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Abstract
The famous Szemerédi–Trotter theorem states that any arrangement of n points and n
lines in the plane determines O(n4/3) incidences, and this bound is tight. In this paper,
we prove the following Turán-type result for point-line incidence. Let La and Lb be
two sets of t lines in the plane and let P = {�a ∩ �b : �a ∈ La, �b ∈ Lb} be the set of
intersection points betweenLa andLb. We say that (P,La ∪Lb) forms a natural t× t
grid if |P| = t2, and conv P does not contain the intersection point of some two lines
in La and does not contain the intersection point of some two lines in Lb. For fixed
t > 1, we show that any arrangement of n points and n lines in the plane that does not
contain a natural t× t grid determines O(n4/3−ε) incidences, where ε = ε(t) > 0.We
also provide a construction of n points and n lines in the plane that does not contain a
natural 2 × 2 grid and determines at least �(n1+1/14) incidences.

1 Introduction

Given a finite set P of points in the plane and a finite set L of lines in the plane, let
I (P,L) = {(p, �) ∈ P × L : p ∈ �} be the set of incidences between P and L.
The incidence graph of (P,L) is the bipartite graph G = (P ∪L, I ), with bipartition
classes P and L, and E(G) = I (P,L). If |P| = m and |L| = n, then the celebrated
theorem of Szemerédi and Trotter [17] states that

|I (P,L)| ≤ O(m2/3n2/3 + m + n). (1.1)
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Moreover, this bound is tight which can be seen by taking the
√
m×√

m integer lattice
and bundles of parallel “rich” lines (see [13]). It is widely believed that the extremal
configurations maximizing the number of incidences between m points and n lines in
the plane exhibit some kind of lattice structure. The main goal of this paper is to show
that such extremal configurations must contain large natural grids.

Let P and P0 (respectively, L and L0) be two sets of points (respectively, lines) in
the plane. We say that the pairs (P,L) and (P0,L0) are isomorphic if their incidence
graphs are isomorphic. Solymosi made the following conjecture (see [2, p. 291]).

Conjecture 1.1 For any set of points P0 and for any set of lines L0 in the plane, the
maximum number of incidences between n points and n lines in the plane containing
no subconfiguration isomorphic to (P0,L0) is o(n4/3).

In [15], Solymosi proved this conjecture in the special case that P0 is a fixed set of
points in the plane, no three of which are on a line, and L0 consists of all of their
connecting lines. However, it is not known if such configurations satisfy the following
stronger conjecture.

Conjecture 1.2 For any set of points P0 and for any set of lines L0 in the plane, there
is a constant ε = ε(P0,L0), such that the maximum number of incidences between n
points and n lines in the plane containing no subconfiguration isomorphic to (P0,L0)

is O(n4/3−ε).

Our first theorem is the following.

Theorem 1.3 For fixed t > 1, let La and Lb be two sets of t lines in the plane, and
let P0 = {�a ∩ �b : �a ∈ La, �b ∈ Lb} be such that |P0| = t2. Then there is a
constant c = c(t) such that any arrangement of m points and n lines in the plane that
does not contain a subconfiguration isomorphic to (P0,La ∪ Lb) determines at most
c(m(2t−2)/(3t−2)n(2t−1)/(3t−2) + m1+1/6t−3 + n) incidences.

See Fig. 1. As an immediate corollary, we proveConjecture 1.2 in the following special
case.

Corollary 1.4 For fixed t > 1, let La and Lb be two sets of t lines in the plane, and
let P0 = {�a ∩ �b : �a ∈ La, �b ∈ Lb}. If |P0| = t2, then any arrangement of n
points and n lines in the plane that does not contain a subconfiguration isomorphic to
(P0,La ∪ Lb) determines at most O(n4/3−1/(9t−6)) incidences.

In the other direction, we prove the following.

Theorem 1.5 LetLa andLb be two sets of two lines in the plane, and let P0 = {�a∩�b :
�1 ∈ La, �b ∈ Lb} be such that |P0| = 4. For n > 1, there exists an arrangement of
n points and n lines in the plane that does not contain a subconfiguration isomorphic
to (P0,La ∪ Lb), and determines at least �(n1+1/14) incidences.

Given two setsLa andLb of t lines in the plane, and the point set P0 = {�a ∩�b : �a ∈
La, �b ∈ Lb}, we say that (P0,La ∪ Lb) forms a natural t × t grid if |P0| = t2, and
the convex hull of P0, conv P0, does not contain the intersection point of any two lines
in La and does not contain the intersection point of any two lines in Lb. See Fig. 2.

