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KRYLOV METHODS FOR LOW-RANK REGULARIZATION *

SILVIA GAZZOLA', CHANG MENG!, AND JAMES G. NAGY#

Abstract. This paper introduces new solvers for the computation of low-rank approximate solutions to large-
scale linear problems, with a particular focus on the regularization of linear inverse problems. Although Krylov
methods incorporating explicit projections onto low-rank subspaces are already used for well-posed systems that arise
from discretizing stochastic or time-dependent PDESs, we are mainly concerned with algorithms that solve the so-called
nuclear norm regularized problem, where a suitable nuclear norm penalization on the solution is imposed alongside a
fit-to-data term expressed in the 2-norm: this has the effect of implicitly enforcing low-rank solutions. By adopting
an iteratively reweighted norm approach, the nuclear norm regularized problem is reformulated as a sequence of
quadratic problems, which can then be efficiently solved using Krylov methods, giving rise to an inner-outer iteration
scheme. Our approach differs from the other solvers available in the literature in that: (a) Kronecker product
properties are exploited to define the reweighted 2-norm penalization terms; (b) efficient preconditioned Krylov
methods replace gradient (projection) methods; (c) the regularization parameter can be efficiently and adaptively
set along the iterations. Furthermore, we reformulate within the framework of flexible Krylov methods both the
new inner-outer methods for nuclear norm regularization and some of the existing Krylov methods incorporating
low-rank projections. This results in an even more computationally efficient (but heuristic) strategy, that does not
rely on an inner-outer iteration scheme. Numerical experiments including image deblurring, computed tomography
and inpainting show that our new solvers are competitive with other state-of-the-art solvers for low-rank problems,
and deliver reconstructions of increased quality with respect to other classical Krylov methods.

Key words. low-rank solver, nuclear norm regularization, Krylov methods, flexible Krylov methods, Kronecker
product, imaging problems
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1. Introduction. Consider the following linear system
(1.1) Ax =b, where AeRMN 2eRMN b=b*+neRM,

We are mainly interested in large-scale linear systems (1.1) arising from inverse problems, where A
is a discretization of the linear forward operator,  is a quantity of interest, and b is the observed
perturbed data (b%* = Az being the ideally exact data, and 1 being unknown Gaussian white
noise). Our focus is on two-dimensional imaging problems, where the unknown vector & € RY is
obtained by stacking the columns of an unknown true image X of size n x n, with n = v N (this
operation and its inverse are denoted by & = vec(X) and X = vec™!(x), respectively).

Discrete inverse problems are ill-posed in nature [13] and, because of the presence of noise in
(1.1), regularization needs to be applied so that the solution of (1.1) is a meaningful approxima-
tion to . One typically achieves regularization by replacing the original problem (1.1) with a
closely related one that is less sensitive to perturbations: effective regularization methods do so by
incorporating known or desired properties of & into the solution process. In imaging applications,
Tikhonov (¢2) regularization, ¢; regularization and total variation are typical techniques to be ex-
ploited, see, for example, [4, 7, 8, 9, 17]. In the field of geophysics, ¢y regularization (also called
compact regularization) is sometimes considered (e.g., [21, 34]).
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2 S. GAZZOLA, C. MENG AND J. NAGY

In this paper we consider regularization methods that compute a low-rank approximate solution
X = vec !(z) of (1.1): this is generally meaningful when the unknown @« encodes a high-dimensional
quantity and, in particular, in the case of a two-dimensional image. Indeed, two-dimensional images
are often assumed to have low-rank or to be well-approximated by low-rank two-dimensional arrays
(see [27] and the references therein).

Numerical linear algebra solvers for the estimation of low-rank solutions to linear systems
have been developed in the literature, mainly targeting well-posed linear discrete problems, such as
those arising when considering the numerical solution of stochastic PDEs (see [22] and the references
therein). In particular, the authors of [22] devise a restarted GMRES-like method (RS-LR-GMRES)
that involves low-rank projections of the basis vectors of the solution subspace, as well as a low-rank
projection of the current solution at the end of each cycle. Since, in general, the basic operations
involved in standard GMRES (such as matrix-vector products and vector sums) increase the ranks
of the computed quantities, low-rank projections are needed to assure that the computed solution
is low-rank. In the framework of compressive sensing, the authors of [2] consider a modified version
of the conjugate gradient method that incorporates appropriate rank-truncation operations. All
the methods mentioned so far employ, often in a heuristic way, Krylov subspace methods together
with rank-reduction operations (e.g., projections onto a chosen set of low-rank matrices). Since
many Krylov subspace methods are iterative regularization methods for (1.1), this brings us to the
question of how incorporating rank-reduction operations would affect the solution of the discrete
inverse problem (1.1), with a particular focus on imaging applications.

Low-rank matrix estimation can be naturally formulated as a nonconvex optimization problem
having either: (i) a least-squares data fitting term as objective function and a rank constraint; (ii)
the rank of X = vec™!(x) as objective function and a constraint on the least-squares data fitting
term. The last instance is commonly referred to as affine rank minimization problem, and both
formulations are in general NP-hard [27]. In this paper we consider the unconstrained and convex
optimization problem

(1.2) min [ Az — b[3 + Avec™ ()]« ,

where A > 0 is a regularization parameter and | - || denotes the nuclear norm of vec™!(z) = X,
defined as the sum of the singular values of X. Indeed, if the singular value decomposition (SVD)
of X is given by X = UxX x VL, where Ux, Vx € R"™" are orthogonal matrices, and X x € R"*"
is the diagonal matrix whose diagonal entries are 01(X) = -+ = 0,(X) > 0, then

n

X = Y (X))

i=1

Problem (1.2) is refered to as a nuclear norm regularized (NNR) problem. In particular, the nuclear
norm is a convex function that has been proven to be the best convex lower approximation of the
rank function over the set of matrices X such that | X2 < 1 (see [27] and the references therein).
The nuclear norm has been used in many applications, such as low-rank matrix completion and
compressed sensing; see, e.g., [3, 10, 16, 24, 27], where the constrained formulation of problem (1.2)
has also been considered (note that, for a proper choice of A > 0, constrained and unconstrained
formulations are equivalent; see, e.g., [29]). In the framework of compressive sensing, under the
assumption that the matrix A satisfies a certain null-space property, recovery guarantees for the
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LOW-RANK KRYLOV METHODS 3

affine rank minimization problem are proven in [5, 25]. We also consider the following formulation

(1.3) min | Az — b||3 + A|vec™! ()]
x

xp, where || Xy, = Z(O’i(X))p7 0<p<l1.
i=1

Problem (1.3) is refereed to as NNRp problem, and it generalizes problem (1.2) (which is obtained
taking p = 1 in (1.3)). The constrained version of (1.3) is already considered in [25], where
the authors empirically show an improved recovery performance of the constrained formulation
of problem (1.3) with p < 1 with respect to p = 1. Note, however, that the choice p < 1 in (1.3)
results in a nonconvex minimization problem.

Many different optimization methods, such as singular value thresholding (i.e., projected gradi-
ent descent) and continuation methods [10], have been proposed for the solution of problem (1.2) or
its constrained counterpart. In particular, the so-called IRLS(-p) (i.e., iteratively reweighted least
squares) family of methods has recently attracted a lot of attention [5, 25, 27]. IRLS(-p) solves
the affine rank minimization problem by solving a sequence of problems whose objective function
only involves an iteratively updated weighted 2-norm term. The authors of [23] apply the IRLS(-p)
framework to the unconstrained problem (1.3), requiring the solution of a sequence of sub-problems

(1.4) min |Az — b||2 + \|[Wyvee ! (2)]%,
x

where Wy, is an appropriate weight matrix to be employed to solve the kth sub-problem, and || - | »
denotes the Frobenius norm of a matrix. A gradient (projection) algorithm is typically used to
solve each sub-problem (1.4). Since an IRLS(-p) approach is also commonly applied to objective
functions involving a quadratic fit-to-data term and a general p-norm penalization on x, and since
efficient strategies based on Krylov methods have been devised to solve each quadratic sub-problem
in the IRLS(-p) sequence [28, 30], this brings us to the question of how Krylov methods can be best
employed to solve each problem (1.4) (recall that |vec™!(z)| 4, can be regarded as a p-norm of the
vector whose entries are the singular values of X = vec™!(z)).

The goal of this paper is to propose new efficient Krylov methods for the estimation of low-rank
solutions to (1.1). We will mainly consider an IRLS(-p) approach to problem (1.3) (rather than
incorporating low-rank projections into a linear solver for (1.1)), the upside being that low-rank is
implicitly enforced into the solution by penalizing the p-norm of the singular values for a suitable
choice of A. Our main contributions are the new IRN-GMRES-NNRp and IRN-LSQR-NNRp meth-
ods for (1.3), where automatic strategies for choosing a suitable A are naturally incorporated. Here
and in the following, the IRN acronym indicates an iteratively reweighted norm (rather than an
iteratively reweighted least squares problem, [30]). One of the key points in deriving the new meth-
ods is expressing in matrix form the invertible linear operator mapping « to the reweighted 2-norm
of the singular values of X = vec™!(z): this can be achieved in a computationally affordable way by
exploiting Kronecker product properties. Each iteratively reweighted quadratic sub-problem of the
form (1.4) can then be expressed as a Tikhonov regularization problem in general form, which can
be straightforwardly transformed into standard form. In this way, the inverse of the linear operator
mapping x into the reweighted 2-norm of the singular values of X = vec™!(z) formally acts as a
preconditioner for A, and the so-called hybrid methods [26] based on the preconditioned Arnoldi (if
A is square) or Golub-Kahan bidiagonalization algorithms can be used to efficiently approximate
the solution of each problem of the form (1.4). Once a hybrid method is adopted, many automatic,
adaptive, and efficient parameter choice strategies can be employed to choose a suitable A; see [18]
for an overview. Therefore, contrarily to many existing methods for (1.3), IRN-GMRES-NNRp and
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4 S. GAZZOLA, C. MENG AND J. NAGY

IRN-LSQR-NNRp have the advantage of not requiring a regularization parameter (either A\ or the
desired rank of the solution) to be available in advance of the iterations, nor the repeated solution
of (1.3) for different regularization parameters.

