix;  
326 both  $(\mathbf{W}_p^\gamma)_k$  and  $\mathbf{S}_k$  depend on the current approximation  $\mathbf{x}_k$  of the solution  $\mathbf{x}$ . Intuitively, the

327 matrix  $\mathbf{S}_k$  maps  $\mathbf{x}$  into the “singular value domain” of  $\mathbf{X}_k$  (and acts as an iteration-dependent  
 328 sparsity transform), and the matrix  $(\mathbf{W}_p^\gamma)_k$  assigns suitable weights that allow to approximate a  
 329  $p$ -norm of the singular values. Therefore, the penalization term in (3.5) can be interpreted as a  
 330 reweighted vectorial 2-norm, with respect to a transformation of the solution  $\mathbf{x}$ . For this reason,  
 331 the proposed approach is dubbed “IRN-NNRp” and is summarized in Algorithm 3.1.

---

**Algorithm 3.1** IRN-NNRp
 

---

- 1: Inputs:  $\mathbf{A}$ ,  $\mathbf{b}$ ,  $(\mathbf{W}_p^\gamma)_0 = \mathbf{I}$ ,  $\mathbf{S}_0 = \mathbf{I}$
- 2: **for**  $k = 0, 1, \dots$  until a stopping criterion is satisfied **do**
- 3:     Solve problem (3.5)
- 4:     “Decrease”  $\gamma$
- 5:     Update  $(\mathbf{W}_p^\gamma)_{k+1}$  and  $\mathbf{S}_{k+1}$
- 6: **end for**

---

332 The next subsection derives new strategies for the efficient solution of the sequence of sub-  
 333 problems (3.5) appearing in Algorithm 3.1.

334 **3.2. Solution of problem (3.5) via Krylov methods.** First rewrite problem (3.5) using  
 335 an appropriate change of variable as

336 (3.6) 
$$\hat{\mathbf{x}}_{k+1} = \arg \min_{\hat{\mathbf{x}}} \|\mathbf{A}\mathbf{S}_k^T(\mathbf{W}_p^\gamma)_k^{-1}\hat{\mathbf{x}} - \mathbf{b}\|_2^2 + \hat{\lambda}\|\hat{\mathbf{x}}\|_2^2, \text{ with } \hat{\mathbf{x}} = (\mathbf{W}_p^\gamma)_k\mathbf{S}_k\mathbf{x}.$$

337 Note that

338 (3.7) 
$$\mathbf{S}_k^T = \mathbf{S}_k^{-1} = \mathbf{V}_{\mathbf{X}_k} \otimes \mathbf{U}_{\mathbf{X}_k} \quad \text{and} \quad (\mathbf{W}_p^\gamma)_k^{-1} = \mathbf{I} \otimes (\mathbf{\Sigma}_{\mathbf{X}_k}^2 + \gamma\mathbf{I})^{1/2-p/4},$$

339 so that the above transformations (inversion of an orthogonal and a diagonal matrix) are numeri-  
 340 cally affordable by exploiting properties of Kronecker products. The Tikhonov-regularized problem  
 341 (3.6) in standard form is equivalent to the Tikhonov-regularized problem (3.5) in general form.  
 342 Many Krylov subspace methods based on the Golub-Kahan Bidiagonalization (GKB) or Arnoldi  
 343 algorithms can be employed to approximate the solution of (3.6). Moreover, if the regularization  
 344 parameter  $\hat{\lambda}$  is not known a priori, many efficient strategies to set its value adaptively within the  
 345 sequence of projected problems can be used (i.e., in the framework of hybrid methods; see [18, 8]).  
 346 The matrices  $\mathbf{S}_k$  and  $(\mathbf{W}_p^\gamma)_k^{-1}$  can be formally thought of as preconditioners for the original problem  
 347 (1.1), whose purpose is to enforce additional regularization into the solution subspace, rather than  
 348 speeding-up the convergence of linear solvers applied to (1.1).

349 *Methods based on the GKB algorithm.* The  $m$ th step of the GKB algorithm applied to the  
 350 matrix  $\mathbf{A}\mathbf{S}_k^T(\mathbf{W}_p^\gamma)_k^{-1}$  with starting vector  $\mathbf{b}$  (i.e., taking  $\mathbf{x}_0 = \mathbf{0}$ ) can be expressed by the following  
 351 partial matrix factorizations

352 (3.8) 
$$(\mathbf{A}\mathbf{S}_k^T(\mathbf{W}_p^\gamma)_k^{-1})\mathbf{V}_m = \mathbf{U}_{m+1}\bar{\mathbf{B}}_m \quad \text{and} \quad ((\mathbf{W}_p^\gamma)_k^{-1}\mathbf{S}_k\mathbf{A}^T)\mathbf{U}_{m+1} = \mathbf{V}_{m+1}\mathbf{B}_{m+1}^T,$$

353 where  $\mathbf{U}_j \in \mathbb{R}^{M \times j}$  and  $\mathbf{V}_j \in \mathbb{R}^{N \times j}$  (with  $j = m, m+1$  and  $\mathbf{U}_j\mathbf{e}_1 = \mathbf{b}/\|\mathbf{b}\|_2$ ) have orthonormal  
 354 columns, and  $\mathbf{B}_{m+1} \in \mathbb{R}^{(m+1) \times (m+1)}$  is lower bidiagonal (with  $\bar{\mathbf{B}}_m$  obtained by removing the last  
 355 column of  $\mathbf{B}_{m+1}$ ). The orthonormal columns of  $\mathbf{V}_m$  are such that

356 
$$\mathcal{R}(\mathbf{V}_m) = \mathcal{K}_m \left( ((\mathbf{W}_p^\gamma)_k^{-1}\mathbf{S}_k\mathbf{A}^T)(\mathbf{A}\mathbf{S}_k^T(\mathbf{W}_p^\gamma)_k^{-1}), ((\mathbf{W}_p^\gamma)_k^{-1}\mathbf{S}_k\mathbf{A}^T)\mathbf{b} \right).$$

357 We find an approximate solution of (3.6) by imposing  $\hat{\mathbf{x}} \in \mathcal{R}(\mathbf{V}_m)$ , i.e.,  $\hat{\mathbf{x}}_m = \mathbf{V}_m \mathbf{y}_m$ , where, by  
 358 exploiting the first decomposition in (3.8) and the properties of the matrices appearing therein,  
 359  $\mathbf{y}_m \in \mathbb{R}^m$  is such that

360 (3.9) 
$$\mathbf{y}_m = \arg \min_{\mathbf{y} \in \mathbb{R}^m} \|\bar{\mathbf{B}}_m \mathbf{y} - \mathbf{b}\|_2^2 + \hat{\lambda}_m \|\mathbf{y}\|_2^2.$$

361 We used the notation  $\hat{\lambda}_m$  for the regularization parameter to highlight that its value can be adaptively set within the iterations. The approximate solution to problem (3.5) is such that

363 (3.10) 
$$\mathbf{x} = \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1} \hat{\mathbf{x}} \in \mathcal{K}_m \left( (\mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-2} \mathbf{S}_k) \mathbf{A}^T \mathbf{A}, (\mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-2} \mathbf{S}_k) \mathbf{A}^T \mathbf{b} \right).$$

364 Looking at the above approximation subspace for the solution  $\mathbf{x}$ , it is evident that the “preconditioner” acts by first mapping into the “singular value domain” (by applying  $\mathbf{S}_k$ ), enforcing sparsity  
 365 in the singular values (by reweighting with  $(\mathbf{W}_p^\gamma)_k^{-2}$ ), and eventually transforming back into the  
 366 “solution domain” (by applying  $\mathbf{S}_k^T$ ).

367 *Methods based on the Arnoldi algorithm.* If  $\mathbf{A}$  is square, the  $m$ th step of the Arnoldi algorithm  
 368 applied to the matrix  $\mathbf{A} \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1}$  with starting vector  $\mathbf{b}$  (i.e., taking  $\mathbf{x}_0 = \mathbf{0}$ ) can be expressed  
 369 by the following partial matrix factorization

371 (3.11) 
$$(\mathbf{A} \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1}) \mathbf{V}_m = \mathbf{V}_{m+1} \mathbf{H}_m,$$

372 where  $\mathbf{V}_j \in \mathbb{R}^{N \times j}$  (with  $j = m, m+1$  and  $\mathbf{V}_j \mathbf{e}_1 = \mathbf{b} / \|\mathbf{b}\|_2$ ) have orthonormal columns such that

373 
$$\mathcal{R}(\mathbf{V}_m) = \mathcal{K}_m (\mathbf{A} \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1}, \mathbf{b}),$$

and  $\mathbf{H}_m \in \mathbb{R}^{(m+1) \times m}$  is upper Hessenberg. Similarly to the GKB case, we find an approximate solution of (3.6) by imposing  $\hat{\mathbf{x}} \in \mathcal{R}(\mathbf{V}_m)$  and by solving a projected Tikhonov problem of order  $m$ . The approximate solution to problem (3.5) is such that

$$\mathbf{x} = \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1} \hat{\mathbf{x}} \in \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1} \mathcal{K}_m (\mathbf{A} \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1}, \mathbf{b}),$$

374 where

375 
$$\mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1} \mathcal{K}_m (\mathbf{A} \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1}, \mathbf{b}) = \text{span} \{ \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1} \mathbf{b}, \dots, (\mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1} \mathbf{A})^{m-1} \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1} \mathbf{b} \}$$
  
 376 
$$= \mathcal{K}_m (\mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1} \mathbf{A}, \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1} \mathbf{b}).$$

377 Contrarily to the GKB case, we immediately notice that, in this context,  $\mathbf{x}$  does not belong to a  
 378 meaningful approximation subspace. Indeed, just by looking at the first vector:  $\mathbf{b}$  is in the image  
 379 space and  $(\mathbf{W}_p^\gamma)_k^{-1}$  is supposed to act on the singular value space of  $\mathbf{X}_k$ , so  $(\mathbf{W}_p^\gamma)_k^{-1} \mathbf{b}$  is hard to  
 380 interpret; furthermore,  $\mathbf{S}_k^T$  is supposed to link the singular value space of  $\mathbf{X}_k$  to the image space,  
 381 so  $\mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1} \mathbf{b}$  is also hard for us to interpret. Although the generated solution subspace is not  
 382 meaningful for our applications, it may still have the potential to be a good subspace in other  
 383 contexts. Similarly to what is proposed in [1, 4], where the Arnoldi algorithm is applied to a  
 384 regularized problem that enforces sparsity in the wavelet domain, we propose to fix this issue by  
 385 incorporating  $\mathbf{S}_k$  also as an orthogonal left “preconditioner” for the original system (1.1) so that, by  
 386 exploiting the invariance of the vectorial 2-norm under orthogonal transformations, problem (3.6)  
 387 can be equivalently reformulated as

388 (3.12) 
$$\hat{\mathbf{x}}_{k+1} = \arg \min_{\hat{\mathbf{x}}} \| \mathbf{S}_k (\mathbf{A} \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1} \hat{\mathbf{x}} - \mathbf{b}) \|_2^2 + \hat{\lambda} \|\hat{\mathbf{x}}\|_2^2, \text{ with } \hat{\mathbf{x}} = (\mathbf{W}_p^\gamma)_k \mathbf{S}_k \mathbf{x}.$$

389 The (right and left) preconditioned Arnoldi algorithm applied to problem (3.12) can now be ex-  
 390 pressed by the following partial matrix factorization

391 (3.13) 
$$(\mathbf{S}_k \mathbf{A} \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1}) \mathbf{V}_m = \mathbf{V}_{m+1} \mathbf{H}_m.$$

392 We find an approximate solution of (3.12) by imposing  $\hat{\mathbf{x}} \in \mathcal{R}(\mathbf{V}_m) = \mathcal{K}_m(\mathbf{S}_k \mathbf{A} \mathbf{S}_k^T \mathbf{W}^{-1}, \mathbf{S}_k \mathbf{b})$ , i.e.,  
 393  $\hat{\mathbf{x}}_m = \mathbf{V}_m \mathbf{y}_m$ , where, by exploiting (3.13) and the properties of the matrices appearing therein,  
 394  $\mathbf{y}_m \in \mathbb{R}^m$  is such that

395 (3.14) 
$$\mathbf{y}_m = \arg \min_{\mathbf{y} \in \mathbb{R}^m} \|\mathbf{H}_m \mathbf{y} - \|\mathbf{b}\|_2 \mathbf{e}_1\|_2^2 + \hat{\lambda}_m \|\mathbf{y}\|_2^2.$$

396 Hence

397 (3.15) 
$$\mathbf{x} \in \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1} \mathcal{K}_m(\mathbf{S}_k \mathbf{A} \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1}, \mathbf{S}_k \mathbf{b}) = \mathcal{K}_m(\mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1} \mathbf{S}_k \mathbf{A}, \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1} \mathbf{S}_k \mathbf{b}),$$

398 which is suitable for approximating the solution. The new methods based on the GKB algorithm  
 399 (for generic matrices) and Arnoldi algorithm (only if  $\mathbf{A} \in \mathbb{R}^{N \times N}$ ) are dubbed “IRN-LSQR-NNRp”  
 400 and “IRN-GMRES-NNRp”, respectively, and are summarized in Algorithm 3.2.

