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Abstract
The maximally supersymmetric Freund—Rubin vacua for 11 dimensional super-
gravity, namely AdS,; x S’ and AdS; x §*, admit an analytic continuation to
§* % S7. From the full harmonic expansions on $* x 7, it is shown that by
analytical continuation to either AdSs, or to AdS7, the detailed structure of the
Kaluza—Klein spectrum can be obtained for both vacua in a unified manner.
The results are shown to be related by a simple rule which interchanges the
spacetime and internal space representations. We also obtain the linearized field
equations for the singletons and doubletons but they can be gauged away by
fixing certain Stuckelberg shift symmetries inherited from the Kaluza—Klein
reduction.

Keywords: M-theory, flux compactifications, singletons and doubletons

1. Introduction

This paper is dedicated to the memory of Freund. I did not have the opportunity to work with
him but I was greatly influenced by his work on Kaluza—Klein supergravity [1], like many oth-
ers. In fact, as put very well in [2], in the beginning of the 80s, Peter’s paper on Freund—Rubin
compactifications of the eleven dimensional supergravity, and another two papers, one by Wit-
ten [3] and another by Salam and Strathdee [4], started a renaissance in Kaluza—Klein theories.
Nowadays we take for granted the idea spontaneous compactification, but in the early days of
Kaluza—Klein supergravity, moving from dimensional reduction to spontaneous compactifica-
tion by addressing the underlying dynamics, as highlighted in the title of the Freund—Rubin
paper as ‘the dynamics of dimensional reduction’, and the fact that it works so naturally to give
four dimensional spacetime, was a very impactful development. The Freund—Rubin paper not
only emphasized this point but it also elevated greatly the stakes for the 11 dimensional (11D)
supergravity, which has proven to be so important for what has become M-theory since the mid
90s.
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In this note, it is fitting to revisit the maximally symmetric Freund—Rubin compactifications
of 11D supergravity, namely AdSy /7 x §7/* with 4-form flux turned on. Firstly, we would like to
find out if the resulting Kaluza—Klein spectrum of states can be described in a unified manner.
Second, we aim at probing the question of whether singletons and doubleton field equations
can be identified in the bulk. We will see that a unified treatment of the KK spectra is indeed
possible, by exploiting the fact that both of the maximally supersymmetric Freud—Rubin vacua
admit analytic continuation to S* x §7. As a result, we will see that the detailed supermultiplet
structure of the spectrum, as well as the 11D origin of the fluctuations emerges from a simple
rule. So far, these spectra have been obtained by separate computations [5—10].

It has been observed for the S’ compactification in [6, 7], and st compactification in [10],
that the group theoretical structure of the KK spectrum suggests the presence of singletons
and doubletons. In [8], it was argued that these states vanish identically, while in [6, 7] they
appeared as nonpropagating modes, as the saturated propagator has vanishing residue for the
associated poles. Examining the issue of whether they can arise as boundary states, we find the
linearized field equations for the singletons in AdSs and doubletons in AdS7, but we also find
that there are certain Stuckelberg shift symmetries inherited from the Kaluza—Klein reduction
which can be used to gauge them away. Section 5 is devoted to these issues, which are further
discussed in the conclusions.

2. Preliminaries

The Freund—Rubin compactifying solutions of 11D supergravity on AdS /7 x §7/* can be given
in a unified fashion such that the only nonvanishing fields are

Ruz/pa = —4e mz(gw)gva - g#UgVﬂ)&
2Ry5 = €M*(8ar855 — 8asf)s (D

2F po = 3MEpos

where m is an arbitrary constant, the Levi-Civita tensor €,,,,, is evaluated in the background,
and the following index notation is used

e=+1:AdS; xS, pu=0,1,23, a=1,2,...,7,

(2)
e=—1:AdS7xS*, a=0,1,...,6, pu=12734,
and accordingly, €,,,,e"""” = —4le. We parametrize the linearized fluctuations around a
background as
gun = Zun + hun s Aune = Aune + aunp- (3

Introducing the notation ® = (hsp, acap), where A is the 11D tangent space index, and coupling
to the source J = (Tap,Jcap), the action quadratic in fluctuations can be written as

1% = /d“x <—;¢>0¢) + j(I)) , 4)

where O is the wave operator. Since the action is invariant under the background gauge
transformations

Shay = Vuén + Vnéu,  Samve = E“Frunpe + 3v[MANPJ~ Q)
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it follows that the sources must satisfy the constraints (using the normalizations chosen in [7])
_ 2 _ _
VM Tuy + §F wpord X =0, V" Iynp = 0. (6)

The following gauge was chosen in [7] (slightly different from the gauge chosen in [6])
_ 1 _
v (hMN — 58mn gRShRs> =0, V'apy =0. (7)

Using the gauge condition, the wave operator O can be inverted. Substituting the result into
I®, and importantly using the source constraints, we obtain the saturated propagator

1® = %/d“xJO*l J. ®)

This procedure, in the case of Minkowskis x 52 compactification of 6D Maxwell-FEinstein the-
ory was employed in [11]. In that case, the harmonic expansion on the Minkowski spacetime is
the usual Fourier transform, while here, where we are dealing with AdS spacetimes, harmonic
expansions reduce to those on spheres. After harmonic expansions in the total Euclideanized
spacetime, the physical states are determined from the analysis of the poles in the principle
lowest weight, that is the lowest AdS energy E; plane, in the expression for the saturated
propagator. The nonvanishing and positive residues describe the physical states. The manner
in which the representation function on spheres and AdS space are related under the ana-
Iytic continuation was examined in detail in [6]. It was also shown that the eigenvalues of
the second order Casimir operators for the isometry group of the sphere and AdS space are
related by the simple rule where one identifies the leading lowest label with an opposite sign.
This simple rule facilitates the physical interpretation of the poles in the lowest weight plane
[6, 7].

