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Intelligent Agents to Improve Thermal Satisfaction
by Controlling Personal Comfort Systems Under
Different Levels of Automation

Ashrant Aryal, Burcin Becerik-Gerber

Abstract—Heating, ventilation, and air conditioning (HVAC)
systems account for 43% of building energy consumption, yet
only 38% of commercial building occupants are satisfied with
the thermal environment. The primary reasons for low occupant
satisfaction are that HVAC operations do not integrate occu-
pant comfort requirements nor control the thermal environment
at the individual level. Personal comfort systems (PCSs) enable
local control of the thermal environment around each occupant.
However, full manual control of PCS can be inefficient, and fully
automated PCS reduces an occupant’s perceived control over the
environment, which can then lead to lower satisfaction. A bet-
ter solution might lie somewhere between fully manual and fully
automated environmental control. In this article, we describe the
development and implementation of an Internet-of-Things (IoT)-
based intelligent agent that learns individual occupant comfort
requirements and controls the thermal environment using PCS
(i.e., a local fan and a heater). We tested different levels of
automation where control is shared between an intelligent agent
and the end user. Our results show that PCS use improves occu-
pant satisfaction and including some level of automation can
improve occupant satisfaction further than what is possible with
manually operated PCS. Among the levels of automation inves-
tigated, inquisitive automation, where the user approves/declines
the control actions of the intelligent agent before execution, led
to highest occupant satisfaction with the thermal environment.

Index Terms—Building automation, indoor environments,
smart buildings, smart systems, thermal comfort.

I. INTRODUCTION

HE Internet of Things (IoT) has opened the possibili-
T ties of real-time data acquisition and analysis for making
decisions in a diverse range of applications. In the context of
smart buildings, these advancements have opened the possibil-
ities of improving occupant comfort, satisfaction, health and
productivity while improving energy efficiency, performance
monitoring, fault diagnosis and predictive controls of building
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systems [1]-[3]. Indoor environmental quality (IEQ) parame-
ters (i.e., air quality, ventilation, thermal environment, light-
ing, and acoustics) are associated with comfort, productivity,
creativity, physiological and psychological health, and well-
being of building occupants. Among different IEQ parameters,
occupants in commercial buildings ranked their thermal envi-
ronment to be poorer than other IEQ parameters, such as air
quality and noise [4]. ASHRAE 55, which provides guidelines
for the control of the thermal environment requires building
systems to satisfy more than 80% of building occupants [5].
However, heating, ventilation, and air conditioning (HVAC)
systems fail to maintain satisfactory indoor conditions for the
majority (62%) of building occupants [6], despite consuming
about 43% of total building energy [7]. Dissatisfaction with
the indoor environment in commercial buildings results from
the mismatch between occupant requirements and the actual
indoor conditions. Specifically, the “one size fits all” opera-
tion of centralized HVAC systems and the inability of these
centralized systems to control the environment at a more gran-
ular level than building zones, do not account for individual
occupant requirements [8]. Personalizing the environment by
controlling IEQ parameters to match occupant requirements
has the potential to improve comfort, productivity, and well-
being. It has been estimated that potential productivity increase
in the range of 0.5% to 5% is possible by improving the ther-
mal and lighting conditions, which translates to an annual
productivity increase of $19 billion to $190 billion in the
U.S. alone [9]. Among different aspects that are influenced by
the indoor thermal environment, this study primarily focuses
on improving occupant satisfaction because avoiding dissatis-
faction can lead to improved productivity [10], occupants are
generally satisfied with the thermal environment when they are
comfortable [5], and the associated energy costs are relatively
small compared to potential gains from improved occupant
satisfaction [9].

In our previous study, we developed a framework for
an intelligent agent (a smart desk) to personalize different
environmental conditions (thermal, visual, ergonomics, efc.)
around each occupant by using different IoT sensors to mon-
itor the environment, machine learning (ML) algorithms to
learn occupant requirements and preferences, and artificial
intelligence (AlI)-based decision making to control the envi-
ronment using local actuators [11], [12]. In this article, we
describe the development of an IoT-based intelligent agent that
can personalize the thermal environment around each occupant
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using different levels of automation. We also present results
from a 15-week field study, in which we deployed our intel-
ligent agent in 14 different offices to answer the question:
How does occupant satisfaction vary among different levels
of automation for personal comfort system (PCS) devices?

II. RELATED WORK

At the most basic level, an intelligent agent is capable
of perceiving its environment through sensors, deciding the
right action, and acting upon the environment through actu-
ators [13]. In the context of thermal environmental control,
perceiving the environment involves understanding the comfort
state of occupants, deciding the right action involves under-
standing what action will improve occupant satisfaction based
on their comfort state, and actuation involves controlling the
thermal environment. In the subsequent paragraphs, we present
a brief overview of the literature relevant to the development
of an intelligent agent from the perspective of the agent per-
ception, decision making, and actuation of the indoor thermal
environment.