---

**Algorithm 3.2** IRN-LSQR-NNRp and IRN-GMRES-NNRp

---

```

1: Inputs:  $\mathbf{A}$ ,  $\mathbf{b}$ ,  $(\mathbf{W}_p^\gamma)_0 = \mathbf{I}$ ,  $\mathbf{S}_0 = \mathbf{I}$ 
2: for  $k = 0, 1, \dots$  until a stopping criterion is satisfied do
3:   for  $m = 1, 2, \dots$  until a stopping criterion is satisfied do
4:     Update the factorizations (3.8) and (3.13), respectively
5:     Solve the projected problem (3.9) and (3.14), respectively, tuning  $\hat{\lambda}_m$  if necessary
6:   end for
7:   “Decrease”  $\gamma$ 
8:   Update the new  $(\mathbf{W}_p^\gamma)_{k+1}$  and  $\mathbf{S}_{k+1}$ 
9: end for

```

---

401 **3.3. Solution through flexible Krylov subspaces.** Problem (1.3) reformulated as (3.6)  
 402 allows us to naturally apply the flexible Golub-Kahan (FGK) and flexible Arnoldi algorithms.  
 403 Indeed, instead of updating the “preconditioners”  $\mathbf{S}_k$  and  $(\mathbf{W}_p^\gamma)_k$  at the  $k$ th outer iteration of the  
 404 nested iteration schemes of Algorithm 3.2, we propose to consider new “preconditioners” as soon as  
 405 a new approximation of the solution is available, i.e., at each iteration of a Krylov subspace solver.  
 406 Therefore, at the  $(i+1)$ th iteration of the new solvers, the “preconditioners”  $(\mathbf{W}_p^\gamma)_i$  and  $\mathbf{S}_i$  are  
 407 computed as in (3.7), but using the SVD of the  $i$ th approximate solution

408 
$$\mathbf{X}_i = \text{vec}^{-1}(\mathbf{x}_i) = \mathbf{U}_{\mathbf{X}_i} \boldsymbol{\Sigma}_{\mathbf{X}_i} \mathbf{V}_{\mathbf{X}_i}^T, \quad \text{for } i = 1, \dots, k-1,$$

409 with  $(\mathbf{W}_p^\gamma)_0 = \mathbf{I}$  and  $\mathbf{S}_0 = \mathbf{I}$ . In order to incorporate iteration-dependent preconditioning, the  
 410 flexible versions of the Golub-Kahan and Arnoldi factorizations have to be used.

411 Namely, at the  $i$ th iteration, the new instance of the FGK algorithm updates partial factoriza-  
 412 tions of the form (2.8), i.e.,  $\mathbf{A} \mathbf{Z}_i = \mathbf{U}_{i+1} \mathbf{M}_i$  and  $\mathbf{A}^T \mathbf{U}_{i+1} = \mathbf{V}_{i+1} \mathbf{T}_{i+1}$ , where

413 
$$\mathbf{Z}_i = [\mathbf{S}_0^T (\mathbf{W}_p^\gamma)_0^{-2} \mathbf{S}_0 \mathbf{v}_1, \dots, \mathbf{S}_{i-1}^T (\mathbf{W}_p^\gamma)_{i-1}^{-2} \mathbf{S}_{i-1} \mathbf{v}_i], \quad \mathbf{v}_1 = \mathbf{A}^T \mathbf{b} / \|\mathbf{A}^T \mathbf{b}\|_2.$$

414 Taking  $\mathbf{x}_0 = \mathbf{0}$ , the  $i$ th approximate solution is such that  $\mathbf{x}_i = \mathbf{Z}_i \mathbf{y}_i$ , where

415 (3.16) 
$$\mathbf{y}_i = \arg \min_{\mathbf{y} \in \mathbb{R}^i} \|\mathbf{M}_i \mathbf{y} - \|\mathbf{b}\|_2 \mathbf{e}_1\|_2^2 + \hat{\lambda}_i \|\mathbf{y}\|_2^2.$$

416 Note that the subspace for the solution  $\mathcal{R}(\mathbf{Z}_i)$  can be regarded as a generalization of the subspace  
417 (3.10) computed when considering preconditioned GKB within the IRN-LSQR-NNRp method. The  
418 new method is dubbed “FLSQR-NNRp”, and is summarized in Algorithm 3.3.

419 For  $\mathbf{A} \in \mathbb{R}^{N \times N}$  and  $\mathbf{x}_0 = \mathbf{0}$ , at the  $i$ th iteration, the new instance of the flexible Arnoldi  
420 algorithm updates a partial factorization of the form (2.7), with  $k = i$ , and generates

421 
$$\mathbf{Z}_i = [\mathbf{S}_0^T (\mathbf{W}_p^\gamma)_0^{-1} \mathbf{S}_0 \mathbf{v}_1, \dots, \mathbf{S}_{i-1}^T (\mathbf{W}_p^\gamma)_{i-1}^{-1} \mathbf{S}_{i-1} \mathbf{v}_i], \quad \mathbf{v}_1 = \mathbf{b} / \|\mathbf{b}\|_2,$$

422 where both right and left preconditioners are used analogously to IRN-GMRES-NNRp. The  $i$ th  
423 approximate solution is such that  $\mathbf{x}_i = \mathbf{Z}_i \mathbf{y}_i$ , where

424 (3.17) 
$$\mathbf{y}_i = \arg \min_{\mathbf{y} \in \mathbb{R}^i} \|\mathbf{H}_i \mathbf{y} - \|\mathbf{b}\|_2 \mathbf{e}_1\|_2^2 + \hat{\lambda}_i \|\mathbf{y}\|_2^2.$$

425 Note that the subspace for the solution  $\mathcal{R}(\mathbf{Z}_i)$  can be regarded as a generalization of the subspace  
426 (3.15) computed when considering the preconditioned Arnoldi algorithm within the IRN-GMRES-  
427 NNRp method. The new method is dubbed “FGMRES-NNRp”, and is summarized in Algorithm  
428 3.3.

---

**Algorithm 3.3** FLSQR-NNRp and FGMRES-NNRp

---

1: Inputs:  $\mathbf{A}$ ,  $\mathbf{b}$ ,  $(\mathbf{W}_p^\gamma)_0 = \mathbf{I}$ ,  $\mathbf{S}_0 = \mathbf{I}$   
2: **for**  $i = 1, 2, \dots$  until a stopping criterion is satisfied **do**  
3:   Update a factorization of the form (2.8) and (2.7), respectively, to expand the space  $\mathcal{R}(\mathbf{Z}_i)$   
4:   Solve the projected problem (3.16) and (3.17), respectively, tuning  $\hat{\lambda}_i$  if necessary  
5:   “Decrease”  $\gamma$   
6:   Update the new  $(\mathbf{W}_p^\gamma)_i$  and  $\mathbf{S}_i$ , using the SVD  $\mathbf{X}_i = \text{vec}^{-1}(\mathbf{x}_i) = \mathbf{U}_{\mathbf{X}_i} \boldsymbol{\Sigma}_{\mathbf{X}_i} \mathbf{V}_{\mathbf{X}_i}^T$ .  
7: **end for**

---

429 Note that, although the approach of Algorithm 3.3 is quite heuristic, it avoids nested iteration  
430 cycles and computes only one approximation subspace for the solution of (1.3), where low-rank  
431 penalization is adaptively incorporated. Because of this, in many situations, Algorithm 3.3 com-  
432 putes solutions of quality comparable to the ones computed by Algorithm 3.2, with a significant  
433 reduction in the number of iterations. We should also mention that, in the framework of affine rank  
434 minimization problems, [25] outlines an algorithm that avoids inner projected gradient iterations  
435 for the solution of each quadratic subproblem in the sequence generated within the IRN strategy.

436 Finally, we underline that, within the framework of flexible Krylov subspaces, the approximation  
437 subspaces  $\mathcal{R}(\mathbf{Z}_i)$  for the  $i$ th approximate solution can be further modified, with some insight into  
438 the desired properties of the solution. Indeed, since the  $i$ th basis vector for the solution is of the form  
439  $\mathbf{z}_i = \mathbf{S}_{i-1}^T (\mathbf{W}_p^\gamma)_{i-1}^{-2} \mathbf{S}_{i-1} \mathbf{v}_i$  for FLSQR-NNRp, and  $\mathbf{z}_i = \mathbf{S}_{i-1}^T (\mathbf{W}_p^\gamma)_{i-1}^{-1} \mathbf{S}_{i-1} \mathbf{v}_i$  for FGMRES-NNRp,  
440 one can consider alternative “preconditioners”  $\mathbf{S}_{i-1}$  and  $(\mathbf{W}_p^\gamma)_{i-1}$  that are still effective in delivering  
441 low-rank solutions. For instance, focusing on FGMRES, and given  $\mathbf{v}_i = \mathbf{V}_i \mathbf{e}_i$ , where  $\mathbf{V}_i$  is the matrix  
442 appearing on the right-hand side of the factorization (2.8), and given the SVD of  $\text{vec}^{-1}(\mathbf{v}_i) =$   
443  $\mathbf{U}_{\mathbf{V}_i} \boldsymbol{\Sigma}_{\mathbf{V}_i} \mathbf{V}_{\mathbf{V}_i}^T$ , one can take

444 (3.18) 
$$\mathbf{S}_{i-1} = \mathbf{V}_{\mathbf{V}_i}^T \otimes \mathbf{U}_{\mathbf{V}_i}^T \quad \text{and} \quad (\mathbf{W}_p^\gamma)_{i-1}^{-1} = \mathbf{I} \otimes (\boldsymbol{\Sigma}_{\mathbf{V}_i})^{1-p/2},$$