Although inherently efficient, both the IRN-GMRES-NNRp and TRN-LSQR-NNRp methods
are inner-outer iteration schemes, where each outer iteration requires running a “preconditioned”
Krylov subspace method until convergence (inner iteration) before updating the weights (and there-
fore the “preconditioner”) in the next outer iteration. In order to avoid inner-outer iterations and
with the aim of generating only one approximation subspace for the solution of (1.3), where a new
“preconditioner” is incorporated as soon as a new approximate solution becomes available (i.e., at
each iteration), we propose to solve (1.3) using flexible Krylov subspace methods, such as those based
on the flexible Arnoldi [31] and Golub-Kahan [4] algorithms. The use of flexible Krylov methods for
p-norm regularization of inverse problems was already proposed in [4, 7]; however, differently from
the available solvers, our new approach involves iteratively defining both weights and transform
matrices (i.e., the linear operator mapping vec™!(x) into its singular values). Switching from IRN-
GMRES-NNRp and IRN-LSQR-NNRp to their flexible counterparts (dubbed FGMRES-NNRp and
FLSQR-NNRp, respectively) allows for savings in computations and, although FGMRES-NNRp
and FLSQR-NNRp are purely heuristic, it leads to approximate solutions whose accuracy on many
test problems is comparable to the ones of other well established solvers for (1.2). Motivated by
the same idea of avoiding inner-outer iteration cycles while adaptively incorporating (low-rank)
information into the approximation subspace for the solution, we also propose a flexible version
of the projected and restarted Krylov subspace methods (such as RS-LR-GMRES, [22]) that were
originally devised for square matrices, considering also extensions to rectangular matrices A.

This paper is organized as follows. In Section 2 we review the available low-rank Krylov methods
for square linear systems and, after surveying the available flexible Krylov solvers, we formulate
new low-rank flexible Krylov solvers for both square and rectangular problems, where the basis
vectors for the approximation subspace are truncated to low-rank. In Section 3 we derive the new
iteratively reweighted methods for (1.3) as fixed-point methods, and we describe how to efficiently
solve each reweighted problem of the form (1.4) using preconditioned Krylov methods: this leads
to the IRN-GMRES-NNRp and IRN-LSQR-NNRp methods; their flexible counterparts (FGMRES-
NNRp and FLSQR-NNRp, respectively) are also derived. Some implementation details, such as
stopping criteria and regularization parameter choice strategies for the new methods, are unfolded
in Section 4. Numerical results on image deblurring, computed tomography and inpainting are
presented in Section 5, including comparisons between the proposed methods, low-rank projection
methods, projected gradient methods, and standard Krylov subspace methods. Conclusions are
drawn in Section 6.

Definitions and notations. Matching lower and upper case letters are used to denote the
“vectorized” and “matricized” versions of a given quantity, respectively; e.g., ¢ = vec(C) and
C = vec !(c). We denote the ith entry of a vector ¢ by [c];, and the (i, j)th entry of a matrix C
by [C];; or, using MATLAB-like notations, [¢]; = ¢(i), [C];; = C(4, j). Using again MATLAB-like
notations, d = diag(C) defines a vector d whose entries are the diagonal elements of a matrix
C. Tr(C) denotes the trace of a matrix C. R(C) denotes the range (or column space) of a
matrix C, and K,,(A,b) denotes the m-dimensional Krylov subspace defined by A and b, i.e.,
Km(A,b) = span {b, Ab, A%, ..., Am_lb}. We denote by I € R*¢ the identity matrix of order
d, and by e; the ith canonical basis vector of R¢, where d should be clear from the context. Note
that, in the following, we will quite often interchange & and X and, with a slight abuse of notations,
we will denote the action of a linear operator on @ or X by A(X) = AX = Az, and the action of
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LOW-RANK KRYLOV METHODS 5

the adjoint operator by A*(Y) = A*Y = ATvec(Y).

2. Low-rank projection methods: classical and new approaches. As recalled in Section
1, when solving square well-posed linear systems coming from the discretization of some instances
of stochastic or time-dependent PDEs, a suitable rearrangement of the solution is expected to be
low-rank: for this reason, schemes that incorporate low-rank projections within the basis vectors
and the approximate solution obtained by a Krylov method have been proposed in the literature. In
the following we summarize the working ideas underlying the so-called restarted low-rank-projected
GMRES (RS-LR-GMRES) method proposed in [22].

The starting points for the derivation of RS-LR-GMRES are the basic properties and rela-
tions underlying GMRES. Indeed, one can define GMRES for the solution of (1.1) with a square
A € R¥*N and initial guess ¢y = 0 by generating a matrix V;,, = [vy,...,v,,] € RV*™ with or-
thonormal columns, such that R(V;,) = K., (A, b), and imposing that the residual r,, = b — Ax,,
is orthogonal to U,,, = AV,,. In practice, at the kth iteration of GMRES, one computes

(21) U = A'Uk_l and H'UkHQ'Uk = (I — Vk_l(VkT_le_l)’leT_l)uk,
=I

and the approximate solution is computed as
(2.2) x, = Viyr, where (UFAVi)yr =Ul'b.

This procedure is mathematically equivalent to the somewhat more standard procedure that, at the
kth iteration of GMRES, updates the partial Arnoldi factorization and computes the approximate
solution as follows:

(2.3) AV, =V, 1Hy, == Viy,, where y, = arg nel]g’lc |Hry — |bl2e1]2 -
y

Note that, in particular, the matrix V}, appearing in (2.2) coincides with the matrix Vj appearing
in (2.3). However, since matrix-vector products and vector sums of low-rank vectorized matrices
increase the rank of the latter, relations (2.1) and (2.2) obviously do not guarantee that the new
basis vectors v for the solution nor the new solution x; are low-rank. To force the basis vector
for the solution and the approximate solution to be low-rank, a truncation operator should be
incorporated into the GMRES algorithm. Given a vectorized matrix ¢ = vec(C), and given a
desired low-rank x for C, one can define a truncation operator 7,(c) by the following standard
operations:

Take C = vec™1(c);

Compute the SVD of C, C = UcXcV{E;

Compute C,, = U (:,1: k) Zc(1: k,1: 6)Ve(:,1: k)T
Take 7. (c) = vec(Cy).

(2.4)

Ll

RS-LR-GMRES is a restarted version of the standard GMRES method where the basis vectors
for the solution are truncated at each inner iteration, and the solution itself is truncated at the
beginning of each outer iteration. Note that truncating the basis vectors does not guarantee that
the solution has low rank (which is the reason we still need to truncate the approximate solution).
The reason for truncating the basis vectors is to keep the original solution rank from increasing
drastically, since it is computed as a linear combination of basis vectors. More precisely, at the ¢th
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6 S. GAZZOLA, C. MENG AND J. NAGY

outer iteration of RS-LR-GMRES, one takes v = ry_1/|r¢—1]2, where r,_; = b — Ax,_1, and, at
the kth inner iteration, one computes

(2.5) up = Avi_1 and  |vg|avr = 7, ((I — V}g71(VkT,1Vk71)_1VkT,1)Uk) .

Once m inner iterations are performed, the approximate solution at the fth outer iteration is
computed as

(2.6) xp =Ty (®o—1 + Vinym) , where (U,z;AVm)ym = Ug;?"g_l .

The operations in (2.5) and (2.6) heavily depend on the value x of the truncated rank, which
eventually coincides with the rank of the approximate solution. In the framework of stochastic
PDEs, a suitable estimate for £ can be obtained by first performing coarse-grid computations (see
[22] for details, and [19, 33] for similar approaches). Comparing (2.5) and (2.1) one can see that,
as in standard GMRES, RS-LR-GMRES computes a new basis vector for the solution by applying
the linear operator A to the previous basis vector v;_; and orthogonalizing it against the previous
basis vectors v;, ¢ = 1,...,k — 1. However, since the basis vectors are truncated to low rank,
the matrix V}, does not have orthonormal columns anymore, and R(V,,) is not a Krylov subspace
anymore. This remark leads us to the derivation of alternative low-rank projection solvers, which
can be (re)casted into the framework of flexible Krylov methods and can work with both square
and rectangular systems (1.1).

