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A Hall tube with a tunable flux is an important geometry for studying quantum Hall physics, but its
experimental realization in real space is still challenging. Here we propose to realize a synthetic Hall tube with
tunable flux in a one-dimensional optical lattice with the synthetic ring dimension defined by atomic hyperfine
states. We investigate the effects of the flux on the system topology and study its quench dynamics. Utilizing the
tunable flux, we show how to realize topological charge pumping, where interesting charge flow and transport
are observed in rotated spin basis. Finally, we show that the recently observed quench dynamics in a synthetic
Hall tube can be explained by the random flux existing in the experiment.
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I. INTRODUCTION

Ultracold atoms are emerging as a promising platform
for the study of condensed-matter physics in a clean and
controllable environment [1,2]. The capability of gener-
ating artificial gauge fields and spin-orbit coupling using
light-matter interaction [3–18] offers a new opportunity for
exploring topologically nontrivial states of matter [19–25]
. One recent notable achievement was the realization of a
Harper-Hofstadter Hamiltonian, an essential model for quan-
tum Hall physics, using laser-assisted tunneling for generating
artificial magnetic fields in two-dimensional (2D) optical lat-
tices [26–28]. Moreover, a synthetic lattice dimension defined
by atomic internal states [29–38] provides a new powerful
tool for engineering new high-dimensional quantum states of
matter with versatile boundary manipulation [32,33] using a
low-dimensional physical system.

Nontrivial lattice geometries with periodic boundaries
(such as a torus or tube) allow the study of many interesting
physics, such as the Hofstadter’s butterfly [39] and Thouless
pump [40–45], where the flux through the torus or tube is
crucially important. In a recent experiment [37], a synthetic
Hall tube has been realized in a one-dimensional (1D) optical
lattice and interesting quench dynamics have been observed,
where the flux effect was not considered. More importantly,
the flux through the tube, determined by the relative phase be-
tween Raman lasers, is spatially nonuniform and random for
different iterations of the experiment, yielding major deviation
from the theoretical prediction. The physical significance and
experimental progress raise two natural questions: Can the
flux through the synthetic Hall tube be controlled and tuned
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in realistic experiments? If so, can such controllability lead to
the observation of interesting quench dynamics?

In this paper we address these important questions by
proposing a simple scheme to realize a controllable flux �

through a three-leg synthetic Hall tube and studying its quench
dynamics and topological pumping. Our main results are:

(i) We use three hyperfine ground spin states, each of which
is dressed by one far-detuned Raman laser, to realize the syn-
thetic ring dimension of the tube. The flux � can be controlled
simply by varying the polarizations of the Raman lasers [11].
The scheme can be applied to both Alkali (e.g., potassium)
[11–15] and Alkaline-earth(-like) atoms (e.g., strontium,
ytterbium) [46].

(ii) The three-leg Hall tube is characterized as a 2D topo-
logical insulator, with � playing the role of the momentum
along the synthetic dimension. The system also belongs to a
1D topological insulator at � = 0 and π , where the winding
number is quantized and protected by a generalized inversion
symmetry.

(iii) The tunable � allows the experimental observation
of topological charge pumping in the tube geometry, which
also probes the system topology. Interesting charge flow and
transport can be observed in a rotated spin basis.

(iv) We study the quench dynamics with a tunable flux and
show that the experimental observed quench dynamics in [37]
can be better understood using a random flux existing in the
experiment.

II. THE MODEL

We consider an experimental setup with cold atoms trapped
in 1D optical lattices along the x direction, where transverse
dynamics are suppressed by deep optical lattices, as shown in
Fig. 1(a). The bias magnetic field is along the z direction to
define the quantization axis. Three far-detuned Raman laser
fields �Es, propagating in the x-y plane, are used to couple
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FIG. 1. (a) Schematic of the experimental setup for tunable flux
through the synthetic Hall tube. The Raman lasers �E1, �E2, and �E3

generate the couplings along the synthetic dimension spanned by
atomic hyperfine states. (b), (c) The corresponding Raman transitions
for alkaline-earth(-like) atoms and alkali, respectively. (d) Synthetic
Hall tube with a uniform flux φ0 on each side plaquette and �

through the tube.