445 and as a result,

$$\begin{aligned} 446 \quad \mathbf{S}_{i-1} \mathbf{v}_i &= \text{vec}(\mathbf{U}_{\mathbf{V}_i}^T \text{vec}^{-1}(\mathbf{v}_i) \mathbf{V}_{\mathbf{V}_i}) = \text{vec}(\boldsymbol{\Sigma}_{\mathbf{V}_i}), \\ 447 \quad (\mathbf{W}_p^\gamma)_{i-1}^{-1} \mathbf{S}_{i-1} \mathbf{v}_i &= \text{vec}((\boldsymbol{\Sigma}_{\mathbf{V}_i})^{1-p/2} \boldsymbol{\Sigma}_{\mathbf{V}_i}) = \text{vec}((\boldsymbol{\Sigma}_{\mathbf{V}_i})^{2-p/2}), \\ 448 \quad \mathbf{S}_{i-1}^T (\mathbf{W}_p^\gamma)_{i-1}^{-1} \mathbf{S}_{i-1} \mathbf{v}_i &= \text{vec}(\mathbf{U}_{\mathbf{V}_i} ((\boldsymbol{\Sigma}_{\mathbf{V}_i})^{2-p/2}) \mathbf{V}_{\mathbf{V}_i}^T) = \mathbf{z}_i, \end{aligned}$$

449 so that the singular values of  $\text{vec}^{-1}(\mathbf{v}_i)$  are rescaled: taking  $0 < p \leq 1$ , the power of  $\boldsymbol{\Sigma}_{\mathbf{V}_i}$ ,  $2 - p/2$ ,  
450 is always larger than 1, which means that large singular values get magnified and small singular  
451 values become even smaller. In this way, the gaps between singular values are emphasized and to  
452 some extent contribute to the low rank properties of the basis vectors. Similar derivations hold for  
453 FLSQR. Hence, methods analogous to LR-FLSQR and LR-FGMRES are obtained, and are dubbed  
454 FGMRES-NNRp(v) and FLSQR-NNRp(v), respectively.

455 **4. Implementation details.** All the methods considered in this paper are iterative, and  
456 therefore at least one suitable stopping criterion should be set for the iterations. When considering  
457 hybrid formulations (like the ones in Algorithms 3.2 and 3.3), one could simultaneously set a good  
458 value for the regularization parameter  $\hat{\lambda}_j$  at the  $j$ th iteration, as well as properly stop the iterations.  
459 Strategies for achieving this are already available in the literature (see [6, 8]).

460 Assuming that a good estimate for the norm of the noise  $\boldsymbol{\eta}$  affecting the right-hand-side of (1.1)  
461 is available, i.e.,  $\varepsilon \simeq \|\boldsymbol{\eta}\|_2$ , one can consider the discrepancy principle and stop the iterative scheme  
462 at the first iteration  $j$  such that

$$463 \quad (4.1) \quad \|\mathbf{b} - \mathbf{A}\mathbf{x}_j\|_2 \leq \theta \varepsilon, \quad \text{where } \theta > 1, \theta \simeq 1 \text{ is a safety threshold.}$$

464 Applying the discrepancy principle to LR-FGMRES (Algorithm 2.1) and LR-FLSQR (Algorithm  
465 2.2) is particularly convenient, as the norm of the residual on the left-hand side of (4.1) can be  
466 monitored using projected quantities, i.e.,

$$467 \quad \|\|\mathbf{b}\|_2 \mathbf{e}_1 - \mathbf{H}_j \mathbf{y}_j\|_2 \quad \text{for LR-FGMRES} \quad \text{and} \quad \|\|\mathbf{b}\|_2 \mathbf{e}_1 - \mathbf{M}_j \mathbf{y}_j\|_2 \quad \text{for LR-FLSQR,}$$

468 where decompositions (2.7) and (2.8), respectively, and the properties of the matrices appearing  
469 therein, have been exploited. When running hybrid methods (see Algorithms 3.2 and 3.3), we  
470 employ the so-called “secant method”, which updates the regularization parameter for the projected  
471 problem in such a way that stopping by the discrepancy principle is ensured. We highlight again  
472 that the quantities needed to implement the “secant method” (namely, the norm of the residual and  
473 the discrepancy associated to (3.6) at each iteration) can be conveniently monitored using projected  
474 quantities: this is obvious for IRN-LSQR-NNRp and FLSQR-NNRp, as only right-“preconditioning”  
475 is employed; it is less obvious for IRN-GMRES-NNRp and FGMRES-NNRp, but since the left-  
476 “preconditioner” is orthogonal, one can still write

$$477 \quad \|\mathbf{b} - \mathbf{A}\mathbf{x}_j\|_2 = \|\mathbf{S}_k \mathbf{b} - \mathbf{S}_k \mathbf{A} \mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1} \hat{\mathbf{x}}_j\|_2 = \|\|\mathbf{b}\|_2 \mathbf{e}_1 - \mathbf{H}_j \mathbf{y}_j\|_2.$$

478 Note that all the methods in Algorithm 3.2 and 3.3 can also run with  $\hat{\lambda} = 0$ , and still achieve  
479 low-rank approximate solutions: this is because the approximation subspace for the solution in-  
480 corporates regularizing “preconditioning” (see [12, 14] for details on this approach in the case of  
481 smoothing “preconditioning” with finite-difference approximations of derivatives operators). Fi-  
482 nally, when dealing with the inner-outer iteration scheme of Algorithm 3.2, in addition to a pa-  
483 rameter choice strategy and stopping criterion for the hybrid projected problems (3.9) and (3.14),

484 one should also consider a stopping criterion for the outer iterations. We propose to do this by  
 485 monitoring the norm of the difference of the singular values (normalized by the largest singular  
 486 value so that  $\sigma_1(\Sigma_{\mathbf{X}_{k+1}}) = \sigma_1(\Sigma_{\mathbf{X}_k}) = 1$ ) of two approximations of the solution of (1.3) obtained  
 487 at two consecutive outer iterations of Algorithm 3.2, i.e., we stop as soon as

$$488 \quad (4.2) \quad \|\text{diag}(\Sigma_{\mathbf{X}_{k+1}}) - \text{diag}(\Sigma_{\mathbf{X}_k})\|_2 < \tau_\sigma, \quad k = 1, 2, \dots,$$

489 where  $\text{vec}^{-1}(\mathbf{x}_i) = \mathbf{X}_i = \mathbf{U}_{\mathbf{X}_i} \Sigma_{\mathbf{X}_i} \mathbf{V}_{\mathbf{X}_i}^T$  ( $i = k, k+1$ ), and  $\tau_\sigma > 0$  is a user-specified threshold. If  
 490 no significant changes happen in the rank and singular values of two consecutive approximations of  
 491 the solution, then (4.2) is satisfied.

492 We conclude this section with a few remarks about the computational cost of the proposed  
 493 methods. Note that, if  $\mathbf{A} \in \mathbb{R}^{N \times N}$ , IRN-GMRES-NNR $p$  is intrinsically cheaper than IRN-LSQR-  
 494 NNR $p$  (since, at each iteration, the former requires only one matrix-vector product with  $\mathbf{A}$ , while  
 495 the latter requires one matrix-vector product with  $\mathbf{A}$  and one with  $\mathbf{A}^T$ ). However, methods based  
 496 on the Arnoldi algorithm are typically less successful than methods based on the GKB algorithm  
 497 for regularization; see [15]. Other key operations for implementing our proposed methods are the  
 498 computation of the SVDs of relevant quantities, and/or the application of the “preconditioners” in  
 499 (3.18). Namely, each iteration of LR-FGMRES, LR-FLSQR, FLSQR-NNR $p$ , and FGMRES-NNR $p$   
 500 requires the computation of the SVD of an  $n \times n$  matrix, which amounts to  $\mathcal{O}(n^3) = \mathcal{O}(N^{3/2})$   
 501 floating point operations. When considering IRN-LSQR-NNR $p$  and IRN-GMRES-NNR $p$ , only the  
 502 SVD of the approximate solution should be computed once at each outer iteration. However,  
 503 each inner iteration of IRN-LSQR-NNR $p$  and IRN-GMRES-NNR $p$ , as well as each iteration of  
 504 FLSQR-NNR $p$  and FGMRES-NNR $p$ , requires the computation of matrix-vector products of the  
 505 form  $\mathbf{S}_k^T (\mathbf{W}_p^\gamma)_k^{-1} \mathbf{v}_i$ : this can be achieved within a two-step process, where first the rescaling  $\tilde{\mathbf{v}}_i =$   
 506  $(\mathbf{W}_p^\gamma)_k^{-1} \mathbf{v}_i$  is applied with  $\mathcal{O}(N) = \mathcal{O}(n^2)$  floating-point operations, and then  $\mathbf{S}_k^T \tilde{\mathbf{v}}_i = (\mathbf{V}_{\mathbf{X}_k} \otimes$   
 507  $\mathbf{U}_{\mathbf{X}_k}) \tilde{\mathbf{v}}_i$  is computed. While a straightforward implementation of the latter would require  $\mathcal{O}(N^2) =$   
 508  $\mathcal{O}(n^4)$  floating-point operations, exploiting Kronecker product properties can bring down the cost of  
 509 this operation to  $\mathcal{O}(n^3) = \mathcal{O}(N^{3/2})$ , by computing  $\mathbf{S}_k^T \tilde{\mathbf{v}}_i = \text{vec}(\mathbf{U}_{\mathbf{X}_k}^T \text{vec}^{-1}(\mathbf{v}_i) \mathbf{V}_{\mathbf{X}_k})$ . We emphasize  
 510 that the incorporation of the flexible “preconditioners” does not increase the order of computational  
 511 complexity and is very practical, since operations are done on matrices of size  $n \times n$  ( $n$  is the  
 512 dimension of the image). In particular, the full SVD’s of  $n \times n$  matrices can be computed easily  
 513 with MATLAB’s built-in `svd` function (this is what we used in our numerical experiments); one  
 514 can also use Lanczos bidiagonalization [20] or randomized SVD [11] to compute the approximate  
 515 leading singular values and vectors.

516 **5. Experimental Results.** In this section, we present results of numerical experiments on  
 517 several image processing problems to demonstrate the performance of the new IRN-GMRES-NNR $p$ ,  
 518 IRN-LSQR-NNR $p$ , FGMRES-NNR $p$ , and FLSQR-NNR $p$  methods. Variants of FGMRES-NNR $p$   
 519 and FLSQR-NNR $p$  (marked with “(v)”) are also tested. To shorten the acronyms, we omit  $p$  when  
 520  $p = 1$ , which means IRN-GMRES-NNR denotes IRN-GMRES-NNR $p$  when  $p = 1$ , etc. Examples  
 521 are generated using *IR Tools* [6].