Turning to the Freund—Rubin compactifications of 11D supergravity, both of the maximally
supersymmetric vacua can be treated simultaneously by analytically continuing the equations
to S* x §7. In this ‘democratic’ approach, starting from the universal result on the product
of the spheres, one can analytically continue either S* to AdS,, or with equal ease S’ to
AdS7, thereby obtaining not only the group theoretical content of the full spectrum of physi-
cal states but also the full information about how they are formed out of the 11D supergravity
fields.

3. Analytic continuation and harmonic expansions on S; x s’

Analytic continuation from AdS, x §7 to §* x §7 was described in [6, 7]. Here we shall for-
mulate it in a way that enables us to analytically continue also AdS; x $* to S* x 7 such that
all the harmonic analysis performed on §* x §7 in [6, 7] are exactly the same as before. With
this strategy in mind, we consider the metric for AdS;4»

ds* = m*(—cosh? pdr* + dp* + sinh® pd€Q), 9)

where df2; is the metric on unit radius d-sphere. The Euclideanization rule appropriate for our
purposes here is to send

p = ip, (10)
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Table 1. The highest weights of the G representations occurring in the harmonic expan-
sions of the fields listed in the first columns which have the H-representation content
listed in the second column. In representations (nn; )(¢¢1¢,¢3) it is understood that n > n;
and £ > () > £, > |l5]. The last entries in each row, and the second to the last entries
for K,,, and Y, turn out to be unphysical gauge modes. There are six (n)({) entries but
only four of them are independent. We have chosen to eliminate those in H,,, and L.

Fields SO(4) x SO(7) content SO(5) x SO(8) content Restrictions
Hy, (20)(000) (n2)(0), (n)(£), (n1)(£) nz2.0z
M (00)(000) (M) n>00>0
Ko (10)(100) (n1)(L1), (n)(0), (n1)(£), (n)(£1) n=1,0>1
Lug (00)(200) (m(£2), (n)(0), (m)(£1) nz0,6>2
N (00)(000) (n)(0) n=0,0>0
Wy (10)(000) (m(0), (n1)(0)
Xﬁm (1, £1)(100) (n1)(L1), (n1)(£) n=1,0>0
Yyap (10)(110) (n1)(£11), (n1)(L1), (n)(€1), (n)(£11) n=1,0>1
Zog (00)(111) (m)(L11, £1), (n)(¢11) n=0,0>1
Mra (3.2) (327) (m.3) (63 3.%3) (m.7) (63,7 £ 3) nz3.0>;
ra (3-2) (3:2:2) (m3) (63:3.%3)  (m.3) (633 +3) nz3.02;
Xia (32) 3 21) (m.3) (6.3, 3.43) > (n.7) (63,3, %7) n>y.0>3
Xia (2-2) (3 2:2) (m3) (63,3, %3) > (m.2) (63,2 43) n>g.023
Aa (3:2) (3:2:2) (n3) (630 3.%3) nzi.0z5
A (3.-3) (3:3:3) (n.7) (€3, 3.+3) n>g.0>3
which gives

ds* = —m’(cos® pdr* + dp” + sin® pdQy) = —dsp, (11)

which is locally the metric of the (d + 2)-sphere with negative-definite signature. Therefore, in
evaluating the linearized field equations around the Euclideanized vacuum solution, we need
to send g445 — —g*P"* and Riem*®S — —Riem®"*_ In this way, the analytical continuation
that enables us to treat both cases simultaneously takes the form

_ _ _ _q7
g#,,—>—egf;, 8aB _>68i5~ (12)

In the linearized field equations, there will be ¢ dependence coming from the Freund—Rubin
solution. However, with the analytic continuation prescription described above, the e factors
work out in such a way that the linearized field equations take the same form as those which
have already been analysed for the AdS; x 7 vacuum, with the harmonic expansions on §* x
S7 fully performed. The treatment of the Levi-Civita symbols requires some care but the key
point is that one can take over the results of [6, 7] and either continue them back to AdS, x s7
as was done in [7], or continue back to AdS; X st readily.

Next, we proceed with the harmonic expansions on S* x §” = G/H with G = SO(5) x
SO(8) and H = SO(4) x SO(7). According to the framework described in [4], and applied to
the case at hand in [7], one expands the fluctuations with a given H-content in terms of all G-
representation functions that contain the H-representation. The highest weight labelling of the
representations is more convenient than the Dynkin labels for this purpose. Using the notation

of [7], let the highest weight of an H-representation be
H:(a1a)(b1byb3); a1 > ax, by = by 2> bs, (13)

4
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Figure 1. The spectrum of 11D supergravity on AdS; x S”. The 11D supergravity fluc-
tuation fields from which the states come from are defined in (20), and shown in the
figure. Here 11 = 0, 1,...,3 labels the AdS, spacetime, and o = 1,...,7 labels the
coordinates. The representations are labelled by the highest weights (Eo, s)(4, {1, {2, (3),
where Eg > s and ¢ > ¢ > {5 > |(3|). The corresponding Dynkin labels for SO(8) are
(0 — 1,0y — Ly, 0y — 3,05 + (3). Each value of £ gives a OSp(8|4) multiplet. ¢ = 0 gives
the massless 4D maximal supergravity multiplets for which £y = s + 1, while ¢/ = —1
gives the singleton multiplet, contained in the towers marked by « in the figure. States
for £ > 1 are massive multiplets with d, x (128 + 1285) degrees of freedom, where d,
is the dimension of the /th rank totally symmetric and traceless SO(8) tensor. One can
define m% and m2 for bosons and fermions, respectively, such that they actually vanish
for the AdSs massless states with s = 0, 1/2, 1, as follows: mé =4FEy(Ey — 3) + 8 and
my = (2Ey — 3)%.