three atomic hyperfine ground spin states, with each state
dressed by one Raman laser, as shown in Figs. 1(b) and 1(c)
for alkaline-earth(-like) (e.g., strontium, ytterbium) and alkali
(e.g., potassium) atoms, respectively. The three spin states
form three legs of the synthetic tube system as shown in
Fig. 1(d), and the tight-binding Hamiltonian is written as

H =
∑
j;s �=s′

�̃ss′; jc
†
j,sc j,s′ −

∑
j;s

(Jc†j,sc j+1,s + H.c.), (1)

where �̃ss′; j = �ss′eiφ j;ss′ , c†j,s is the creation operator with j,
and s the site and spin index. J and �ss′ are the tunneling
rate and Raman coupling strength, respectively. For alkaline-
earth(-like) atoms, we use three states in the 1S0 ground
manifold to define the synthetic dimension. The long lifetime
3P0 or 3P1 levels are used as the intermediate states for the
Raman process [see Fig. 1(b)] such that the δmF = ±2 Raman
process does not suffer heating issues [36]. For alkaline atoms
[see Fig. 1(c)] we choose three hyperfine spin states |F,mF 〉,
|F,mF − 1〉, and |F − 1,mF 〉 from the ground-state manifold
to avoid the δmF = ±2 Raman process, so that far-detuned
Raman lasers tuned between the D1 and D2 lines can be used
to reduce the heating [11,12].

The laser configuration in Fig. 1(a) generates a uniform
magnetic flux penetrating each side plaquette as well as a
tunable flux through the tube. Each Raman laser may contain
both z polarization (responsible for π transition) and in-plane-
polarization (responsible for σ transition) components, which
can be written as �Es = êπEπ

s + êσEσ
s . For alkaline-earth(-like)

atoms, we choose Eπ
2 = 0 so that �̃21; j ∝ Eπ

1 Eσ∗
2 , �̃32; j ∝

Eσ
2 Eπ∗

3 , and �̃13; j ∝ Eσ
3 Eσ∗

1 . Therefore the corresponding Ra-
man coupling phases are φ j;21 = (k1 − k2) · x j + ϕπ

1 − ϕσ
2 ,

where ks is the wave vector of the sth Raman laser, ϕπ,σ
s

are the (π, σ )-component phases of the sth Raman laser at
site j = 0, and x j = jdxx̂ is the position of site j with dx the
lattice constant. As a result, we have φ j;21 = jφ0 + ϕπ

1 − ϕσ
2 ,

where φ0 = (k1 − k2) · x̂ = kRdx cos(θ ) gives rise to the mag-
netic flux penetrating the side plaquette of the tube, with
kR the recoil momentum of the Raman lasers. Similarly, we
have φ j;32 = jφ0 + ϕσ

2 − ϕπ
3 , φ j;13 = −2 jφ0 + ϕσ

3 − ϕσ
1 . To

obtain a uniform magnetic flux for each side plaquette of
the tube, we choose the incident angle θ such that the mag-
netic flux for each side plaquette is φ0 = 2π/3. The phases
ϕσ,π
s determine the flux through the tube, which is � ≡

−φ j;21 − φ j;32 − φ j;13 = ϕσ
3 − ϕπ

3 + ϕπ
3 − ϕσ

3 . Therefore we
obtain � = 
ϕ3 − 
ϕ1, where 
ϕs = ϕπ

s − ϕσ
s is the phase

difference between two polarization components of the sth
Raman laser. We notice that the phase of each Raman coupling
(i.e., φ j;ss′ ) depends on random phase difference between two
Raman lasers (e.g., φ j;21 depends on ϕπ

1 − ϕσ
2 ); however, their

summation (i.e., the flux �) only depends on the phase differ-
ence 
ϕs between two polarizations of the same Raman laser,
which can be controlled at will using wave plates. Moreover,
the phase differences 
ϕs do not depend on the transverse
positions y and z. Basically, the reason why we can control
the flux � is that each spin state is dressed by one and only
one Raman laser, and the random global phases of the Raman
lasers can be gauged out by absorbing it into the definition
of the spin states. With proper gauge choice, we can set the
tunneling phases as φ j;21 = φ j;32 = jφ0 and φ j;13 = jφ0 + �,
as shown in Fig. 1(d).