123



1234 Discrete & Computational Geometry (2021) 65:1232–1243

Fig. 1 An example with |La | = |Lb| = 3 and |P| = 9 in Theorem 1.3

Fig. 2 An example of a natural 3 × 3 grid

Theorem 1.6 For fixed t > 1, there is a constant ε = ε(t), such that any arrangement
of n points and n lines in the plane that does not contain a natural t× t grid determines
at most O(n4/3−ε) incidences.

Let us remark that ε = �(1/t2) in Theorem 1.6, and it can be easily generalized to the
off-balanced setting of m points and n lines. We systemically omit floor and ceiling
signs whenever they are not crucial for the sake of clarity of our presentation. All
logarithms are assumed to be base 2. For N > 0, we let [N ] = {1, . . . , N }.

2 Proof of Theorem 1.3

In this section we will prove Theorem 1.3. We first list several results that we will use.
The first lemma is a classic result in graph theory.

Lemma 2.1 (Kövari–Sós–Turán [10]) Let G = (V , E) be a graph that does not
contain a complete bipartite graph Kr ,s , 1 ≤ r ≤ s, as a subgraph. Then |E | ≤
cs |V |2−1/r , where cs > 0 is a constant which only depends on s.
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The next lemma we will use is a partitioning tool in discrete geometry known as sim-
plicial partitions. We will use the dual version which requires the following definition.
Let L be a set of lines in the plane. We say that a point p crosses L if it is incident to
at least one member of L, but not incident to all members in L.

Lemma 2.2 (Matoušek [12]) Let L be a set of n lines in the plane and let r be a
parameter such that 1 < r < n. Then there is a partition of L = L1 ∪ · · · ∪ Lr into
r parts, where n/(2r) ≤ |Li | ≤ 2n/r , such that any point p ∈ R

2 crosses at most
O(

√
r) parts Li .

Proof of Theorem 1.3 Set t ≥ 2. Let P be a set of m points in the plane and let L
be a set of n lines in the plane such that (P,L) does not contain a subconfiguration
isomorphic to (P0,La ∪ Lb).

If n ≥ m2/100, then (1.1) implies that |I (P,L)| = O(n) and we are done. Like-
wise, if n ≤ mt/(2t−1), then (1.1) implies that |I (P,L)| = O(m1+1/(6t−3)) and we
are done. Therefore, let us assumemt/(2t−1) < n < m2/100. In what follows, we will
show that |I (P,L)| = O

(
m(2t−2)/(3t−2)n(2t−1)/(3t−2)

)
. For the sake of contradic-

tion, suppose that I (P,L) ≥ cm(2t−2)/(3t−2)n(2t−1)/(3t−2), where c is a large constant
depending on t that will be determined later.

Set r = ⌈
10n(4t−2)/(3t−2)/m2t/(3t−2)

⌉
. Let us remark that 1 < r < n/10 since we

are assuming mt/(2t−1) < n < m2/100. We apply Lemma 2.2 with parameter r to L,
and obtain a partition L = L1 ∪ · · · ∪ Lr with the properties described above. Note
that |Li | > 1. Let G be the incidence graph of (P,L). For p ∈ P , consider the set
of lines in Li . If p is incident to exactly one line in Li , then delete the corresponding
edge in the incidence graph G. After performing this operation between each point
p ∈ P and each class Li , by Lemma 2.2, we have deleted at most c1m

√
r edges in G,

where c1 is an absolute constant. By setting c sufficiently large, we have

c1m
√
r = √

10c1m
(2t−2)/(3t−2)n(2t−1)/(3t−2) <

c

2
m(2t−2)/(3t−2)n(2t−1)/(3t−2).

Therefore, there are at least cm(2t−2)/(3t−2)n(2t−1)/(3t−2)/2 edges remaining in G. By
the pigeonhole principle, there is an i such that the number of edges between P and
Li in G is at least

cm(2t−2)/(3t−2)n(2t−1)/(3t−2)

2r
= cm(4t−2)/(3t−2)

20n(2t−1)/(3t−2)
.