All G-representations that contain this H-representations have the with highest weight
G:(nn)(lilylz); n=n, £2>40 =0 2|l (14)
subject to the conditions
nza zn 2laf, £=b =20 =2by >0 = by > |l (15)

Using these embedding conditions a field ¢p(x,y) with a fixed SO(4) x SO(7) representation
(ay,a2)(by, by, b3) can be expanded in terms of the representation functions of SO(5) x SO(8)
as follows:

Ay oty 0,0
_ 4 7 nny CLE L y(nny) -1
Parar)(brbypy) (%) = VoL(§* x §T) Y dorasdoyoon Digran p(Ly )

(Clylalz) 7 —1y\ 4 )(MM)
X Dby Ly ) Ppg > 120 (16)

5
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where the summation ranges are as given in (13) and (14), the d’s are the dimensions of the
relevant representations, L, and L, are the coset representative elements, DEZ’%) p(L;I) is the
(nn;) representation of L;', with rows labelled by (aja;) and columns by p =1, 2,..., d,,,.
The representation matrices(functions) of L; ! are to be interpreted similarly, and Pl (a)
are x and y independent expansion coefficients. In the computation of saturated propagator, the

orthogonality relations for the harmonics are needed. For example, on S* they take the form

_ 1/2 ~(n _ n' — da n)(n'
/ (" (det gu) 2@, (L) D) (L) = Vol.(Sﬁﬁépﬂé( A7)
N n

where (a) denotes the row label for the H-representations, e.g. u, (uur), etc, and (n) is shorthand
for (nn;). Summation over («) is understood. Similar formula holds on §”.
In these computations repeated use of the following relations are made

OL,! = —4m? (C2[SO(5)] — CA[SOM L, ", (18)
2V, D (L) = —2m < plQu|aay > D) (L7, (19)

where Q, = M5, u = 1,...,4 are the SO(5)/SO(4) coset generators. Similar formula hold for
the SO(8)/SO(7) coset. The matrix elements (p|Q,|a1a>), indeed all matrix elements of SO(N)
for any N, can be found in [12, 13], where they are given in Gelfand—Zeitlin (GZ) basis. Thus,
one needs to find the relation between these basis elements and the tensorial one. Many of these
relations can be found in [7].

If one is only interested in determining the KK spectrum of the theory, it is worth noting
that there are shortcuts for doing so. In that context, the kind of data provided in table 1 is
very powerful. Indeed, following the approach of [14], in the AdSy x S’ compactification here,
one can start with (n2)(¢000) state that describes the graviton tower, and simply compute the
tensor product with the supercharge representation (3, $)(3, 1, 3. 1), repeatedly. Comparing
with the available representations listed in table 1, one can deduce the content of figure 1. The
representations that are left over from table 1 can then be interpreted as being non-propagating.
This method works well especially if there is high degree of supersymmetry, and one ‘pryamid’
of states. For less amount of supersymmetry, one would have to determine the top member of
more than one pyramid of states [14, 15], and repeat the procedure until all supermultiplets are
accounted for. However, the details of exactly how the 11D fluctuations organize themselves to
produce the physical states, and the analysis of possible boundary states may not be available
in this approach.

4. The spectrum on AdS; x S7 and AdS;7 x §*

With full harmonic expansions on $* x §7, the problem of finding the saturated propagator
reduces to an algebraic one. The following notation is introduced for the fluctuations [6, 7]
h;w = + g,ul/M’ gW/HuV =0, hua = K,uaa
2haﬁ = Lag + 8ap N, gaﬁLaﬁ =0,
(20

1 i
_ o + po — vyt
20,0p = Epe W, e = E(a”m + 3 e’ Apoa) = X#m,

Za/uyﬁ - Y,u(.yﬁ » Aapy = Z(yﬁ'y-

6
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The full harmonic expansions on S* x 87 for the bosonic sector give the result [7] !

n2)((000 10)(£200 Al)((110
oo _ 5 [ TR TR i
i 8Q2n+L+6)(2n— 1)

2|Jén0)(/2111)‘2 2|Jén0)(fll—l)‘2
Cn+L+92n—¢—-3) Q2n+/{+3)2n—L+3)

\/’mT;{nl)(HOO) +4\/’H‘—2J§?1)(HOO)
V2n+3

\/ngl)(é’IOO) _ 4\/mj)((nl)(é’100)
2n+3

2
1

T nt 43 an—1-3)

2
8

T A+ —(+3)

() ()
+ Iscalars + Inonpropagating } . (2 1)

The last two terms will be discussed further below. Using this formula, we can continue to
either AdSy x S7 or AdS,; x S*. In the first case, we set n = —Ep, and examine the pole in the
Ey-plane. In the second case, we set { = —E, and look for the poles in the Ey-plane, with E
now denoting the lowest energy in AdS;.

