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Abstract
Adaptive optics corrected flood imaging of the retina is a popular technique
for studying the retinal structure and function in the living eye. However, the
raw retinal images are usually of poor contrast and the interpretation of such
images requires image deconvolution. Different from standard deconvolution
problems where the point spread function (PSF) is completely known, the PSF
in these retinal imaging problems is only partially known which leads to the
more complicated myopic (mildly blind) deconvolution problem. In this paper,
we propose an efficient numerical scheme for solving this myopic deconvo-
lution problem with total variational (TV) regularization. First, we apply the
alternating direction method of multipliers (ADMM) to tackle the TV regu-
larizer. Specifically, we reformulate the TV problem as an equivalent equality
constrained problem where the objective function is separable, and then min-
imize the augmented Lagrangian function by alternating between two (sepa-
rated) blocks of unknowns to obtain the solution. Due to the structure of the
retinal images, the subproblems with respect to the fidelity term appearing
within each ADMM iteration are tightly coupled and a variation of the linearize
and project method is designed to solve these subproblems efficiently. The pro-
posed method is called the ADMM-LAP method. Theoretically, we establish
the subsequence convergence of the ADMM-LAPmethod to a stationary point.
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Both the theoretical complexity analysis and numerical results are provided to
demonstrate the efficiency of the ADMM-LAP method.

Keywords: total variation, retinal imaging, image restoration, myopic deconvo-
lution

(Some figures may appear in colour only in the online journal)

1. Introduction

Image restoration is an important topic in image processing which is widely used in many
areas, such as astronomical imaging, medical imaging and restoring aging and deteriorated
films. The goal of image restoration is to reconstruct the best possible approximation of the
clean, original image from an observed, blurred and noisy image. The basic image restoration
problem can be described as a linear inverse problem

d = Ax+ e, (1)

where A ∈ Rn2×n2 is an ill-conditioned blurring matrix defined by the point spread function
(PSF) [9], d ∈ Rn2 represents the observed, blurred and noisy image, e ∈ Rn2 denotes the
additive noise and x ∈ Rn2 denotes the unknown true image to be restored.

The PSF is generally assumed to be perfectly known in standard image restoration tech-
niques. However, this is not always the case. In many applications, the true PSF (and therefore
the blurringmatrix A) is unknown or partially known. This results in blind deconvolution prob-
lems where image restoration also requires recovering or approximating the PSF. If the PSF
can be parameterized by a small number of unknown parameters, the problem can be consid-
ered mildly/partially blind, or myopic. Adaptive optics (AO) corrected flood imaging of the
retina is one such myopic deconvolution problem that has received much attention. In [2, 4],
the authors present an imaging model that can transfer the 3D model to a 2D model with the
global PSF being an unknown linear combination of a few PSFs. Thus, problem (1) requires
estimating both the combination coefficients of A and the true image x in this model.

In order to guarantee the fidelity of the recovery, it is necessary to add a regularizer. There are
two well-known types of regularizers for problem (1): one is Tikhonov and the other is total
variation (TV). Tikhonov regularization was first proposed in [20] with a quadratic penalty
added to the objective function. Due to its quadratic property, it is inexpensive to minimize the
objective function. Thus, Tikhonov regularization is computationally efficient and has been
widely used. However, one disadvantage of the Tikhonov approach is that it tends to over
smooth the image and fails to preserve important image details such as sharp edges. The TV
regularizer, first proposed by Rudin, Osher and Fatemi in [16], has also been widely adopted in
image reconstruction problems [11, 17, 19, 21]. Since the TV approach uses the summation of
the variation of the image x at all pixels to control the norm (or semi-norm) and the smoothness
of the solution, it has been shown both experimentally and theoretically that the TV approach
can effectively preserve sharp edges and keep the important features of the restored image.

Following the AO retinal imaging model in [2, 4], in this paper, we consider the myopic
deconvolution model with TV regularization as follows

min
x∈Cx,w∈Cw

Φ (x,w) =
µ

2
‖A (w) x− d‖22 + TV (x)

s.t.
p∑

j=1

w j = 1,
(2)
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where Cx =
{
x|xi ! 0 for i = 1, . . . , n2

}
, Cw = {w|w j ! 0 for j = 1, . . . , p}, µ is a positive

parameter that is used to balance the two terms in the objective function, TV denotes the TV
regularization term, x ∈ Rn2 is a vectorized version of the unknown n× n image to be recov-
ered, w ∈ Rp denotes unknown weights parameterizing the blurring matrix A (w) ∈ Rn2×n2 ,
and d ∈ Rn2 is the observed, blurred noisy image (data). For the imaging model we use, the
blurring matrix A (w) is a weighted sum of p known blurring matrices Aj with the form

A(w) =
p∑

j=1

w jA j = w1A1 + w2A2 + · · ·+ wpAp.

Note that the fidelity term in the objective function in (2) is nonconvex and the TV regu-
larization term is nondifferentiable and nonlinear. This poses some computational challenges
in the optimization problem. In particular, due to the existence of the parameters w and
the nonconvexity of the objective function, approaches such as the fast iterative shrinkage-
thresholding algorithm [1, 6] cannot be applied directly to solve the problem. However,
alternative approaches have been proposed to solve the optimization problemwith TV regular-
ization in the literature. One particularly efficient scheme is the alternating direction method
of multipliers (ADMM) [19, 21, 28]. ADMMwas first developed to solve convex optimization
problems by breaking them into subproblems, each of which are then easier to handle. Recent
work has shown that ADMM can also perform well for a variety of applications involving
nonconvex objective functions or nonconvex sets [5, 13, 22, 26, 27]. Inspired by the success
of ADMM on nonconvex problems, we consider using it as the optimization method to tackle
problem (2).

The main contribution of this paper can be summarized as follows:

• We implement an efficient algorithm called ADMM-LAP for myopic deconvolution prob-
lems with TV regularization arising from the AO retinal image restoration. Specifically,
we first apply ADMM as an outer optimization method to tackle the TV regularizer and
then apply the linearize and project (LAP) method as an inner optimization method to
solve the tightly coupled subproblems arising within each ADMM iteration. We establish
the subsequence convergence of ADMM-LAP to a stationary point and conduct a com-
plexity analysis of ADMM-LAP to demonstrate its computational efficiency for myopic
deconvolution problems with TV regularization.

• We present extensive numerical experiments to illustrate the effectiveness of the
ADMM-LAP method. In addition, we compare the performance of ADMM-LAP
with a benchmark method called ADMM-BCD where ADMM is applied to tackle
the TV regularization while block coordinate descent (BCD) is applied to solve
the coupled subproblems. Compared to ADMM-BCD, ADMM-LAP converges faster
and can reach smaller relative errors for both the restored image and the obtained
parameters.

The paper is organized as follows. In section 2, we introduce a general formulation of the
AO retinal imaging problem. In section 3, we first briefly review the iteration format of ADMM
and introduce a variation of LAP for our problem, then propose the ADMM-LAP method and
present the convergence results. A benchmark method ADMM-BCD is also discussed. The
computational complexity of both methods are analyzed in this section. Numerical results are
given in section 4, and concluding remarks are drawn in section 5.
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2. Retinal imaging problem

2.1. AO retinal imaging model

AO is awell-knownoptoelectronic technique that compensates for the time-varying aberrations
of the eye [3]. However, AO flood imaging suffers from an intrinsic limitation that leads to a
loss in resolution because the object is three-dimensional, the image contains information from
both the in-focus plane and the out-of-focus planes of the object. Hence, interpretation of such
images requires an appropriate post-processing, including image deconvolution. In this paper,
we focus on the myopic image deconvolution problem that arises from the AO retinal image
restoration and propose the efficient ADMM-LAP method to solve the problem.

First, we describe the structure of the AO retinal imaging model. In the continuous setting,
retinal imaging is typically modeled as a three-dimensional (3D) convolution [2, 4]:

d3D = h3D∗3Dx3D + e, (3)

where d3D is the observed image, h3D is the PSF, ∗3D is the three-dimensional convolution
operator, x3D is the true object, and e is the additive noise. If the true object is assumed to be
shift invariant along the optical axis, i.e., the z-axis, then x3D becomes separable with

x3D (x, y, z) = x2D (x, y)w (z) ,

wherew (z) is the normalized flux emitted by the plane at depth z such that
∫
w(z)dz = 1. For

reasonable optical setups, this shift invariance along the optical axis can be guaranteed to a
sufficient degree to make this separability assumption meaningful [2].

In practice, retinal flood imaging systems typically image along a single plane of interest,
a departure from the 3D model in (3). This results in a 2D data image taken at a single depth.
For depth z = 0, this gives the observed image

d2D (x, y) = d3D (x, y, 0) .

The shift invariance assumption for the true image x3D then implies that the two-dimensional
PSF for the observed image d2D(x, y) can be expressed as

h2D (x, y) =
∫

w (−z) h3D (x, y, z) dz.

Discretizing the above integral using a quadrature rule (a simple rectangle rule is often
sufficient) we obtain the PSF for the observed retinal flood images as

h2D (x, y) ≈
p∑

j=1

w jh j (x, y) ,

whereh j (x, y) = h3D
(
x, y, z j

)
is the 2DPSF taken at depth z j andw j = w

(
z j
)
∆z j areweights

with ∆z j the thickness of the jth slice of the 3D image in the quadrature sum. Thus, in our
myopic deconvolution model (2), the problem becomes determining the unknown weights w j

that parameterize the PSF with the constraints that
∑p

j=1w j = 1 andw j ! 0 for all j. We point
out that it can be seen from numerical experiments that the global PSF in (2) is normalized (i.e.,
all entries sum to approximately 1). Therefore, the myopic deconvolution model satisfies the
fact that the PSF is energy preserving.
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2.2. Myopic deconvolution model with TV regularization

For TV regularization in (2), we follow the notations used in [19, 21]: the discrete form of TV
for a grayscale image x ∈ Rn2 is defined as

TV (x) =
n2∑

i=1

‖Dix‖2, (4)

where for each i, Dix ∈ R2 represents the first-order finite difference of x at pixel i in both
horizontal and vertical directions. We note that the 2-norm in (4) can be replaced by the
1-norm. If the 2-norm is used, then we obtain the isotropic version of TV, and if the 1-norm is
used, we obtain the anisotropic version. In this paper, we will only treat the isotropic case for
simplicity, but the treatment for the anisotropic case is completely analogous.