522 In general, we compare the performances of the proposed methods to standard Krylov subspace  
 523 methods GMRES and LSQR, also used in a hybrid fashion. We also test against the low-rank  
 524 projection methods described in Section 2 and the singular value thresholding (SVT) algorithm [3],  
 525 which was originally proposed for low-rank matrix completion problems, and can be extended to  
 526 problems with linear constraints of the form

$$527 \quad (5.1) \quad \min_{\mathbf{x}} \tau \|\text{vec}^{-1}(\mathbf{x})\|_* + \frac{1}{2} \|\text{vec}^{-1}(\mathbf{x})\|_F^2 \quad \text{subject to} \quad \mathbf{A}\mathbf{x} = \mathbf{b}, \text{ where } \text{vec}^{-1}(\mathbf{x}) = \mathbf{X}.$$

528 The  $k$ th iteration of the SVT algorithm for (5.1) reads

$$529 \quad (5.2) \quad \begin{cases} \mathbf{X}_k = \mathcal{D}_\tau(\mathbf{A}^T \mathbf{y}_{k-1}) \\ \mathbf{y}_k = \mathbf{y}_{k-1} + \delta_k(\mathbf{b} - \mathbf{A}\mathbf{x}_k) \end{cases},$$

530 where  $\delta_k$  is a step size and  $\mathcal{D}_\tau$  is the *singular value shrinkage operator*, defined as

$$531 \quad \mathcal{D}_\tau(\mathbf{X}) = \mathbf{U}_\mathbf{X} \mathcal{D}_\tau(\Sigma_\mathbf{X}) \mathbf{V}_\mathbf{X}^T, \quad \mathcal{D}_\tau(\Sigma_\mathbf{X}) = \max\{\Sigma_\mathbf{X} - \tau \mathbf{I}, \mathbf{0}\},$$

532 where  $\mathbf{X} = \mathbf{U}_\mathbf{X} \Sigma_\mathbf{X} \mathbf{V}_\mathbf{X}^T$  is the SVD of  $\mathbf{X}$ ,  $\mathbf{0}$  is a matrix of zeros, and the maximum is taken  
533 component-wise. Although (5.1) is not the same problem as (1.2), they are similar in that both  
534 penalize the nuclear norm of  $\text{vec}^{-1}(\mathbf{x})$  and they respect the constraint  $\mathbf{A}\mathbf{x} = \mathbf{b}$ .

535 The Schatten- $p$  function is introduced in Section 3.1 as a smooth approximation for  $\|\cdot\|_{*,p}$ . The  
536 smooth approximation allows for further derivations including computation of optimality conditions,  
537 where the “smoothing coefficient”  $\gamma$  is crucial. However,  $\gamma$  is not so crucial numerically, and we  
538 can set it to 0 without affecting the results (compared to using a very small  $\gamma$ ). However, to be  
539 consistent with Algorithms 3.2 and 3.3, in our experiments, we have set the initial value of  $\gamma$  to  
540  $10^{-10}$ , and every time we need to decrease  $\gamma$ , we divide the current  $\gamma$  value by 2.

541 Regarding the comparisons with the low-rank projection methods presented in Section 2, there  
542 are no universal and theoretically informed ways of choosing the truncation ranks for the solutions  
543 and for the basis vectors of the solution subspace. Hence, for all test problems, we experiment  
544 on a reasonable number of trials, each with different truncation rank choices, and select the best  
545 performing rank out of all ranks tested. For simplicity, we consider the same truncation rank for  
546 basis vectors and solutions ( $\tau_{\kappa_B} = \tau_\kappa$ ). We follow the same process to choose the number of restarts  
547 and the number of iterations for each restart for RS-LR-GMRES, as well as the shrinkage threshold  
548  $\tau$  in SVT; strategies to select the step size for SVT are described in [3].

549 *Example 1: Binary Star.* We consider an image deblurring problem involving a binary star test  
550 image of size  $256 \times 256$ : this test image has rank 2. The true image is displayed in the leftmost  
551 frame of Figure 2. A standard Gaussian blur is applied to the test image, and Gaussian white  
552 noise of level  $\|\boldsymbol{\eta}\|_2/\|\mathbf{b}^{\text{ex}}\|_2 = 10^{-3}$  is added. The blurred and noisy image is shown in Figure 2,  
553 second frame from the left. Due to the presence of noise, the blurred image has full rank. For this  
554 example, the blurring operator  $\mathbf{A}$  is square of size  $65536 \times 65536$ , hence GMRES-related methods  
555 are used for comparison, namely: GMRES, IRN-GMRES-NNR, FGMRES-NNR, LR-FGMRES and  
556 RS-LR-GMRES (i.e., we only consider the case  $p = 1$  here). SVT is also taken into consideration.  
557 The truncation rank for LR-FGMRES and RS-LR-GMRES is set to 30 for both basis vectors and  
558 approximate solutions (i.e.,  $\tau_{\kappa_B} = \tau_\kappa = 30$ ). RS-LR-GMRES is restarted every 40 iterations. The  
559 step size for SVT is set to be  $\delta_k = \delta = 2$  and the singular value shrinkage threshold  $\tau$  is 1. Note  
560 that, although the true solution has only rank 2, setting truncation rank to 2 for low rank methods  
561 produces solutions of worse quality (compared to setting the rank to 30). This might be because  
562 of the inherent ill-posedness of the problem, which makes it harder to obtain solutions with desired  
563 properties (e.g., with rank 2): indeed, if we do truncate to rank 2, a lot of information about the  
564 solution might be lost.

565 Figure 1 displays the histories of relative errors  $\|\mathbf{x}^{\text{ex}} - \mathbf{x}_m\|_2/\|\mathbf{x}^{\text{ex}}\|_2$  for the first 200 iterations  
566 (i.e.,  $m = 1, \dots, 200$ ) of these methods. For IRN-GMRES-NNR, 4 outer cycles were run, each with  
567 a maximum of 50 iterations: a new outer cycle is initiated as soon as the discrepancy principle is  
568 satisfied in the inner cycle. No additional regularization is used (i.e.,  $\hat{\lambda} = 0$  for all methods).

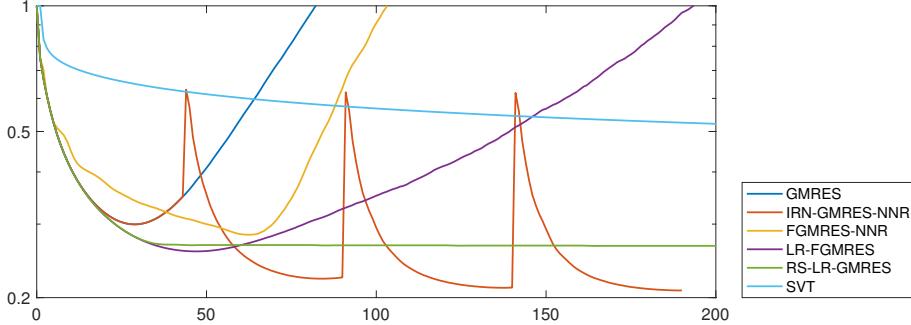


Fig. 1: *Example 1.* Relative errors vs. number of iterations for GMRES-based methods and SVT.

569 We can observe from Figure 1 that when the truncation ranks are chosen reasonably, LR-  
 570 FGMRES and RS-LR-GMRES both produce a less pronounced semi-convergence behavior than  
 571 GMRES, with LR-FGMRES attaining a smaller relative error than RS-LR-GMRES. FGMRES-  
 572 NNR, on the other hand, shows slower semi-convergence than GMRES, but it also converges to  
 573 a slightly better relative error. IRN-GMRES-NNR behaves especially well in this case, with sig-  
 574 nificantly reduced relative errors even at the end of the second outer cycle. The “jumps” at the  
 575 beginning of each outer IRN-GMRES-NNR iteration are due to the strategy used for restarts (the  
 576 older basis vectors are cleared at each restart).

577 Figure 2 displays the exact and the corrupted images, as well as the best reconstructions  
 578 computed by LR-FGMRES and IRN-GMRES-NNR: these are obtained at the 47th and the 189th  
 579 (total) iteration of LR-FGMRES and IRN-GMRES-NNR, respectively. By looking at relative errors  
 580 in Figure 1, we see that LR-FGMRES is the second best out of all methods, and yet the quality of  
 581 the solution is inferior compared to IRN-GMRES-NNR. Compared to the LR-FGMRES solution,  
 582 the IRN-GMRES-NNR one is a more truthful reconstruction of the exact image: it not only has  
 583 less artifacts immediately around the stars, but also has less background noise, in the sense that  
 584 the pixel intensities in the background are closer to the true ones (as it can be seen by looking  
 at the background color). More details can be spotted if we zoom into the central part ( $51 \times 51$

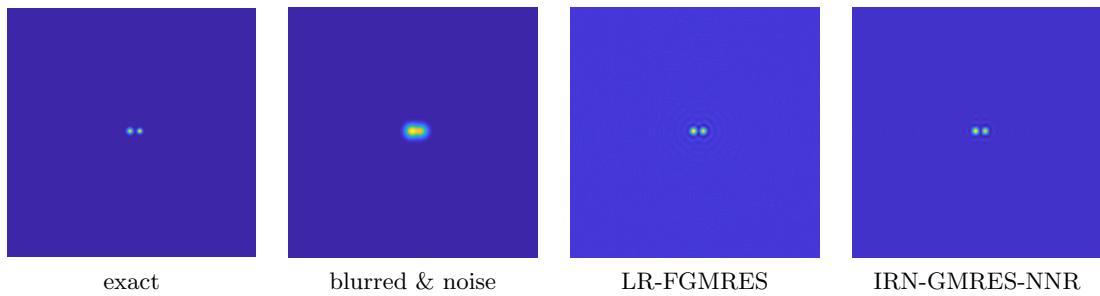


Fig. 2: *Example 1.* Exact and corrupted test images, together with the best reconstructions obtained by the LR-FGMRES and the IRN-GMRES-NNR methods.

pixels) of the computed images, as shown in Figure 3: here the best LR-FGMRES reconstruction, as well as the IRN-GMRES-NNR reconstructions at the end of the 2nd, 3rd and 4th inner cycles are displayed. It is clear that the IRN reconstructions are improving over each outer cycle, and that even the solution at the end of the 2nd cycle is significantly better than the LR-FGMRES solution, which means that not all four outer iterations need to be run to achieve solutions of superior qualities (even if more outer iterations allow further improvement in the solution). Figure

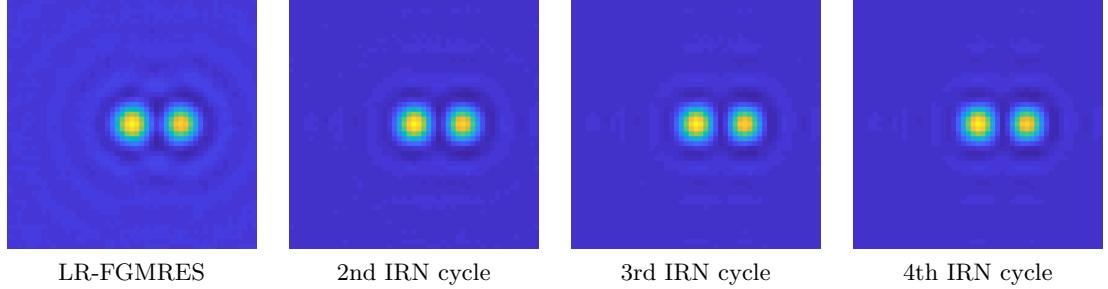


Fig. 3: *Example 1.* Zoom-ins of the LR-FGMRES best solution, and the IRN-GMRES-NNR solutions at the end of each inner cycle.

4 displays surfaces plots of the central part ( $51 \times 51$  pixels) of the test problem data, as well as the best reconstructed images (for RS-LR-GMRES and FGMRES-NNR these are obtained at the 165th and the 63th (total) iterations, respectively). It can be seen that for all the solutions shown here, the reconstructed central two stars approximately have the same intensity, although they are somewhat less intense than in the exact image. These surface plots also confirm our earlier observation that IRN-GMRES-NNR does an exceptional job removing background noise. In addition, FGMRES-NNR also gives a good background reconstruction. Finally, Figure 5 displays the singular values of the best solutions obtained adopting different GMRES-based solvers, as well as the evolution of the singular values of the solution at the end of each inner IRN-GMRES-NNR cycle (matching the reconstructions displayed in Figure 3). The singular values are “normalized” (i.e., divided by the largest one), and the graphs are cropped to focus on the relevant values. Looking at the displayed values, we can conclude that the solutions computed by all the low-rank solvers have indeed some low-rank properties, with very quickly-decaying large singular values followed by slowly-decaying smaller singular values. Compared to GMRES, the new FGMRES-NNR and IRN-GMRES-NNR methods give solutions that have a more pronounced low rank, as shown by the large gaps between the smaller singular values of the solutions computed by these methods. Regarding IRN-GMRES-NNR, the evolution of the singular values stabilizes as we move toward later outer iterations, which validates the stopping criterion proposed in Section 4.

