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Abstract

The famous Szemerédi—Trotter theorem states that any arrangement of n points and n
lines in the plane determines O (n*/?) incidences, and this bound is tight. In this paper,
we prove the following Turdn-type result for point-line incidence. Let £, and £ be
two sets of ¢ lines in the plane and let P = {£, N ¥y : €, € L,, £p € Lp} be the set of
intersection points between £, and L. We say that (P, L, U L) forms a natural t X t
grid if | P| = t?, and conv P does not contain the intersection point of some two lines
in £, and does not contain the intersection point of some two lines in L. For fixed
t > 1, we show that any arrangement of n points and »n lines in the plane that does not
contain a natural ¢ x ¢ grid determines 0(n4/ 3-¢) incidences, where ¢ = ¢(7) > 0. We
also provide a construction of n points and » lines in the plane that does not contain a
natural 2 x 2 grid and determines at least 2 (n'*t1/1%y incidences.

1 Introduction

Given a finite set P of points in the plane and a finite set £ of lines in the plane, let
I(P,L) = {(p,£) € Px L : p € £} be the set of incidences between P and L.
The incidence graph of (P, L) is the bipartite graph G = (P U L, I), with bipartition
classes P and £, and E(G) = I(P, £).If |P| = m and |£| = n, then the celebrated
theorem of Szemerédi and Trotter [17] states that

l[(P, L) < Om**n*? + m +n). (1.1
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Moreover, this bound is tight which can be seen by taking the /m x /m integer lattice
and bundles of parallel “rich” lines (see [13]). It is widely believed that the extremal
configurations maximizing the number of incidences between m points and n lines in
the plane exhibit some kind of lattice structure. The main goal of this paper is to show
that such extremal configurations must contain large natural grids.

Let P and Py (respectively, £ and L) be two sets of points (respectively, lines) in
the plane. We say that the pairs (P, £) and (Py, Lo) are isomorphic if their incidence
graphs are isomorphic. Solymosi made the following conjecture (see [2, p. 291]).

Conjecture 1.1 For any set of points Py and for any set of lines L in the plane, the
maximum number of incidences between n points and n lines in the plane containing
no subconfiguration isomorphic to (Py, L) is o(n*3).

In [15], Solymosi proved this conjecture in the special case that Py is a fixed set of
points in the plane, no three of which are on a line, and £y consists of all of their
connecting lines. However, it is not known if such configurations satisfy the following
stronger conjecture.

Conjecture 1.2 For any set of points Py and for any set of lines Ly in the plane, there
is a constant € = &(Py, Lo), such that the maximum number of incidences between n
points and n lines in the plane containing no subconfiguration isomorphic to (Py, L)
is O (n*3-¢).

Our first theorem is the following.

Theorem 1.3 For fixed t > 1, let L, and Ly, be two sets of t lines in the plane, and
let Pp = {Ly N Ly : Ly € La, by € L)} be such that |Py| = t2. Then there is a
constant ¢ = c(t) such that any arrangement of m points and n lines in the plane that

does not contain a subconfiguration isomorphic to (Py, L, U Lp) determines at most
c(m@=2/G1=2)y Q1=1)/Gi=2)  pyH1/60=3 4 1y incidences.

See Fig. 1. As an immediate corollary, we prove Conjecture 1.2 in the following special
case.

Corollary 1.4 For fixed t > 1, let L, and Ly be two sets of t lines in the plane, and
let Pp = {La N Ly : Ly € La, Ly € Lp). If |Po| = 12, then any arrangement of n
points and n lines in the plane that does not contain a subconfiguration isomorphic to
(Py, La U L) determines at most O (n*3=1/01=0)) incidences.

In the other direction, we prove the following.

Theorem 1.5 Let L, and Ly, be two sets of two lines in the plane, and let Py = {£,N¢}, :
Ly € Ly, Ly € Ly} be such that | Py| = 4. For n > 1, there exists an arrangement of
n points and n lines in the plane that does not contain a subconfiguration isomorphic
10 (Py, L4 U L), and determines at least Q (n't1/1%) incidences.