Notations: the two first-order global finite difference operators in horizontal and vertical
directions are, respectively, denoted by D(1),D(2) ∈ Rn2×n2 . Di ∈ R2×n2 is a two-row matrix
formed by stacking the ith row of D(1) on top of the ith row of D(2) and D :=

(
D(1);D(2)

)
∈

R2n2×n2 is the global first-order finite difference operator.
In order to deal with the restriction on the sum of the weights, we introduce an appropriate

regularizer onw:

min
x∈Cx,w∈Cw

µ

2
‖A (w) x− d‖22 +

n2∑

i=1

‖Dix‖2 + S(w) (5)

where Cx =
{
x|xi ! 0 for i = 1, . . . , n2

}
, Cw = {w|w j ! 0 for j = 1, . . . , p} and

A(w) =
∑p

j=1w jA j. The regularizer S(w) is defined as

S(w) =
ξ

2
(e'w − 1)2,

where e ∈ Rp is the vector all ones and ξ > 0 is a weighting parameter. This regularizer
penalizes solutions where the weights wk do not sum to 1, so for appropriately large ξ, it
can effectively enforce the summation constraint. We choose this option because it fits conve-
niently within the LAP framework in section 3.2. Another possible alternative is a Lagrangian
multiplier approach, which would strictly enforce the summation [15].

3. Optimization schemes

In this section, we first briefly review the ADMM, discuss how to adaptADMM to solve (5) and
discuss how to adapt a variation of the LAP method to solve the related coupled subproblems.
We then propose the ADMM-LAP method for solving (5) and give the convergence analysis.
A benchmarkmethod called ADMM-BCD is also introduced in this section. We compare their
computational complexity and show that ADMM-LAP is more efficient when solving (5).

3.1. ADMM splitting

The classical ADMM is designed to solve the following two-block optimization problem with
linear constraints

min
u,v∈Rn2

f (u)+ g (v)

s.t. Bu+ Cv = z,
(6)
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where f (u) : Rn2 → (−∞,+∞], g (v) : Rn2 → (−∞,+∞] are convex functions, and B,C ∈
Rn2×n2 and z ∈ Rn2 are given.

The augmented Lagrangian function for (6) is given by

Lβ (u, v,λ) = f (u)+ g (v)+ (λ,Bu+ Cv − z)+
β

2
‖Bu+ Cv − z‖22,

where λ ∈ Rn2 denotes the Lagrange multiplier, β > 0 is the penalty parameter.
Given

(
u0, v0,λ0) ∈ Rn2 × Rn2 × Rn2 , the penalty parameter β > 0, ADMM iterates as

follows:






uk+1 = argmin
u

Lβ

(
u, vk,λk) ,

vk+1 = argmin
v

Lβ

(
uk+1, v,λk) ,

λk+1 = λk − β
(
Buk+1 + Cvk+1 − z

)
.

In order to apply ADMM to solve (5), we introduce artificial vectors yi ∈ R2, i = 1, . . . , n2,
then we can rewrite (5) in an equivalent form:

min
x,w,y

µ

2
‖A(w)x− d‖22 + S(w)+

n2∑

i=1

‖yi‖2 + δCx(x)+ δCw (w),

s.t. yi = Dix, i = 1, . . . , n2, (7)

where Cx =
{
x|xi ! 0 for i = 1, . . . , n2

}
, Cw = {w|w j ! 0 for j = 1, . . . , p}, A(w) =∑p

j=1w jA j and δC(·) denotes the indicator function of C, i.e.,

δC(s) =

{
0, s ∈ C,
∞, s /∈ C.

For convenience, let4 y= [ y1; y2] ∈ R2n2 , where y1, y2 are vectors of length n2 and
[( y1)i; ( y2)i] = yi ∈ R2 for i = 1, . . . , n2. The augmented Lagrangian function for (7) is then
given by

Lβ (x,w, y,λ) :=
µ

2
‖A(w)x− d‖22 + S(w)+ δCx(x)+ δCw (w)

+
n2∑

i=1

(
‖yi‖2 − λT

i

(
yi − Dix

)
+

β

2
‖yi − Dix‖22

)
,

where each λi ∈ R2 and λ ∈ R2n2 is a reordering of λi similar to y.
Consider (x,w) as one block of variables and y as the other. We can now apply ADMM as

the outer optimizationmethod to tackle the TV regularization term in (7). Given the initial point

4 Borrowing MATLAB notation, we use the semicolon in a vector to denote concatenation of terms.
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(
y0, x0,w0,λ0), the ADMM algorithm iteratively solves the following three subproblems:






yk+1 = argmin
y

Lβ

(
xk,wk, y,λk) ,

(xk+1,wk+1) = argmin
x,w

Lβ

(
x,w, yk+1,λk) ,

λk+1 = λk − β
(
yk+1 − Dxk+1) .

First, for the y-subproblem, notice that minimizing Lβ

(
xk,wk, y,λk) with respect to y is

equivalent to minimizing n2 two-dimensional problems of the form

min
yi∈R2

‖yi‖2 +
β

2
‖yi −

(
Dixk +

1
β

(
λk)

i

)
‖22, i = 1, 2, . . . , n2. (8)

The solution to (8) is given explicitly by the two-dimensional shrinkage [19]

yk+1
i = max

{∥∥∥∥Dixk +
1
β

(
λk)

i

∥∥∥∥
2
− 1

β
, 0
} Dixk + 1

β

(
λk)

i

‖Dixk + 1
β

(
λk)

i‖2
, i = 1, 2, . . . , n2. (9)

Second, denote

R(x, y,λ) :=
n2∑

i=1

(
‖yi‖2 − λ'

i

(
yi − Dix

)
+

β

2
‖yi − Dix‖22

)
,

and define

Φ̂(x,w, y,λ) :=
µ

2
‖A (w) x− d‖22 + S(w)+ R (x, y,λ) .

Then it can be shown that the (x,w)-subproblem is equivalent to the following problem:
(
xk+1,wk+1) = argmin

x∈Cx,w∈Cw
Φ̂(x,w, yk+1,λk). (10)

Note that this is a tightly coupled optimization problem with element-wise bound constraints.
Finally, update the multiplier,

λk+1 = λk − β
(
yk+1 − Dxk+1) . (11)

If the termination criterion is met, stop; else, set k := k + 1 and go to the y-subproblem.

3.2. LAP method

To solve the tightly coupled (x,w)-subproblem (10), we develop a variation of the LAPmethod
proposed by Herring et al [10]. The LAP method is efficient for inverse problems with multi-
ple, tightly coupled blocks of variables such as the problem under consideration. Its strengths
include the option to impose element-wise bound constraints on all blocks of variables.

In this paper, we present the LAP method based on the normal equation approach instead of
the least squares approach presented in the original paper [10]. First, we consider the uncon-
strained problem where Cx = Rn2 , Cw = Rp. Denote the residual as r (x,w) :=A (w) x− d.
Then at the iterate (x,w), the Jacobian with respect to the x block of variables is

Jx = ∇xr(x,w)' = A(w)', (12)

7
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and the Jacobian with respect to thew block of variables is

Jw =





(A1x)'

(A2x)'
...

(Apx)'




. (13)

Computing the update step around the current iterate (x,w) requires the gradient and
Hessian of the objective function Φ̂(x,w, yk+1,λk). These are given by

∇x,wΦ̂(x,w, yk+1,λk)= µ

[
J'x r
J'wr

]
+

[
∇xR

(
x, yk+1,λk)

∇wS(w)

]
, (14)

∇2
x,wΦ̂(x,w, yk+1,λk)≈ µ

[
J'x Jx J'x Jw
J'wJx J'wJw

]
+

[
∇2

xR
(
x, yk+1,λk) 0
0 ∇2

wS(w)

]
, (15)

where r := r(x,w). Here, the Hessian of the regularizer R(x) can be exact or a linearized
approximation. Let δx and δw denote the update step for the image and the parameters, respec-
tively. Then the update steps δx and δw are given by the solution of the following block linear
system



J
'
x Jx +

1
µ
∇2

xR
(
x, yk+1,λk) J'x Jw

J'wJx J'wJw +∇2
wS(w)




[
δx
δw

]

= −



J
'
x r+

1
µ
∇xR

(
x, yk+1,λk)

J'wr+∇wS(w)



 . (16)

Note that omitting the regularizer terms, (16) is the normal equation corresponding to the
least-squares problem

µ

2

∥∥∥∥
[
Jx Jw

] [ δx
δw

]
+ r

∥∥∥∥
2

2

that can be obtained by the Linearize step of LAP in [10].
LAP solves (16) by projecting the original problem onto a reduced space. In this paper, we

choose to project the problem onto the image space, i.e., we eliminate the block of variables
corresponding tow. When projecting the problem onto the image space, δw can be computed
by

δw = −
(
J'wJw +∇2

wS(w)
)−1 (

J'wJxδx+ J'wr+∇wS(w)
)
. (17)

Plug (17) into (16) and get
(
J'x Jx +

1
µ
∇2

xR
(
x, yk+1,λk)

)
δx− J'x Jw

(
J'wJw +∇2

wS(w)
)−1

×
(
J'wJxδx+ J'wr+∇wS(w)

)
= −

(
J'x r+

1
µ
∇xR

(
x, yk+1,λk)

)
,

8
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which can be simplified as

Mδx = b, (18)

the operator and the right-hand side are given by

M := J'x (I− Jw(J'wJw +∇2
wS(w))−1J'w)Jx +

1
µ
∇2

xR
(
x, yk+1,λk) ,

b := − J'x (I − Jw(J'wJw +∇2
wS(w))−1J'w)r−

1
µ
∇xR

(
x, yk+1,λk)

+ J'x Jw(J
'
wJw +∇2

wS(w))−1∇wS(w).