Hence, every point p ∈ P has either 0 or at least 2 neighbors inLi in G. We claim that
(P,Li ) contains a subconfiguration isomorphic to (P0,La ∪ Lb). To see this, let us
construct a graph H = (Li , E) as follows. Set V (H) = Li . Let Q = {q1, . . . , qw} ⊂
P be the set of points in P that have at least two neighbors in Li in the graph G.
For q j ∈ Q, consider the set of lines {�1, . . . , �s} from Li incident to q j , such that

{�1, . . . , �s} appear in clockwise order. Then we define E j ⊂ (Li
2

)
to be a matching

on {�1, . . . , �s}, where
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E j =
{

{(�1, �2), (�3, �4), . . . , (�s−1, �s)} if s is even,

{(�1, �2), (�3, �4), . . . , (�s−2, �s−1)} if s is odd.

Set E(H) = E1∪ E2∪· · ·∪ Ew. Note that E j and Ek are disjoint, since no two points
are contained in two lines. Since |E j | ≥ 1, we have

|E(H)| ≥ cm(4t−2)/(3t−2)

60n(2t−1)/(3t−2)
.

Since

|V (H)| = |Li | ≤ m2t/(3t−2)

5nt/(3t−2)
,

this implies

|E(H)| ≥ c|V (H)|2−1/t

60 · 25 .

By setting c = c(t) to be sufficiently large, Lemma 2.1 implies that H contains a
copy of Kt,t . Let L′

1,L′
2 ⊂ Li correspond to the vertices of this Kt,t in H , and let

P ′ = {�1 ∩ �2 ∈ P : �1 ∈ L′
1, �2 ∈ L′

2}. We claim that (P ′,L′
1 ∪ L′

2) is isomorphic
to (P0,La ∪ Lb). It suffices to show that |P ′| = t2. For the sake of contradiction,
suppose p ∈ �1 ∩ �2 ∩ �3, where �1, �2 ∈ L′

1 and �3 ∈ L′
2. This would imply

(�1, �3), (�2, �3) ∈ E j for some j which contradicts the fact that E j ⊂ (Li
2

)
is a

matching. Same argument follows if �1 ∈ L′
1 and �2, �3 ∈ L′

2. This completes the
proof of Theorem 1.3. 
�

3 Natural Grids

Given a set of n points P and a set of n lines L in the plane, if |I (P,L)| ≥
cn4/3−1/(9k−6), where c is a sufficiently large constant depending on k, Corollary
1.4 implies that there are two sets of k lines such that each pair of them from different
sets intersects at a unique point in P . Therefore, Theorem 1.6 follows by combining
Theorem 1.3 with the following lemma.

Lemma 3.1 There is a natural number c such that the following holds. Let B be a set
of ct2 blue lines in the plane, and letR be a set of ct2 red lines in the plane such that
for P = {�1 ∩ �2 : �1 ∈ B, �2 ∈ R} we have |P| = c2t4. Then (P,B ∪ R) contains
a natural t × t grid.

To prove Lemma 3.1, we will need the following lemma which is an immediate
consequence of Dilworth’s Theorem.
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Fig. 3 Sets R,B1,B2 in the proof of Lemma 3.1

Lemma 3.2 For n > 0, letL be a set of n2 lines in the plane, such that no two members
intersect the same point on the y-axis. Then there is a subset L′ ⊂ L of size n such
that the intersection point of any two members in L′ lies to the left of the y-axis, or
the intersection point of any two members in L′ lies to the right of the y-axis.

Proof Let us order the elements in L = {�1, . . . , �n2} from bottom to top according
to their y-intercept. By Dilworth’s Theorem [5], L contains a subsequence of n lines
whose slopes are either increasing or decreasing. In the first case, all intersection points
are to the left of the y-axis, and in the latter case, all intersection points are to the right
of the y-axis. 
�
Proof of Lemma 3.1 Let (P,B ∪ R) be as described above, and let �y be the y-axis.
Without loss of generality, we can assume that all lines in B ∪R are not vertical, and
the intersection point of any two lines in B ∪ R lies to the right of �y . Moreover, we
can assume that no two lines intersect at the same point on �y .

We start by finding a point y1 ∈ �y such that at least |B|/2 blue lines in B intersect
�y on one side of the point y1 (along �y) and at least |R|/2 red lines inR intersect �y on
the other side. This can be done by sweeping the point y1 along �y from bottom to top
until ct2/2 lines of the first color, say red, intersect �y below y1. We then have at least
ct2/2 blue lines intersecting �y above y1. Discard all red lines in R that intersect �y
above y1, and discard all blue lines inB that intersect �y below y1. Hence, |B| ≥ ct2/2.