Given two sets L, and L, of t lines in the plane, and the point set Py = {¢,N€p : £, €
Lq, Ly € Ly}, we say that (Py, L, U Lp) forms a natural t x t grid if | Py| = 12, and
the convex hull of Py, conv Py, does not contain the intersection point of any two lines
in £, and does not contain the intersection point of any two lines in L. See Fig. 2.
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Fig. 1 An example with |L,4| = |Lp| = 3 and |P| = 9 in Theorem 1.3

Fig.2 An example of a natural 3 x 3 grid

Theorem 1.6 For fixedt > 1, there is a constant € = £(t), such that any arrangement
of n points and n lines in the plane that does not contain a natural t X t grid determines
at most O (n*/3~¢) incidences.

Let us remark that ¢ = Q(1/2) in Theorem 1.6, and it can be easily generalized to the
off-balanced setting of m points and n lines. We systemically omit floor and ceiling
signs whenever they are not crucial for the sake of clarity of our presentation. All
logarithms are assumed to be base 2. For N > 0, we let [N] = {1, ..., N}.

2 Proof of Theorem 1.3

In this section we will prove Theorem 1.3. We first list several results that we will use.
The first lemma is a classic result in graph theory.

Lemma 2.1 (Kovari-Sés—Turan [10]) Let G = (V, E) be a graph that does not
contain a complete bipartite graph K, s, 1 < r < s, as a subgraph. Then |E| <
cs| V>~V where cg > 0 is a constant which only depends on s.
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The next lemma we will use is a partitioning tool in discrete geometry known as sim-
plicial partitions. We will use the dual version which requires the following definition.
Let £ be a set of lines in the plane. We say that a point p crosses L if it is incident to
at least one member of £, but not incident to all members in L.

Lemma 2.2 (Matousek [12]) Let L be a set of n lines in the plane and let r be a
parameter such that 1 < r < n. Then there is a partition of L = L1 U --- U L, into
r parts, where n/(2r) < |L;| < 2n/r, such that any point p € R? crosses at most

O (/1) parts L;.

Proof of Theorem 1.3 Set t > 2. Let P be a set of m points in the plane and let £
be a set of n lines in the plane such that (P, £) does not contain a subconfiguration
isomorphic to (Py, L, U Lp).

If n > m?/100, then (1.1) implies that [/ (P, £)| = O(n) and we are done. Like-
wise, if n < m'/®*=D then (1.1) implies that [I(P, £)| = O(m'T1/© =3y and we
are done. Therefore, let us assume m'/ @~ < 5 < m2/100. In what follows, we will
show that |I(P, £)| = O(m®@~2/C1=2@1=D/G1=2)) For the sake of contradic-
tion, suppose that I (P, £) > cm¥=2/B1=2),y21=D/G1=2) "where ¢ is a large constant
depending on ¢ that will be determined later.

Set r = [10n#=2/G1=2) /1 21/G1=27 Let us remark that 1 < r < n/10 since we
are assuming m'/ =1 < n < m?/100. We apply Lemma 2.2 with parameter r to £,
and obtain a partition £ = £; U --- U L, with the properties described above. Note
that |£;| > 1. Let G be the incidence graph of (P, £). For p € P, consider the set
of lines in £;. If p is incident to exactly one line in £;, then delete the corresponding
edge in the incidence graph G. After performing this operation between each point
p € P and each class £;, by Lemma 2.2, we have deleted at most cym+/r edges in G,
where ¢ is an absolute constant. By setting ¢ sufficiently large, we have

Clmﬁzmclm(2t—2)/(3t—2)n(2t—1)/(3t—2) < %m(Zt—Z)/Gt—Z)n(Zt—1)/(3t—2).

Therefore, there are at least cm (2 =2)/G1=2), 21=D/G1=2) /3 edges remaining in G. By
the pigeonhole principle, there is an i such that the number of edges between P and
L; in G is at least

em2=2)/(31=2) , 21—1)/(3t-2) B em4=2)/(31-2)
2 T 20n@—D/Gi—2)"

Hence, every point p € P has either 0 or at least 2 neighbors in £; in G. We claim that
(P, L;) contains a subconfiguration isomorphic to (Py, L, U Lp). To see this, let us
construct a graph H = (L;, E) as follows. Set V(H) = L;. Let Q = {q1, ..., qw} C
P be the set of points in P that have at least two neighbors in £; in the graph G.