Moreover, it is easy to see that the gradient and Hessian of R(x, yk+1,λk) satisfy

∇xR
(
x, yk+1,λk) =

n2∑

i=1

(
DT

i (λ
k)i − βDT

i

(
yk+1
i − Dix

))

= DTλk − βDT yk+1 + βDTDx, (19)

and

∇2
xR

(
x, yk+1,λk) =

n2∑

i=1

βDT
i Di = βDTD. (20)

Following the above procedures, we are able to compute the unconstrained update steps δx and
δw.

Next, we consider modifying the above procedures in order to handle the element-wise
bound constraints on x andw. We know that a simple extension to the Gauss–Newton method
does not work [12], however, a simple correction, i.e. the projected Gauss–Newton method
[8] can be made convergent and it works well for many inverse problems. To this end, the
variables are divided into active set variables and inactive set variables and the step δx and δw
are computed through these two separate sets. Let the feasible index set be defined as

N :=

{
q ∈ N

∣∣∣∣∣

[
xq
wq

]
! 0

}
.

Define the active and inactive sets as

A :=

{
q ∈ N

∣∣∣∣∣

[
xq
wq

]
= 0

}
,

I :=N\A.

Then, we can divide the variables into the active set variables
[
xA
wA

]
and the inactive set vari-

ables
[
xI
wI

]
. Denote the steps taken on

[
xA
wA

]
by

[
δxA
δwA

]
and the steps taken on

[
xI
wI

]
by

[
δxI
δwI

]
, respectively.

9
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δxI and δwI can be computed in a similar way as the unconstrained case except that the
variables need to be projected onto the inactive set. That is, δxI at the current iterate (x,w) is
computed as:

M̂δxI = b̂, (21)

the operator and right-hand side are given by

M̂ := Ĵ'x (I− Ĵw(Ĵ'x Ĵw +∇2
w Ŝ(w))−1Ĵ'w)Ĵx +

1
µ
∇2

xR̂
(
x, yk+1,λk) ,

b̂ := − Ĵ'x (I − Ĵw(Ĵ'wĴw +∇2
wŜ(w))−1Ĵ'w)r−

1
µ
∇xR̂

(
x, yk+1,λk)

+ Ĵ'x Ĵw(Ĵ
'
wĴw +∇2

wŜ(w))−1∇w Ŝ(w),

where Ĵx, Ĵw,∇xR̂,∇2
xR̂,∇wŜ and∇2

w Ŝ represent Jx, Jw,∇xR,∇2
xR,∇wS and∇2

wS restricted
to the inactive set via projection, respectively. The reduced problem (21) does not need to be
solved to a high accuracy. For example in [10], a stopping tolerance of 10−1 is used to solve
the reduced problem iteratively. After solving for δxI , δwI can be computed by

δwI = −
(
Ĵ'w Ĵw +∇2

w Ŝ(w)
)−1 (

Ĵ'w ĴxδxI + Ĵ'wr+∇w Ŝ(w)
)
. (22)

For the active set, δxA and δwA are given by a scaled projected gradient descent step
[
δxA
δwA

]
= −µ

[
J̃'x r
J̃'wr

]
−

[
∇xR̃

(
x+ δxA, yk+1,λk)

∇w S̃(w)

]
, (23)

where J̃x, J̃w,∇xR̃ and∇wS̃ represent the projection of Jx, Jw ,∇xR and∇wS onto the active
set, respectively.

Then δx and δw can be calculated as a scaled combination of δxA, δwA, δxI and δwI by
[
δx
δw

]
=

[
δxI
δwI

]
+ γ

[
δxA
δwA

]
, (24)

and the parameter γ is selected based on the recommendation in [8]

γ =
max

(
‖δxI‖∞, ‖δwI‖∞

)

max
(
‖δxA‖∞, ‖δwA‖∞

) .

Finally, the projected Armijo line search is applied to find the solution. Here the modified
Armijo condition is given by

Φ̂
(
PCx (x+ ηδx) ,PCw (w + ηδw) , yk+1,λk)

" Φ̂
(
x,w, yk+1,λk)+ cηQ

(
∇x,wΦ̂

(
x,w, yk+1,λk)

)'
[
δx
δw

]
, (25)

where PCx and PCw denotes the projections onto the feasible set for the image and parameters,

respectively, Q
(
∇x,wΦ̂

(
x,w, yk+1,λk)) denotes the projected gradient, 0 < η " 1 denotes

the step size by backtracking, and we set c = 10−4 as suggested in [15]. We point out that it is
necessary to update the inactive set and the active set in each iteration because the projection

10
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Algorithm 1. ADMM-LAP method for (7).

Input:
(
y0, x0,w0,λ0) ∈ R2n2 × Rn2 × Rp ×R2n2 , the penalty parameter β > 0.

Let {εk+1}∞k=0 be a sequence satisfying {εk+1}∞k=0 ⊆ [0,+∞) and
∑∞

k=0 εk+1 < ∞. Set k = 0.
Output: yk , xk ,wk,λk .
Step 1 Compute yk+1 using (9).
Step 2 Find a minimizer of

min
x∈Cx,w∈Cw

Φ̂(x,w, yk+1,λk).

Specifically,
1. Compute the step on the inactive set by the LAP method using (21) and (22).
2. Compute the step on the active set by (23) using the projected gradient descent method.
3. Combine the steps using (24).
4. Perform the projected Armijo line search satisfying (25) to update xk+1,wk+1.
5. Update active and inactive sets.

Step 3 if the residual
[
ηk+1
x

ηk+1
w

]
:=∇(x,w)Φ̂(x,w, yk+1,λk) satisfies

∥∥∥∥

[
ηk+1
x

ηk+1
w

]∥∥∥∥
2

" εk+1, stop and

go to step 4; else, repeat step 2.
Step 4 Compute λk+1 using (11).
Step 5 If a termination criteria is met, stop; else, set k := k+ 1 and go to step 1.

does not prevent variables from leaving the active set and joining the inactive set. Hence, it
makes sense that in algorithm 1, if the termination criterion is not met in step 3, we go back to
step 2 and get a new solution.

3.3. ADMM-LAP method

The proposed ADMM-LAP method for solving myopic deconvolution problems with TV
regularization is summarized in algorithm 1.

Notice that ADMM-LAP is an inexact ADMM, where the y-subproblems are exactly solved
while the (x,w)-subproblems are inexactly solved. Inspired by the recent results in [14, 22],
we prove that the ADMM-LAP algorithm converges subsequently to a stationary point.

Theorem 1. Let (y0, x0,w0,λ0) be any initial point and {(yk, xk,wk,λk)} be the sequence
of iterates generated by algorithm 1. Then if β > 1

a1
λmax(A(wk)TA(wk)) and β satisfies

β2a1 − Lβ − 4a2C0 > 0, where C0, a1, a2, L are constants specified in lemmas 1 and 2,
algorithm 1 converges subsequently, i.e., it generates a sequence that has a convergent subse-
quence,whose limit (y∗, x∗,w∗,λ∗) is a stationary point ofLβ . That is, 0 ∈ ∂Lβ(y∗, x∗,w∗,λ∗).

To prove theorem 1, we define the following functions:

F(y) =
n2∑

i=1

‖yi‖2,

G(x,w) =
µ

2
‖A(w)x− d‖22 + S(w)+ δCx(x)+ δCw (w),

g(x,w) =
µ

2
‖A(w)x− d‖22 + S(w).

Lemma 1. The iterates of algorithm 1 satisfy:

(a) ∇xg(xk+1,wk+1) = −
∑n2

i=1D
T
i λ

k+1
i + ηk+1

x .

11
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(b) ‖
∑n2

i=1D
T
i λ

k+1
i −

∑n2

i=1 D
T
i λ

k
i ‖2 " C0

∥∥∥∥

[
xk+1 − xk

wk+1 −wk

]∥∥∥∥
2

+ ‖ηk+1
x − ηkx‖2, where C0 is a

constant.

Proof. First, notice that for (xk+1,wk+1) generated by ADMM, we have xk+1 =
[xk+1

1 ; xk+1
2 ; . . . ; xk+1

n2
] ∈ Cx,wk+1 = [wk+1

1 ;wk+1
2 ; . . . ;wk+1

p ] ∈ Cw. From the definition of the
general subgradient, for all vx ∈ ∂δCx(x

k+1),

δCx(x)− δCx(x
k+1) ! vx · (x− xk+1), ∀ x ∈ Rn2 .

For any x = [x1; x2; . . . ; xn2 ], where xi ! xk+1
i ! 0, i = 1, 2, . . . , n2, we have 0 ! vx · (x−

xk+1). For any x = [x1; x2; . . . ; xn2], where 0 " xi " xk+1
i , i = 1, 2, . . . , n2, we have

0 " vx · (x− xk+1). Thus, we have vx = 0. Similarly, vw = 0. By the first-order optimality
condition at (xk+1,wk+1),

[
∇xg(xk+1,wk+1)
∇wg(xk+1,wk+1)

]
+





n2∑

i=1

DT
i λ

k
i

0



−





n2∑

i=1

βDT
i (y

k+1
i − Dix)

0





−
[
ηk+1
x

ηk+1
w

]
∈ ∂δCx×Cw (x

k+1,wk+1).