Set s = �ct2/4
. For the remaining lines in B, let B = {b1, . . . , b2s}, where the
elements of B are ordered in the order they cross �y , from bottom to top. We partition
B = B1 ∪ B2 into two parts, where B1 = {b1, . . . , bs} and B2 = {bs+1, . . . , b2s}. By
applying an affine transformation, we can assume all lines in R have positive slope
and all lines in B1 ∪ B2 have negative slope. See Fig. 3.

Let us define a 3-partite 3-uniform hypergraph H = (R ∪ B1 ∪ B2, E), whose
partition classes are R,B1,B2, and (r , bi , b j ) ∈ R × B1 × B2 is an edge in H if
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Fig. 4 An example for the line �1

and only if the intersection point p = bi ∩ b j lies above the line r . Note, if bi and
b j are parallel, then (r , bi , b j ) /∈ E . Then a result of Fox et al. on semi-algebraic
hypergraphs implies the following (see also [3,9]). 
�
Lemma 3.3 (Fox et al. [8, Thm. 8.1]) There exists a positive constant α such that
the following holds. In the hypergraph above, there are subsets R′ ⊆ R, B′

1 ⊆
B1, B′

2 ⊆ B2, where |R′| ≥ α|R|, |B′
1| ≥ α|B1|, |B′

2| ≥ α|B2|, such that either
R′ × B′

1 × B′
2 ⊆ E, or (R′ × B′

1 × B′
2) ∩ E = ∅.

We apply Lemma 3.3 to H and obtain subsetsR′,B′
1,B′

2 with the properties described
above. Without loss of generality, we can assume that R′ × B′

1 × B′
2 ⊂ E , since a

symmetric argument would follow otherwise. Let �1 be a line in the plane such that
the following holds:

1. The slope of �1 is negative.
2. All intersection points between R′ and B′

1 lie above �1.
3. All intersection points between R′ and B′

2 lie below �1.

See Fig. 4.

Observation 3.4 Line �1 defined above exists.

Proof Let U be the upper envelope of the arrangement
⋃

�∈R′ �, that is, U is the
closure of all points that lie on exactly one line of R′ and strictly above exactly the
|R′| − 1 lines in R′.

Let P1 be the set of intersection points between the lines in B′
1 with U . Likewise,

we define P2 to be the set of intersection points between the lines in B′
2 withU . Since

U is x-monotone and convex the set P2 lies to the left of the set P1. Then the line �1
that intersectsU between P1 and P2 and intersects �y between B′

1 and B′
2 satisfies the

conditions above.
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Fig. 5 An example for the line �2

Now we apply Lemma 3.2 to R′ with respect to the line �1, to obtain t
√

αc/2
members in R′ such that every pair of them intersects on one side of �1. Discard all
other members in R′. Without loss of generality, we can assume that all intersection
points between any two members in R′ lie below �1, since a symmetric argument
would follow otherwise. We now discard the set B′

2.
Notice that the order in which the lines inR′ cross b ∈ B′

1 will be the same for any
line b ∈ B′

1. Therefore, we order the elements in R′ = {r1, . . . , rm} with respect to
this ordering, from left to right, where m = ⌈

t
√

αc/2
⌉
. We define �2 to be the line

obtained by slightly perturbing the line r�m/2
 so that:

1. The slope of �2 is positive.
2. All intersection points between B′

1 and {r1, . . . , r�m/2
} lie above �2.
3. All intersection points between B′

1 and {r�m/2
+1, . . . , rm} lie below �2.

See Fig. 5. Finally, we apply Lemma 3.2 to B′
1 with respect to the line �2, to obtain at

least t
√

αc/2 members in B′
1 with the property that any two of them intersect on one

side of �2. Without loss of generality, we can assume that any two such lines intersect
below �2 since a symmetric argument would follow. Set B∗ ⊂ B′

1 to be this set of
lines. Then B∗ ∪ {r1, . . . , r�m/2
} and their intersection points form a natural grid. By
setting c = c(t) to be sufficiently large, we obtain a natural t × t grid. 
�

4 Lower Bound Construction

In this section, we will prove Theorem 1.5. First, we recall the definitions of Sidon
and k-fold Sidon sets. Let A be a finite set of positive integers. Then A is a Sidon set if
the sums of all pairs are distinct, that is, the equation x + y = u + v has no solutions
with x, y, u, v ∈ A, except for trivial solutions given by u = x , y = v and x = v,
y = u. We define s(N ) to be the size of the largest Sidon set A ⊂ {1, . . . , N }. Erdős
and Turán proved the following.