For alkali atoms, we choose Eσ
2 = 0, yielding

�̃21; j = α21Eσ
1 Eπ∗

2 , �̃32; j = α32Eπ
2 Eπ∗

3 , and �̃13; j =
β13Eπ

3 Eσ∗
1 + α13Eσ

3 Eπ∗
1 , with αs,s′ , βs,s′ determined

by the transition dipole matrix. We further consider
(Eπ

3 , Eσ
1 ) 	 (Eσ

3 , Eπ
1 ) 	 Eπ

2 and Eσ
3 Eπ

1 
 Eπ
3 Eπ

2 
 Eσ
1 Eπ

2 .
Therefore we have �̃13; j 
 α13Eπ∗

1 Eσ
3 with amplitudes

�21 
 �32 
 �13. Similar to the alkaline-earth(-like) atoms,
we obtain uniform magnetic flux φ0 = 2π/3 for the tube side
by choosing kRdx cos(θ ) = 2π/3. The flux through the tube
becomes � = 
ϕ3 + 
ϕ1, which can also be tuned at will
through the polarization control.

III. PHASE DIAGRAM

The Bloch Hamiltonian in the basis [ck,1, ck,2, ck,3]T reads

Hk =
⎡
⎣−2J cos(k − φ0) �21 �13e−i�

�21 −2J cos(k) �32

�13ei� �32 −2J cos(k + φ0)

⎤
⎦,

(2)

with k the momentum along the real-space lattice. For �21 =
�32 = �13, the above Hamiltonian is nothing but the Harper-
Hofstadter Hamiltonian, with � the effective momentum
along the synthetic dimension, and φ0 = 2π/3 is the flux per
plaquette. The topology is characterized by the Chern number
[47]

Cn = i

2π

∫
dkd�〈∂�un|∂k|un〉 − 〈∂kun|∂�|un〉, (3)

where |un〉 is the Bloch state of the nth band, satisfying
Hk (�)|un(�, k)〉 = En(�, k)|un(�, k)〉. In Fig. 2(a), we plot
the band structures as a function of � with an open bound-
ary condition along the real-lattice direction. There are three
bands and two gapless edge states (one at each end) in each
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FIG. 2. (a) Band structures in the topological phase. (b) Phase
diagram in the �13-δ2 plane, with solid (dashed) lines the boundary
between topological (T) and normal (N) phases for the upper (lower)
gap. (c), (d) Band structures at the left phase boundary with δ2 = 0
and �13 = 1. Common parameters: � = 2 with energy unit J .

gap. The two edge states cross only at � = 0 and � = π ,
where the tube belongs to a 1D topological insulator with
quantized winding number (Zak phase) [48]

W 0,π
n = 1

π

∮
dk〈un|∂k|un〉|�=0,π . (4)

The winding number is protected by a generalized inversion
symmetry IHkI−1 = H−k , where the inversion symmetry I
swaps spin states |1〉 and |3〉 [49].

The Chern number and winding number are still well de-
fined, even when the Raman couplings have detunings and/or
the coupling strengths �ss′ are nonequal. The changes in
these Raman coupling parameters drive the phase transition
from topological to trivial insulators. The detuning can be
introduced by including additional terms

∑
j;s δsc

†
j,sc j,s in the

Hamiltonian Eq. (1). Hereafter we will fix �21 = �32 ≡ �

and δ1 = δ3 = 0 for simplicity. The phase diagram in the
�13-δ2 plane is shown in Fig. 2(b). The solid (dashed) lines
are the phase boundaries corresponding to the gap closing
between two lower (upper) bands, with topological phases
between two boundaries. At the phase boundaries, the cor-
responding band gaps close at � = 0 (� = π ) for the two
lower (upper) bands, as shown in Fig. 2(c). In addition, for
the two lower (upper) bands, the gap closes at k = 0 and
k = π (k = π and k = 0) on the right and left boundaries,
respectively, as shown in Fig. 2(d). The gaps reopen in the
trivial phase with the disappearance of edge states.