Hence,

∇xg(xk+1,wk+1)+
n2∑

i=1

(
DT

i λ
k
i − βDT

i (y
k+1
i − Dix)

)
− ηk+1

x = 0.

Then by the update of the multiplier λk+1 = λk − β
(
yk+1 − Dxk+1

)
, we obtain

∇xg(xk+1,wk+1) = −
n2∑

i=1

DT
i λ

k+1
i + ηk+1

x . (26)

We make use of the decomposition

‖∇xg(xk,wk)−∇xg(xk+1,wk+1)‖2 " ‖∇xg(xk,wk)−∇xg(xk,wk+1)‖2

+ ‖∇xg(xk,wk+1)−∇xg(xk+1,wk+1)‖2. (27)

For the term ‖∇xg(xk,wk)−∇xg(xk,wk+1)‖2, we have the estimate

‖∇xg(xk,wk)−∇xg(xk,wk+1)‖2

= ‖A(wk)TA(wk)xk − A(wk)Td − A(wk+1)TA(wk+1)xk + A(wk+1)Td‖2

" ‖A(wk)TA(wk)xk − A(wk+1)TA(wk)xk‖2

+ ‖A(wk+1)TA(wk)xk − A(wk+1)TA(wk+1)xk‖2

+ ‖A(wk)Td − A(wk+1)Td‖2. (28)

Then, we estimate the terms in (28) separately with the two-weight case, i.e.,w = [w; 1− w].
Cases with p! 3 can be considered similarly, here we omit it. First,

12
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‖A(wk)TA(wk)xk − A(wk+1)TA(wk)xk‖2

" ‖A(wk)T − A(wk+1)T‖2 · ‖A(wk)xk‖2

" ‖wkAT
1 + (1− wk)AT

2 − wk+1AT
1 − (1− wk+1)AT

2‖2 · ‖A(wk)xk‖2

" ‖AT
1 − AT

2‖2 · ‖A(wk)xk‖2 · ‖wk − wk+1‖2,

= λmax(AT
1 − AT

2 ) · ‖A(wk)xk‖2 · ‖wk − wk+1‖2,

= c1‖wk − wk+1‖2, (29)

where c1 :=λmax(AT
1 − AT

2 ) · ‖A(wk)xk‖2 is a constant. Similarly,

‖A(wk+1)TA(wk)xk − A(wk+1)TA(wk+1)xk‖2

" λmax(A1 − A2) · ‖A(wk+1)T‖2 · ‖xk‖2 · ‖wk − wk+1‖2,

= c2‖wk − wk+1‖2, (30)

where c2 :=λmax(A1 − A2) · ‖A(wk+1)T‖2 · ‖xk‖2 is a constant.
Moreover,

‖A(wk)Td − A(wk+1)Td‖2 " ‖(A1 − A2)Td‖2 · ‖wk − wk+1‖2

= c3‖wk − wk+1‖2, (31)

where c3 := ‖(A1 − A2)Td‖2 is a constant.
For the term ‖∇xg(xk,wk+1)−∇xg(xk+1,wk+1)‖2, we have

‖∇xg(xk,wk+1)−∇xg(xk+1,wk+1)‖2 = µ‖A(wk+1)TA(wk+1)(xk − xk+1)‖2

" µλmax(A(wk+1)TA(wk+1)) · ‖xk − xk+1‖2, (32)

Then we know from (26)–(32) that there exists a constant C0 such that
∥∥∥∥∥∥

n2∑

i=1

DT
i λ

k+1
i −

n2∑

i=1

DT
i λ

k
i

∥∥∥∥∥∥
2

− ‖ηkx − ηk+1
x ‖2

"

∥∥∥∥∥∥
−

n2∑

i=1

DT
i λ

k+1
i + ηk+1

x +
n2∑

i=1

DT
i λ

k
i − ηkx

∥∥∥∥∥∥
2

=
∥∥∇xg(xk+1,wk+1)−∇xg(xk,wk)

∥∥
2

" C0

∥∥∥∥

[
xk+1 − xk

wk+1 −wk

]∥∥∥∥
2

,

where C0 :=
√
2max{c1 + c2 + c3,µλmax(A(wk+1)TA(wk+1))}. Hence, we have

∥∥∥∥
n2∑

i=1

DT
i λ

k+1
i −

n2∑

i=1

DT
i λ

k
i

∥∥∥∥ " C0

∥∥∥∥

[
xk+1 − xk

wk+1 −wk

] ∥∥∥∥
2

2

+ ‖ηk+1
x − ηkx‖2.

#
13
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Lemma 2. Let {(yk, xk,wk,λk)} be the sequence of iterates generated by algorithm 1. If
β > 1

a1
λmax(A(wk)TA(wk)) and β satisfiesβ2a1 − Lβ − 4a2C0 > 0, where a1, a2 are constants

depending on D, L denotes the Lipschitz constant of −g(xk+1,wk), then {(yk, xk,wk,λk)}
satisfies:

(a) Lβ(yk, xk,wk,λk) is lower bounded and there is a constant C1 > 0 such that for all
sufficiently large k, we have

Lβ(yk, xk,wk,λk)− Lβ(yk+1, xk+1,wk+1,λk+1)

! C1




n2∑

i=1

‖yki − yk+1
i ‖22 +

∥∥∥∥

[
xk+1 − xk

wk+1 −wk

] ∥∥∥∥
2

2



− 2
β
‖ηk+1

x − ηkx‖22.

(b) {(yk, xk,wk,λk)} is bounded.

Proof. According to the optimality condition of the y-subproblem, we define

dk+1
i :=

(
λk)

i + β(yk+1
i − Dixk) ∈ ∂‖yk+1

i ‖2.

We know from the definition of Lβ(yk, xk,wk,λk) that

Lβ(yk, xk,wk,λk)− Lβ(yk+1, xk,wk,λk)

= F(yk)− F(yk+1)−
n2∑

i=1

(
λk)T

i (y
k
i − yk+1

i )+
β

2

n2∑

i=1

‖yki − Dixk‖2 −
β

2

n2∑

i=1

‖yk+1
i − Dixk‖2

= F(yk)− F(yk+1)−
n2∑

i=1

(
λk)T

i (y
k
i − yk+1

i )+
β

2

n2∑

i=1

(
‖yki − yk+1

i ‖22 + 2〈yk+1
i − Dixk, yki − yk+1

i 〉
)

=
n2∑

i=1

(
‖yki ‖2 − ‖yk+1

i ‖2 −
〈
dk+1
i , yki − yk+1

i

〉)
+

β

2

n2∑

i=1

‖yki − yk+1
i ‖22

! β

2

n2∑

i=1

‖yki − yk+1
i ‖22,

where the second equality follows from the cosine rule: ‖b+ c‖2 − ‖a+ c‖2 = ‖b− a‖2 +
2〈a+ c, b− a〉 and the last inequality follows from the convexity of ‖y‖2.

Moreover, we have

Lβ(yk+1, xk,wk,λk)− Lβ(yk+1, xk+1,wk+1,λk+1)

= g(xk,wk)− g(xk+1,wk+1)−
n2∑

i=1

(
(λk)Ti − (λk+1)Ti

)
yk+1
i +

n2∑

i=1

(
λk)T

i Dixk

−
n2∑

i=1

(
λk+1)T

i Dixk+1 +
n2∑

i=1

β

2
‖yk+1

i − Dixk‖2 +
n2∑

i=1

β

2
‖yk+1

i − Dixk+1‖2

= g(xk,wk)− g(xk,wk+1)+ g(xk,wk+1)− g(xk+1,wk+1)−
n2∑

i=1

(
(λk)Ti − (λk+1)Ti

)
yk+1
i

+
n2∑

i=1

(
λk)T

i Dixk −
n2∑

i=1

(
λk+1)T

i Dixk +
n2∑

i=1

(
λk+1)T

i Dixk −
n2∑

i=1

(
λk+1)T

i Dixk

14
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+
β

2

n2∑

i=1

(
‖ − Dixk + Dixk+1‖2 + 2〈−Dixk+1 + yk+1

i ,−Dixk + Dixk+1〉
)

! −L
2
‖wk+1 −wk‖22 +

β

2

n2∑

i=1

(
‖ − Dixk + Dixk+1‖2 + 2〈−Dixk+1 + yk+1

i ,−Dixk + Dixk+1〉
)

+
n2∑

i=1

β〈yk+1
i − Dixk+1,−yk+1

i + Dixk+1〉

= −L
2
‖wk+1 −wk‖22 −

1
β

n2∑

i=1

‖
(
λk+1)

i −
(
λk)

i‖
2
2 +

β

2

n2∑

i=1

‖ − Dixk + Dixk+1‖22

! −L
2

∥∥∥∥

[
xk+1 − xk

wk+1 −wk

] ∥∥∥∥
2

2

− 2a2C0

β

∥∥∥∥

[
xk+1 − xk

wk+1 −wk

]∥∥∥∥
2

2

+
βa1
2

∥∥∥∥

[
xk+1 − xk

wk+1 −wk

] ∥∥∥∥
2

2

− 2
β
‖ηkx − ηk+1

x ‖22

= C
∥∥∥∥

[
xk+1 − xk

wk+1 −wk

]∥∥∥∥
2

2

− 2
β
‖ηkx − ηk+1

x ‖22,

where C := − L
2 −

2a2C0
β + βa1

2 is a constant, a1, a2 are constants such that for i = 1, 2, . . . , n2,
‖Di(xk+1 − xk)‖22 ! a1‖xk+1 − xk‖22 and ‖(λk+1)i − (λk)i‖ 2

2 " a2‖DT
i

(
(λk+1)i − (λk)i

)
‖ 2
2,

respectively. The second equality follows from the cosine rule; the third inequality follows
from the convexity of g(xk,wk+1) with respect to x and the Lipschitz differentiable property
of−g(xk+1,wk) with respect tow [22], L is the Lipschitz constant; the fourth equality follows
from the definition of the multiplier λk+1 = λk − β

(
yk+1 − Dxk+1

)
; the fifth inequality fol-

lows from lemma 1. In order to ensure C > 0, we require β satisfies β2a1 − Lβ − 4a2C0 >
0.