*Example 2: Limited angle parallel-ray tomography.* We consider a computed tomography (CT) test problem, modeling an undersampled X-ray scan with parallel beam geometry. This is a so called “limited angle” CT reconstruction problem, where the viewing angles for the object span less than 180 degrees. A smooth and rank-4 phantom is considered, as shown in the leftmost frame of Figure 7 (note that the yellow straight lines in the northwestern corner do not belong to the phantom; they are shown for later purposes). Gaussian white noise of level  $10^{-2}$  is added to the data. The coefficient matrix  $\mathbf{A}$  has size  $32942 \times 65536$ . Because of this, among the new solvers, only LR-FLSQR, FLSQR-NNR $p$ , FLSQR-NNR $p(v)$ , and IRN-LSQR-NNR $p$  will be tested, against

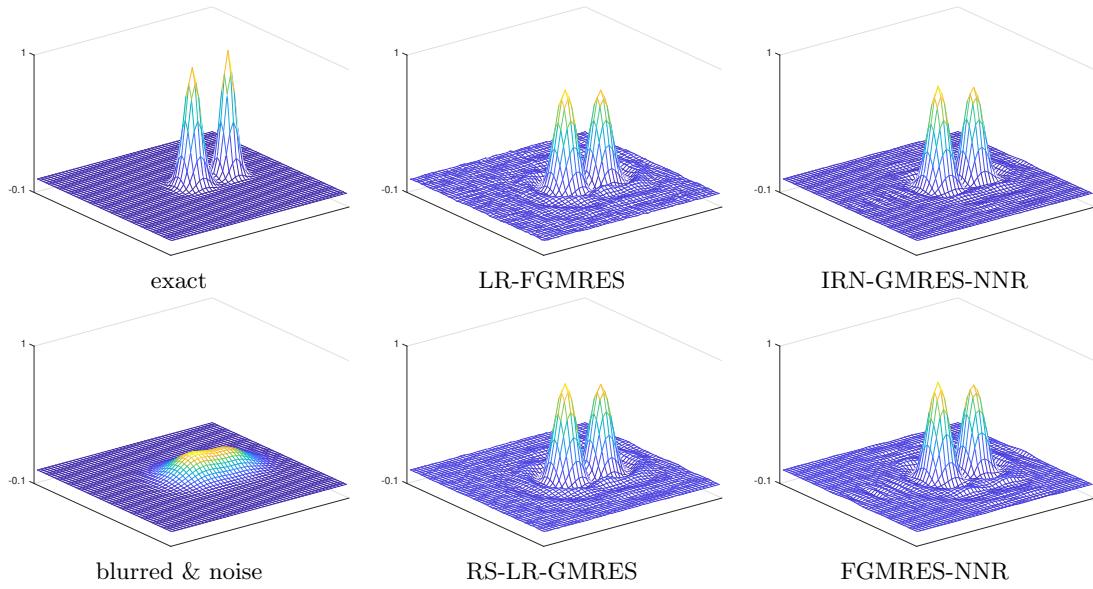


Fig. 4: *Example 1*. Zoomed-in surfaces of the exact solution and the available data, as well as the best reconstructions obtained by the new GMRES-based methods.

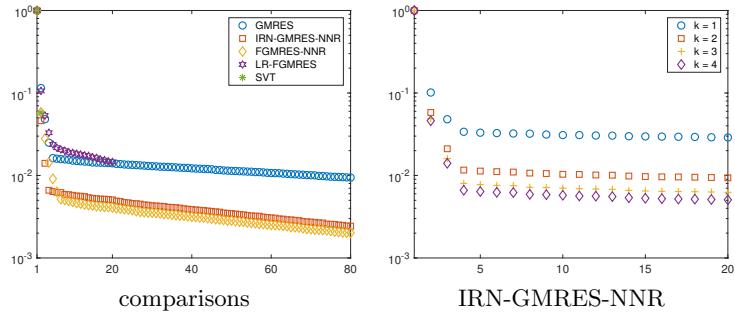


Fig. 5: *Example 1*. Left frame: normalized singular values of the best solutions computed by each GMRES-based method. Right frame: evolution of the singular values of the solutions computed by IRN-GMRES-NNR at each outer iteration. Singular values less than  $10^{-3}$  are omitted.

618 their standard counterpart LSQR. Recall that FLSQR-NNR $p(v)$  is the FLSQR-NNR $p$  variant that  
 619 defines the preconditioners using the basis vectors of the solution subspace. The hybrid strategy  
 620 is not used here, meaning that we set  $\hat{\lambda} = 0$  for all methods. For this test problem, we consider  
 621 both the values  $p = 1$  and  $p = 0.75$  (recall that, when  $p = 1$ , we omit  $p$  from the notation). The  
 622 results obtained running the available low-rank solvers SVT and RS-LR-GMRES are shown, too.  
 623 Note that RS-LR-GMRES only works for square matrices  $\mathbf{A}$ , hence this solver is tested on the  
 624 normal equations  $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ , which is not the problem solved by the other methods (therefore

625 this comparison may not be completely fair). Parameters for SVT are chosen to be: step size  
 626  $\delta_k = \delta = 8 \times 10^{-5}$  and threshold  $\tau = 100$ . RS-LR-GMRES is set to restart every 20 iterations.  
 627 The truncation rank is 10 for both basis vectors and solutions, and for both the LR-FLSQR and  
 628 the RS-LR-GMRES methods. The maximum number of iterations is 100 for all methods.

629 Figure 6 displays the history of the relative errors for LSQR, LR-LSQR, FLSQR-NNR $p$ ,  
 630 FLSQR-NNR $p(v)$ , and IRN-LSQR-NNR $p$ , for  $p = 1$  and  $p = 0.75$ . Figure 7 displays the  
 631 exact phantom together with the best reconstructions obtained by LSQR, FLSQR-NNR $p(v)$ , and  
 632 IRN-LSQR-NNR. Figure 8 displays surface plots of the northwestern corner of the exact and re-  
 633 constructed phantoms (64  $\times$  64 pixels, as highlighted in the leftmost frame of Figure 7).

634 Looking at relative errors in Figure 6, it is obvious that the winners are the FLSQR-NNR $p(v)$   
 635 methods, with both  $p = 1$  and  $p = 0.75$ : they give the lowest relative errors, and the fastest semi-  
 636 convergences. For this test problem, using a value of  $p < 1$  lowers the relative error of FLSQR-  
 637 NNR $p(v)$ ; however, the same does not hold for IRN-LSQR-NNR $p$ . Therefore we can conclude that  
 638 the choice of  $p$  is problem and solver dependent, and using  $p < 1$  does not necessarily improve  
 639 the quality of the solution. We regard  $p = 1$  as a safe choice for this parameter. Although both  
 640 the FLSQR-NNR $p(v)$  methods with  $p = 1$  and  $p = 0.75$  perform well, the latter is able to further  
 641 reduce the noise in the reconstructed solution, especially on the boundary.

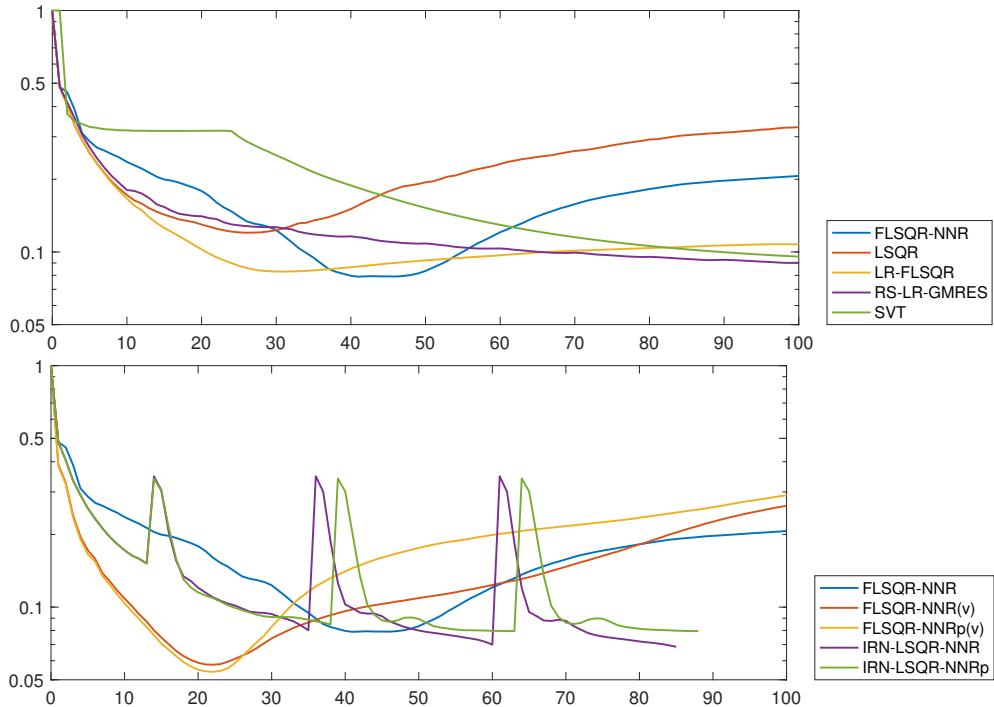


Fig. 6: *Example 2.* Relative errors vs. number of iterations for different solvers. Upper frame: some of the new solvers are compared to the already available solvers. Lower frame: comparisons of different instances of the new solvers (here  $p = 0.75$ ).

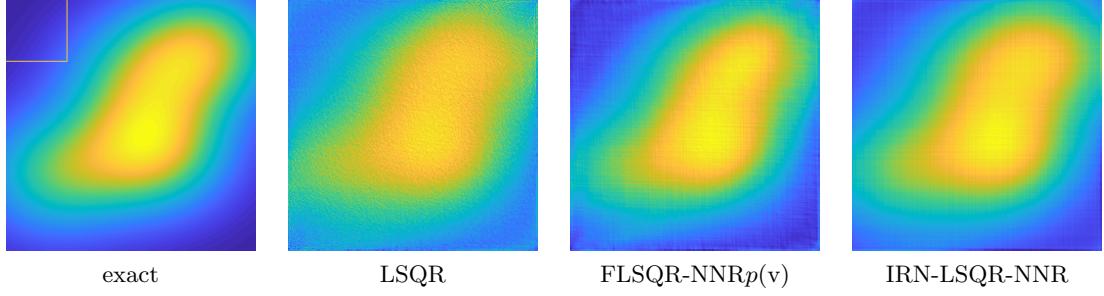


Fig. 7: *Example 2.* Exact phantom and best reconstructions obtained by different solvers.