For g; € Q, consider the set of lines {{1, ..., {;} from £; incident to g, such that
{€1, ..., £} appear in clockwise order. Then we define E; C (52‘ ) to be a matching
on{ly,..., ¢}, where
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), st (0 )} if s s even,
P ), (63, €a), ., (B2, €5-1)} if s is odd.

Set E(H) = E{UE>U---UE,. Note that E; and Ey, are disjoint, since no two points
are contained in two lines. Since |E;| > 1, we have

cem@—2)/(Gt=2)
|ECH)| = 60n2t=1)/(3t=2) "

Since
21/(31-2)
[VH)| = |Li] = $/G D)
this implies
c|lVH)P
|[E(H)| > —————
60 - 25

By setting ¢ = ¢(t) to be sufficiently large, Lemma 2.1 implies that H contains a
copy of K; ;. Let £’1, £’2 C L; correspond to the vertices of this K, , in H, and let
P'={tiNty e P:LyeL], {re L)} Weclaim that (P’, £} U L)) is isomorphic
to (Py, Lo U Lp). It suffices to show that |P/| = 12. For the sake of contradiction,
suppose p € €1 N €y N {3, where £1,¢, € L} and ¢3 € L). This would imply
(£1,43), (€2, £3) € E; for some j which contradicts the fact that £; C (g’) is a
matching. Same argument follows if £; € £/ and €5, ¢3 € L). This completes the

proof of Theorem 1.3. O

3 Natural Grids

Given a set of n points P and a set of n lines £ in the plane, if |I(P, L) >
cn3=1/0k=6) "where ¢ is a sufficiently large constant depending on k, Corollary
1.4 implies that there are two sets of k lines such that each pair of them from different
sets intersects at a unique point in P. Therefore, Theorem 1.6 follows by combining
Theorem 1.3 with the following lemma.

Lemma 3.1 There is a natural number c¢ such that the following holds. Let B be a set
of ct? blue lines in the plane, and let R be a set of ct® red lines in the plane such that
for P ={t1 Nty : L €B, tr € R} we have |P| = ¢*t*. Then (P, BU R) contains
anatural t x t grid.

To prove Lemma 3.1, we will need the following lemma which is an immediate
consequence of Dilworth’s Theorem.
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Fig.3 Sets R, By, B; in the proof of Lemma 3.1

Lemma 3.2 Forn > 0, let L be a set of n* lines in the plane, such that no two members
intersect the same point on the y-axis. Then there is a subset L' C L of size n such
that the intersection point of any two members in L' lies to the left of the y-axis, or
the intersection point of any two members in L' lies to the right of the y-axis.

Proof Let us order the elements in £ = {{1, ..., {,2} from bottom to top according
to their y-intercept. By Dilworth’s Theorem [5], £ contains a subsequence of n lines
whose slopes are either increasing or decreasing. In the first case, all intersection points
are to the left of the y-axis, and in the latter case, all intersection points are to the right
of the y-axis. O

Proofof Lemma 3.1 Let (P, B U R) be as described above, and let £, be the y-axis.
Without loss of generality, we can assume that all lines in B U R are not vertical, and
the intersection point of any two lines in B U R lies to the right of £,. Moreover, we
can assume that no two lines intersect at the same point on £y.

We start by finding a point y; € £, such that at least |3|/2 blue lines in B intersect
£ on one side of the point y; (along £,) and at least |R|/2 red lines in R intersect £, on
the other side. This can be done by sweeping the point y; along £, from bottom to top
until ct2 /2 lines of the first color, say red, intersect £, below y;. We then have at least
ct?/2 blue lines intersecting £, above y;. Discard all red lines in R that intersect £,
above yi, and discard all blue lines in 53 that intersect £, below y;. Hence, |B| > ct? /2.