Then we know from two equalities above that

Lβ(yk, xk,wk,λk)− Lβ(yk+1, xk+1,wk+1,λk+1)

! C1




n2∑

i=1

‖yki − yk+1
i ‖22 +

∥∥∥∥

[
xk+1 − xk

wk+1 −wk

] ∥∥∥∥
2

2



− 2
β
‖ηkx − ηk+1

x ‖22. (33)

This means for all sufficiently large k, Lβ(yk, xk,wk,λk) is nonincreasing. As Di ∈ R2×n2 has
full row rank, then there exists at one x̂ such that Di x̂ = yki , ∀ i = 1, 2, . . . , n2. Thus, we arrive
at

Lβ(yk, xk,wk,λk) =
µ

2
‖A(wk)xk − d‖22 +

n2∑

i=1

‖yki ‖2 −
n2∑

i=1

(
λk)T

i (y
k
i − Dixk)+

β

2

n2∑

i=1

‖yki − Dixk‖22

=
n2∑

i=1

‖yki ‖2 +
β

2

n2∑

i=1

‖yki − Dixk‖22 +
µ

2
‖A(wk)xk − d‖22 −

n2∑

i=1

〈DT
i

(
λk)

i
, x̂− xk〉,

=
n2∑

i=1

‖yki ‖2 +
β

2

n2∑

i=1

‖yki − Dixk‖22 +
µ

2
‖A(wk)x̂k − d‖22

=
n2∑

i=1

‖yki ‖2 +
µ

2
‖A(wk)x̂k − d‖22 +

β

2

n2∑

i=1

‖Di(x̂− xk)‖22

!
n2∑

i=1

‖yki ‖2 +
µ

2
‖A(wk)x̂k − d‖22 +

βa1
2

‖x̂− xk‖22 > −∞.
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Since Lβ(yk, xk,wk,λk) is lower bounded and
∑n2

i=1 ‖yki ‖2 +
µ
2‖A(w

k)x̂k‖22 + ( 12βa1 −
1
2λmax(A(wk)TA(wk)))‖x̂− xk‖22 is coercive over the feasible set ΩF := {(y, x,w) :Dix =
yi, i = 1, 2, . . . , n2}, we conclude that {yk} and {(xk,wk)} are bounded. Hence, by lemma 1,
{λk} is bounded. #
Lemma 3. Let ∂Lβ(yk+1, xk+1,wk+1,λk+1) =

(
∂yLβ ,∇(x,w)Lβ ,∇λLβ

)
. Then there exists

a constant C̃ > 0 such that for all k ! 1, for some pk+1 ∈ ∂Lβ(yk+1, xk+1,wk+1,λk+1), we
have

‖pk+1‖2 " C̃
(∥∥∥∥

[
xk+1 − xk

wk+1 −wk

]∥∥∥∥
2

+ ‖ηk+1
x − ηkx‖2

)
.

Proof. Because

∇λiLβ(y
k+1, xk+1,wk+1,λk+1) =− (yk+1

i − Dixk+1)

=
1
β

((
λk+1)

i −
(
λk)

i

)
,

and

∇(x,w)Lβ(yk+1, xk+1,wk+1,λk+1) =





n2∑

i=1

DT
i

((
λk+1)

i −
(
λk)

i

)

0



 ,

we have

‖∇λLβ(yk+1, xk+1,wk+1,λk+1)‖2

=
1
β

n2∑

i=1

‖
(
λk+1)

i −
(
λk)

i‖2

" 1
β
√
a1

n2∑

i=1

‖DT
i

((
λk+1)

i −
(
λk)

i

)
‖2

" 1
β
√
a1

(
C0

∥∥∥∥

[
xk+1 − xk

wk+1 −wk

] ∥∥∥∥
2

+ ‖ηk+1
x − ηkx‖2

)

and

‖∇(x,w)Lβ(yk+1, xk+1,wk+1,λk+1)‖2 " C0

∥∥∥∥

[
xk+1 − xk

wk+1 −wk

] ∥∥∥∥
2

+ ‖ηk+1
x − ηkx‖2.

By the definition of the subgradient, we make use of the decomposition and obtain

∂yLβ(yk+1, xk+1,wk+1,λk+1) = ∂
n2∑

i=1

(
‖yk+1

i ‖2 −
(
λk+1)

i + β(yk+1
i − Dixk+1)

)

= ∂
n2∑

i=1

(
‖yk+1

i ‖2 −
(
λk)

i + β(yk+1
i − Dixk)−

(
λk+1)

i

+
(
λk)

i + β(Dixk − Dixk+1)
)
.
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Thus, according to the optimal condition

0 ∈ ∂‖yk+1
i ‖2 −

(
λk)

i + β(Dixk − Dixk+1),

we have

−
n2∑

i=1

((
λk+1)

i −
(
λk)

i

)
+ β(Dixk − Dixk+1) ∈ ∂yLβ(yk+1, xk+1,wk+1,λk+1).

Letting

pk+1 := (pk+1
y , pk+1

(x,w), pk+1
λ ),

where

pk+1
y := −

n2∑

i=1

((
λk+1)

i −
(
λk)

i

)
+ β(Dixk − Dixk+1),

pk+1
(x,w) :=

n2∑

i=1

DT
i

((
λk+1)

i −
(
λk)

i

)
,

pk+1
λ :=

1
β

n2∑

i=1

((
λk+1)

i −
(
λk)

i

)
.

Then we have

‖pk+1‖2 "
C0

β
√
a1

∥∥∥∥

[
xk+1 − xk

wk+1 −wk

]∥∥∥∥
2

+
C0√
a1

∥∥∥∥

[
xk+1 − xk

wk+1 −wk

]∥∥∥∥
2

+ C0

∥∥∥∥

[
xk+1 − xk

wk+1 −wk

]∥∥∥∥
2

+ β
n2∑

i=1

‖Di‖2‖xk+1 − xk‖2 +
(

C0

β
√
a1

+
C0√
a1

+ C0

)
‖ηk+1

x − ηkx‖2

"C̃
(∥∥∥∥

[
xk+1 − xk

wk+1 −wk

] ∥∥∥∥
2

+ ‖ηk+1
x − ηkx‖2

)
,

where C̃ :=C0(1+ 1
β
√
a1

1√
a1
)+ β

∑n2

i=1 ‖Di‖2 is a constant. #

Now we give the proof to theorem 1.

Proof of theorem 1. By lemma 2, the sequence {(yk, xk,wk,λk)} is bounded, so there
exists a convergent subsequence {(ynk , xnk ,wnk ,λnk )}, i.e., {(ynk , xnk ,wnk ,λnk )} converges
to (y∗, x∗,w∗,λ∗) as k→∞. Notice that the residual is summable, then we know from
‖ηkx − ηk+1

x ‖2 " ‖ηkx‖2 + ‖ηk+1
x ‖2 that when k→∞, ‖ηkx − ηk+1

x ‖2 → 0. Hence, for suffi-
ciently large k, we have Lβ(yk, xk,wk,λk) is nonincreasing and lower-bounded.We derive that
when k →∞,

Lβ(yk, xk,wk,λk)− Lβ(yk+1, xk+1,wk+1,λk+1)→ 0.

Then we know from the proof of lemma 2 that when k→∞,
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n2∑

i=1

‖yki − yk+1
i ‖22 → 0,

∥∥∥∥

[
xk+1 − xk

wk+1 −wk

]∥∥∥∥
2

2

→ 0.

Then we know from lemma 3 that there exists pk+1 ∈ ∂Lβ(yk+1, xk+1,wk+1,λk+1) such that
when k →∞, ‖pk+1‖2 → 0. This leads to ‖pnk‖2 → 0 as k→∞. Based on the definition of
the general subgradient in [18], we obtain that 0 ∈ ∂Lβ(y∗, x∗,w∗,λ∗), i.e., (y∗, x∗,w∗,λ∗) is
a stationary point. #

3.4. Complexity analysis

Now we consider the computational complexity of algorithm 1 for (7). In step 1, the main
computational costs come from computing Dixk and 1

β

(
λk)

i. Since Di denotes the first-order
finite difference of x at the ith pixel, computing Dixk, i = 1, . . . , n2 requires 2n2 flops. Com-
puting the scalar-vector product 1

β

(
λk)

i, i = 1, . . . , n2 requires 2n2 flops. Finally, computing
the two-norm of the vectors Dixk + 1

β

(
λk)

i ∈ R2, i = 1, . . . , n2 needs 6n2 flops. Thus, step 1
costs O

(
n2
)
.