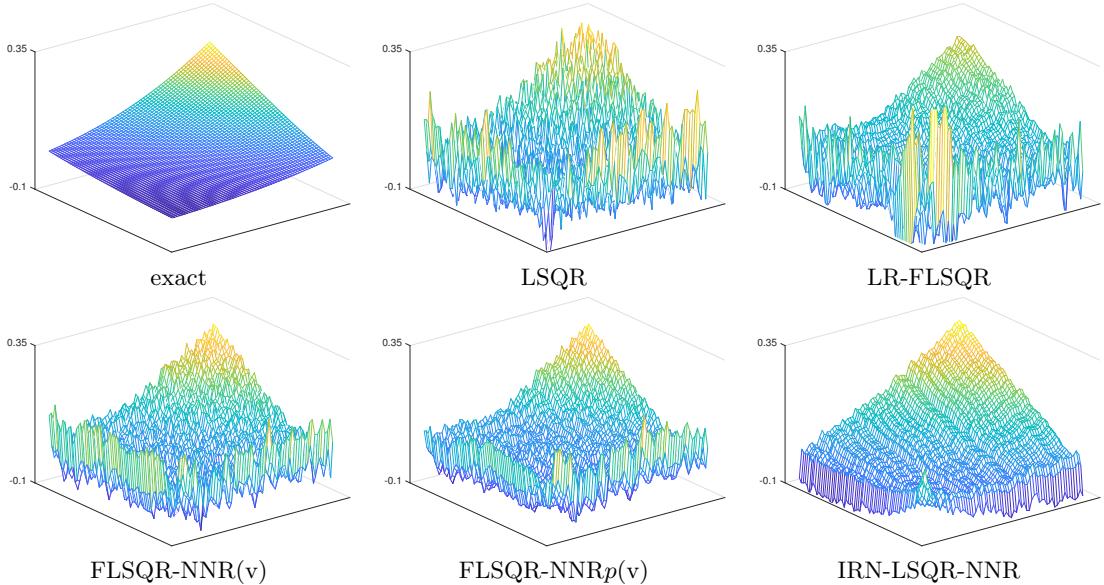


Fig. 8: *Example 2.* Surface plots of the northwestern corner of the exact phantom (highlighted in Figure 7) and the best reconstructed phantoms computed by different solvers.

642 Looking at all the displayed results, the advantages of our new FLSQR-NNRp(v) and IRN-  
 643 LSQR-NNR methods are evident. Namely, they produce smooth solutions that preserve the original  
 644 concave shape of the exact phantom, and they retain similar intensities of pixels at the same locations  
 645 of the exact phantom (although the LR-FLSQR solution is smooth within the boundary, it fails  
 646 to reconstruct intensity at the high point). Differences between FLSQR-NNRp(v) and IRN-LSQR-  
 647 NNR reconstructions are clear, too: while both are smooth, the IRN-LSQR-NNR reconstruction  
 648 has a less concave shape compared to that of FLSQR-NNRp(v), but a smoother boundary.

649 *Example 3: Inpainting.* We consider two different inpainting test problems. Inpainting is the  
 650 process of restoring images that have missing or deteriorated parts. These images are likely to

651 have quite a few lost pixels, either in the form of salt and pepper noise, or missing patches with  
 652 regular or irregular shapes. The two examples considered here are of different nature: the first one  
 653 has less structured and more randomly distributed missing patches, while the second one has more  
 654 structured and regularly shaped missing parts. The corrupted images (shown in top-middle frames  
 655 of Figures 11 and 13) are constructed by first applying a blur operator, and then superimposing  
 656 the undersampling pattern to the ideally exact images (shown in the top-left frames of Figures 11  
 657 and 13). We follow this particular order of first blurring and then taking out pixels to simulate the  
 658 real process of photo-taking. For both these test problems, white noise of level  $10^{-2}$  is added to  
 659 the data, and we consider purely iterative methods (i.e.,  $\hat{\lambda} = 0$ ). We always take  $p = 1$ , and we run  
 660 100 iterations of all the methods.

661 Firstly, we consider a test problem where 58.2% of the pixels are missing (following some  
 662 random and not very regular patterns). The exact image is commonly known as the **house** test  
 663 image, whose rank is 243 and has a total number of 65536 ( $256 \times 256$ ) pixels; the corrupted image  
 664 has the same size and number of pixels, but out of which only 27395 are non-zero. The singular  
 665 values of the exact image is shown in Figure 9(a). Correspondingly, the forward operator  $\mathbf{A}$  is of  
 666 size  $27395 \times 65536$ , so we have an underdetermined linear system:  $\mathbf{A}$  is obtained by first applying  
 667 a shaking blur, and by then undersampling the blurred image. This can be easily coded within the  
 668 *IR Tools* framework.

669 Figure 10 displays the history of the relative errors for LSQR, LR-FLSQR (with truncation of  
 670 the basis vectors for the solution, as well as the solution, to rank 20), FLSQR-NNR, FLSQR-NNR(v)  
 671 and IRN-LSQR-NNR. Figure 11 displays the exact and corrupted images, together with the best  
 672 reconstructions obtained by the methods listed above: these correspond to the 16th, 32nd, 67th,  
 673 30th and 62nd iterations of LSQR, LR-FLSQR, FLSQR-NNR, FLSQR-NNR(v) and IRN-LSQR-  
 674 NNR, respectively (i.e., these are the iterations where the minimum relative error is attained over  
 675 the total 100 iterations).

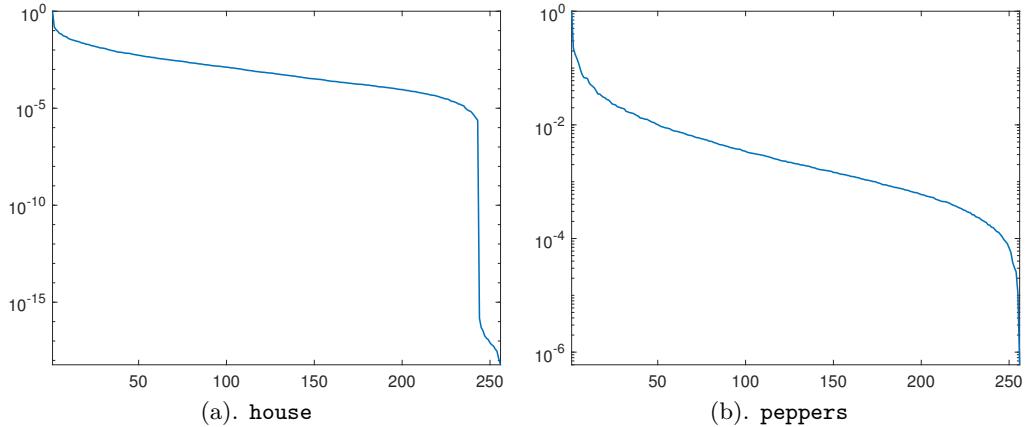


Fig. 9: *Example 3.* Singular values of exact test images **house** and **peppers** scaled by the largest singular values respectively.

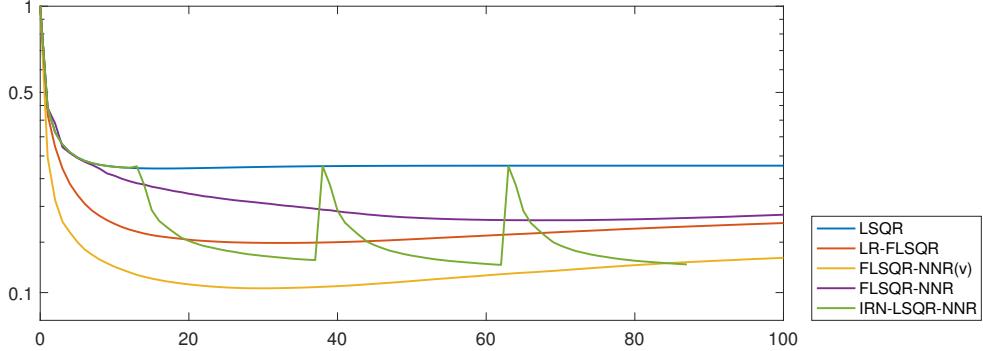


Fig. 10: *Example 3 (house)*. Relative errors vs. number of iterations for different solvers.

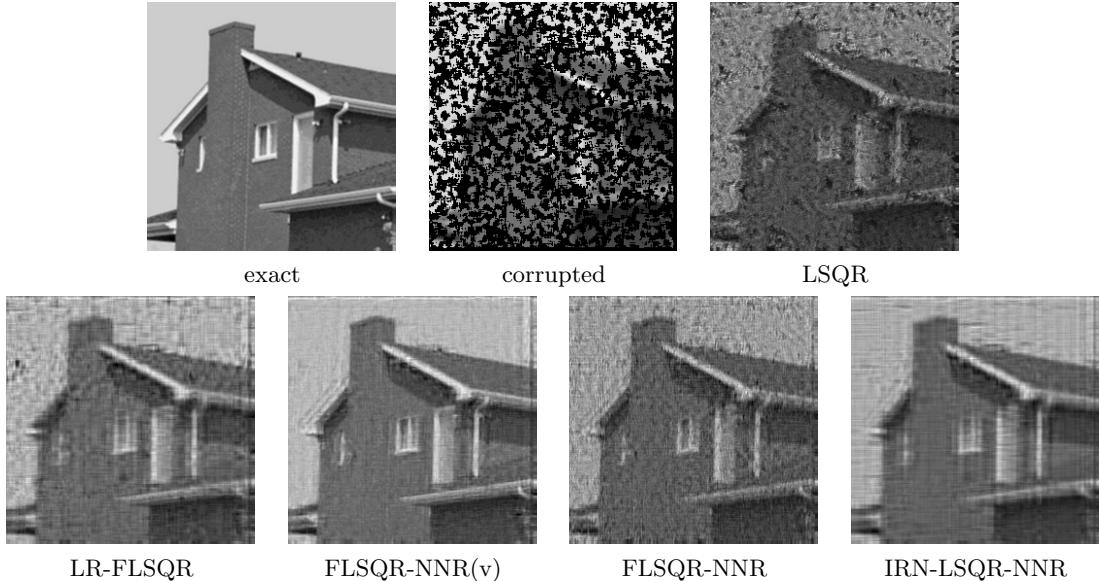


Fig. 11: *Example 3 (house)*. Exact and corrupted images; best reconstructions obtained by standard and new solvers.

676 Secondly, we consider a test problem similar to the previous one, i.e., we take an exact image  
 677 commonly known as the `peppers` test image, which has full rank (its singular values are shown  
 678 in Figure 9(b)), and we obtain the forward operator  $\mathbf{A}$  by first applying a shaking blur, and  
 679 by then undersampling the blurred image. Here the exact image has a total number of 65536  
 680 (256  $\times$  256) pixels, and only around 1.3% of pixels are missing and should be inpainted: differently  
 681 from the previous problem, the missing pixels follow particular patterns (e.g., circles, squares, and  
 682 rectangles), and this makes the inpainting task somewhat more challenging. Figure 12 displays the  
 683 history of the relative errors for LSQR, LR-FLSQR (with truncation of the basis vectors for the

684 solution, as well as the solution, to rank 50), FLSQR-NNR, FLSQR-NNR(v) and IRN-LSQR-NNR.  
 685 Figure 13 displays the exact and corrupted images, together with the best reconstructions obtained  
 686 by the methods listed above: these correspond to the 11th, 18th, 60th, 33rd and 34th iterations of  
 687 LSQR, LR-FLSQR, FLSQR-NNR, FLSQR-NNR(v) and IRN-LSQR-NNR, respectively (i.e., these  
 688 are the iterations where the minimum relative error is attained over the total 100 iterations).