Set s = Lct2/4j. For the remaining lines in B, let B = {by, ..., bas}, where the
elements of BB are ordered in the order they cross £, from bottom to top. We partition
B = By U B; into two parts, where B) = {by, ..., bs} and By = {bs+1, ..., bas}. By
applying an affine transformation, we can assume all lines in R have positive slope
and all lines in 5 U B; have negative slope. See Fig. 3.

Let us define a 3-partite 3-uniform hypergraph H = (R U By U B;, E), whose
partition classes are R, By, B2, and (r, b;, bj) € R x By x B; is an edge in H if
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Fig.4 An example for the line £

and only if the intersection point p = b; N b; lies above the line r. Note, if b; and
bj are parallel, then (r, b;,b;) ¢ E. Then a result of Fox et al. on semi-algebraic
hypergraphs implies the following (see also [3,9]). O

Lemma 3.3 (Fox et al. [8, Thm. 8.1]) There exists a positive constant o such that
the following holds. In the hypergraph above, there are subsets R' € R, B} €
Bi, B, € By, where |R'| = «a|R|, Byl = a|Bil, |B,| = «|Ba|, such that either
R ' x By x By CE, or (R x B} xB,)NE =.

We apply Lemma 3.3 to H and obtain subsets R', B}, B with the properties described
above. Without loss of generality, we can assume that R’ x Bi X B/Z C E, since a
symmetric argument would follow otherwise. Let £1 be a line in the plane such that
the following holds:

1. The slope of ¢ is negative.
2. Allintersection points between R’ and B} lie above ;.
3. Allintersection points between R’ and B3} lie below ¢;.

See Fig. 4.
Observation 3.4 Line £ defined above exists.

Proof Let U be the upper envelope of the arrangement | J ./ £, that is, U is the
closure of all points that lie on exactly one line of R’ and strictly above exactly the
IR'| — 1 lines in R’.

Let P; be the set of intersection points between the lines in B/l with U. Likewise,
we define P; to be the set of intersection points between the lines in B} with U. Since
U is x-monotone and convex the set P lies to the left of the set P;. Then the line ¢;
that intersects U between Py and P, and intersects £, between B’l and Bé satisfies the
conditions above.
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Fig.5 An example for the line 7

Now we apply Lemma 3.2 to R’ with respect to the line £;, to obtain f4/ac/2
members in R’ such that every pair of them intersects on one side of £;. Discard all
other members in R’. Without loss of generality, we can assume that all intersection
points between any two members in R’ lie below £, since a symmetric argument
would follow otherwise. We now discard the set 3.

Notice that the order in which the lines in R’ cross b € 1| will be the same for any
line b € B’l. Therefore, we order the elements in R’ = {ry, ..., r;;} with respect to
this ordering, from left to right, where m = [1/ac/2]. We define ¢5 to be the line
obtained by slightly perturbing the line r|;, 2, so that:

1. The slope of ¢; is positive.
2. All intersection points between B; and {r1, ..., rym/2} lie above £;.
3. All intersection points between B/l and {r|m/2)+1, ..., rm} lie below £5.

See Fig. 5. Finally, we apply Lemma 3.2 to 3] with respect to the line £5, to obtain at
least #/ac/2 members in B} with the property that any two of them intersect on one
side of £,. Without loss of generality, we can assume that any two such lines intersect
below £ since a symmetric argument would follow. Set B* C B to be this set of
lines. Then B* U {ry, ..., ru/2)} and their intersection points form a natural grid. By
setting ¢ = ¢(¢) to be sufficiently large, we obtain a natural ¢ x ¢ grid. O

4 Lower Bound Construction

In this section, we will prove Theorem 1.5. First, we recall the definitions of Sidon
and k-fold Sidon sets. Let A be a finite set of positive integers. Then A is a Sidon set if
the sums of all pairs are distinct, that is, the equation x + y = u + v has no solutions
with x, y, u, v € A, except for trivial solutions given by u = x, y = v and x = v,
y = u. We define s(V) to be the size of the largest Sidon set A C {1, ..., N}. Erd6s
and Turan proved the following.