In step 2, we first consider the computational cost of (21). Suppose we use the conjugate
gradient method to solve for δxI and set the maximum iteration number to a small constant.
Then the cost is determined by the cost ofmultiplying Ĵ'x (I − Ĵw(Ĵ'wĴw +∇2

w Ŝ(w))−1Ĵ'w)Ĵx +
1
µ∇

2
xR̂

(
x, yk+1,λk) on a vector and computing −Ĵ'x (I − Ĵw(Ĵ'w Ĵw +∇2

w Ŝ(w))−1Ĵ'w)r and

Ĵ'x Ĵw(Ĵ
'
w Ĵw +∇2

wŜ(w))−1∇w Ŝ(w). Since Jx = A(w)' and each PSF matrix Ai allows
the use of fast Fourier transforms (FFTs) [23, 24] to multiply it with a vector, the
cost of multiplying Ĵx on a vector is O

(
n2 log n

)
. Similarly, the cost of multiplying

Ĵw on a vector is also O
(
n2 log n

)
by FFTs. So the cost of the matrix-vector prod-

uct of Ĵ'x (I− Ĵw(Ĵ'w Ĵw +∇2
w Ŝ(w))−1Ĵ'w)Ĵx and a vector is O

(
n2 log n

)
. Computing the

matrix-vector product of ∇2
xR̂

(
x, yk+1,λk) and a vector equals to computing the matrix-

vector product of βDTD and a vector, and it can be done in O
(
n2
)
. Moreover, −Ĵ'x (I −

Ĵw(Ĵ'wĴw +∇2
wŜ(w))−1Ĵ'w)r and Ĵ'x Ĵw(Ĵ'wĴw +∇2

wŜ(w))−1∇w Ŝ(w) can be performed in
O
(
n2 log n

)
by FFTs. Thus the computational cost of (21) is O

(
n2 log n

)
. Next we con-

sider the cost of (22). The main computational costs in (22) are from computing the matrix-
vector product Ĵ'w ĴxδxI and Ĵwr. Since these matrix-vector products can also be acceler-
ated by FFTs, the computational cost of (22) is O

(
n2 log n

)
. For (23), the main compu-

tational costs are from computing J̃'x r, J̃
'
wr. Similar to the analysis for (22), the costs of

computing J̃'x r and J̃'wr are O
(
n2 log n

)
due to FFTs. The scalar-vector product −µ

[
J̃'x r
J̃'wr

]

can be done in n2 + p flops. In applications, we usually choose the image size to be
n× n = 256× 256 and the number of the unknown weights parameterizing the blurring
matrix is usually chosen to be p = 2, 3 or some small values much smaller than n2, so
we always have p0 n2. Thus, the cost of (23) is O

(
n2 log n

)
. In (24), computing the

scalar-vector multiplication γ

[
δxA
δwA

]
requires n2 + p flops and computing the summation

of the vectors
[
δxI
δwI

]
and γ

[
δxA
δwA

]
also requires n2 + p flops. Hence, the cost of (24)

is O(n2). The cost of (25) is mainly from forming ∇x,wΦ̂
(
x,w, yk+1,λk) and computing
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the inner product
(
∇x,wΦ̂

(
x,w, yk+1,λk))'

[
δx
δw

]
. We know that ∇x,wΦ̂

(
x,w, yk+1,λk) =

[
A(w)T(A(w)x− d)
Ĵ T
w(A(w)x− d)

]
, so the cost of forming∇x,wΦ̂

(
x,w, yk+1,λk) is O

(
n2 log n

)
by FFTs,

and computing the inner product
(
∇x,wΦ̂

(
x,w, yk+1,λk))'

[
δx
δw

]
costs O

(
n2
)
. Thus the

computational cost of step 2 is O
(
n2 log n

)
.

In step 4, the computational cost is dominated by the cost of computingDxk+1 and forming
β yk+1 and βDxk+1. It is easy to see that these operations cost O

(
n2
)
. Therefore, the total

computational complexity of algorithm 1 is O
(
n2 log n

)
.

3.5. Comparison method

In this section, we briefly discuss a benchmarkmethod ADMM-BCD of ADMM-LAP used in
the numerical comparisons in section 4.

BCD in ADMM-BCD stands for the BCD method [15, 25], which is another popular
approach for solving coupled optimization problems. The main idea of BCD is partitioning the
optimization variables into a number of blocks, then minimize the objective function cyclically
over each blockwhile fixing the remaining blocks at their last updated values until convergence.
For AO retinal image problems we consider in this paper, the variables can be naturally sepa-
rated into two subsets, one for the image variable x and another for the parametersw. For the
tightly coupled (x,w)-subproblem

min
x∈Cx,w∈Cw

µ

2
‖A (w) x− d‖22 + S(w)+ R

(
x, yk+1,λk) ,

given the initial point
(
xk,wk

)
, the iterative format of BCD is as follows

x(l+1) = argmin
x∈Cx

µ

2
‖A

(
w(l)) x− d‖22 + R

(
x, yk+1,λk) , (34)

w(l+1) = argmin
w∈Cw

µ

2
‖A (w) x(l+1) − d‖22 + S(w), (35)

where l ∈ N denotes the lth iteration of BCD.
For the numerical experiments, we inexactly solve (34) and (35) by the projected

Gauss–Newton method with bound constraints [8]. The search directions δxI at x(l) can be
computed as follows:

(
µĴ'x Ĵx +∇2

xR̂
(
x(l), yk+1,λk)

)
δxI

= −
(
µĴ'x r(x

(l),w(l))+∇xR̂
(
x(l), yk+1,λk)) , (36)

where Ĵx,∇xR̂ and∇2
xR̂ represent Jx,∇xR and∇2

xR restricted to the inactive set via projection,
respectively. Moreover, δxA is given by the projected gradient descent step and δx can be
computed by a scaled combination [8]. Finally, the projected Armijo line search is applied to
find the solution x(l+1). Then the search directions δwI atw(l) can be computed as follows:

(
Ĵ'w Ĵw +∇2

wS(w)
)
δwI = −Ĵ'wr(x

(l+1),w(l))+∇wS(w), (37)
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Algorithm 2. ADMM-BCD method for (7).

Input:
(
y0, x0,w0,λ0) ∈ R2n2 × Rn2 × Rp ×R2n2 , the penalty parameter β > 0. Set k = 0.

Output: yk , xk,wk,λk.
Step 1 Compute yk+1 using (9).
Step 2 Compute xk+1,wk+1 by iteratively solving (34) and (35).
Step 3 If a termination criteria is met, stop and go to step 4; else, repeat step 2.
Step 4 Compute λk+1 using (11).
Step 5 If a termination criteria is met, stop; else, set k := k+ 1 and go to step 1.

where Ĵw , ∇wŜ(w) and ∇2
wŜ(w) represent Jw , ∇wS(w) and ∇2

wS(w) restricted to the inac-
tive set via projection, respectively. Similar to the above discussion, we can obtain δwA by
projected gradient descent and obtain δw by a scaled combination. Finally, the solutionw(l+1)

can be obtained by the projected Armijo line search.
For (36), due to the large dimension, the search direction can be inexactly computed by the

conjugate gradients method. For (37), because the dimension is small, the search direction can
be computed by a direct solver. Moreover, we note that BCD is fully decoupled while optimiz-
ing over one set of variables, and the optimization over another set of variables is neglected.
This degrades the convergence for tightly coupled problems [15].

Similar to ADMM-LAPdiscussed in the previous section,ADMM-BCDusesADMMas the
outer optimizationmethod to tackle the TV regularization and applies BCD to tackle the related
(x,w)-subproblems appearing in each ADMM iteration. Themain operations of ADMM-BCD
are summarized in algorithm 2.

The complexity analysis of algorithm 2 is presented as follows. First notice that step 1 and
step 4 in algorithm 2 are identical to those in algorithm 1, thus these two steps cost O

(
n2
)
.

For step 2 in algorithm 2, we first analyze the computational cost of (34). To com-
pute δxI , we use the conjugate gradient method and set the maximum iteration number
to a small constant. The main computational cost is from computing the multiplication of
µĴ'x Ĵx +∇2

xR̂
(
x, yk+1,λk) and a vector, and computing Ĵ'x r(x(l),w(l)). Similar to the complex-

ity analysis in algorithm 1, this matrix-vector product can be done in O
(
n2 log n

)
by FFTs.

Then δxA, δx can be computed in a similar way as discussed in algorithm 1and a projected
Armijo line search is applied to find the solution. The cost of these steps isO

(
n2 log n

)
. Hence,

the total computational cost of (34) is O
(
n2 log n

)
. As for the computational cost of (35), the

main computational costs of computing δwI are from computing Ĵ'w Ĵw and Ĵ'wr(x(l+1),w(l)).
We know from the definition (13) that Ĵ'w is a p× n2 matrix, p0 n2, hence the cost of
computing Ĵ'wĴw is O

(
n2
)
. The matrix-vector multiplication Ĵ'wr(x

(l+1),w(l)) can be done in
O
(
n2 log n

)
by FFTs. Moreover, the cost of computing δwA, δw and applying the projected

Armijo line search is O
(
n2 log n

)
. Therefore, the cost of (35) is O

(
n2 log n

)
. As a result, the

total computational cost of algorithm 2 is O
(
n2 log n

)
.

As shown from numerical experiments from section 4, algorithm 2 takes longer time than
that of algorithm 1. This is mainly because BCD requires computing the matrix-vector prod-
uct Ĵ'x r(x

(l),w(l)) and Ĵ'wr(x
(l+1),w(l)) in each iteration, while LAP only requires computing

Ĵ'wr(x(l),w(l)). Hence, BCD takes more computational costs to compute the current residual
value r and the matrix-vector multiplication Ĵ'wr, which results in a larger number of FFTs.
Moreover, the line search is applied twice in BCD to solve the search directions for both x
and w, while in LAP, only one line search is enough to obtain the search directions for both
variables. Hence, algorithm 2 costs more. Moreover, it is important to point out that algorithm
1 takes the structure of the tightly coupled problem into consideration and converges faster.
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4. Numerical experiments

In this section, we illustrate the numerical performance of the proposed ADMM-LAP method
for the myopic deconvolution problems with TV regularization arising from the AO retinal
image restoration. All our computational results are obtained by MATLAB R2018b running
on a Macbook Air with Intel Core i5 CPU (1.4 GHz).