IV. TOPOLOGICAL PUMPING

The three-leg Hall tube is a minimal Laughlin cylinder.
When the flux through the tube is adiabatically changed by
2π , the shift of Wannier-function center is proportional to the
Chern number of the corresponding band [40–43]. Therefore
all particles are pumped by C site (with C the total Chern
number of the occupied bands) as � changes by 2π , i.e., C
particles are pumped from one edge to another. Given the abil-
ity of controlling the flux through the tube, we can measure the

(a) (b)

(c)
,2 ,1 ,3

p/ −1

= 1

= 2

= 3

FIG. 3. (a) Total density distribution during one pump cycle.
Inset shows the nonadiabatic effects on the center-of-mass shift.
(b) Center-of-mass (red line) and the rotated-spin contributions (blue
lines) during one pump cycle. The blue lines are

∑
j j̃n j, f (t )/N with

f = 1, 2, 3 as labeled. (c) Rotated spin-density distributions during
one pump cycle.

topological Chern number based on topological pumping by
tuning the flux � adiabatically (compared to the band gaps).

Here we consider the Fermi energy in the first gap with
only the lowest C = 1 band occupied and study the zero-
temperature pumping process (the pumped particle is still
well quantized for low temperature comparing to the band
gap) [50]. The topological pumping effect can be identified as
the quantized center-of-mass shift of the atom cloud [50–53]
in a weak harmonic trap Vtrap = 1

2vT j2. The harmonic trap
strength vT = 0.008J and the atom number N = 36 are cho-
sen such that the atom cloud has a large insulating region with
one atom per unit cell at the trap center. (In a realistic experi-
ment, the above parameters are typical.) For simplicity, we set
�ss′ = J and δs = 0 for all s, s′, choose the gauge as φ j;21 =
φ j;32 = jφ0, φ j;13 = jφ0 − �, and change � slowly (com-
pared to the band gap) as �(t ) = 2πt

τp
. In Figs. 3(a) and 3(b),

we plot the total density distribution nj (t ) and the center-of-
mass 〈 j(t )〉 ≡ ∑

j jn j (t )/N shift during one pumping circle
with τp = 40J−1, and we clearly see the quantization of the
pumped atom 〈
 j〉 ≡ 〈 j(τp)〉 − 〈 j(0)〉 = 1. The atom cloud
shifts as a whole with nj (t ) = 1 near the trap center. The inset
in Fig. 3(a) shows a nonadiabatic effect (finite pumping dura-
tion τp) on the pumped atom. Typically, J/2π is about several
hundred Hertz; therefore the pumping duration τp should be
of the order of tens of milliseconds to satisfy the adiabatic
condition. This timescale is of the same magnitude as the
lattice loading and time-of-flight imaging duration [34,35].
Starting from a degenerate Fermi gas prepared at the optical
dipole trap, the whole experimental duration is less than 1 s
(which is typical for cold atom experiments).

The atoms are equally distributed on the three spin states
[i.e., n j,s(t ) ≡ 〈c†j,sc j,s〉 = 1

3n j (t )]. To see the pumping pro-
cess more clearly, we can examine the spin densities in the ro-
tated basis ñ j, f (t ) ≡ 〈̃c†j, f c̃ j, f 〉, with c̃ j, f = 1√

3

∑
s c j,se

is 2 fπ−�

3 .