Low-rank flexible GMRES (LR-FGMRES) and low-rank flexible LSQR (LR-FLSQR). Flexible
Krylov methods are a class of linear solvers that can handle iteration-dependent preconditioners:
they were originally introduced in [31] for FGMRES, where a preconditioner for GMRES was al-
lowed to change from one iteration to the next (either because at each iteration the preconditioner
is implicitly defined by applying an iterative linear solver, or because the preconditioner can be
updated with newly-computed information; see [32] for an overview). In the framework of regular-
izing linear solvers, flexible Krylov methods were proposed in [4, 7, 9], where the iteration-dependent
“preconditioner” was associated to an iteratively reweighted norm approach to Tikhonov-like reg-
ularized problems involving penalization terms expressed in some p-norm, 0 < p < 1 (and, indeed,
these “preconditioners” have the effect of enforcing specific regularity into the approximation sub-
space for the solution, rather than accelerating the convergence of the iterative solvers). Leveraging
flexible Krylov subspaces in this setting comes with the upside of avoiding restarts of the itera-
tive solver, which is the approach commonly used when adopting an iteratively reweighted norm
method. When considering low-rank projections of the basis vectors within RS-LR-GMRES, we
enforce the basis vectors to have low-rank, so to better reproduce available information about the
solution of (1.1) (i.e., the solution should be low-rank). It is therefore natural to consider flexible
Krylov methods that involve truncation of the basis vectors at each iteration, as a computationally
cheaper alternative to RS-LR-GMRES that does not involve restarts.

Considering first the case of a square A € RY*Y  we can use the flexible Arnoldi algorithm
[31] to naturally incorporate low-rank basis vectors for the solution of (1.1). In general, starting
with &g = 0, at the kth iteration, FGMRES updates a partial flexible Arnoldi factorization and
computes the kth approximate solution as follows:

(2.7) AZ, =V 1H,, x, = Z,yy, where y, = arg nel]g; |Hry — ||bl2e1]2,
y
where Vi1 = [v1, ... ,v541] € RN *(k+1) has orthonormal columns, Hj; € RE+TDXE ig upper

Hessenberg, and Z;, = [Pyvy, ..., Pyvi] € RV** has columns that span the approximation subspace
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LOW-RANK KRYLOV METHODS 7

for the solution (P; is an iteration-dependent preconditioner that is applied to v; and, in the
particular case of low-rank truncation, Pv; = 7, (v;), is the truncation operator defined in (2.4),
so that rank(vec™!(Zpe;)) = kp, i = 1,...,k). The subscript B for the truncation rank kg
suggests that the truncation is done on the original basis vectors v;’s. The resulting algorithm
is dubbed “LR-FGMRES”, and it is summarized in Algorithm 2.1. Note that the approximate
solution computed as in (2.7) is also truncated to guarantee rank  (in general, we assume kg # K).
Also LR-FGMRES is started with &y = 0, to guarantee that the basis vectors for the solution
(rather than a correction thereof) are low-rank.

Algorithm 2.1 LR-FGMRES

1: Inputs: A, b, T.p, Tx

2: Take v1 = b/|b|2

3: for i =1,2,... until a stopping criterion is satisfied do

4: Compute z; = 7, (v;) and w = Az;

5: Compute h;; = wlv; for j =1,...,i and set w = w — D=1 hjiv;
6: Compute hH—l,i = ||’UJ||27 and if hj+1,j #* 07 take Vi1 = w/hi+1,i

7: end for

8: Compute y; = argmin,, | Hypy — [b]2e1 3 and take @), = 7.(Zryr)

A few remarks are in order. Differently from the kth iteration in the inner cycle of the RS-
LR-GMRES method (2.5), the kth iteration of LR-FGMRES expands the approximation subspace
by modifying (i.e., truncating) the previous orthonormal basis vector for the space R([b, AZy]).
Analogously to RS-LR-GMRES, the basis vectors for the approximate LR-FGMRES solution are
all of rank kp, are not orthogonal, and do not span a Krylov subspace. Differently from RS-LR-
GMRES, the basis vector for the space R([b, AZ]) are orthogonal. Also, the kth LR-FGMRES
approximate solution is obtained by solving an order-k projected least squares problem that is
formally analogous to the GMRES one (see (2.3) and (2.7)).

With LR-FGMRES in place, the extension to more general matrices A € RM*N  with M
not necessarily equal to N, can be naturally devised considering the flexible Golub-Kahan (FGK)
process [4]. Taking o = 0 as initial guess, the kth FGK iteration updates partial factorizations of
the form

(28) AZk = Uk+1Mk and ATU;H_l = Vk+1Tk+1,

where the columns of Uy, € RM*(k+D v 1 e RV*F+1) are orthonormal, M, € RE+Dxk g
upper Hessenberg, Tj,.1 € REFD*(FE+D) i upper triangular, and Zj, = [Pivy,..., Pyv,] € RNXE
has columns that span the approximation subspace for the solution (P; is an iteration-dependent
preconditioner that is applied to v; and, in the particular case of low-rank truncation, Pjv; =
Tip (i), as defined in (2.4), so that rank(vec™'(Zye;)) = kp, i = 1,...,k). The flexible LSQR
method (FLSQR) uses the FGK process (2.8) to generate iterates of the form @, = Zyyy, where

2
the vector yj is computed as y, = argmin, HMky — ||b”2€1H . When rank-truncation of the
2

basis vectors takes place at each iteration, and the final approximate solution is rank-truncated
as well, the resulting algorithm is dubbed “LR-FLSQR”, and it is summarized in Algorithm 2.2.

Note that, similarly to RS-LR-GMRES, both LR-FGMRES and LR-FLSQR are quite heuristic.
Although the low-rank projection idea can be formulated in the flexible framework, we lack a formal
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Algorithm 2.2 LR-FLSQR

1: Inputs: A, b, 7., T

2: Take u; = b/|b||2

3: for i =1,2,..., until a stopping criterion is satisfied do

4: Compute w = ATw;, tj; =wlvjforj=1,...,i—1

5: Set w =w — Z;;ll tj;vj, compute t; = |wl| and take v; = w/t;;

6: Compute z; = 7., (v;) and w = Az;

7 Compute mj; = wlu; for j =1,...,i and set w = w — 23:1 mju,
8: Compute m; 41, = |w| and take w;+1 = w/m;y1,

9: end for

10: Compute yj, = argmin,, | My — |b]2e1[3 and take xx = 7,.(Zrys)

formulation of the problem that is being solved, and also a justification of why they work. Strategies
for selecting kp and x are not so clear either. To stabilize the behavior of LR-FGMRES as the
iterations proceed, one may consider imposing additional Tikhonov regularization on the projected
least-squares problem in (2.7), in a hybrid fashion; the same holds for LR-FLSQR (see Sections 3.3
and 5 for more details).

3. Proposed Method. In this section, we first derive the IRN method for the solution of the
NNRp problem (1.3). The starting point for our derivations is the approximation of the nondifferen-
tiable nuclear norm regularizer by a smooth Schatten function (similarly to what is proposed in [25]
for the affine rank minimization problem). The optimality conditions associated to the smoothed
problem give rise to a nonlinear system of equations in X, which is handled by a fixed-point it-
eration scheme. We show that each iteration amounts to the solution of a Tikhonov-regularized
problem involving an iteratively reweighted 2-norm regularization term, which can be efficiently
solved employing “preconditioned” Krylov methods. Flexible Krylov methods are introduced to
approximate the solution of the IRN problem within only one adaptively defined approximation
subspace for the solution, bypassing the inner-outer iteration scheme required by standard Krylov
methods.

3.1. Derivation. Define the smooth Schatten-p function as

T 2 :
SY(X) =Te((XTX +~I)P?), withy>0.

Note that S)(X) is differentiable for p > 0 and convex for p > 1. In particular, for p = 1 and v = 0
(i.e., no smoothing),
SYUX) = Te((XTX)V?) = | X

We start by considering the following smooth approximation to (1.3):

. o 2 ¥
(3.1) min [ AX) = BJ} +A8)(X).

The following derivations are valid for p > 0 (and we keep them generic, being aware that p = 1
approximates (1.2)). The optimality conditions associated to (3.1) read

0=Vx (JAX) - B} + AS) (X))
(3.2) = 24%(A(X) — B) + A\p(X XT +~AI)P?71X |
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where we have used that
Vx Tr((XTX +4I)P?) = pX (XTX +~AID)P?7 = p(XXT 4+ 4I)P?71X .
Equivalently, the nonlinear system of equations (3.2) with respect to X can be expressed as
X = (A*A FAXXT + 71)1’/2*1)_1 A*B

= (A*A FAMXXT 44D T(x XT 4 71)1’/4*1/2)_1 A*B, with A = Ap/2,
which is naturally associated to the following fixed-point iteration scheme
(3.3) Xps1 = (A*A FAM(XR XT + DA (X, XT + 71)17/4_1/2) B A*B,

which leads to the solution of (3.1). Equivalently,

X411 = argmin ,
X

F

A B
l VAXGXT + D)1 ]X{ 0 }

i.e., (3.3) are the normal equations associated to the penalized least squares problem written above
or, equivalently,

N 2
34 Xk, =argmin |[AX — B 242 X XT AT pia-12 x|
X F k p

We now reformulate problem (3.4) in vectorial form.