The following notations will be used throughout the section:

• BlurLevel: an indicator used to set the severity of the blur to one of the following: ‘mild’,
‘medium’ and ‘severe’;

• NoiseLevel $ ‖e‖2/‖d∗‖2: relative level of noise, where e denotes the noise vector of
perturbations and d∗ denotes the exact (noise free) data vector;

• #iter: the number of iterations performed by the algorithm;
• Rel.Err. x: the relative error ‖x− x∗‖2 / ‖x∗‖2, where x∗ and x denote the true image and
computed image, respectively;

• Rel.Err.w: the relative error ‖w −w∗‖2 / ‖w∗ ‖2, where w∗ and w denote the true
parameters and computed parameters, respectively;

• SNR (x) $ 10 · log10
‖x−x̃‖22
‖x−x‖22

: signal-to-noise ratio (SNR), where x is the original image, x̃

is the mean intensity value of x and x denotes the restored image. SNR (x) measures the
quality of restoration.

In all test problems,we set the regularization parameterµ = 5× 104 by trial and errors such
that the restored images had reasonable SNR and relative errors. The parameter ξ was set to
ξ = 100 such that the obtained parameters satisfied

∑p
j=1 w j = 1. The parameter β was chosen

according to the assumptions in lemma 2. In order to guarantee the sequence {εk+1}∞k=0 ⊆
[0,+∞) satisfies

∑∞
k=0 εk+1 < ∞, we choose εk+1 =

1
a(k+1)2 , where a is a constant. We used

one uniform stopping criterion, that is

|Φ̂(xk+1,wk+1, yk+1,λk+1)− Φ̂(xk,wk, yk,λk)|
|Φ̂(xk,wk, yk,λk)|

< ε,

where Φ̂(xk,wk, yk,λk) is the objective function value in the kth iteration and ε > 0 is a given
tolerance. In this paper, we set ε = 10−2. The maximum number of ADMM iterations was set
to 50. We also report the numerical results obtained by running the ADMM-BCD method. We
compare the relative error of the image x and the relative error of the parameter w estimated
by both ADMM-LAP and ADMM-BCD as well as their computational time and SNR of the
restored images.

Example 4.1. AO flood illumination retinal imaging is a popular technique which has been
in use for more than a decade [2, 4]. AO retinal imaging technique gives us the opportunity to
observe and study retinal structures at the cellular level, which is impossible to see directly in
the living eye. Due to the poor contrast of the raw AO retinal images, interpretation of such
images requires the myopic deconvolution. For this example, we consider the case p= 2. The
global PSF used in the simulation is the sum of two PSFs with the first one being focused
and the second one being defocused. Let A1, A2 denote the relative blurring marices. The test
problem is a simulation generated from a 256× 256 pixel portion of an actual AO retinal
image.

We use the regularization toolbox IR Tools [7] to build up the test problem.PRblurgauss and
PRblurdefocus are functions used to simulate spatially invariant Gaussian blur and spatially
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Figure 1. Restored images for the retinal image in example 4.1. The BlurLevel of
PRblurdefocus is set to be ‘medium’. The images from the top left to the bottom right
show the true image, the blurred and noisy image, the restored image by ADMM-LAP
and the restored image by ADMM-BCD.

invariant out-of-focus blurs, respectively. Specifically, PRblurgauss constructs a 256× 256
PSF array P with entries

pi j =
1

2πσ
exp

(
−1
2
(i− k)2

σ2 +
( j− +)2

σ2

)

for a given value of σ, and PRblurdefocus constructs a 256× 256 PSF array P with entries

pi j =

{
1/(πr2), if (i− k)2 + ( j− +)2 " r2,

0, elsewhere

for a given value of r.
In this example, three cases are considered. We fix one of the PSFs to be built up by

PRblurgauss with ‘mild’ BlurLevel (σ = 2) and set the other as a combined PSF built up by
PRblurgauss with ‘mild’ BlurLevel and PRblurdefocus with three different BlurLevels (i.e.,
‘mild’ (r = 7), ‘medium’ (r = 15), ‘severe’ (r = 31)). In addition, function PRnoise is used to
add Gaussian noise with NoiseLevel= 0.01.We set the true parameterw∗ = [0.3; 0.7], choose
the random image with the same size of the true image as the initial guess x0 and the initial
guessw0 = [0.5; 0.5].

We then test ADMM-LAP and ADMM-BCD for the two-weight case of (2) on this image.
For the case with the BlurLevel ofPRblurdefocus being set to be ‘medium’, the restored images
by both methods are shown in figure 1. We can clearly see that the restored image obtained
by ADMM-LAP is much sharper, hence has a much better contrast than the one obtained by
ADMM-BCD. Moreover, the restored image is much closer to the true image.

The plots of the relative errors of the restored image x and the estimated parameters w
against iteration can be seen in figure 2. It is easy to see that ADMM-LAP can reach lower
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Figure 2. Relative errors of the restored image x (left) and the parameters w (right)
for the myopic deconvolution problem in example 4.1 with ‘medium’ BlurLevel of
PRblurdefocus.

Table 1. Numerical results of ADMM-LAP and ADMM-BCD for the AO retinal image
in example 4.1. The columns from left to right give the BlurLevel, the method name,
the stopping iteration, the relative error of the restored image, the relative error of the
solution parameters, the computational time in seconds and SNR of the restored images.

BlurLevel Method #iter Rel.Err. x Rel.Err.w Time/s SNR(x)

‘Mild’ ADMM-LAP 6 1.48 × 10−1 2.63 × 10−2 50.23 9.57
ADMM-BCD 11 1.88 × 10−1 1.11 × 10−1 154.53 7.48

‘Medium’ ADMM-LAP 8 1.37 × 10−1 4.76 × 10−2 56.42 10.26
ADMM-BCD 13 2.19 × 10−1 4.45 × 10−1 145.09 6.16

‘Severe’ ADMM-LAP 12 1.17 × 10−1 4.39 × 10−2 69.10 11.60
ADMM-BCD 12 3.04 × 10−1 9.13 × 10−1 122.22 3.32

relative errors than ADMM-BCD for both the restored image and the obtained parameters in
this test.

In table 1, we report the relative error of the restored image x, the relative error of the
parameters w, the computational time and SNR of the restored images for both methods for
all three BlurLevels. As can be seen from the fourth and fifth columns of table 1, ADMM-LAP
can obtain more accurate restored images and more accurate parameters than ADMM-BCD
on all three cases. The sixth column shows that ADMM-LAP is faster than ADMM-BCD, this
is mainly because BCD takes a larger number of FFTs to compute the current residual value
r and the matrix-vector multiplication Ĵ'wr, and the line search is applied twice to solve the
search directions for x andw. Moreover, we can see from the seventh column that the quality
of restored images obtained by ADMM-LAP is much better than those obtained by ADMM-
BCD. We point out that it is very difficult to analyze the difference of the relative errors of x
and w between the test problems, especially because of the nonlinear relationship between x
and w. We note that even for a linear problem, the quality of the error in x will depend not
only on how ill-conditioned the matrix is, but on the distribution of singular values (e.g., is
there a well-defined gap between large and small singular values, or do they decay smoothly).
Our main purpose for this table of results is to compare the two methods (ADMM-LAP and
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Figure 3. Restored images for the retinal image in example 4.2. The BlurLevel of
PRblurdefocus is set to be ‘medium’. The images from the top left to the bottom right
show the true image, the blurred and noisy image, the restored image by ADMM-LAP
and the restored image by ADMM-BCD.

ADMM-BCD) for each test problem, and to see that ADMM-LAP consistently outperforms
ADMM-BCD even if the test problems change.

Example 4.2. For this example, we consider the test problem from another simulation using
a different 256× 256 portion of an actualAO retinal imagewith two blurringmatrices. The size
of the image is 256× 256. We use PRblurgauss with ‘mild’ BlurLevel, PRblurdefocus with
three different BlurLevels (i.e., ‘mild’, ‘medium’, ‘severe’) in IR Tools to build up a combined
PSF, the other PSF is built up by PRblurgausswith ‘mild’ BlurLevel only. In addition, function
PRnoise is used to add Gaussian noise with NoiseLevel = 0.01. We set the true parameter
w∗ = [0.3; 0.7], choose the random image with the same size of the true image as the initial
guess x0 and set the initial guess w0 = [w0

1;w
0
2] ∈ R2, where w0

1,w
0
2 are random constants

from [0, 1] satisfying w0
1 + w0

2 = 1.
For the case with the BlurLevel of PRblurdefocus being set to be ‘medium’, the restored

images by both ADMM-LAP and ADMM-BCD method are shown in figure 3. Like
example 4.1, it is easy to see that the restored image obtained by ADMM-LAP is much
sharper, and is much closer to the true image than the one obtained by ADMM-BCD.

We plot the relative errors of the restored image x and the estimated parametersw against
iteration in figure 4. We can also see that ADMM-LAP reaches lower relative errors of both the
restored image and the obtained parameters, hence it tends to recover more accurate restored
images and parameters.

Table 2 shows the relative error of the restored image x, the relative error of the parameters
w, the computational time and SNR of the restored images associated with three cases for both
methods. Similar to example 4.1, ADMM-LAP still outperformsADMM-BCD in terms of the
quality of the restored images and the accuracy of the obtained parameters by large margin. It
can be clearly seen from the sixth column of table 2 that ADMM-LAP is faster than ADMM-
BCD. This is mainly because ADMM-BCD takes a larger number of FFTs and the line search
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Figure 4. Relative errors for both the restored image x (left) and the parameters w
(right) for the myopic deconvolution problem in example 4.2 with ‘medium’ BlurLevel
of PRblurdefocus.

Table 2. Numerical results of ADMM-LAP and ADMM-BCD for the retinal image
in example 4.2. The columns from left to right give the BlurLevel, the method name,
the stopping iteration, the relative error of the restored image, the relative error of the
solution parameters, the computational time in seconds and SNR of the restored images.