In the first three terms above, one of the poles in the n-plane gives Ey = 3 + % They describe
towers of physical states with the following SO(3, 2) x SO(8) representation content

12
Hyt (B 2)(0000), Ey= 43, £20
AdSy xS 1 Vs s (B 1XC110), Eo= - 43, €1 (22)

Lost (Eo,00(200), Eo=3+3, (>2

The second poles are related to the pole discussed above by the replacement Ey — (3 — Ey),
which describe the conjugate representations. We see that H,,, contains the irrep (3, 2)(0000)
which is the massless graviton, as its energy £y = 3 saturates the unitarity bound Ey = s + 1
fors = 2.

From the same saturated propagator (21), it also easy to read of the spectrum in AdS; x §*.
To do so, we simply look for the poles in the ¢-plane. Those are at { = 2n and { = —2n — 6,
again related to each other by the rule ¢ — —6 — /. Next, we identify ¢ = —E,, where E
now represents the lowest energy in AdS7. Thus, the tower of physical states in this sector are
given by

Log: (Ep,2,0,0)(n0), Ey=2n+6, n=0
AdS7 x S 1 ¢ Vyap : (B0, 1,1,00(nl), Ep=2n+46, n>1 (23)
> 2.

H,, : (Ey,0,0,0)(n2), Ey=2n+6, n

Now it is the field L,z at the bottom floor of the tower with n = 0 that describes the massless
graviton in AdS; as it has the lowest energy Ejy = 6 that saturates the unitarity bound for the

I'We are being cavalier about the overall signs in the individual terms here, with the understand that the sign of the
residues at the poles, whether in the n-plane, or the /-plane are always positive, upon properly taking into accounts
the rules of the analytic continuations involved.
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unitary discrete representation of SO(6,2), as Ey = ¢; + 2 with {; = 2, while H,,, describes a
tower of massive scalars.

Turning to the (n)(¢, 1, 1, 4+1) and (n0)(¢100) representations, in order to clarify how the
poles in the n-plane fit into OSp(8|4) multiplets, we relabel £ — ¢ — 1 for the first terms, and
¢ — ¢+ 1 in the second terms in the saturated propagator in this sector. Thus one finds the
following towers of physical states

l
adse 57 < 17 (Ey,0)(£+1,0,0,0), Ej=5+3F1,
4 X .
(K/l,(ani ):(E(f)tal)(gil,lao,o)a E§:E+3:Fla

yZet

(24)

where ¢ > 0 for the upper sign tower, with ¢ = 0 states being the massless scalars in the 35,-plet
and massless vectors in the 28-plet of SO(8).

In a similar fashion, analytically continuing to AdS; instead, this time letting n — n + 1
for the first terms, and » — n — 1 in the second terms discussed above, we easily obtain the
following spectrum of states

AdSs x S* Zopr (Eg, 1,1, +)(n£1,0), E; =2n+67F1,
7 X .
(Kuo» Xopo) 1 (Eg, 1,0,0)(n£1,1),  Ey =2n+67F1,

nra
(25)

where n > 0 for the upper sign tower, with n = 0 states being the massless 3-form fields in
the 5-plet, and massless vectors in the 10-plet of SO(5), while n > 2 for the lower sign towers
consisting of massive 3-form fields and vectors only. In the first tower, the case of n = —1 is
special. It will be analysed in more detail in the next section, where we will see that it describes
a doubleton.

The case of massless 3-form fields also deserves a further comment. In this case, the har-
monically expended field equation becomes (£ 4 5)(¢ — 5)Z11=DO0) — 0 As shown in [16,
17], this means that the field equation for this mode factorizes as

(y/‘s/,.‘/ 1 ,,6, /6/— (y//‘if))//,.y// 1 (1/,6,/ ’,/(S/,_ 1
<6aﬁ'\f + Eﬁaﬁfy”‘ K V(S’ 6(1/3/,),/ - E&‘”/@/ﬂ/ P V(j// Za//‘g//,yu(y) = O,

(26)

where I = 1,...,5 is the SO(5) vector index. This can be checked by expanding Z(’lﬁﬂ/(y) =
S ZEMDD, g, (L") (we ignore the normalization factors here), and using the relation

1 Il

(C11-1) o (011—1)

VisDoiny = =55+ 3asms™ " Diyosy 27
Recalling the analytical continuation by which Ey = —/, we see that the first factor in (26)

gives the lowest energy E, = 5 appropriate for the massless 3-form field, as £y = ¢; + 4 with
l =1.

Next we turn to the scalar fields arising in the sector where the fields carry the (rn0)(¢000)
representation. This is the most complicated sector as the linearized equation mix the fields
(M, N, O0W, 90K, 00OH, OOL). The last two can be eliminated in terms of the remaining ones by

8
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means of the gauge conditions. The resulting four coupled linearized equations were analysed
in [7] where it is found that the residues at two of the resulting poles in the n-plane in the
saturated propagator vanish, while the other two poles give physical states. To see how these
states fit into the supermultiplets, in this case the shifts / — ¢ 4= 2 are appropriate, and we find
the towers

1
AdSy x S 1 (M,N,0W,00K) : (Ej,0)({ £2,0,0,0), E; = >+ 3F2.

(28)

For ¢ = 0 the first tower gives the massless scalars in the 35-plet of SO(8). At ¢ = —1, scalars
in 8, of SO(8) reside and have been shown to be gauge modes in [7]. The question of whether
they can be part of a supersingleton boundary supermultiplet will be discussed in the next
section.