Let Ux, X x, V;gk = X} be the SVD of X}; thanks to the invariance of the Frobenius norm
under orthogonal transformations, the regularization term in the above problem can be rewritten
as

2 2 2
H(XkX”“T n 7I)p/4—1/2XHF: HUX;C(E?Xk n ,YI)p/4—1/2U)1;kXHF: H(zg{k L AIPAPUL XV, )

Using well-known Kronecker product properties

2 2
(&%, DU X[ = [vee (B, + 207 U%, XV )|

- H (V)?k ® ((zi(k n vI)p/A‘*l/QU};k)) mHj _ H (I® (=%, + yr)p/‘**l/?) (VL ®UL.) a:Hz .

Problem (3.4) is therefore equivalent to
=:S}

N /_/%
(85) @y —agmin| Az — b} + X (1@ (S, +91)"*2) (VE, @ UL, ) al3.

= (W5 )k

In the above formulation, (W) is a diagonal weighting matrix and Sy is an orthogonal matrix;
both (W))x and S depend on the current approximation xj of the solution z. Intuitively, the
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matrix S maps x into the “singular value domain” of Xj (and acts as an iteration-dependent
sparsity transform), and the matrix (WZ;V )i assigns suitable weights that allow to approximate a
p-norm of the singular values. Therefore, the penalization term in (3.5) can be interpreted as a
reweighted vectorial 2-norm, with respect to a transformation of the solution x. For this reason,
the proposed approach is dubbed “IRN-NNRp” and is summarized in Algorithm 3.1.

Algorithm 3.1 IRN-NNRp

: Inputs: A, b, (W))o=1, S =1

: for £k =0,1,... until a stopping criterion is satisfied do
Solve problem (3.5)
“Decrease” ~
Update (WJ);CH and Sy1

end for

A S

The next subsection derives new strategies for the efficient solution of the sequence of sub-
problems (3.5) appearing in Algorithm 3.1.

3.2. Solution of problem (3.5) via Krylov methods. First rewrite problem (3.5) using
an appropriate change of variable as

(3.6) Zp1 = argmin [AST (W) & — b2 + \|2[3, with & = (W)).S)z.
Note that
(3.7) S{=8'=Vx,®Ux, and (W));'=I® X%k, +~yD)V***,

so that the above transformations (inversion of an orthogonal and a diagonal matrix) are numeri-
cally affordable by exploiting properties of Kronecker products. The Tikhonov-regularized problem
(3.6) in standard form is equivalent to the Tikhonov-regularized problem (3.5) in general form.
Many Krylov subspace methods based on the Golub-Kahan Bidiagonalization (GKB) or Arnoldi
algorithms can be employed to approximate the solution of (3.6). Moreover, if the regularization
parameter ) is not known a priori, many efficient strategies to set its value adaptively within the
sequence of projected problems can be used (i.e., in the framework of hybrid methods; see [18, §]).
The matrices Sy, and (WPV ),;1 can be formally thought of as preconditioners for the original problem
(1.1), whose purpose is to enforce additional regularization into the solution subspace, rather than
speeding-up the convergence of linear solvers applied to (1.1).

Methods based on the GKB algorithm. The mth step of the GKB algorithm applied to the
matrix AS,CT(WI;Y )z with starting vector b (i.e., taking zo = 0) can be expressed by the following
partial matrix factorizations

(3.8) (AS{ (W) Wi = U1 By, and (W) 'SkA")Ups1 = Vi1 B 4,

where U; € RM*7 and V; € RV*J (with j = m,m + 1 and Uje; = b/|b|2) have orthonormal
columns, and B,,;1 € R™+Dx(m+1) is Jower bidiagonal (with B,, obtained by removing the last
column of B,,+1). The orthonormal columns of V,,, are such that

R(Vin) = Kin (W) ' Sk AT)(ASE (W), (W) Sk AT)b)

This manuscript is for review purposes only.
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We find an approximate solution of (3.6) by imposing & € R(V,,), i.e., Zmy = ViuYm, where, by
exploiting the first decomposition in (3.8) and the properties of the matrices appearing therein,
Ym € R™ is such that

(3.9) Ym = arg min | By — |blze1]3 + A lyl3 -

We used the notation S\m for the regularization parameter to highlight that its value can be adap-
tively set within the iterations. The approximate solution to problem (3.5) is such that

(3.10) x =S (W) '@ e Ky (S (W)),?Sk)AT A, (S; (W), >Sk)ATb) .

Looking at the above approximation subspace for the solution «, it is evident that the “precondi-
tioner” acts by first mapping into the “singular value domain” (by applying Sy ), enforcing sparsity
in the singular values (by reweighting with (W ),;2), and eventually transforming back into the
“solution domain” (by applying S7).

Methods based on the Arnoldi algorithm. If A is square, the mth step of the Arnoldi algorithm
applied to the matrix A.S’,i’j(WI;Y),:1 with starting vector b (i.e., taking &y = 0) can be expressed
by the following partial matrix factorization

(3.11) (AS{ (W), )WVin = Vi1 Hypy
where V; € RV*J (with j = m,m + 1 and Vje; = b/|b|2) have orthonormal columns such that
R(Vm) = Km (ASJ?(WJ)ZI, b) 5

and H,, € RMTD>x" jg ypper Hessenberg. Similarly to the GKB case, we find an approximate
solution of (3.6) by imposing Z € R(V,,) and by solving a projected Tikhonov problem of order m.
The approximate solution to problem (3.5) is such that

x=SL (W), '@ e S{ (W), Kin (AST (W) 1,b) ,
where
_ _ _ _ m—1 _
SEW)) K (ASE (W) b) = span{S (W), 'b,..., (S{ (W) P A)" SE(W)), b}
=K (S (W) LA, SE(W)) ') .

Contrarily to the GKB case, we immediately notice that, in this context, & does not belong to a
meaningful approximation subspace. Indeed, just by looking at the first vector: b is in the image
space and (W) ),;1 is supposed to act on the singular value space of X, so (W) ),Zlb is hard to
interpret; furthermore, S is supposed to link the singular value space of X}, to the image space,
SO SkT(Wz;’ )glb is also hard for us to interpret. Although the generated solution subspace is not
meaningful for our applications, it may still have the potential to be a good subspace in other
contexts. Similarly to what is proposed in [1, 4], where the Arnoldi algorithm is applied to a
regularized problem that enforces sparsity in the wavelet domain, we propose to fix this issue by
incorporating Sy also as an orthogonal left “preconditioner” for the original system (1.1) so that, by
exploiting the invariance of the vectorial 2-norm under orthogonal transformations, problem (3.6)
can be equivalently reformulated as

(812) i1 = argmin| Su(AST (W) '@ — b3 + A[&]3, with & = (W))iSia.

This manuscript is for review purposes only.
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12 S. GAZZOLA, C. MENG AND J. NAGY

The (right and left) preconditioned Arnoldi algorithm applied to problem (3.12) can now be ex-
pressed by the following partial matrix factorization

(3.13) (SkASL (W) YWV = Vi1 Hyp,

We find an approximate solution of (3.12) by imposing Z € R(V,,,) = K., (SkASF W1, S;b), i.e.,
Ty = ViUm, where, by exploiting (3.13) and the properties of the matrices appearing therein,
Ym € R™ is such that

(3.14) Ym = arg min | Hiny — [blzex]3 + Al yl3 -

Hence
(315)  @e ST(W)) ' Ku(SkAST (W), Skb) = K (ST (W) SiA, ST (W), ' Sib)

which is suitable for approximating the solution. The new methods based on the GKB algorithm
(for generic matrices) and Arnoldi algorithm (only if A € RV*¥) are dubbed “IRN-LSQR-NNRp”
and “IRN-GMRES-NNRp”, respectively, and are summarized in Algorithm 3.2.

Algorithm 3.2 IRN-LSQR-NNRp and IRN-GMRES-NNRp
1: Inputs: A, b, (W) )o=1I, Sy =1

2: for k =0,1,... until a stopping criterion is satisfied do

3: for m = 1,2,... until a stopping criterion is satisfied do

4: Update the factorizations (3.8) and (3.13), respectively

5: Solve the projected problem (3.9) and (3.14), respectively, tuning A if necessary
6: end for

7 “Decrease” y

8: Update the new (W[;Y)k+1 and Sk

9: end for

3.3. Solution through flexible Krylov subspaces. Problem (1.3) reformulated as (3.6)
allows us to naturally apply the flexible Golub-Kahan (FGK) and flexible Arnoldi algorithms.
Indeed, instead of updating the “preconditioners” Sy and (WI;’ )i at the kth outer iteration of the
nested iteration schemes of Algorithm 3.2, we propose to consider new “preconditioners” as soon as
a new approximation of the solution is available, i.e., at each iteration of a Krylov subspace solver.
Therefore, at the (i + 1)th iteration of the new solvers, the “preconditioners” (W)); and S; are
computed as in (3.7), but using the SVD of the ith approximate solution

X; =vec Nx;) =Ux,Zx,Vx,, fori=1,... k-1,

with (W])o = I and Sp = I. In order to incorporate iteration-dependent preconditioning, the
flexible versions of the Golub-Kahan and Arnoldi factorizations have to be used.

Namely, at the ith iteration, the new instance of the FGK algorithm updates partial factoriza-
tions of the form (2.8), i.e., AZ; = U;;1M; and ATU; 1 = V;;1T; 1, where

Zi = [Sg(Wg)a2SOUl, ey Sf_l(WIj):fISz_lvz] 3 v = ATb/HATbHQ .