BlurLevel Method #iter Rel.Err. x Rel.Err.w Time/s SNR(x)

‘Mild’ ADMM-LAP 11 1.90 × 10−1 1.01 × 10−1 64.76 6.52
ADMM-BCD 14 2.19 × 10−1 2.74 × 10−1 152.13 5.31

‘Medium’ ADMM-LAP 15 1.33 × 10−1 8.23 × 10−2 88.12 9.63
ADMM-BCD 11 2.51 × 10−1 7.27 × 10−1 119.20 4.12

‘Severe’ ADMM-LAP 5 1.62 × 10−1 7.77 × 10−1 40.99 7.97
ADMM-BCD 5 2.83 × 10−1 3.76 × 10−1 76.84 3.08

is applied twice to compute the search directions, which is its computational bottleneck. The
seventh column clearly shows that ADMM-LAP obtains restored images with a much better
quality. Above all, we can see that ADMM-LAP is much more efficient and accurate for this
test example.

Example 4.3. In this example, we consider the case where three blurring matrices are pro-
vided, i.e., p= 3. The test problem is generated from the same AO retinal image used in
example 4.1. The size of the image is 256× 256. The first PSF is built up by PRblurgauss
with ‘mild’ BlurLevel. The second PSF is a combined PSF built up by PRblurgausswith ‘mild’
BlurLevel andPRblurdefocuswith ‘medium’BlurLevel. The third PSF is a combined PSF built
up by PRblurgauss with ‘mild’ BlurLevel and PRblurdefocus with two different BlurLevels
(i.e., ‘mild’ and ‘severe’ ). In addition, function PRnoise is used to add Gaussian noise with
noiselevel = 0.01. The true parameter vector w∗ = [w∗

1;w
∗
2;w

∗
3] ∈ R3 is set to be a random

vector that satisfies w∗
i ! 0 and

∑3
i=1w

∗
i = 1. We choose the random image with the same

size of the true image as the initial guess x0 and set the initial guessw0 = [ 13 ;
1
3 ;

1
3 ].

The restored images by both ADMM-LAP and ADMM-BCDmethod are shown in figure 5.
Like examples 4.1 and 4.2, we can also see that ADMM-LAP reaches a much sharper image,

25



Inverse Problems 37 (2021) 014001 X Chen et al

Figure 5. Restored images for the retinal image in example 4.3. The BlurLevel of
PRblurdefocus in the third PSF is set to be ‘mild’. The images from the top left to the
bottom right show the true image, the blurred and noisy image, the restored image by
ADMM-LAP and the restored image by ADMM-BCD.

Figure 6. Relative errors of the restored image x (left) and the parameters w (right) for
the myopic deconvolution problem in example 4.3 with ‘mild’ BlurLevel of PRblurde-
focus in the third PSF.

it tends to recover an image that is much closer to the true image than the one obtained by
ADMM-BCD.

We plot the relative errors of the restored image x and the estimated parametersw against
iteration in figure 6. We can also see that ADMM-LAP achieve lower relative errors of both
the restored image and the obtained parameters.

In table 3, we present the relative error of the restored image x, the relative error of the
parameters w, the computational time and SNR of the restored images associated with two
cases for both methods. We can also see from the sixth column that ADMM-LAP has evident
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Table 3. Numerical results of ADMM-LAP and ADMM-BCD for the retinal image
in example 4.3. The columns from left to right give the BlurLevel, the method name,
the stopping iteration, the relative error of the restored image, the relative error of the
solution parameters, the computational time in seconds and SNR of the restored images.

BlurLevel Method #iter Rel.Err. x Rel.Err.w Time/s SNR(x)

‘Mild’ ADMM-LAP 6 1.30 × 10−1 4.52 × 10−1 134.03 10.68
ADMM-BCD 13 3.52 × 10−1 4.89 × 10−1 267.21 2.05

‘Severe’ ADMM-LAP 11 1.92 × 10−1 1.79 × 10−1 156.05 7.33
ADMM-BCD 10 2.18 × 10−1 3.27 × 10−1 186.31 6.19

advantage over ADMM-BCD in the computational time. Moreover, the seventh column shows
that the quality of restored images obtained byADMM-LAP is much better than those obtained
by ADMM-BCD.

5. Conclusion

In this paper, we propose a new efficient ADMM-LAPmethod for solving large scale ill-posed
inverse problems, and more specifically myopic deconvolution problems with TV regulariza-
tion arising from the AO retinal image restoration. Specifically, ADMM is applied to tackle
the nondifferentiable and nonlinear TV regularization term first, then LAP is applied to tackle
tightly coupled (x,w)-subproblems appearing within each ADMM iteration. The convergence
results of ADMM-LAP are presented. Moreover, the efficiency of the proposed algorithm is
demonstrated with a theoretical computational complexity analysis. In our numerical experi-
ments we show that the proposed ADMM-LAPmethod is superior to ADMM-BCDmethod in
terms of both the accuracy and the efficiency. In our future work, we plan to exploit appropriate
preconditioning techniques to further reduce the iteration number and the iteration time.

Acknowledgments

JN acknowledges support from the US National Science Foundation under grant DMS-
1819042 and the National Institutes of Health under grant 1R13EB028700-01. The authors
also thank Dr John M Nickerson, Prof. of Ophthalmology at Emory University for helpful
discussions and for providing data used for numerical experiments in this paper.

ORCID iDs

James G Nagy https://orcid.org/0000-0002-0451-3853
Yuanzhe Xi https://orcid.org/0000-0003-0361-0931

References

[1] Beck A and Teboulle M 2009 A fast iterative shrinkage-thresholding algorithm for linear inverse
problems SIAM J. Imag. Sci. 2 183–202

[2] Blanco L and Mugnier L M 2011 Marginal blind deconvolution of adaptive optics retinal images
Opt. Express 19 23227–39

[3] Blanco L, Mugnier L M and Glanc M 2011 Myopic deconvolution of adaptive optics retina images
Spie Bios. (International Society for Optics and Photonics)

27



Inverse Problems 37 (2021) 014001 X Chen et al

[4] Blanco L, Mugnier L M, Montmerle A M and Paques M 2014 Registration and restoration of
adaptive-optics corrected retinal images 2014 Int. Workshop on Computational Intelligence for
Multimedia Understanding (IWCIM) IEEE) 1–5

[5] Boyd S, Parikh N, Chu E, Peleato B and Eckstein J 2010 Distributed optimization and statistical
learning via the alternating direction method of multipliers Found. Trends Mach. Learn. 3 1–122

[6] Chen Z, Nagy J G, Xi Y and YuB 2019 Structured FISTA for image restorationNumer. Lin. Algebra
Appl. 27 e2278

[7] Gazzola S, Hansen P C and Nagy J G 2019 IR Tools: a MATLAB package of iterative regularization
methods and large-scale test problems Numer. Algorithms 81 773–811

[8] Haber E 2014 Computational Methods in Geophysical Electromagnetics (Philadelphia, PA: SIAM)
[9] Hansen P, Nagy J G and O’Leary D P 2006 Deblurring Images (Philadelphia, PA: SIAM)
[10] Herring J L, Nagy J G and Ruthotto L 2018 LAP: a linearize and project method for solving inverse

problems with coupled variables Sampl. Theory Signal Image Process. 17 127–51
[11] Hu Y, Nagy J G, Zhang J and Andersen M S 2019 Nonlinear optimization for mixed attenuation

polyenergetic image reconstruction Inverse Problems 35 064004
[12] Kelley C T 1999 Iterative Methods for Optimization (Philadelphia, PA: SIAM)
[13] Lai R and Osher S 2014 A splitting method for orthogonality constrained problems J. Sci. Comput.

58 431–49
[14] Mei J-J, Dong Y, Huang T-Z and Yin W 2018 Cauchy noise removal by nonconvex ADMM with

convergence guarantees J. Sci. Comput. 74 743–66
[15] Nocedal J and Wright S 1999 Numerical Optimization (Berlin: Springer)
[16] Rudin L I, Osher S and Fatemi E 1992 Nonlinear total variation based noise removal algorithms

Phys. D 60 259–68
[17] Rudin L and Osher S 1994 Total variation based image restoration with free local constraints Proc.

of the 1st IEEE Int. Conf. on Image Processing vol 1 31–5
[18] Rockafellar R T and Wets R J B 2009 Variational Analysis (Berlin: Springer)
[19] Tao M, Yang J and He B 2009 Alternating direction algorithms for total variation deconvolution in

image reconstruction Tech. Rep. TR0918 (Department of Mathematics, Nanjing University)
[20] TikhonovAN andArseninVY 1977 Solution of Ill-Posed Problems (Washington, DC: VHWinston

and Sons)
[21] Wang Y, Yang J, Yin W and Zhang Y 2008 A new alternating minimization algorithm for total

variation image reconstruction SIAM J. Imag. Sci. 1 248–72
[22] Wang Y, Yin W and Zeng J 2019 Global convergence of ADMM in nonconvex nonsmooth

optimization J. Sci. Comput. 78 29–63
[23] Xi Y, Xia J, Cauley S and Balakrishnan V 2014 Superfast and stable structured solvers for Toeplitz

least squares via randomized sampling SIAM J. Matrix Anal. Appl. 35 44–72
[24] Xia J, Xi Y and GuM 2012 A superfast structured solver for Toeplitz linear systems via randomized

sampling SIAM J. Matrix Anal. Appl. 33 837–58
[25] Xu Y and Yin W 2013 A block coordinate descent method for regularized multiconvex optimiza-

tion with applications to nonnegative tensor factorization and completion SIAM J. Imag. Sci.
6 1758–89

[26] Xu Y, Yin W, Wen Z and Zhang Y 2012 An alternating direction algorithm for matrix completion
with nonnegative factors Front. Math. China 7 365–84

[27] Yang L, Pong T K and Chen X 2012 Alternating direction method of multipliers for nonconvex
background/foreground extraction SIAM J. Imag. Sci. 10 74–110

[28] Zhang J and Nagy J G 2018 An alternating direction method of multipliers for the solution of matrix
equations arising in inverse problems Numer. Lin. Algebra Appl. 25 e2123

28