The Hamiltonian in these basis reads H = ∑3
f=1 Hf , where

Hf = 2J cos(Kj, f ,� )̃c
†
j, f c̃ j, f + (Jc̃†j, f c̃ j, f+1 + H.c.) (5)
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FIG. 4. Quench dynamics for � = 0 (solid lines) and averaged
over random � (dashed lines). Time evolution of spin populations
(a) and averaged momenta (b) with �13 = �. Time evolution of spin
populations at k = π with �13 = 5 in (c) and �13 = 7.5 in (d). nπ

s =
ns (π )∑
s′ ns′ (π ) , τ2 and τ3 cross at �c

13 = 5.8. Both gaps are topological in
(a) and (b), and only the upper (lower) gap is topological in (c) [(d)].
Common parameters: � = 6.15, δ2 = −0.4� with energy unit J .

is the typical Aubry-André-Harper (AAH) Hamiltonian
[54,55] with Kj, f ,� = 2π ( f+ j)−�

3 . Each spin component con-
tributes exactly one-third of the quantized center-of-mass shift
[see Fig. 3(b)]. The bulk-atom flow during the pumping can
be clearly seen from the spin densities ñ j, f (t ), as shown in
Fig. 3(c). The quantized pumping can also be understood
by noticing that the AAH Hamiltonians Hs are permutated
as H1 → H3 → H2 → H1 after one pump circle. Each Hf

returns to itself after three pump circles with particles pumped
by three sites (since the lattice period of Hf is 3). Therefore
for the total Hamiltonian H , particles are pumped by one site
after one pump circle. The physics for different values of �ss′

and δs are similar, except that the rotated basis c̃ j, f may take
different forms.

In the presence of atom-atom interactions, the robust topo-
logical properties should not be affected if the interaction
strength is much weaker compared to the band gaps, and
the charge pumping should remain quantized [56]. The inter-
action can be written as Hint = U

2

∑
j,s �=s′ n̂ j,sn̂ j,s′ with atom

number operator n̂ j,s = c†j,sc j,s and interaction strength U .
The atom in site ( j, s) would interact with atoms in all other
sites ( j, s′ �= s) along the synthetic dimension. Therefore the
interaction is long ranged along the synthetic dimension.
At the strong interaction region, the system may produce
fractional quantum Hall physics and support fractional topo-
logical pumping [44,45]. Our scheme generates a tunable
flux through the tube and thus offers an ideal platform for
studying quantized fractional charge transport and probing the
fractional many-body Chern numbers.

V. QUENCH DYNAMICS

Besides topological pumping, the quench dynamics of the
system can also be used to demonstrate the presence of gauge
field φ0 and detect the phase transitions [37]. Here we study
how � affects the quench dynamics by considering that all
atoms are initially prepared in state |1〉, and then the interleg
couplings are suddenly activated by turning on the Raman
laser beams. In Figs. 4(a) and 4(b) we show the time evolu-
tion of the fractional spin populations ns = 1

N

∫
dkns(k), as

well as the momenta 〈k〉 = ∑
s〈ks〉 and 〈
k〉 = 〈k2〉 − 〈k3〉

(a) (b)

(c) (d)

/ −1

/ −1

/ −1

/ −1

= 0

= 0.1 = −0.1

=

FIG. 5. (a)–(d) Time evolution of the spin populations at k = π

for different values of �. All other parameters are the same as
Fig. 4(c).

(both can be measured by time-of-flight imaging) for � =
0, where ns(k) = 〈cs(k)†cs(k)〉 and 〈ks〉 = 1

N

∫
kns(k)dk with

N the total atom number. We find that the time evolutions
show similar oscillating behaviors for different �, but with
different frequencies and amplitudes. The difference between
the momenta of atoms transferred to states |2〉 and |3〉 in-
crease noticeably at early time as a result of the magnetic
flux φ0 penetrating the surface of the tube [37], which does
not depend on the flux � through the tube. In Fig. 4 we
have fixed � = 6.15J , δ2 = −0.4�, and U = 0. The initial
temperature is set to be T/TF = 0.3, with initial Fermi tem-
perature TF given by the difference between the Fermi energy
EF and the initial band minimum −2J (i.e., TF = EF + 2J).
We use TF = 2J to get the similar initial filling and Fermi
distribution as those in the experiment [37] (the results are
insensitive to TF ).