Lemma 4.1 ([7] and [14]) For N > 1 we have s(N ) = �(
√
N ).
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Let us now consider a more general equation. Let u1, u2, u3, u4 be integers such that
u1 + u2 + u3 + u4 = 0, and consider the equation

u1x1 + u2x2 + u3x3 + u4x4 = 0. (4.1)

We are interested in solutions to (4.1) with x1, x2, x3, x4 ∈ Z. Suppose (x1, x2, x3, x4)
= (a1, a2, a3, a4) is an integer solution to (4.1). Let d ≤ 4 be the number of distinct
integers in the set {a1, a2, a3, a4}. Thenwe have a partition of the indices, {1, 2, 3, 4} =
T1 ∪ · · · ∪ Td , where i and j lie in the same part Tν if and only if xi = x j . We call
(a1, a2, a3, a4) a trivial solution to (4.1) if

∑

i∈Tν

ui = 0, ν = 1, . . . , d.

Otherwise, we will call (a1, a2, a3, a4) a nontrivial solution to (4.1).
In [11], Lazebnik and Verstraëte introduced k-fold Sidon sets which are defined as

follows. Let k be a positive integer. A set A ⊂ N is a k-fold Sidon set if each equation
of the form (4.1) where |ui | ≤ k and u1 + u2 + u3 + u4 = 0, has no nontrivial
solutions with x1, x2, x3, x4 ∈ A. Let r(k, N ) be the size of the largest k-fold Sidon
set A ⊂ {1, . . . , N }.
Lemma 4.2 There is an infinite sequence 1 = a1 < a2 < · · · of integers such that
am ≤ 28k4m3, and the system of equations (4.1) has no nontrivial solutions in the
set A = {a1, a2, . . .}. In particular, for integers N > k4 ≥ 1, we have r(k, N ) ≥
ck−4/3N 1/3, where c is a positive constant.

The proof of Lemma 4.2 is a slight modification of the proof of [14, Thm. 2.1]. For
the sake of completeness, we include it here.

Proof We put a1 = 1 and define am recursively. Given a1, . . . , am−1, let am be the
smallest positive integer satisfying

− am
∑

i∈S
ui �=

∑

1≤i≤4, i /∈S
ui xi , (4.2)

for every choice ui such that |ui | ≤ k, for every set S ⊂ {1, 2, 3, 4} of subscripts such
that

∑
i∈S ui �= 0, and for every choice of xi ∈ {a1, . . . , am−1}, where i /∈ S. For a

fixed S with |S| = j , this excludes (m − 1)4− j numbers. Since |ui | ≤ k, the total
number of excluded integers is at most

(2k + 1)4
3∑

j=1

(
4

j

)
(m − 1)4− j = (2k + 1)4(m4 − (m − 1)4 − 1) < 28k4m3.

Consequently, we can extend our set by an integer am ≤ 28k4m3. This will automati-
cally be different from a1, . . . , am−1, since putting xi = a j for all i /∈ S in (4.2) we
get am �= a j . It will also satisfy am > am−1 by the minimal choice of am−1.
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We show that the system of equations (4.1) has no nontrivial solutions in the set
{a1, . . . , am}. We use induction on m. The statement is obviously true for m = 1.
We establish it for m assuming it holds for m − 1. Suppose that there is a nontrivial
solution (x1, x2, x3, x4) to (4.1) for some u1, u2, u3, u4 with the properties described
above. Let S denote the set of those subscripts for which xi = am . If

∑
i∈S ui �= 0,

then this contradicts (4.2). If
∑

i∈S ui = 0, then by replacing each occurrence of am
by a1, we get another nontrivial solution, which contradicts the induction hypothesis.


�
For more problems and results on Sidon sets and k-fold Sidon sets, we refer the

interested reader to [4,11,14]. We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5 We start by applying Lemma 4.1 to obtain a Sidon set M ⊂
[n1/7], such that |M | = �(n1/14). We then apply Lemma 4.2 with k = n1/7 and
N = n11/14/4, to obtain a k-fold Sidon set A ⊂ [N ] such that

|A| ≥ cn1/14,

where c is defined in Lemma 4.2. Without loss of generality, assume |A| = cn1/14.
Let P = {(i, j) ∈ Z

2 : i ∈ A, 1 ≤ j ≤ n13/14}, and let L be the family of lines
in the plane of the form y = mx + b, where m ∈ M and b is an integer such that
1 ≤ b ≤ n13/14/2. Hence, we have

|P| = |A| · n13/14 = �(n), |L| = |M | · n
13/14

2
= �(n).