Analytical continuation from S” to AdS; instead, we find that two of the poles give vanishing
residue, and the remaining two, upon letting n — n + 2 for one of the poles, and n — n — 2 for
the other, again for the supermultiplet interpretation, give the towers

AdS7 x §* 1 (M,N,0W,00K): (E;,0,0,0)(n+2,0),E; =2n+6F2,
(29)

with the upper sign tower starting at n = 0, and the lower one at n = 2. The first tower atn = 0

contains massless scalars 14-plet of SO(5). At n = —1, the there are scalars in 5-plet of SO(5)

which turn out to describe part of the superdoubleton, as we shall see in the next section.
Finally, we turn to the term Iﬁ)physica] in (21). This term refers to the remaining sectors:

Nonpropagating : (n0)(¢100), (rn0)(¢110), (n1)(£000). (30)

In the case of analytic continuation to AdSs X AS’ it was shown in [7] that their contribution to
the saturated propagator in which the source squared term is divided by a quadratic expression
in ¢, without any n dependence. Thus, not having a pole in the n-plane, these are interpreted as
being nonpropagating. In the case of analytic continuation to AdSy x AS’, we can easily show
that their contribution to the saturated propagator this time has the form of source squared term
divided by a quadratic expression in n, without any ¢ dependence. Thus, not having a pole in
the /-plane, we again see that these states are nonpropagating.

So far we have discussed the bosonic sector of the 11D supergravity. In the fermionic sector,
the analytic continuation from AdS; x S7 to §* x S was presented in [7] where the complete
spectrum, bosonic and fermionic, was worked out. The analytic continuation from AdS; X s4
along the lines described above can be extended to fermionic sector as well, just as in the case
of AdSs x S’ described in detail in [7].

In the fermionic sector the local supersymmetry transformations of the fluctuations is given
by

— 1 _
6t = Vae — (B = STA PG ) Py g (31)

Introducing the source term with a suitable normalization, one finds that local supersymmetry
imposes the constraint [7]

_ 1 =
VAJA T (I‘ABl“‘B4 + SI‘BI“‘B35§4) Fp,..p,e=0. (32)
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In [7] the following gauge is chosen
My = 0. (33)

Writing T” = 4" x 1,and TV = 5 x 7/, where the 11D tangent space index is splitas A = (, i),
withr =0,1,2,3andi =4,..., 10, and defining the fluctuations fields

V2

where 7, and x; are ~y-traceless, and the s dependent prefactors are introduced for conve-
nience. We shall skip the details of the analytic continuation in this sector, as it is similar to the
one described in [7]. The procedure is exactly as the one explained for the bosonic sector, and
the saturated propagator for this sector provided in [7] yields the result

o 1 + i’}/5 o 1 + i’}/j . .
%—( 7 )(77,-+%-/\), (o —( )(X,+%9), (34)

3 111 1 ! 1

e Ei,_ Ej:_’_’_,:t_ > Ei:_ 3 A

g (0 2)( 222 2) 0 =313 F;

1 131 1 0 1

A T v E+f, = + -, o, o, F Ef =~ =
dS4><S X < ()52) (é 2, 2, 2,:!:2> > 0 2+3:F2’
1 311 1 0 3

OGN ESE, =) (22,2, 7= ), Ef=—-4+3FZ.
(anax)<02>< zzzq[z) 0 =5+3F3

(35)

In the first equation, the ¢ = O states are the massless gravitini in the 8; of SO(8). In the last
result above, three coupled linearize equations were analysed in [7], and additional poles in the
saturated propagator were shown to give vanishing residue; hence only the towers displayed
above arise as physical. Note also the shifts of / by j:% or ﬁ:%, again for the purposes of super-
multiplet interpretation; see figure 1. Furthermore, / = —1 in the last tower gives fermions
which were shown to be gauge modes in [7]. Whether they can survive as the fermionic partner
of a supersingleton will be examined in the next section.

Using the saturated propagator given in [7] this time to continue analytically to AdS7 x S*
instead, we easily obtain the result

E :tl s 1.1 :I:1 ! E 2n+6 !
i- N> A’A° > P > = 4n P
X oy Ta) "o 0 T2
11 1 13 1
4 . . + 22 0 22 £ _ Z
AdS7 x S 1<, (EO’Z’Z’i2> (nﬁ:z,z), E; 2n+6:F2,
11 1 31 3
omox,N: (Ex, =, = F= +>,-, Ef =2n+6F=.
(nx)<022$2><n22> 0 =2n+06F3
(36)
In the first equation, the upper sign tower starts at n = 0, which is the massless gravitino. In the
last equation n = —1 is an acceptable representation, and it will be shown in the next section

to have the appropriate field equation for a fermionic partner of a superdoubleton.