The quench dynamics can also be used to measure the gap
closing at phase boundaries. Similar to Ref. [37], we introduce
two times τ2 and τ3, at which the spin-|2〉 and spin-|3〉 popula-
tions at k = 0 (or k = π ) reach their first maxima, to identify
the phase boundary. As we change δ2 or �13 across the phase
boundary (one gap closes and the dynamics is characterized
by a single frequency), τ2 and τ3 cross each other. Notice that
the above discussions only apply to � = 0, π where the gap
closing occurs. We find that even when no gap closing occurs
for � away from 0 and π , τ2 and τ3 would cross each other
as we increase �13, and the crossing point is generally away
from the phase boundaries. Therefore the measurement of gap
closing based on quench dynamics is possible only if � can
be controlled. As an example, we consider � = 0 and plot
the time evolution of the spin populations at k = π with �13

around the left phase boundary �c
13, as shown in Figs. 4(c)

and 4(d). The crossing points are different for different �. In
Fig. 5 we plot the time evolution of the spin populations at
k = π for different values of �.

The ability to control the flux � is crucial for the study of
both topological properties and quench dynamics. We notice
that for the experiment in [37], � cannot be controlled and
may vary from one experimental realization to another, and
� is also different for different tubes within one experimental
realization. It is straightforward to show that the flux � in [37]
is determined by the difference between the random phases of
the Raman lasers at lattice sites (see Appendix), which cannot
be controlled since the Raman lasers propagate along different
paths, not to mention that their wavelengths are generally not
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(a) (b) 

FIG. 6. Quench dynamics in the presence of a harmonic trap
Vtrap = 1

2vT j
2 for noninteracting fermions (U = 0) in (a) and inter-

acting fermions (U = 1.7J) in (b). The trap strength is vT 
 0.0158J .
The results in (a) are averaged over �. The solid (dashed) lines in
(b) are the results for � = 0 (averaged over �). All other parameters
are the same as in Fig. 4(a).

commensurate with the lattice. Moreover, in realistic exper-
iments, arrays of independent fermionic synthetic tubes are
realized simultaneously due to the transverse atomic distribu-
tions in the y, z directions [36,37], and the synthetic tubes at
different y would have different � due to the y-dependent ϕσ

1 .
For the parameters in Ref. [37], the difference of � between
neighbor tubes in y direction is about 2π × 0.58. The random
flux or phase problem is a common issue for schemes in
which one spin state is dressed by two or more different lasers
(different in wave vector) where the random global phases of
the Raman lasers cannot be gauged out.

Due to the randomness of �, the dynamics in experiment
[37] (averaged over enough samplings) should correspond to
results averaged over �. In Fig. 4 we plot the corresponding
dynamics averaged over �, which show damped oscillating
behaviors (with significant long-time damping), as observed
in the experiment. τ2 and τ3, which cross each other at differ-
ent values of �13 for different � with averaged value �̄13 =
� �= �c

13, may not be suitable to identify the phase boundaries
(i.e., gap closings) for a random flux �.

In realistic experiments, a harmonic trap is usually applied
to confine the atoms. The above results for the quench dynam-
ics still hold for atoms in a weak harmonic trap, as confirmed
by our numerical simulations. We consider a harmonic trap
frequency ωx = 2π × 57 Hz and J = 2π × 264 Hz as in the
experiment [37]; therefore the harmonic trap Vtrap = 1

2vT j2

has trap strength vT 
 0.0158J . In Fig. 6(a) we plot the time
evolution of spin populations; we see that the quench dy-
namics are hardly affected by the harmonic trap. Moreover,
atom-atom interactions may induce scattering between differ-
ent momentum states that oscillate at different frequencies,
leading to additional damping, which should be minor due to
the short evolution time � 1 ms here. In Fig. 6(b) we plot the
time evolution of spin populations in the presence of weak
interaction U = 1.7J [37]. We have adopted the mean-field
approach and written the interaction as U

2

∑
j,s �=s′ n̂ j,sn̂ j,s′ =

U
2

∑
j,s �=s′ [〈n̂ j,s′ 〉n̂ j,s + 〈n̂ j,s〉n̂ j,s′ − 〈n̂ j,s〉〈n̂ j,s′ 〉], where the s-

spin fermions interact with the average density of the s′-spin
fermions, which should be valid for weak interaction and
short evolution times (similar to the Hartree approximation).
The weak interaction can hardly affect the quench dynamics
where the oscillation frequency (∼�) is much larger than the
interaction strength. Other experimental imperfections, such
as spin-selective imaging error, may also affect the measured
spin dynamics, and the final observed cross point in [37] is
smaller than � and �c

13.