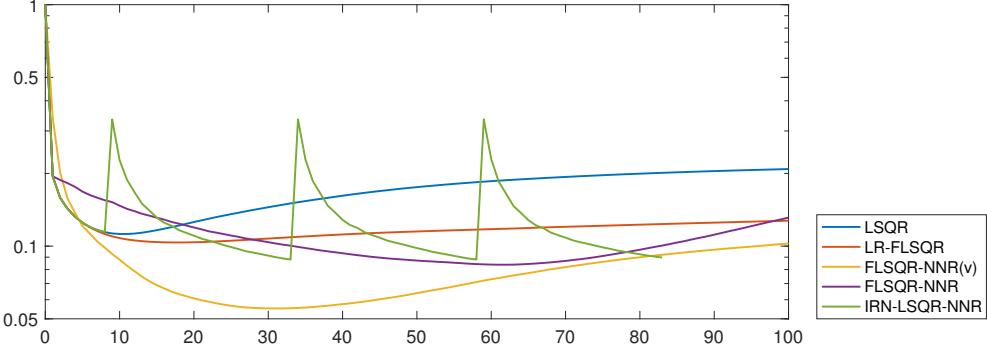


Fig. 12: *Example 3 (peppers)*. Relative errors vs. number of iterations for different solvers.

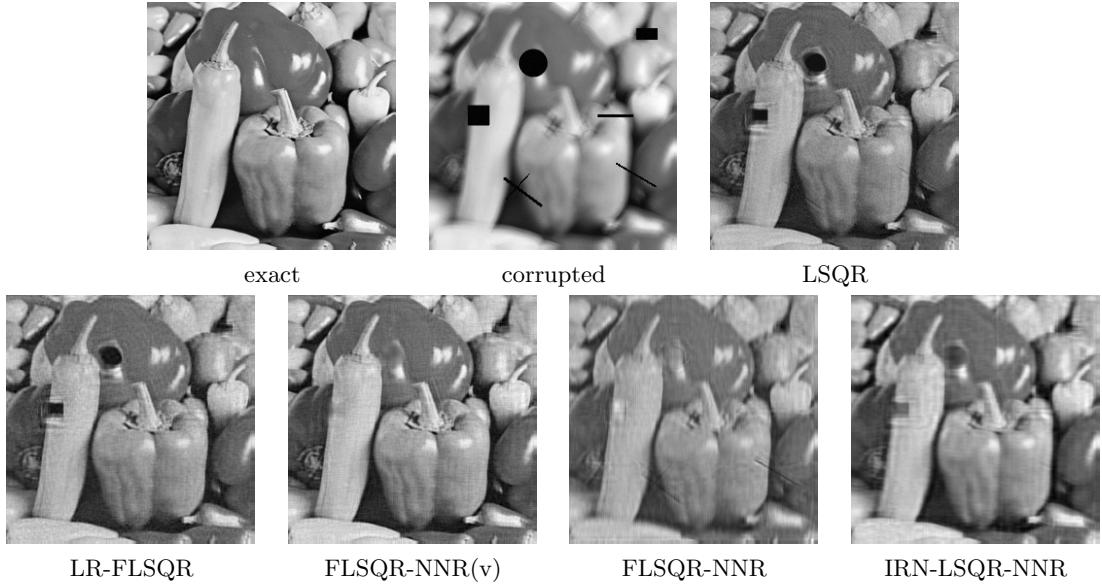


Fig. 13: *Example 3 (peppers)*. Exact and corrupted images; best reconstructions obtained by standard and new solvers.

689 It is evident that FLSQR-NNR(v) achieves reconstructions of superior quality, including clarity,  
 690 brightness, and smoothness. Its ability to fill-in missing spots with pixels that are of similar intensity

691 to their surroundings is the best among all methods. The best reconstructions are computed by IRN-  
 692 LSQR-NNR for the `house` test image, and by FLSQR-NNR for the `pepper` test image: in both cases,  
 693 these methods are also good at removing noise and restoring missing pixels. However, for both test  
 694 images, the reconstructions obtained by IRN-LSQR-NNR lack clarity compared to ones obtained  
 695 by both FLSQR-NNR and FLSQR-NNR(v) methods; compared to the reconstructions obtained by  
 696 LSQR and LR-FLSQR, they are anyway more desirable in terms of recovered brightness and fill-in of  
 697 the missing pixels. Moreover, we have seen in these two examples that our newly proposed methods  
 698 perform very well not only for low rank, but also for full or nearly full rank image reconstruction,  
 699 thanks to the regularizing properties of our newly derived “preconditioners”  $(W_p^\gamma)_k$  and  $S_k$ . Our  
 700 methods can also be extensively tested for higher noise levels (for example,  $10^{-1}$ ) and yield similar  
 701 results. However, for space considerations we are not able to show all of them here.

702 *A study of regularization parameters.* In the previous examples we have seen that the IRN-NNR  
 703 methods and the flexible Krylov NNR methods perform exceptionally well on image deblurring,  
 704 tomography, and inpainting problems, producing superior reconstructions compared to existing  
 705 methods including SVT, RS-LR-GMRES and the low-rank flexible Krylov methods inspired by  
 706 RS-LR-GMRES, even without the use of additional regularization. In this section, we explore  
 707 the effect of additional regularization (i.e., we set  $\hat{\lambda} \neq 0$ ) on the reconstructed images and the  
 708 corresponding relative errors. In particular, additional regularization allows the new methods to be  
 709 used in a hybrid fashion. We are going to observe that there is only little to negligible room for the  
 710 methods to improve when they are used in a hybrid fashion (as their performance is already very  
 711 good with  $\hat{\lambda} = 0$ ).

712 We consider three different ways of choosing the regularization parameter  $\hat{\lambda}$ . (i) We take  
 713 the “secant method” mentioned in Section 4, which updates the regularization parameter at each  
 714 iteration using the discrepancy. (ii) We select the optimal regularization parameter which minimizes  
 715 the 2-norm of the difference between the exact solution and the regularized solution at each iteration.  
 716 Namely, when using standard GMRES and LSQR, at the  $m$ th iteration we seek to minimize with  
 717 respect to  $\hat{\lambda}$

$$718 \quad \|\mathbf{x}^{\text{ex}} - \mathbf{x}_{m,\hat{\lambda}}\| = \|\mathbf{V}_m^T \mathbf{x}^{\text{ex}} - \mathbf{V}_m^T \mathbf{x}_{m,\hat{\lambda}}\| = \|\mathbf{V}_m^T \mathbf{x}^{\text{ex}} - \mathbf{y}_{m,\hat{\lambda}}\|;$$

719 when using the IRN methods we should incorporate the appropriate preconditioners  $(W_p^\gamma)_k$  and  
 720  $S_k$  and, for all the iterations in the inner iteration cycle corresponding to the  $k$ th outer iteration,  
 721 we seek to minimize with respect to  $\hat{\lambda}$

$$722 \quad \|\hat{\mathbf{x}}^{\text{ex}} - \mathbf{V}_m \mathbf{y}_{m,\hat{\lambda}}\| = \|\mathbf{V}_m^T \hat{\mathbf{x}}^{\text{ex}} - \mathbf{V}_m^T \mathbf{V}_m \mathbf{y}_{m,\hat{\lambda}}\| = \|\mathbf{V}_m^T \hat{\mathbf{x}}^{\text{ex}} - \mathbf{y}_{m,\hat{\lambda}}\|, \text{ where } \hat{\mathbf{x}}^{\text{ex}} = (W_p^\gamma)_k S_k \mathbf{x}^{\text{ex}}.$$

723 It is intrinsically difficult to implement this strategy for flexible Krylov subspace methods, because of  
 724 the complexity of changing preconditioners at each iteration. (iii) We perform a manual exhaustive  
 725 search. Namely, we first run the solvers multiple times using various regularization parameters  $\hat{\lambda}$ ,  
 726 starting with a larger range and narrowing down to a smaller range containing the best parameter;  
 727 we then record the minimum relative errors among all iterations for all values of  $\hat{\lambda}$ , and select the  
 728 corresponding  $\hat{\lambda}$ . This approach is the most expensive one, and differs from the previous one in that  
 729 the (optimal) regularization parameter  $\hat{\lambda}$  is fixed for all iterations. Of course, both the second and  
 730 third approaches require the knowledge of the exact solution and we test them only to investigate  
 731 the best possible performance of the hybrid approach.

732 Table 1 compares the performances (in terms of minimum relative error achieved by each  
 733 method) of standard Krylov methods (GMRES and LSQR) and their IRN-NNR and flexible NNR

(F-NNR) counterparts, with and without using a hybrid approach. In this way we can understand how the use of additional regularization affects each solver differently. The three parameter choice methods described above are dubbed “Secant (i)”, “Optimal (ii)” and “Fixed (iii)”, respectively. All the previous examples are considered here. GMRES and its counterparts IRN-GMRES-NNR, FGMRES-NNR are used for Example 1, while LSQR and its counterparts IRN-LSQR-NNR, FLSQR-NNR(v) are used for Examples 2 and 3.

|          |              | $\hat{\lambda} = 0$ | $\hat{\lambda} \neq 0$ |
|----------|--------------|---------------------|------------------------|---------------------|------------------------|---------------------|------------------------|---------------------|------------------------|
|          |              | Example 1           |                        | Example 2           |                        | Example 3 (house)   |                        | Example 3 (peppers) |                        |
| Standard | Secant (i)   | 0.2995              | 0.2528                 | 0.1201              | 0.1389                 | 0.2712              | 0.2715                 | 0.1141              | 0.1138                 |
|          | Optimal (ii) | 0.2995              | 0.2268                 | 0.1201              | 0.1201                 | 0.2712              | 0.2710                 | 0.1141              | 0.1138                 |
|          | Fixed (iii)  | 0.2995              | 0.2268                 | 0.1201              | 0.1183                 | 0.2712              | 0.2710                 | 0.1141              | 0.1138                 |
| IRN-NNR  | Secant (i)   | 0.2081              | 0.2096                 | 0.0685              | 0.0696                 | 0.1249              | 0.1250                 | 0.0964              | 0.0967                 |
|          | Optimal (ii) | 0.2081              | 0.2292                 | 0.0685              | 0.0685                 | 0.1249              | 0.1249                 | 0.0964              | 0.0964                 |
|          | Fixed (iii)  | 0.2081              | X                      | 0.0685              | 0.0660                 | 0.1249              | X                      | 0.0964              | 0.0960                 |
| F-NNR    | Secant (i)   | 0.2829              | 0.2658                 | 0.0577              | 0.0684                 | 0.1035              | 0.1046                 | 0.0625              | 0.0618                 |
|          | Fixed (iii)  | 0.2829              | 0.2640                 | 0.0577              | 0.0568                 | 0.1035              | X                      | 0.0625              | 0.0618                 |

Table 1: Minimum relative errors without ( $\hat{\lambda} = 0$ ) and with ( $\hat{\lambda} \neq 0$ ) a hybrid approach. The mark “X” means that the optimal regularization parameter found by the “Fixed (iii)” method is  $10^{-16}$ , hence there is no need for additional regularization.

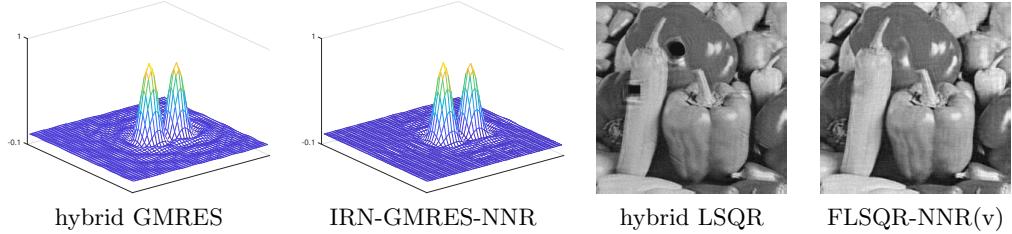


Fig. 14: Reconstructions obtained by standard hybrid Krylov methods and by the new methods without using additional regularization. Left side: zoomed in surface plots of the reconstructions of Example 1; right side: reconstructions of Example 3 (peppers).