1is manuscript is for review purposes only.
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Taking oy = 0, the ith approximate solution is such that x; = Z;y;, where

(3.16) y; = arg min | My — ||bl2es |3 + Ai|y|3.

Note that the subspace for the solution R(Z;) can be regarded as a generalization of the subspace
(3.10) computed when considering preconditioned GKB within the IRN-LSQR-NNRp method. The
new method is dubbed “FLSQR-NNRp”, and is summarized in Algorithm 3.3.

For A € RY*N and xy; = 0, at the ith iteration, the new instance of the flexible Arnoldi
algorithm updates a partial factorization of the form (2.7), with k = i, and generates

Z; =S5 (W) ' Sovs,.... SLL(W)) T Sicavi], w1 = b/[b2,

where both right and left preconditioners are used analogously to IRN-GMRES-NNRp. The ith
approximate solution is such that x; = Z,y;, where

(3.17) yi = arg min | Hiy — [blaeaf + Aillyl3

Note that the subspace for the solution R(Z;) can be regarded as a generalization of the subspace
(3.15) computed when considering the preconditioned Arnoldi algorithm within the IRN-GMRES-
NNRp method. The new method is dubbed “FGMRES-NNRp”, and is summarized in Algorithm
3.3.

Algorithm 3.3 FLSQR-NNRp and FGMRES-NNRp
1: Inputs: A, b, (W))o=1, S0 =1
2: for i =1,2,... until a stopping criterion is satisfied do
3: Update a factorization of the form (2.8) and (2.7), respectively, to expand the space R(Z;)
4 Solve the projected problem (3.16) and (3.17), respectively, tuning sz if necessary
5: “Decrease” ~
6: Update the new (W})); and S;, using the SVD X; = vec™!(x;) = Ux,Xx, Vy.,.
7. end for

Note that, although the approach of Algorithm 3.3 is quite heuristic, it avoids nested iteration
cycles and computes only one approximation subspace for the solution of (1.3), where low-rank
penalization is adaptively incorporated. Because of this, in many situations, Algorithm 3.3 com-
putes solutions of quality comparable to the ones computed by Algorithm 3.2, with a significant
reduction in the number of iterations. We should also mention that, in the framework of affine rank
minimization problems, [25] outlines an algorithm that avoids inner projected gradient iterations
for the solution of each quadratic subproblem in the sequence generated within the IRN strategy.

Finally, we underline that, within the framework of flexible Krylov subspaces, the approximation
subspaces R(Z;) for the ith approximate solution can be further modified, with some insight into
the desired properties of the solution. Indeed, since the ith basis vector for the solution is of the form
z; = ST (W) % Si_1v; for FLSQR-NNRp, and z; = SF,(W});},S;_1v; for FGMRES-NNRp,
one can consider alternative “preconditioners” S;_; and (WZ:’ )i—1 that are still effective in delivering
low-rank solutions. For instance, focusing on FGMRES, and given v; = V;e;, where Vj is the matrix
appearing on the right-hand side of the factorization (2.8), and given the SVD of vec™!(v;) =
Uy Xy, V‘Z, one can take

(3.18) Si1 =V @Uy and (W) =I® (Sy,) 72,

This manuscript is for review purposes only.
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14 S. GAZZOLA, C. MENG AND J. NAGY

and as a result,

Si_1v; = vee(Ug vee ™ (v;) W) = vee(Sy,),
(W) Simav: = vee((Sv,) P2 8y,) = vee(Sv,)> #2),
SzT—l(Wz;y)i_lei_l’Uz’ = vec(UVi((gw)%p/z)V‘g) o

so that the singular values of vec™!(v;) are rescaled: taking 0 < p < 1, the power of Zv;, 2 — p/2,
is always larger than 1, which means that large singular values get magnified and small singular
values become even smaller. In this way, the gaps between singular values are emphasized and to
some extent contribute to the low rank properties of the basis vectors. Similar derivations hold for
FLSQR. Hence, methods analogous to LR-FLSQR and LR-FGMRES are obtained, and are dubbed
FGMRES-NNRp(v) and FLSQR-NNRp(v), respectively.

4. Implementation details. All the methods considered in this paper are iterative, and
therefore at least one suitable stopping criterion should be set for the iterations. When considering
hybrid formulations (like the ones in Algorithms 3.2 and 3.3), one could simultaneously set a good
value for the regularization parameter /A\j at the jth iteration, as well as properly stop the iterations.
Strategies for achieving this are already available in the literature (see [6, 8]).

Assuming that a good estimate for the norm of the noise n affecting the right-hand-side of (1.1)
is available, i.e., £ ~ |n]2, one can consider the discrepancy principle and stop the iterative scheme
at the first iteration j such that

(4.1) |b— Ax;|2 < fe, whered >1, 60 ~1is a safety threshold.

Applying the discrepancy principle to LR-FGMRES (Algorithm 2.1) and LR-FLSQR (Algorithm
2.2) is particularly convenient, as the norm of the residual on the left-hand side of (4.1) can be
monitored using projected quantities, i.e.,

[|bl2er — Hjy;|, for LR-FGMRES and ||bll2e1 — Mjy;|, for LR-FLSQR,

where decompositions (2.7) and (2.8), respectively, and the properties of the matrices appearing
therein, have been exploited. When running hybrid methods (see Algorithms 3.2 and 3.3), we
employ the so-called “secant method”, which updates the regularization parameter for the projected
problem in such a way that stopping by the discrepancy principle is ensured. We highlight again
that the quantities needed to implement the “secant method” (namely, the norm of the residual and
the discrepancy associated to (3.6) at each iteration) can be conveniently monitored using projected
quantities: this is obvious for IRN-LSQR-NNRp and FLSQR-NNRp, as only right- “preconditioning”
is employed; it is less obvious for IRN-GMRES-NNRp and FGMRES-NNRp, but since the left-
“preconditioner” is orthogonal, one can still write

|b— Azjls = |Skb— S AST (W) @; 2 = [[bl2ex — Hjy;]z -

Note that all the methods in Algorithm 3.2 and 3.3 can also run with A = 0, and still achieve
low-rank approximate solutions: this is because the approximation subspace for the solution in-
corporates regularizing “preconditioning” (see [12, 14] for details on this approach in the case of
smoothing “preconditioning” with finite-difference approximations of derivatives operators). Fi-
nally, when dealing with the inner-outer iteration scheme of Algorithm 3.2, in addition to a pa-
rameter choice strategy and stopping criterion for the hybrid projected problems (3.9) and (3.14),

This manuscript is for review purposes only.
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one should also consider a stopping criterion for the outer iterations. We propose to do this by
monitoring the norm of the difference of the singular values (normalized by the largest singular
value so that 01(¥x,,,) = 01(¥x,) = 1) of two approximations of the solution of (1.3) obtained
at two consecutive outer iterations of Algorithm 3.2, i.e., we stop as soon as

(4.2) |diag(Xx,,,) — diag(Ex, )2 <70, k=1,2,...,

where vec™!(z;) = X; = Ux,Zx, V;i (i = k,k+ 1), and 7, > 0 is a user-specified threshold. If
no significant changes happen in the rank and singular values of two consecutive approximations of
the solution, then (4.2) is satisfied.

We conclude this section with a few remarks about the computational cost of the proposed
methods. Note that, if A € RV*N_ IRN-GMRES-NNRp is intrinsically cheaper than IRN-LSQR-
NNRp (since, at each iteration, the former requires only one matrix-vector product with A, while
the latter requires one matrix-vector product with A and one with A”). However, methods based
on the Arnoldi algorithm are typically less successful than methods based on the GKB algorithm
for regularization; see [15]. Other key operations for implementing our proposed methods are the
computation of the SVDs of relevant quantities, and/or the application of the “preconditioners” in
(3.18). Namely, each iteration of LR-FGMRES, LR-FLSQR, FLSQR-NNRp, and FGMRES-NNRp
requires the computation of the SVD of an n x n matrix, which amounts to Q(n?) = O(N3/?)
floating point operations. When considering IRN-LSQR-~-NNRp and IRN-GMRES-NNRp, only the
SVD of the approximate solution should be computed once at each outer iteration. However,
each inner iteration of IRN-LSQR-NNRp and IRN-GMRES-NNRp, as well as each iteration of
FLSQR-NNRp and FGMRES-NNRp, requires the computation of matrix-vector products of the
form S,CT(WI;V )% ‘v this can be achieved within a two-step process, where first the rescaling ¥; =
(W)),, 'v; is applied with O(N) = O(n?) floating-point operations, and then Sfo; = (Vx, ®
Ux, )v; is computed. While a straightforward implementation of the latter would require O(N?) =
O(n*) floating-point operations, exploiting Kronecker product properties can bring down the cost of
this operation to O(n®) = O(N%/?), by computing S} ¥; = vec(Ux, vec™ ! (v;)Vx, ). We emphasize
that the incorporation of the flexible “preconditioners” does not increase the order of computational
complexity and is very practical, since operations are done on matrices of size n x n (n is the
dimension of the image). In particular, the full SVD’s of n x n matrices can be computed easily
with MATLAB’s built-in svd function (this is what we used in our numerical experiments); one
can also use Lanczos bidiagonalization [20] or randomized SVD [11] to compute the approximate
leading singular values and vectors.