ℰ2 + ℰ3

ℰ1

ℰ1

ℰ1
ℰ2
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δ20
1
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|2⟩
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2 + ℰ3
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FIG. 7. (a) Schematic of the experimental setup and (b) the cor-
responding Raman transitions in [37].

VI. CONCLUSION

In summary, we propose a simple and feasible scheme to
realize a controllable flux � through the synthetic Hall tube
that can be tuned at will and study the effects of the flux �

on the system topology and dynamics. Previous experimen-
tal quench dynamics may be better explained by the results
averaged over the random flux existing in the experiment.
Our scheme allows the study of interesting charge transport
(e.g., the interesting charge flow and transport for rotated spin
states in our system) through topological pumping, which
also probes the system topology. Moreover, it may open the
possibility to study fractional charge pumping and probe the
many-body Chern numbers of fractional quantum Hall state at
strong interactions. Our results provide a platform for study-
ing topological physics in a tube geometry with tunable flux
and may be generalized with other synthetic degrees of free-
dom, such as momentum states [57–59] and lattice orbitals
[60,61].
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APPENDIX: RANDOM FLUX � IN PREVIOUS
EXPERIMENTS

We would like to emphasize that our proposed setup to
generate a tunable flux through the synthetic tube is different
from the setup in recent experimental work [37] (as shown in
Fig. 7 for comparison). The Raman laser configurations (di-
rections, polarizations and frequencies) as well as the involved
Raman processes are different. It is straightforward to show
that the flux� for the setup in Fig. 7 is� = 3ϕσ

1 − 2ϕπ
2 − ϕσ

3 ,
which cannot be controlled since the Raman lasers propagate
along different paths, not to mention that their wavelengths
are generally not commensurate with the lattice. The random
flux or phase problem is a common issue for schemes in
which one spin state is dressed by two or more different lasers
(different in wave vector) where the random global phases of
the Raman lasers can not be gauged out. Moreover, in real-
istic experiments, arrays of independent fermionic synthetic

063327-5



LUO, ZHANG, AND ZHANG PHYSICAL REVIEW A 102, 063327 (2020)

tubes are realized simultaneously due to the transverse atomic
distributions in the y, z directions, and the synthetic tubes at

different y would have different � due to the y-dependent ϕσ
1

for the setup in Fig. 7.
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I. B. Spielman, Realization of a deeply subwavelength adiabatic
optical lattice, Phys. Rev. Research 2, 013149 (2020).

[39] D. R. Hofstadter, Energy levels and wave functions of Bloch
electrons in rational and irrational magnetic fields, Phys. Rev. B
14, 2239 (1976).

[40] R. B. Laughlin, Quantized Hall conductivity in two dimensions,
Phys. Rev. B 23, 5632 (1981).

[41] D. J. Thouless, Quantization of particle transport, Phys. Rev. B
27, 6083 (1983).

[42] Q. Niu, Towards a Quantum Pump of Electric Charges,
Phys. Rev. Lett. 64, 1812 (1990).

[43] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

[44] T.-S. Zeng, C. Wang, and H. Zhai, Charge Pumping of Inter-
acting Fermion Atoms in the Synthetic Dimension, Phys. Rev.
Lett. 115, 095302 (2015).

[45] L. Taddia, E. Cornfeld, D. Rossini, L. Mazza, E. Sela, and
R. Fazio, Topological Fractional Pumping with Alkaline-Earth-
Like Atoms in Synthetic Lattices, Phys. Rev. Lett. 118, 230402
(2017).