Lemma4.1 ([7] and [14]) For N > 1 we have s(N) = @(\/ﬁ).
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Let us now consider a more general equation. Let u1, u, u3, s be integers such that
u1 + uz + u3 + uq = 0, and consider the equation

uixy + uxxy + uzxsz + ugxg = 0. “4.1)

We are interested in solutions to (4.1) with x1, x2, x3, x4 € Z. Suppose (x1, X2, X3, X4)
= (a1, aa2, a3, a4) is an integer solution to (4.1). Let d < 4 be the number of distinct
integers in the set {a, a2, a3, as}. Then we have a partition of the indices, {1, 2, 3,4} =
Ty U---UTy,, where i and j lie in the same part 7, if and only if x; = x;. We call
(a1, az, az, aq) a trivial solution to (4.1) if

Zu,-:O, v=1,...,d.

i€ty

Otherwise, we will call (ay, a», as, aq) a nontrivial solution to (4.1).

In [11], Lazebnik and Verstraéte introduced k-fold Sidon sets which are defined as
follows. Let k be a positive integer. A set A C N is a k-fold Sidon set if each equation
of the form (4.1) where |u;| < k and u; + ur + u3z + ug4 = 0, has no nontrivial
solutions with x1, x2, x3, x4 € A. Let r(k, N) be the size of the largest k-fold Sidon
set AC{l,...,N}.

Lemma 4.2 There is an infinite sequence 1 = ay < ay < --- of integers such that
am < 28k*m3, and the system of equations (4.1) has no nontrivial solutions in the
set A = {ay, a»,...}. In particular, for integers N > Kt > 1, we have r(k, N) >
ck™*3NY3 where cisa positive constant.

The proof of Lemma 4.2 is a slight modification of the proof of [14, Thm. 2.1]. For
the sake of completeness, we include it here.

Proof We put a; = 1 and define a,, recursively. Given ay, ..., an—1, let a, be the
smallest positive integer satisfying

—am Yy wi £ Y uixi, 4.2)

ieS 1<i<4,i¢S

for every choice u; such that |u;| < k, for every set S C {1, 2, 3, 4} of subscripts such
that ZieS u; # 0, and for every choice of x; € {ay,...,an—1}, wherei ¢ S. For a
fixed S with |S| = j, this excludes (m — 1)*~/ numbers. Since |u;| < k, the total
number of excluded integers is at most
/4
Qk+D*Y" (j)(m —D* = Qk+D*m* —m — D = 1) < 2%k w3,
j=1

Consequently, we can extend our set by an integer a,, < 28k*m?>. This will automati-
cally be different from ay, ..., a;—1, since putting x; = a; forall i ¢ § in (4.2) we
get a,, # a;. It will also satisfy a,;, > a,,—1 by the minimal choice of a;, 1.

@ Springer



Discrete & Computational Geometry (2021) 65:1232-1243 1241

We show that the system of equations (4.1) has no nontrivial solutions in the set
{ai, ..., ay}. We use induction on m. The statement is obviously true for m = 1.
We establish it for m assuming it holds for m — 1. Suppose that there is a nontrivial
solution (x1, x2, x3, x4) to (4.1) for some u1, uz, us, us with the properties described
above. Let S denote the set of those subscripts for which x; = ap,. If ) ; esli #0,
then this contradicts (4.2). If >, _gu; = 0, then by replacing each occurrence of a,,
by aj, we get another nontrivial solution, which contradicts the induction hypothesis.

O

For more problems and results on Sidon sets and k-fold Sidon sets, we refer the
interested reader to [4,11,14]. We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5 We start by applying Lemma 4.1 to obtain a Sidon set M C
[n'/7], such that |[M| = ©(n'/!*). We then apply Lemma 4.2 with k = n'/7 and
N = n“/14/4, to obtain a k-fold Sidon set A C [N] such that

|A] = en'/1,

where c is defined in Lemma 4.2. Without loss of generality, assume |A| = cn!/14.

Let P = {(i,j) € Z* :i € A, 1 < j < n'¥1%) and let £ be the family of lines
in the plane of the form y = mx + b, where m € M and b is an integer such that
1 < b < n'3/1/2. Hence, we have

13/14

n
|P| = |A]-n¥" =0@m), |L]=|M| = 0(n).