In summary, the results for the full spectrum in the AdS; x S’ and AdS; x §* are given
in figures 1 and 2. In [7], it was observed that the following relation holds for a particular
combination of the second order Casimir operator eigenvalues at each level:

2G5[S0(3,2)] + G[SOB)] = % L+2)(+4). 37

10
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Laﬂ : (60,2,0,0)(7170)

/ N, Ko Xpp) e Zan

Y.UQB : (60,1,1,0)(’”,1) (EO:F]-a]-:OvO)(’n’:tlv]-) (60:':171717:!:1)(’”:‘:1,0)*
U (€0$%7%7%7i%) (’I’L:I:%,%) (€0$%7%7%7$%) (TL:I:%,%)* : (an’aX7)‘)
(60707070)(’”72) (EO:F2’0705 0)(’”:‘:270)*
H,, (M, N, oW, 99K)

Figure 2. The spectrum of 11D supergravity on AdS; x S*. The 11D supergravity fluc-
tuation fields from which the states come from are defined in (20), and shown in the
figure. Here = 0, 1,. .., 6 labels the AdS; spacetime, and x = 1,...,4 labels the st
coordinates. The representations are labelled by the highest weights of SO(6,2) x SO(5)
as (Ey, 01, 0, (3)(n,ny), where Eg > {1 > £, > |{3] and n > ny. The Dynkin labels for
SO(5) are (n — ny,2n;) and the corresponding Dynkin labels for USp(4) are (2n;,n —
ny). Each value of ¢ gives an OSp(6, 2|4) multiplet. n = 0 gives the 7D maximal super-
gravity multiplet, for which Ey = ¢ + 4, saturating the unitarity bound. n = —1 gives
the doubleton multiplet. These sit in the towers marked by * in the Figure. States for
n > 1 are massive multiplets with d,, x (128p + 1285) degrees of freedom, where d,, is
the dimension of nth rank totally symmetric and traceless SO(5) tensor.

In a similar fashion, here we find that the following relation holds in the case of AdS; x S*
Kaluza—Klein spectrum organized into levels labelled by n:

2G5[SO5)]1+ Go[SO(6,2)] = 6(n+ 1) (n +2). (38)

Interestingly, this vanishes for the doubleton multiplet for which n = —1.

5. Search for singletons and doubletons

Figure 1 shows the full spectrum of 11D sugra compactified on AdS; x S’ compactification, in
such a way that each value of £ =0, 1,2, ..., represents an OSp(8|4) multiplet. For £ = 0 one
has the massless maximal 4D supergravity multiplet, and the rest are massive supermultiplets.
In [6, 7], while it was shown that the representations for / = —1 are gauge modes, it was
observed that these form the singleton supermultiplet of OSp(8|4)>. The question arises as
to whether the gauge fixing procedure allows their existence as boundary states. We begin
by noting that for £ = —1 (corresponding to ¢ = 1 before the shift £ — ¢ + 2 that defines the
universal KK level £), the scalar 0K can be eliminated by using the gauge condition, and this

2 The conjecture for its existence in the spectrum, appeared in the first reference in [6].
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leads to field equations for the scalars (M, N, OW), which we recall are the fields 4", h% and

w
eghvpe (F ng) " Using the results given in [7], one then finds a linear combination of their
equations of motion that takes the form® (henceforth all covariant derivatives are understood
to be evaluated in the background):

0=—1:(Oaas, +5m) (6M — 12N — v, W) =0, (39)

where we have re-introduced the parameter m = 1 /(ZLAdS4), and /=1,...,8 labels the
(1,0,0,0) representation of SO(8). This is the appropriate field equation for a singleton with
lowest energy Ey = % After examining the fermionic sector, we shall come back to the ques-
tion of whether the boundary states described by this equations survive the fixing of local
symmetries.

In the fermionic sector the candidate singleton carries the representation (1, %)(%, %, %, — %).
To better understand the role of supersymmetry gauge fixing, let us not impose the gauge
condition (33) to begin with. Thus, we examine the ~-trace of the 4 + 7 split of the lin-
earized gravitino equation prior to any gauge fixing. Making use of the fact that for ¢ = %
we have V,;x' = 0 [7], these equations determine V,7" in terms of (}, i), and furthermore
give

12 4 7
(m — =iV + 2) i00x.y) - (i% + 5) Alx,y) = 0, (40)

and the linearized supersymmetry transformations take the form

1 1 7
OA(x,y) = 1(774 —De(x,y),  0ib(x,y) = 5 (i% + 2) €(x,y). (41)

Denoting any of the spinors occurring above generically by ¥(x, y), it is understood that its

harmonic expansion on S7 is of the form Y(x,y) = Yy (x)D (L; b+ w_(x)D_(L; 1), where
111

D+ (L;") denote the SO(8) representation functions in (3,3, 3.=43) obeying iV7D.(L; ") =
T1D+(L;"). Thus equations (40) and (41) give
(V4 —H)i0_(x) — 41 _(x) =0, (42)

invariant under®
5 (x) = e (x), OA (x)= % (Va—4) e_(x), (43)

and (V4 + 8) 6(x) = 0 with §6.(x) = 0. Harmonic expansion of 6 (x) on AdS, gives the
lowest energy Ey = %, thus describing the physical state at level / = 2 shown in figure 1. As
for 6_(x), it can be gauged away by using the parameter ¢_(x), in which case A_(x) vanishes
by its field equation. However, suppose we fix the following gauge instead

4\ +iB0_(x) =0, (44)
where [ is a constant parameter. Then, the field equation becomes

Vis—4+p5)0_(x)=0. (45)

3 For a detailed analysis of the singleton field equations, see [18].
4 Correcting the sign of the last term in the variation of the gravitino given in equation (3) of [7].