5. Experimental Results. In this section, we present results of numerical experiments on
several image processing problems to demonstrate the performance of the new IRN-GMRES-NNRp,
IRN-LSQR-NNRp, FGMRES-NNRp, and FLSQR-NNRp methods. Variants of FGMRES-NNRp
and FLSQR-NNRp (marked with “(v)”) are also tested. To shorten the acronyms, we omit p when
p = 1, which means IRN-GMRES-NNR denotes IRN-GMRES-NNRp when p = 1, etc. Examples
are generated using IR Tools [6].

In general, we compare the performances of the proposed methods to standard Krylov subspace
methods GMRES and LSQR, also used in a hybrid fashion. We also test against the low-rank
projection methods described in Section 2 and the singular value thresholding (SVT) algorithm [3],
which was originally proposed for low-rank matrix completion problems, and can be extended to
problems with linear constraints of the form

1
(5.1) min 7|vec™! (x)]+ + §HV6071($)H% subject to Az = b, where vec™!(z) = X.
x
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528 The kth iteration of the SVT algorithm for (5.1) reads

529 (5.2)

)

Xy, =D (ATy,_1)
Yr = Yp—1 + O (b — Azy)

530 where Jy, is a step size and D is the singular value shrinkage operator, defined as
531 D, (X)=UxD,(Ex)Vx, D, (Ex) =max{Zx — 71,0},

32 where X = UXEXV}; is the SVD of X, 0 is a matrix of zeros, and the maximum is taken
33 component-wise. Although (5.1) is not the same problem as (1.2), they are similar in that both
34 penalize the nuclear norm of vec~!(z) and they respect the constraint Az = b.

35 The Schatten-p function is introduced in Section 3.1 as a smooth approximation for |- |« ,. The
36 smooth approximation allows for further derivations including computation of optimality conditions,
37 where the “smoothing coefficient” «y is crucial. However, 7 is not so crucial numerically, and we
38 can set it to 0 without affecting the results (compared to using a very small ). Howevrer, to be
39 consistent with Algorithms 3.2 and 3.3, in our experiments, we have set the initial value of v to
10 10719, and every time we need to decrease vy, we divide the current ~ value by 2.

41 Regarding the comparisons with the low-rank projection methods presented in Section 2, there
12 are no universal and theoretically informed ways of choosing the truncation ranks for the solutions
43 and for the basis vectors of the solution subspace. Hence, for all test problems, we experiment
44 on a reasonable number of trials, each with different truncation rank choices, and select the best
performing rank out of all ranks tested. For simplicity, we consider the same truncation rank for
basis vectors and solutions (7., = 7,). We follow the same process to choose the number of restarts
and the number of iterations for each restart for RS-LR-GMRES, as well as the shrinkage threshold
T in SVT; strategies to select the step size for SVT are described in [3].

Example 1: Binary Star. We consider an image deblurring problem involving a binary star test
image of size 256 x 256: this test image has rank 2. The true image is displayed in the leftmost
frame of Figure 2. A standard Gaussian blur is applied to the test image, and Gaussian white
52 noise of level |n|2/[b%*|2 = 1073 is added. The blurred and noisy image is shown in Figure 2,
53 second frame from the left. Due to the presence of noise, the blurred image has full rank. For this
54 example, the blurring operator A is square of size 65536 x 65536, hence GMRES-related methods
55 are used for comparison, namely: GMRES, IRN-GMRES-NNR, FGMRES-NNR, LR-FGMRES and
56 RS-LR-GMRES (i.e., we only consider the case p = 1 here). SVT is also taken into consideration.
The truncation rank for LR-FGMRES and RS-LR-GMRES is set to 30 for both basis vectors and
approximate solutions (i.e., 74, = 7« = 30). RS-LR-GMRES is restarted every 40 iterations. The
step size for SVT is set to be § = & = 2 and the singular value shrinkage threshold 7 is 1. Note
that, although the true solution has only rank 2, setting truncation rank to 2 for low rank methods
produces solutions of worse quality (compared to setting the rank to 30). This might be because
of the inherent ill-posedness of the problem, which makes it harder to obtain solutions with desired
properties (e.g., with rank 2): indeed, if we do truncate to rank 2, a lot of information about the
solution might be lost.

Figure 1 displays the histories of relative errors ||€®* — @, |2/[x |2 for the first 200 iterations
(i.e., m =1,...,200) of these methods. For IRN-GMRES-NNR, 4 outer cycles were run, each with
a maximum of 50 iterations: a new outer cycle is initiated as soon as the discrepancy principle is
68 satisfied in the inner cycle. No additional regularization is used (i.e., A = 0 for all methods).
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——GMRES
—— IRN-GMRES-NNR
FGMRES-NNR

—— LR-FGMRES
—— RS-LR-GMRES
SVT

02 1 1 1
0 50 100 150 200

Fig. 1: Example 1. Relative errors vs. number of iterations for GMRES-based methods and SVT.

We can observe from Figure 1 that when the truncation ranks are chosen reasonably, LR-
FGMRES and RS-LR-GMRES both produce a less pronounced semi-convergence behavior than
GMRES, with LR-FGMRES attaining a smaller relative error than RS-LR-GMRES. FGMRES-
NNR, on the other hand, shows slower semi-convergence than GMRES, but it also converges to
a slightly better relative error. IRN-GMRES-NNR, behaves especially well in this case, with sig-
nificantly reduced relative errors even at the end of the second outer cycle. The “jumps” at the
beginning of each outer IRN-GMRES-NNR iteration are due to the strategy used for restarts (the
older basis vectors are cleared at each restart).

Figure 2 displays the exact and the corrupted images, as well as the best reconstructions
computed by LR-FGMRES and IRN-GMRES-NNR: these are obtained at the 47th and the 189th
(total) iteration of LR-FGMRES and IRN-GMRES-NNR, respectively. By looking at relative errors
in Figure 1, we see that LR-FGMRES is the second best out of all methods, and yet the quality of
the solution is inferior compared to IRN-GMRES-NNR. Compared to the LR-FGMRES solution,
the IRN-GMRES-NNR one is a more truthful reconstruction of the exact image: it not only has
less artifacts immediately around the stars, but also has less background noise, in the sense that
the pixel intensities in the background are closer to the true ones (as it can be seen by looking
at the background color). More details can be spotted if we zoom into the central part (51 x 51

exact blurred & noise LR-FGMRES IRN-GMRES-NNR

Fig. 2: Example 1. Exact and corrupted test images, together with the best reconstructions obtained
by the LR-FGMRES and the IRN-GMRES-NNR, methods.
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18 S. GAZZOLA, C. MENG AND J. NAGY

pixels) of the computed images, as shown in Figure 3: here the best LR-FGMRES reconstruction,
as well as the IRN-GMRES-NNR reconstructions at the end of the 2nd, 3rd and 4th inner cycles
are displayed. It is clear that the IRN reconstructions are improving over each outer cycle, and
that even the solution at the end of the 2nd cycle is significantly better than the LR-FGMRES
solution, which means that not all four outer iterations need to be run to achieve solutions of
superior qualities (even if more outer iterations allow further improvement in the solution). Figure

LR-FGMRES 2nd IRN cycle 3rd IRN cycle 4th IRN cycle

Fig. 3: Ezample 1. Zoom-ins of the LR-FGMRES best solution, and the IRN-GMRES-NNR solu-
tions at the end of each inner cycle.

4 displays surfaces plots of the central part (51 x 51 pixels) of the test problem data, as well as the
best reconstructed images (for RS-LR-GMRES and FGMRES-NNR these are obtained at the 165th
and the 63th (total) iterations, respectively). It can be seen that for all the solutions shown here, the
reconstructed central two stars approximately have the same intensity, although they are somewhat
less intense than in the exact image. These surface plots also confirm our earlier observation that
IRN-GMRES-NNR does an exceptional job removing background noise. In addition, FGMRES-
NNR also gives a good background reconstruction. Finally, Figure 5 displays the singular values
of the best solutions obtained adopting different GMRES-based solvers, as well as the evolution of
the singular values of the solution at the end of each inner IRN-GMRES-NNR cycle (matching the
reconstructions displayed in Figure 3). The singular values are “normalized” (i.e., divided by the
largest one), and the graphs are cropped to focus on the relevant values. Looking at the displayed
values, we can conclude that the solutions computed by all the low-rank solvers have indeed some
low-rank properties, with very quickly-decaying large singular values followed by slowly-decaying
smaller singular values. Compared to GMRES, the new FGMRES-NNR and IRN-GMRES-NNR
methods give solutions that have a more pronounced low rank, as shown by the large gaps between
the smaller singular values of the solutions computed by these methods. Regarding IRN-GMRES-
NNR, the evolution of the singular values stabilizes as we move toward later outer iterations, which
validates the stopping criterion proposed in Section 4.