It is easy to observe that the use of additional regularization is most effective for the standard GMRES solver, where the minimum relative error is reduced significantly. However, for the other solvers, the hybrid approach does not have a notable advantage over not using regularization. At times the “Fixed (iii)” parameter choice strategy delivers a regularization parameter of the order of  $10^{-16}$ , which is numerically equivalent to not having regularization. This indicates that our new IRN-NNR and F-NNR methods are successful in computing good reconstructions and, even without additional regularization, they perform much better than standard Krylov methods used in a hybrid fashion (comparing IRN-GMRES-NNR to GMRES in Example 1, and FLSQR-NNR(v) to LSQR in the other examples). Figure 14 shows a couple of such comparisons.

**6. Conclusions.** This paper introduced new solvers, based on Krylov subspace methods, for the computation of approximate low-rank solutions to large-scale linear systems of equations. Our

751 main goal was to apply the new methods to regularize inverse problems arising in imaging applications.  
 752 The starting point of our derivations was an IRN approach to the  $\text{NNR}_p$  problem (1.3). In  
 753 this way, the original problem (1.3) is reduced to the solution of a sequence of quadratic problems,  
 754 where an appropriate smoothed linear transformation is introduced to approximate the nondif-  
 755 ferentiable nuclear norm regularization term. Our new methods make smart use of Kronecker  
 756 product properties to reformulate each quadratic problem in the IRN sequence as a Tikhonov-  
 757 regularized problem in standard form. We use both Krylov methods with fixed “preconditioners”  
 758 within an inner-outer iteration scheme (namely, IRN-LSQR- $\text{NNR}_p$  and IRN-GMRES- $\text{NNR}_p$ ), and  
 759 Krylov methods with flexible iteration-dependent “preconditioners” within a single iteration scheme  
 760 (namely, FLSQR- $\text{NNR}_p$ , FGMRES- $\text{NNR}_p$ , LR-FGMRES, and LR-FLSQR). Some of these meth-  
 761 ods (namely, IRN-LSQR- $\text{NNR}_p$ , IRN-GMRES- $\text{NNR}_p$ , FLSQR- $\text{NNR}_p$ , and FGMRES- $\text{NNR}_p$ ) can  
 762 be used in a hybrid framework, so that the Tikhonov regularization parameter can be efficiently,  
 763 effectively, and adaptively chosen. These new solvers are shown to perform exceptionally well on  
 764 the test problems described in Section 5, and they give reconstructions of significantly improved  
 765 quality over existing methods.

766 Future work includes the extension of the present methods to handle cases where the solution  
 767 of (1.1) is low-rank but rectangular, i.e.,  $\text{vec}^{-1}(\mathbf{x}) = \mathbf{X} \in \mathbb{R}^{m \times n}$  with  $m \neq n$ . Also, while a  
 768 solid theoretical justification is provided for IRN-LSQR- $\text{NNR}_p$  and IRN-GMRES- $\text{NNR}_p$ , the same  
 769 is not true for FGMRES- $\text{NNR}_p$  and FLSQR- $\text{NNR}_p$ : further analysis will be needed to deeply  
 770 understand the regularization properties of these flexible solvers. Finally, the new IRN-LSQR-  
 771  $\text{NNR}_p$  and IRN-GMRES- $\text{NNR}_p$  methods can be reformulated to work with well-posed problems  
 772 and in the framework of matrix equations, possibly providing a valid and principled alternative to  
 773 the current popular methods based on low-rank-projected and restarted Krylov solvers.

774

## REFERENCES

775 [1] M. BELGE, M. E. KILMER, AND E. L. MILLER, *Wavelet domain image restoration with adaptive edge-preserving*  
 776 *regularization*, IEEE Trans. Image Process., 9 (2000), pp. 597–608, <https://doi.org/10.1109/83.841937>.

777 [2] J. D. BLANCHARD, J. TANNER, AND K. WEI, *CGIHT: conjugate gradient iterative hard thresholding for com-*  
 778 *pressed sensing and matrix completion*, Information and Inference: A Journal of the IMA, 4 (2015), pp. 289–  
 779 327, <https://doi.org/10.1093/imaiai/iau011>.

780 [3] J. CAI, E. CANDÈS, AND Z. SHEN, *A singular value thresholding algorithm for matrix completion*, SIAM Journal  
 781 *on Optimization*, 20 (2010), pp. 1956–1982, <https://doi.org/10.1137/080738970>.

782 [4] J. CHUNG AND S. GAZZOLA, *Flexible Krylov Methods for  $\ell_p$  Regularization*, ArXiv e-prints, (2018), <https://arxiv.org/abs/1806.06502>.

783 [5] M. FORNASIER, H. RAUHUT, AND R. WARD, *Low-rank matrix recovery via iteratively reweighted least*  
 784 *squares minimization*, SIAM Journal on Optimization, 21 (2011), pp. 1614–1640, <https://doi.org/10.1137/100811404>.

785 [6] S. GAZZOLA, P. C. HANSEN, AND J. G. NAGY, *IR Tools: A MATLAB Package of Iterative Regularization*  
 786 *Methods and Large-Scale Test Problems*, 2017, <https://arxiv.org/abs/arXiv:1712.05602>.

787 [7] S. GAZZOLA AND J. G. NAGY, *Generalized Arnoldi-Tikhonov Method for Sparse Reconstruction*, SIAM J. Sci.  
 788 *Comput.*, 36 (2014).

789 [8] S. GAZZOLA, P. NOVATI, AND M. R. RUSSO, *On krylov projection methods and tikhonov regularization*, Elec-  
 790 *tronic Transactions on Numerical Analysis*, 44 (2014), pp. 82–123.

791 [9] S. GAZZOLA AND M. SABATÉ LANDMAN, *Flexible gmres for total variation regularization*, BIT Numerical Math-  
 792 *ematics*, (2019), <https://doi.org/10.1007/s10543-019-00750-x>.

793 [10] D. GOLDFARB AND S. MA, *Convergence of fixed-point continuation algorithms for matrix rank minimiza-*  
 794 *tion*, Foundations of Computational Mathematics, 11 (2011), pp. 183–210, <https://doi.org/10.1007/s10208-011-9084-6>.

795 [11] N. HALKO, P. G. MARTINSSON, AND J. A. TROPP, *Finding structure with randomness: Probabilistic algorithms*  
 796 *for constructing approximate matrix decompositions*, SIAM Review, (2011).

800 [12] M. HANKE AND P. C. HANSEN, *Regularization methods for large-scale problems*, Surv. Math. Ind., 3 (1993),  
801 pp. 253–315.

802 [13] P. C. HANSEN, *Discrete Inverse Problems: Insight and Algorithms*, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2010.

804 [14] P. C. HANSEN AND T. K. JENSEN, *Smoothing-norm preconditioning for regularizing minimum-residual methods*,  
805 SIAM J. Matrix Anal. Appl., 29 (2006), pp. 1–14.

806 [15] T. K. JENSEN AND P. C. HANSEN, *Iterative regularization with minimum-residual methods*, BIT, 47 (2007),  
807 pp. 103–120.

808 [16] R. H. KESHAVAN, A. MONTANARI, AND S. OH, *Matrix completion from noisy entries*, J. Mach. Learn. Res., 11  
809 (2010), pp. 2057–2078, <http://dl.acm.org/citation.cfm?id=1756006.1859920>.

810 [17] M. KILMER AND D. O’LEARY., *Choosing regularization parameters in iterative methods for ill-posed problems*,  
811 SIAM Journal on Matrix Analysis and Applications, 22 (2001), pp. 1204–1221, <https://doi.org/10.1137/S0895479899345960>.

813 [18] M. E. KILMER AND D. O’LEARY, *Choosing regularization parameters in iterative methods for ill-posed problems*,  
814 SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1204–1221.

815 [19] D. KRESSNER AND C. TOBLER, *Low-rank tensor Krylov subspace methods for parameterized linear systems*,  
816 SIAM J. Matrix Anal. Appl., 32 (2011), pp. 1288–1316.

817 [20] R. M. LARSEN, *Lanczos bidiagonalization with partial reorthogonalization*, Department of Computer Science,  
818 Aarhus University, Technical report, (1998).

819 [21] B. J. LAST AND K. KUBIK, *Compact gravity inversion*, GEOPHYSICS, 48 (1983), pp. 713–721, <https://doi.org/10.1190/1.1441501>.

821 [22] K. LEE AND H. C. ELMAN, *A Preconditioned Low-Rank Projection Method with a Rank-Reduction Scheme for  
822 Stochastic Partial Differential Equations*, SIAM J. Sci. Comput., 9 (2017).

823 [23] C. LU, Z. LIN, AND S. YAN, *Smoothed low rank and sparse matrix recovery by iteratively reweighted least  
824 squares minimization*, IEEE Transactions on Image Processing, 24 (2015), pp. 646–654, <https://doi.org/10.1109/TIP.2014.2380155>.

826 [24] S. MA, D. GOLDFARB, AND L. CHEN, *Fixed point and bregman iterative methods for matrix rank minimization*,  
827 Mathematical Programming, 128 (2011), pp. 321–353, <https://doi.org/10.1007/s10107-009-0306-5>.

828 [25] K. MOHAN AND M. FAZEL, *Iterative reweighted algorithms for matrix rank minimization*, J. Mach. Learn. Res.,  
829 13 (2012), pp. 3441–3473, <http://dl.acm.org/citation.cfm?id=2503308.2503351>.

830 [26] D. P. O’LEARY AND J. A. SIMMONS, *A bidiagonalization-regularization procedure for large scale discretizations  
831 of ill-posed problems*, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 474–489.

832 [27] B. RECHT, M. FAZEL, AND P. PARRILLO, *Guaranteed minimum-rank solutions of linear matrix equations via  
833 nuclear norm minimization*, SIAM Review, 52 (2010), pp. 471–501, <https://doi.org/10.1137/070697835>.

834 [28] R. A. RENAUT, S. VATANKHAH, AND V. E. ARDESTANI, *Hybrid and iteratively reweighted regularization by  
835 unbiased predictive risk and weighted GCV for projected systems*, SIAM J. Scientific Computing, 39 (2017),  
836 <https://doi.org/10.1137/15M1037925>.

837 [29] R. T. ROCKAFELLAR, *Convex analysis*, vol. 28, Princeton university press, 1970.

838 [30] P. RODRIGUEZ AND B. WOHLBERG, *An efficient algorithm for sparse representations with  $\ell_p$  data fidelity term*,  
839 (2008).

840 [31] Y. SAAD, *A flexible inner-outer preconditioned gmres algorithm*, SIAM Journal on Scientific Computing, 14  
841 (1993), pp. 461–469, <https://doi.org/10.1137/0914028>.

842 [32] V. SIMONCINI AND D. B. SZYLD, *Recent computational developments in krylov subspace methods for linear  
843 systems*, Numerical Linear Algebra with Applications, 14 (2007), pp. 1–59, <https://doi.org/10.1002/nla.499>.

844 [33] M. STOLL AND T. BREITEN, *A low-rank in time approach to PDE-constrained optimization*, SIAM J. Sci.  
845 Comput., 27 (2015), pp. B1–B29.

846 [34] S. VATANKHAH, R. RENAUT, AND S. LIU, *Research note: A unifying framework for widely-used stabilization  
847 of potential field inverse problems*, Geophysical Prospecting, (2019), <https://doi.org/10.1111/1365-2478.12926>.