12



J. Phys. A: Math. Theor. 53 (2020) 364003 E Sezgin

This has a solution with AdS lowest energy Ey = %([3 — 1), with the unitarity bound imposing
the condition 8 > 3. Interestingly, the choice 5 = 3 which saturates the unitarity bound gives
the singleton field equation®. On the other hand, maintaining the gauge condition imposes
the condition involving the same wave operator, namely, (V4 — 4 4+ ) e_(x) = 0. Since the
field equation satisfied by the residual symmetry parameter e_(x) coincides with that of the
fermionic field 6_(x) for any value of 3, it follows that the latter can be removed entirely by
using this residual symmetry, again for any value of 8. Therefore, even though 5 = 3 gives the
singleton field equation for 6_(x) this field can nonetheless be removed entirely by fixing the
Stuckelberg symmetry. By supersymmetry, we expect that similar phenomenon must be present
for the bosonic singleton equation (39) as well, namely the KK reduction of the 11D general
coordinate and tensor gauge transformations must provide the required residual Stuckelberg
shift symmetries to remove them. The nature of these symmetries is similar to those described
in detail in [15] for 6D supergravity on AdS; x S°.

Let us now examine the linearized field equations for n = —1 (correspondington = % after
the relabelling n — n + % to define a universal KK level number n) in the AdS; x st compact-
ification. Again one can eliminate JOK, and using the results of [7] one finds that a particular
linear combination of the field equations for (M, N, OW) in AdS; takes the form

n=—1:(Oaas, +8m?) (5M + 28N — 6V, W")' =0, (46)

where m = 1/Laqs, and I = 1,...,5 labels the vector representation of SO(5). This equation
admits a solution with lowest energy Ey = 2 which is appropriate for a doubleton scalar. The
only other bosonic state at n = —1 in figure 2, carries the SO(6,2) x SO(5) representation
(3, 1,1, —1)(0, 0).Its field equation is that of Z, 3, expanded on §* with the n = —1 mode kept.
The result is

n=—1:(Oug +12m) Zagy + s’ Yoy Zyryy = 0, (47)

where Z,5, depends only on the 7D coordinates, and it is a singlet of SO(5). This equation
factorizes as

Il ) 1 1ol A S = "ol M SH =

(48)

The general solution is a linear combination of those annihilated by the first or second first order
wave operator, the second one giving the lowest energy Ey = 3 state which is appropriate for
the doubleton representation.

Turning to fermions, at n = —1, making use of the fact that V,n” = 0 in this sector, the
~-trace of the linearized gravitino equation of motion on AdS; x §*, prior to any gauge fixing,
now determines V;)' in terms of (6, i\), and furthermore gives

3 5 7
<Y77 + EiW4 + 2) INY, x) — 4 (1774 - 4) 00y, x) = 0, (49)

5 The gauge condition (33) instead gives (Yh + 3) 0 = 0, yielding the lowest energy Ey = 3 [7]. This field equation
arises in the N = 1 supersymmetric Wess—Zumino model in AdS, [19], where the states (2, 0) + (3, %) + (Z,0) form
a massive scalar multiplet. The free action for this case is given in equation (B1) of [19] with ;1 = % In [20], the value
n= % was mentioned as accommodating a boundary N = 1 supersingleton. We correct that statement here by noting
that it should have read p = % I thank Tanii for pointing this out, and also for noting that the supersingletons for
w =} is related to the one for 1 = —1 by a field redefinition.
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invariant under
1 7 . 1.
36(y, x) = 7 (777 — 5) ey, x), 0Ny, x) = Z(l% — de(y, x). (50)

Denoting any of the spinors occurring above generically by ¥(y, x), it is understood that its
harmonic expansion on $* is of the form ¥ (y, x) = (DL Y + - (y)D_(L;'), where
Di(L;') are the SO(5) representation of the SO(5)/SO(4) coset representative elements L;l
with the row labelled by (%, :i:%) representation of SO(4) C SO(5), and the column by the

%, %) representation of SO(5). They obey i¥4Dy = F4D+. Thus equations (49) and (50)
give

7
(% - 5) IA_(y) +140_(y) = 0, (51)
invariant under
1 7
51)\_(_)7) = —26-()’); (59_())) = ? <W7 - 2) 6—()’), (52)

and (V7 + 12—7))\+(y) =0 with dA;(y) = 0. In the latter equation, harmonic expansion of
A+(y) on AdS; gives the lowest energy Ey = 22—3 which is the physical state at level n =2
shown in figure 2. As for A_(y), it can be gauged away by using the parameter e_(x), in
which case 6_(y) vanishes by its field equation. However, if we choose the following gauge
condition

7i0_(y) + BA_(y) = 0, (53)

the fermionic field equation becomes
7 -
<777 -5t 26) A-(n) =0, (54)

which gives the lowest energy Ey = %(13 — 43) with the unitarity bound requiring B>2.

Saturating this bound by taking =2 gives the fermionic doubleton field equation yielding
the AdS; lowest energy Ey = % solution. Maintaining the gauge condition imposes the con-

straint (W7 — % + 25) €_(y) = 0. Thus, the picture which emerges here is similar to the one
we encountered for the singletons in AdSs, and we see}hat the residual symmetries can be
used to remove entirely the field A(y) for any value of /3, even though it satisfies the single-
ton field equation for 3 = 2. By supersymmetry, we deduce that the fields which we found to
obey the doubleton field equations above can also be removed by residual Stuckelberg shift
symmetries coming from the KK reduction of the 11D general coordinate and tensor gauge
transformations.