Example 2: Limited angle parallel-ray tomography. We consider a computed tomography (CT)
test problem, modeling an undersampled X-ray scan with parallel beam geometry. This is a so
called “limited angle” CT reconstruction problem, where the viewing angles for the object span
less than 180 degrees. A smooth and rank-4 phantom is considered, as shown in the leftmost frame
of Figure 7 (note that the yellow straight lines in the northwestern corner do not belong to the
phantom; they are shown for later purposes). Gaussian white noise of level 1072 is added to the
data. The coefficient matrix A has size 32942 x 65536. Because of this, among the new solvers,
only LR-FLSQR, FLSQR-NNRp, FLSQR-NNRp(v), and IRN-LSQR-NNRp will be tested, against
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exact LR-FGMRES IRN-GMRES-NNR

blurred & noise RS-LR-GMRES FGMRES-NNR

Fig. 4: Ezample 1. Zoomed-in surfaces of the exact solution and the available data, as well as the
best reconstructions obtained by the new GMRES-based methods.

108 10°¢
O GMRES O k=1
O IRN-GMRES-NNR O k=2
FGMRES-NNR k=3
% LR-FGMRES O k=4
* SVT
107! 107
8o
rﬁ OOOOOOOOOOOOOOOO
b — o
mrzD 102 ODDDDDDDDDDDDDDDD
R 00060606686666660
10° 10°
1 20 40 60 80 5 10 15 20
comparisons IRN-GMRES-NNR

Fig. 5: Ezample 1. Left frame: normalized singular values of the best solutions computed by each
GMRES-based method. Right frame: evolution of the singular values of the solutions computed by
IRN-GMRES-NNR at each outer iteration. Singular values less than 1073 are omitted.

618  their standard counterpart LSQR. Recall that FLSQR-NNRp(v) is the FLSQR-NNRp variant that
619 defines the preconditioners using the basis vectors of the solution subspace. The hybrid strategy
620 is not used here, meaning that we set A\ = 0 for all methods. For this test problem, we consider
621 both the values p = 1 and p = 0.75 (recall that, when p = 1, we omit p from the notation). The
622 results obtained running the available low-rank solvers SVT and RS-LR-GMRES are shown, too.
623 Note that RS-LR-GMRES only works for square matrices A, hence this solver is tested on the
624 normal equations AT Az = ATb, which is not the problem solved by the other methods (therefore
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20 S. GAZZOLA, C. MENG AND J. NAGY

this comparison may not be completely fair). Parameters for SVT are chosen to be: step size
0r = 6 = 8 x 107° and threshold 7 = 100. RS-LR-GMRES is set to restart every 20 iterations.
The truncation rank is 10 for both basis vectors and solutions, and for both the LR-FLSQR and
the RS-LR-GMRES methods. The maximum number of iterations is 100 for all methods.

Figure 6 displays the history of the relative errors for LSQR, LR-LSQR, FLSQR-NNRp,
FLSQR-NNRp(v), and IRN-LSQR-NNRp, for p = 1 and p = 0.75. Figure 7 displays the ex-
act phantom together with the best reconstructions obtained by LSQR, FLSQR-NNRp(v), and
IRN-LSQR-NNR. Figure 8 displays surface plots of the northwestern corner of the exact and re-
constructed phantoms (64 x 64 pixels, as highlighted in the leftmost frame of Figure 7).

Looking at relative errors in Figure 6, it is obvious that the winners are the FLSQR-NNRp(v)
methods, with both p = 1 and p = 0.75: they give the lowest relative errors, and the fastest semi-
convergences. For this test problem, using a value of p < 1 lowers the relative error of FLSQR-
NNRp(v); however, the same does not hold for IRN-LSQR-NNRp. Therefore we can conclude that
the the choice of p is problem and solver dependent, and using p < 1 does not necessarily improve
the quality of the solution. We regard p = 1 as a safe choice for this parameter. Although both
the FLSQR-NNRp(v) methods with p = 1 and p = 0.75 perform well, the latter is able to further
reduce the noise in the reconstructed solution, especially on the boundary.

0.5 B
—— FLSQR-NNR
0.1 ——LSQR
[ ~ ] LR-FLSQR
005 [ | | | | | | | | |
0 10 20 30 40 50 60 70 80 90
1 T T T T T T T T T
051 B
—— FLSQR-NNR
01rp 4 |——FLSQR-NNR(v)
[ 1 FLSQR-NNRp(v)
i —— IRN-LSQR-NNR
0.05 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ —— IRN-LSQR-NNRp
0 10 20 30 40 50 60 70 80 90 100

Fig. 6: Example 2. Relative errors vs. number of iterations for different solvers. Upper frame:
some of the new solvers are compared to the already available solvers. Lower frame: comparisons
of different instances of the new solvers (here p = 0.75).
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exact LSQR FLSQR-NNRp(v) IRN-LSQR-NNR

Fig. 7: Example 2. Exact phantom and best reconstructions obtained by different solvers.

exact LR-FLSQR

FLSQR-NNR(v) FLSQR-NNRp(v) IRN-LSQR-NNR

Fig. 8 Example 2. Surface plots of the northwestern corner of the exact phantom (highlighted in
Figure 7) and the best reconstructed phantoms computed by different solvers.

Looking at all the displayed results, the advantages of our new FLSQR-NNRp(v) and ITRN-
LSQR-NNR methods are evident. Namely, they produce smooth solutions that preserve the original
concave shape of the exact phantom, and they retain similar intensities of pixels at the same loca-
tions of the exact phantom (although the LR-FLSQR solution is smooth within the boundary, it fails
to reconstruct intensity at the high point). Differences between FLSQR-NNRp(v) and IRN-LSQR-
NNR reconstructions are clear, too: while both are smooth, the IRN-LSQR-NNR reconstruction
has a less concave shape compared to that of FLSQR-NNRp(v), but a smoother boundary.

FEzample 3: Inpainting. We consider two different inpainting test problems. Inpainting is the
process of restoring images that have missing or deteriorated parts. These images are likely to
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have quite a few lost pixels, either in the form of salt and pepper noise, or missing patches with
regular or irregular shapes. The two examples considered here are of different nature: the first one
has less structured and more randomly distributed missing patches, while the second one has more
structured and regularly shaped missing parts. The corrupted images (shown in top-middle frames
of Figures 11 and 13) are constructed by first applying a blur operator, and then superimposing
the undersampling pattern to the ideally exact images (shown in the top-left frames of Figures 11
and 13). We follow this particular order of first blurring and then taking out pixels to simulate the
real process of photo-taking. For both these test problems, white noise of level 1072 is added to
the data, and we consider purely iterative methods (i.e., A = 0). We always take p = 1, and we run
100 iterations of all the methods.

Firstly, we consider a test problem where 58.2% of the pixels are missing (following some
random and not very regular patterns). The exact image is commonly known as the house test
image, whose rank is 243 and has a total number of 65536 (256 x 256) pixels; the corrupted image
has the same size and number of pixels, but out of which only 27395 are non-zero. The singular
values of the exact image is shown in Figure 9(a). Correspondingly, the forward operator A is of
size 27395 x 65536, so we have an underdetermined linear system: A is obtained by first applying
a shaking blur, and by then undersampling the blurred image. This can be easily coded within the
IR Tools framework.

Figure 10 displays the history of the relative errors for LSQR, LR-FLSQR. (with truncation of
the basis vectors for the solution, as well as the solution, to rank 20), FLSQR-NNR, FLSQR-NNR(v)
and IRN-LSQR-NNR. Figure 11 displays the exact and corrupted images, together with the best
reconstructions obtained by the methods listed above: these correspond to the 16th, 32nd, 67th,
30th and 62nd iterations of LSQR, LR-FLSQR, FLSQR-NNR, FLSQR-NNR(v) and IRN-LSQR-
NNR, respectively (i.e., these are the iterations where the minimum relative error is attained over
the total 100 iterations).

10° 10°
5|
10
102 ¢
10-10 L
10 ¢
10*15 L
‘ ‘ ‘ ‘ N 10° ‘ ‘ ‘ ‘ ‘
50 100 150 200 250 50 100 150 200 250
(a). house (b). peppers

Fig. 9: Ezxample 8. Singular values of exact test images house and peppers scaled by the largest
singular values respectively.
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05

——LSQR
——LR-FLSQR
FLSQR-NNR(v)
01l | |——FLSQR-NNR
—— IRN-LSQR-NNR

0 20 40 60 80 100

Fig. 10: Ezxample 8 (house). Relative errors vs. number of iterations for different solvers.

LR-FLSQR FLSQR-NNR(v) FLSQR-NNR IRN-LSQR-NNR

Fig. 11: Ezample 3 (house). Exact and corrupted images; best reconstructions obtained by standard
and new solvers.

Secondly, we consider a test problem similar to the previous one, i.e., we take an exact image
commonly known as the peppers test image, which has full rank (its singular values are shown
in Figure 9(b)), and we obtain the forward operator A by first applying a shaking blur, and
by then undersampling the blurred image. Here the exact image has a total number of 65536
(256 x 256) pixels, and only around 1.3% of pixels are missing and should be inpainted: differently
from the previous problem, the missing pixels follow particular patterns (e.g., circles, squares, and
rectangles), and this makes the inpainting task somewhat more challenging. Figure 12 displays the
history of the relative errors for LSQR, LR-FLSQR (with truncation of the basis vectors for the
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684 solution, as well as the solution, to rank 50), FLSQR-NNR, FLSQR-NNR(v) and IRN-LSQR-NNR.
685 Figure 13 displays the exact and corrupted images, together with the best reconstructions obtained
686 by the methods listed above: these correspond to the 11th, 18th, 60th, 33rd and 34th iterations of
687 LSQR, LR-FLSQR, FLSQR-NNR, FLSQR-NNR(v) and IRN-LSQR-NNR, respectively (i.e., these
688 are the iterations where the minimum relative error is attained over the total 100 iterations).