[46] M. Boyd, T. Zelevinsky, A. Ludlow, S. Blatt, T. Zanon-Willette,
S. Foreman, and J. Ye, Nuclear spin effects in optical lattice
clocks, Phys. Rev. A 76, 022510 (2007).

[47] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Quantized Hall Conductance in a Two-Dimensional Peri-
odic Potential, Phys. Rev. Lett. 49, 405 (1982).

[48] J. Zak, Berry’s Phase for Energy Bands in Solids, Phys. Rev.
Lett. 62, 2747 (1989).

[49] S. Barbarino, M. Dalmonte, R. Fazio, and G. E. Santoro,
Topological phases in frustrated synthetic ladders with an odd
number of legs, Phys. Rev. A 97, 013634 (2018).

[50] L. Wang, M. Troyer, and X. Dai, Topological Charge Pumping
in a One-Dimensional Optical Lattice, Phys. Rev. Lett. 111,
026802 (2013).

[51] L. Wang, A. A. Soluyanov, and M. Troyer, Proposal for Di-
rect Measurement of Topological Invariants in Optical Lattices,
Phys. Rev. Lett. 110, 166802 (2013).

[52] M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger,
and I. Bloch, A Thouless quantum pump with ultracold
bosonic atoms in an optical superlattice, Nat. Phys. 12, 350
(2016).

[53] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa,
L. Wang, M. Troyer, and Y. Takahashi, Topological Thou-
less pumping of ultracold fermions, Nat. Phys. 12, 296
(2016).

[54] P. G. Harper, Single band motion of conduction electrons in a
uniform magnetic field, Proc. Phys. Soc. London Sect. A 68,
874 (1955).

[55] S. Aubry and G. André, Analyticity breaking and Anderson
localization in incommensurate lattices, Ann. Isr. Phys. Soc. 3,
133 (1980).

[56] Q. Niu and D. J. Thouless, Quantised adiabatic charge transport
in the presence of substrate disorder and many-body interaction,
J. Phys. A 17, 2453 (1984).

[57] E. J. Meier, F. A. An, and B. Gadway, Observation of the
topological soliton state in the Su-Schrieffer-Heeger model,
Nat. Commun. 7, 13986 (2016).

[58] F. A. An, E. J. Meier, and B. Gadway, Direct observation of
chiral currents and magnetic reflection in atomic flux lattices,
Sci. Adv. 3, e1602685 (2017).

[59] F. A. An, E. J. Meier, and B. Gadway, Diffusive and arrested
transport of atoms under tailored disorder, Nat. Commun. 8, 325
(2017).

[60] H. M. Price, T. Ozawa, and N. Goldman, Synthetic dimensions
for cold atoms from shaking a harmonic trap, Phys. Rev. A 95,
023607 (2017).

[61] J. H. Kang, J. H. Han, and Y. Shin, Realization of a Cross-
Linked Chiral Ladder with Neutral Fermions in a 1D Optical
Lattice by Orbital-Momentum Coupling, Phys. Rev. Lett. 121,
150403 (2018).

063327-7

https://doi.org/10.1126/science.aaa8736
https://doi.org/10.1126/science.aaa8515
https://doi.org/10.1103/PhysRevLett.117.220401
https://doi.org/10.1103/PhysRevLett.122.065303
https://doi.org/10.1103/PhysRevResearch.2.013149
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1103/PhysRevLett.64.1812
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRevLett.115.095302
https://doi.org/10.1103/PhysRevLett.118.230402
https://doi.org/10.1103/PhysRevA.76.022510
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.62.2747
https://doi.org/10.1103/PhysRevA.97.013634
https://doi.org/10.1103/PhysRevLett.111.026802
https://doi.org/10.1103/PhysRevLett.110.166802
https://doi.org/10.1038/nphys3584
https://doi.org/10.1038/nphys3622
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1088/0305-4470/17/12/016
https://doi.org/10.1038/ncomms13986
https://doi.org/10.1126/sciadv.1602685
https://doi.org/10.1038/s41467-017-00387-w
https://doi.org/10.1103/PhysRevA.95.023607
https://doi.org/10.1103/PhysRevLett.121.150403