6. Conclusions

We have found a simple rule that relates the spectrum of physicals stats in the Freund
—Rubin compactifications of 11D supergravity on AdSs x §” and AdS; x S*. Thus, from the
SO(3,2) x SO(8) lowest weights of the spectrum in the AdS; x S’ compactification given by

14
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l 3
AdS4 XS7 :(EOZFaanl)(‘giaaEl’(Z"g?))a =) ::§+3a a:(), 31a 5’2@

N | =

(55)

we deduce the SO(6,2) x SO(5) lowest weights in the AdS; x st compactification by a
remarkably simply rule that gives

1.3
AdS; x S* i (eo Fa, by, b, ) nta,n), e :=2n+6, a=0,5,1,§,2.
(56)

The rule is to interchange the spacetime and internal symmetry labels such that (g, ¢, a) goes to
(n, €y, —a). In figures 1 and 2 each value of the integer £ > 0 in figure 1, and n > 0 in figure 2,
describe the states which form supermultiplets of OSp(8|4) and OSp(6,2|4), respectively (in
the latter case see [23, 25] for the AdS lowest energies). The 11D origin of the states, and how
they transform to each other is also displayed in these figures.

In obtaining the results summarized above, we have used the fact that M; = AdS, X s’
and M, = AdS,; x S* admit analytic continuation to M = S* x S§7. We have performed har-
monic expansions on M, and shown that analytic continuations of either $* to AdS, or §’
to AdS; give the spectrum of physical states on M; and M,, respectively. The discrete uni-
tary representations of the relevant AdS groups with well known boundary conditions arise
in these computations. The spectra obtained in this approach are in perfect agreement with
those obtained by other methods. However, it should be noted that the analytic continuation of
AdS, to §" may have limitations in the computation of the effective action [26—30]. In partic-
ular, it has been shown that in computing the effective potential, while the direct AdS, mode
sum gives physically reasonable result and properly incorporates the supersymmetric boundary
conditions, the analytic continuation from §" back to AdS,, fails to produce the correct super-
symmetric effective action [29]. Similar results were also obtained in [30]. It is interesting to
note, however, that in computing the beta functions in a framework where AdS,, is analytically
continued to §", the results agree with those obtained from continuation to Euclidean AdS,
[31].

Turning to the spectral relation we have found between those of AdSy x 7 and AdS; x §*
compactifications, its further uses remain to be seen. For example, the vanishing of Casimir
energies that has been shown for AdS, X S7 in [21, 22] and for AdS; x S§* in [23], may possi-
bly be understood from a different angle afforded by these relations. One may also investigate
whether the spectral relationship of the kind presented here exists for other compactifications
as well [24]. It would also be interesting to explore possible uses of our approach in the compu-
tation of interactions involving the KK states, which are of considerable interest in the context
of consistent KK truncation schemes and holography [25]. It would also be interesting to apply
our analytic continuation approach to the Freund—Rubin compactifications of 11D supergrav-
ities with signatures (9, 2) and (6, 5) signatures [32], and study of branes propagating in these
backgrounds [33, 34].

In this paper, we have also found the linearized field equations for the singletons and dou-
bletons in the bulk. However, these turns out to be gauge dependent results, and we have shown
that residual Stuckelberg shift symmetries inherited from the Kaluza—Klein reduction can be
used to remove them. We have displayed these symmetries explicitly for the fermions but they
are expected to arise in a similar fashion in the bosonic sector as well, as described in detail
in [15] in the context of 6D supergravity on AdS; x S°. These gauge symmetries are not to
be confused with the AdS symmetry that operates on the solution space. In the latter case, as
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explained in detail in [18, 35], there is a sense in which the singletons can be treated in the
framework of a gauge theory in which the solution space, after modding out by gauge trans-
formations that fall off rapidly in the direction of spatial infinity, does support the singletons
as boundary states. What we have seen in the Freund—Rubin compactification of 11D super-
gravity is that there is an additional local Stuckelberg symmetry coming from 11D, other than
the AdS symmetry of the background, which removes these states.

It would be useful to study the fate of the singletons and the attendant Stuckelberg symme-
tries in the N = 1 supersymmetric compactification of 11D supergravity on AdS; x LS’ [36],
where LS is the left-squashed 7-sphere. It has been noted that the spectrum around this vac-
uum can be related to that of round S” by a Higgs mechanism [37] if the singletons are included
in the spectrum, and it has been suggested that a field theoretic mechanism may exist by which
which the singleton eats an ordinary field of the same spin to become an ordinary bulk field
[38]. Shedding light on this puzzle would require an analysis of how turning on the squashing
parameter, with the attendant phenomenon of switching vacuum expectation value to the 35
scalar fields of N = 8 supergravity [37], effects the singleton field equations and importantly
the Stuckelberg symmetries.

The general expectation that singletons have a role to play in AdS/CFT holography [39, 40],
motivates a further study of singletons in the context of KK supergravity. The arguments that
have been given in support of their presence tend to involve BF type bosonic topological field
theories in the bulk. In particular, a detailed study of the AdSs, and a general discussion of the
BF type theories in this context exists (see [40], and references therein). However, the way in
which suitable topological field theories may arise from the flux compactifications and how
coupling to supergravity may occur apparently has not been investigated so far. The fact that
the BF type theories considered involve p-forms of supergravities, and their behaviour on the
boundaries plays an essential role, suggests that the 3-form potential arising in the singleton
and doubleton field equations we have found may involve some global considerations that
make them survive on the boundary, despite the presence of the Stuckelberg shift symmetries.
Whether this is the case remains to be investigated.
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