Notice that each line in £ has exactly |A| = cnl/14

n]3/14/2. Therefore,

points from P since 1 < b <

(P, L) = |L] - |A] = ©(n' T/, o

Claim 4.3 There are no four distinct lines £1, €, €3, €4 € L and four distinct points
P1, P2, P3, pa € P suchthat £, N ¢y = py, £2N L3 = pa, €3N 4Ly = p3, L4N ¥y = pa.

Proof For the sake of contradiction, suppose there are four lines £, £, £3, €4 and
four points p1, p2, p3, pa with the properties described above. Let £; = m;x + b; and
pi = (xi, y;i). Therefore,

biNEy =pr =(x1,y1), LoNlz = pr=(x2,y),
L3N ey = p3 = (x3,y3), LaNly = ps= (x4, y4).

Hence,
p1 €l b = (mp—mo)x;+by —by=0,
p2 €l by = (mp—m3)x2+by—b3=0,
p3 €3, 8y = (m3—myx3+b3—Dby=0,
ps € by, by = (mg—mi)x4+bs—b =0.
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By summing up the four equations above, we get
(m1 —ma)x1 + (ma —m3)x2 + (m3 — mya)x3 + (mg —my)x4 = 0.
By setting Uy =mjp—mp, Uy = my —m3, U3 = m3 — M4, U4 = m4 — mj, we get
uixy + uoxy + uzxz + ugxq =0, (4.3)

where uy +uy+usz+ug = 0and |u;| < n!/7. Since x1, x3, X3, x4 € A, (x1, x2, X3, X4)
must be a trivial solution to (4.3). The proof now falls into the cases that follow. Note
that no line in £ is vertical.

Case 1. Suppose x; = xo» = x3 = x4. Then ¢; is vertical and we have a contradiction.

Case 2. Suppose x| = xp = x3 # X4, U1 + up +u3 = 0, and ug = 0. Then £; and
£4 have the same slope which is a contradiction. The same argument follows
if X1 = x0 = x4 7# X3, X] = X3 = X4 7 X2,00 X3 = X3 = X4 7 X].

Case 3. Suppose x; = x3 # x3 = x4, u1 +uy = 0,and u3 +u4 = 0. Since p1, ps €
¢> and x1 = xp, this implies that ¢» is vertical which is a contradiction.
A similar argument follows if x| = x4 # x» = x3, u; + us = 0, and
uy +uz = 0.

Case 4. Suppose x| = x3 # x2 = x4, u] +u3 = 0, and up + us = 0. Then
uy + uz = 0 implies that m| + m3 = my + m4. Since M is a Sidon set, we
have either m| = my and m3 = m4 or m; = m4 and m, = ms. The first case
implies that 1 and ¢, are parallel which is a contradiction, while the second
case implies that £, and ¢3 are parallel, which is again a contradiction. O

This completes the proof of Theorem 1.5.

5 Concluding Remarks

An old result of Erdds states that every n-vertex graph that does not contain a cycle of
length 2k, has Oy (n'1/%) edges. It is known that this bound is tight when k = 2, 3, 5,
but it is a long standing open problem in extremal graph theory to decide whether
or not this upper bound can be improved for other values of k. Hence, Erd6s’s upper
bound of 0(n5/ 4) when k = 4 implies Theorem 1.3 when ¢ = 2 and m = n. It would
be interesting to see if one can improve the upper bound in Theorem 1.3 when ¢ = 2.
For more problems on cycles in graphs, see [18].

The proof of Lemma 3.1 is similar to the proof of the main result in [1]. The main
difference is that we use the result of Fox et al. [8] instead of the Ham-Sandwich The-
orem. We also note that a similar result was established by Dujmovi¢ and Langerman
(see Theorem 6 in [6]).

Recently, Tomon and the second author [16] improved the lower bound in Theorem
1.5 to n?/8+°(1) "and more generally, gave a construction of n points and n lines in the
plane with no k x k grid and with at least n*/3=© /%) incidences.
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