Notice that each line in L has exactly |A| = cn1/14 points from P since 1 ≤ b ≤
n13/14/2. Therefore,

|I (P,L)| = |L| · |A| = �(n1+1/14). 
�

Claim 4.3 There are no four distinct lines �1, �2, �3, �4 ∈ L and four distinct points
p1, p2, p3, p4 ∈ P such that �1 ∩ �2 = p1, �2 ∩ �3 = p2, �3 ∩ �4 = p3, �4 ∩ �1 = p4.

Proof For the sake of contradiction, suppose there are four lines �1, �2, �3, �4 and
four points p1, p2, p3, p4 with the properties described above. Let �i = mi x +bi and
pi = (xi , yi ). Therefore,

�1 ∩ �2 = p1 = (x1, y1), �2 ∩ �3 = p2 = (x2, y2),

�3 ∩ �4 = p3 = (x3, y3), �4 ∩ �1 = p4 = (x4, y4).

Hence,

p1 ∈ �1, �2 �⇒ (m1 − m2)x1 + b1 − b2 = 0,

p2 ∈ �2, �3 �⇒ (m2 − m3)x2 + b2 − b3 = 0,

p3 ∈ �3, �4 �⇒ (m3 − m4)x3 + b3 − b4 = 0,

p4 ∈ �4, �1 �⇒ (m4 − m1)x4 + b4 − b1 = 0.

123



1242 Discrete & Computational Geometry (2021) 65:1232–1243

By summing up the four equations above, we get

(m1 − m2)x1 + (m2 − m3)x2 + (m3 − m4)x3 + (m4 − m1)x4 = 0.

By setting u1 = m1 − m2, u2 = m2 − m3, u3 = m3 − m4, u4 = m4 − m1, we get

u1x1 + u2x2 + u3x3 + u4x4 = 0, (4.3)

where u1+u2+u3+u4 = 0 and |ui | ≤ n1/7. Since x1, x2, x3, x4 ∈ A, (x1, x2, x3, x4)
must be a trivial solution to (4.3). The proof now falls into the cases that follow. Note
that no line in L is vertical.

Case 1. Suppose x1 = x2 = x3 = x4. Then �i is vertical and we have a contradiction.
Case 2. Suppose x1 = x2 = x3 �= x4, u1 + u2 + u3 = 0, and u4 = 0. Then �1 and

�4 have the same slope which is a contradiction. The same argument follows
if x1 = x2 = x4 �= x3, x1 = x3 = x4 �= x2, or x2 = x3 = x4 �= x1.

Case 3. Suppose x1 = x2 �= x3 = x4, u1 + u2 = 0, and u3 + u4 = 0. Since p1, p2 ∈
�2 and x1 = x2, this implies that �2 is vertical which is a contradiction.
A similar argument follows if x1 = x4 �= x2 = x3, u1 + u4 = 0, and
u2 + u3 = 0.

Case 4. Suppose x1 = x3 �= x2 = x4, u1 + u3 = 0, and u2 + u4 = 0. Then
u1 + u3 = 0 implies that m1 + m3 = m2 + m4. Since M is a Sidon set, we
have eitherm1 = m2 andm3 = m4 orm1 = m4 andm2 = m3. The first case
implies that �1 and �2 are parallel which is a contradiction, while the second
case implies that �2 and �3 are parallel, which is again a contradiction. 
�

This completes the proof of Theorem 1.5.

5 Concluding Remarks

An old result of Erdős states that every n-vertex graph that does not contain a cycle of
length 2k, has Ok(n1+1/k) edges. It is known that this bound is tight when k = 2, 3, 5,
but it is a long standing open problem in extremal graph theory to decide whether
or not this upper bound can be improved for other values of k. Hence, Erdős’s upper
bound of O(n5/4) when k = 4 implies Theorem 1.3 when t = 2 and m = n. It would
be interesting to see if one can improve the upper bound in Theorem 1.3 when t = 2.
For more problems on cycles in graphs, see [18].

The proof of Lemma 3.1 is similar to the proof of the main result in [1]. The main
difference is that we use the result of Fox et al. [8] instead of the Ham-Sandwich The-
orem. We also note that a similar result was established by Dujmović and Langerman
(see Theorem 6 in [6]).

Recently, Tomon and the second author [16] improved the lower bound in Theorem
1.5 to n9/8+o(1), and more generally, gave a construction of n points and n lines in the
plane with no k × k grid and with at least n4/3−�(1/k) incidences.
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