1

0.5 N

——LSQR
— LR-FLSQR
FLSQR-NNR(v)
—— FLSQR-NNR
—— IRN-LSQR-NNR

0.05 I | | I | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Fig. 12: Ezample 3 (peppers). Relative errors vs. number of iterations for different solvers.

LR-FLSQR

FLSQR-NNR

IRN-LSQR-NNR

Fig. 13: Ezample 3 (peppers). Exact and corrupted images; best reconstructions obtained by
standard and new solvers.

689 It is evident that FLSQR-NNR(v) achieves reconstructions of superior quality, including clarity,
690 brightness, and smoothness. Its ability to fill-in missing spots with pixels that are of similar intensity
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to their surroundings is the best among all methods. The best reconstructions are computed by IRN-
LSQR-NNR for the house test image, and by FLSQR-NNR for the pepper test image: in both cases,
these methods are also good at removing noise and restoring missing pixels. However, for both test
images, the reconstructions obtained by IRN-LSQR-NNR lack clarity compared to ones obtained
by both FLSQR-NNR and FLSQR-NNR/(v) methods; compared to the reconstructions obtained by
LSQR and LR-FLSQR, they are anyway more desirable in terms of recovered brightness and fill-in of
the missing pixels. Moreover, we have seen in these two examples that our newly proposed methods
perform very well not only for low rank, but also for full or nearly full rank image reconstruction,
thanks to the regularizing properties of our newly derived “preconditioners” (W) and Si. Our
methods can also be extensively tested for higher noise levels (for example, 107!) and yield similar
results. However, for space considerations we are not able to show all of them here.

A study of reqularization parameters. In the previous examples we have seen that the IRN-NNR,
methods and the flexible Krylov NNR methods perform exceptionally well on image deblurring,
tomography, and inpainting problems, producing superior reconstructions compared to existing
methods including SVT, RS-LR-GMRES and the low-rank flexible Krylov methods inspired by
RS-LR-GMRES, even without the use of additional regularization. In this section, we explore
the effect of additional regularization (i.e., we set A # 0) on the reconstructed images and the
corresponding relative errors. In particular, additional regularization allows the new methods to be
used in a hybrid fashion. We are going to observe that there is only little to negligible room for the
methods to improve when they are used in a hybrid fashion (as their performance is already very
good with A = 0).

We consider three different ways of choosing the regularization parameter . (i) We take
the “secant method” mentioned in Section 4, which updates the regularization parameter at each
iteration using the discrepancy. (ii) We select the optimal regularization parameter which minimizes
the 2-norm of the difference between the exact solution and the regularized solution at each iteration.
Namely, when using standard GMRES and LSQR, at the mth iteration we seek to minimize with
respect to A

|z —z, 5 = [Viae™ - Vaz, 5l = Vie™ -y, 5l

when using the IRN methods we should incorporate the appropriate preconditioners (sz )i and
Sk and, for all the iterations in the inner iteration cycle corresponding to the kth outer iteration,
we seek to minimize with respect to A

|2 = Viny,, 5l = | Vi 8 = Vi Viuy,, 5l = [Vie 8 — y,,, 5[, where 2% = (W) Spa™.

It is intrinsically difficult to implement this strategy for flexible Krylov subspace methods, because of
the complexity of changing preconditioners at each iteration. (iii) We perform a manual exhaustive
search. Namely, we first run the solvers multiple times using various regularization parameters 3\7
starting with a larger range and narrowing down to a smaller range containing the best parameter;
we then record the minimum relative errors among all iterations for all values of A, and select the
corresponding A. This approach is the most expensive one, and differs from the previous one in that
the (optimal) regularization parameter X is fixed for all iterations. Of course, both the second and
third approaches require the knowledge of the exact solution and we test them only to investigate
the best possible performance of the hybrid approach.

Table 1 compares the performances (in terms of minimum relative error achieved by each
method) of standard Krylov methods (GMRES and LSQR) and their IRN-NNR and flexible NNR
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(F-NNR) counterparts, with and without using a hybrid approach. In this way we can under-
stand how the use of additional regularization affects each solver differently. The three parameter
choice methods described above are dubbed “Secant (i)”, “Optimal (ii)” and “Fixed (iii)”, respec-
tively. All the previous examples are considered here. GMRES and its counterparts IRN-GMRES-
NNR, FGMRES-NNR are used for Example 1, while LSQR and its counterparts IRN-LSQR-NNR,
FLSQR-NNR(v) are used for Examples 2 and 3.

A=0 [ X#0 [ X=0 [ X#0 [ X=0] X#0 AX=0] X#0
Ezample 1 Ezample 2 Ezample 3 (house) | Fzample 3 (peppers)

Secant (1) 0.2995 | 0.2528 | 0.1201 | 0.1389 | 0.2712 0.2715 0.1141 0.1138

Standard Optimal (ii) | 0.2995 | 0.2268 | 0.1201 | 0.1201 | 0.2712 0.2710 0.1141 0.1138
Fixed (iii) 0.2995 | 0.2268 | 0.1201 | 0.1183 | 0.2712 0.2710 0.1141 0.1138

Secant (i) 0.2081 | 0.2096 | 0.0685 | 0.0696 | 0.1249 0.1250 0.0964 0.0967

IRN-NNR | Optimal (ii) | 0.2081 | 0.2292 | 0.0685 | 0.0685 | 0.1249 0.1249 0.0964 0.0964
Fixed (iii) 0.2081 X 0.0685 | 0.0660 | 0.1249 X 0.0964 0.0960

F-NNR Secant (1) 0.2829 | 0.2658 | 0.0577 | 0.0684 | 0.1035 0.1046 0.0625 0.0618
Fixed (iii) 0.2829 | 0.2640 | 0.0577 | 0.0568 | 0.1035 X 0.0625 0.0618

Table 1: Minimum relative errors without (3\ = 0) and with (X # 0) a hybrid approach. The mark
“X” means that the optimal regularization parameter found by the “Fixed (iii)” method is 10716,
hence there is no need for additional regularization.

hybrid GMRES IRN-GMRES-NNR hybrid LSQR FLSQR-NNR(v)
Fig. 14: Reconstructions obtained by standard hybrid Krylov methods and by the new methods
without using additional regularization. Left side: zoomed in surface plots of the reconstructions
of Example 1; right side: reconstructions of Example 3 (peppers).

It is easy to observe that the use of additional regularization is most effective for the standard
GMRES solver, where the minimum relative error is reduced significantly. However, for the other
solvers, the hybrid approach does not have a notable advantage over not using regularization. At
times the “Fixed (iii)” parameter choice strategy delivers a regularization parameter of the order
of 10716, which is numerically equivalent to not having regularization. This indicates that our
new IRN-NNR and F-NNR methods are successful in computing good reconstructions and, even
without additional regularization, they perform much better than standard Krylov methods used
in a hybrid fashion (comparing IRN-GMRES-NNR to GMRES in Example 1, and FLSQR-NNR(v)
to LSQR in the other examples). Figure 14 shows a couple of such comparisons.

6. Conclusions. This paper introduced new solvers, based on Krylov subspace methods, for
the computation of approximate low-rank solutions to large-scale linear systems of equations. Our
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main goal was to apply the new methods to regularize inverse problems arising in imaging applica-
tions. The starting point of our derivations was an IRN approach to the NNRp problem (1.3). In
this way, the original problem (1.3) is reduced to the solution of a sequence of quadratic problems,
where an appropriate smoothed linear transformation is introduced to approximate the nondif-
ferentiable nuclear norm regularization term. Our new methods make smart use of Kronecker
product properties to reformulate each quadratic problem in the IRN sequence as a Tikhonov-
regularized problem in standard form. We use both Krylov methods with fixed “preconditioners”
within an inner-outer iteration scheme (namely, IRN-LSQR-NNRp and IRN-GMRES-NNRp), and
Krylov methods with flexible iteration-dependent “preconditioners” within a single iteration scheme
(namely, FLSQR-NNRp, FGMRES-NNRp, LR-FGMRES, and LR-FLSQR). Some of these meth-
ods (namely, IRN-LSQR-NNRp, IRN-GMRES-NNRp, FLSQR-NNRp, and FGMRES-NNRp) can
be used in a hybrid framework, so that the Tikhonov regularization parameter can be efficiently,
effectively, and adaptively chosen. These new solvers are shown to perform exceptionally well on
the test problems described in Section 5, and they give reconstructions of significantly improved
quality over existing methods.

Future work includes the extension of the present methods to handle cases where the solution
of (1.1) is low-rank but rectangular, i.e., vec }(x) = X € R™*" with m # n. Also, while a
solid theoretical justification is provided for IRN-LSQR-NNRp and IRN-GMRES-NNRp, the same
is not true for FGMRES-NNRp and FLSQR-NNRp: further analysis will be needed to deeply
understand the regularization properties of these flexible solvers. Finally, the new IRN-LSQR-
NNRp and IRN-GMRES-NNRp methods can be reformulated to work with well-posed problems
and in the framework of matrix equations, possibly providing a valid and principled alternative to
the current popular methods based on low-rank-projected and restarted Krylov solvers.
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