Thermal comfort models currently adopted by international
guidelines, such as ASHRAE 55 [5], include the predicted
mean vote/predicted percent dissatisfied (PMV/PPD) models
developed by Fanger [14] and adaptive model developed by
de Dear et al. [15]. The PMV/PPD model was developed
based on heat balance of the human body, and the adaptive
model improved the PMV/PPD model by considering differ-
ent adaptive opportunities (e.g., opening windows or changing
clothing levels) that occupants have in some buildings. Both
the PMV/PPD model and adaptive model do not accommodate
for individual differences in thermal comfort requirements,
which has led researchers to focus on developing personalized
comfort models [16].

Personalized comfort models typically map environmental
and/or physiological sensor measurements to thermal sensa-
tion, satisfaction, or preference obtained from direct feedback
from occupants via participatory sensing using different ML
algorithms. Thermal sensation is typically assessed on a 7-
point Likert Scale ranging from —3 (cold) to +3 (hot),
reflecting how occupants feel in their thermal environment.
Thermal satisfaction is typically assessed on a similar scale
ranging from —3 (very dissatisfied) to 4-3 (very satisfied) and
reflects how satisfied occupants are with their thermal envi-
ronment. Some commonly used sensing methods for building
personalized comfort models involve environmental sensing
of ambient temperature, humidity, radiant temperature, and
air speed [17], [18], and physiological sensing of skin tem-
perature from different regions of the body [19], [20]. Other
sensing methods, such as electroencephalogram (EEG), heart
rate, heart rate variability have also been shown to be use-
ful in personal comfort modeling [21], [22]. Different ML
algorithms, such as the Bayesian networks, support vector
machines, random forest (RF), K-nearest neighbors (KNNs),
linear discriminant, and artificial neural networks [23]-[25]
have been utilized for personal comfort modeling. A detailed
review of personal comfort models can be found in [16], and
a comparison of some common sensing methods and ML
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algorithms for personal comfort modeling can be found in
[23] and [24]. Sensing and ML-based approaches enable the
intelligent agent to perceive occupant comfort.

Actuation for the thermal environment consists of either
changing the temperature setpoint of the HVAC system, con-
trolling windows, and shading systems or use of PCSs, such
as local fans and heaters. Although the control of HVAC
systems based on occupant requirements can improve occu-
pant satisfaction from around 38% to 63%, HVAC systems
are usually unable to control the thermal environment at a
granular level around each occupant, which leads to lower sat-
isfaction when multiple occupants are in the same HVAC zone
[8]. Several studies have shown that PCS devices can provide
small adjustments to the thermal environment at an individual
level and improve occupant satisfaction [26]-[28]. The correc-
tive power of PCS devices, which is defined as the difference
between two ambient temperatures at which the same thermal
sensation is achieved—one with PCS and one without PCS
[27]—varies based on the PCS devices used. Previous studies
have shown that air jets have a corrective power of —2 °C to
—4 °C depending on the air speed and ambient temperature
[27]-[29]; whereas, a small desk-fan has a corrective power
of —1.5 °C [28]. The corrective power of a heated chair is
about 1.25 °C, a foot and leg heater is about 7 °C-10 °C, a
heated wrist pad is about 0.75 °C, and a heated shoe insole
is about 0.26 °C [28], [30]. The actual ability to correct for
thermal discomfort of the PCS devices depends on the type
and size of device, the perception of the user, and the ambient
conditions. However, previous studies provide strong evidence
that PCS, especially fans and heaters, can be successfully used
in cool to warm environments in the range of 18 °C-28 °C to
maintain comfortable conditions for occupants [27], [28].

From a decision-making perspective, evaluating the right
action by an intelligent agent depends on the objective of the
control logic design. Most of the work in building automa-
tion has focused on completely automating the control of
building services, such as HVAC systems, lights, blinds, and
shades [1], [31], [32]. For control of the thermal environment,
efforts to evaluate different control strategies have mostly
focused on HVAC systems. Different HVAC control strate-
gies have been developed and evaluated in field studies to
reduce energy consumption while maintaining comfortable
conditions based on the PMV model occupant’s adjustment to
thermostats, and direct occupant setpoint selection by partic-
ipatory sensing [33]-[36]. Approaches to select temperature
setpoints based on comfort requirements of multiple occu-
pants in the same zone have also been explored, for example
to maximize consensus [37] or minimize aggregate occupant
discomfort plus energy cost [38]. A review of field imple-
mentations of occupant-centric HVAC, lighting, and shading
systems control is available in [36]. To the best of our knowl-
edge, field studies that used PCS devices for controlling the
thermal environment have left the PCS devices to be man-
ually controlled by the occupant. There is a need to develop
and explore automated controls for PCS devices to remove the
burden of control from the end user, improve user satisfaction,
and reduce inefficiencies caused by the manual operation of
PCS devices.
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In addition to the physical conditions that affect thermal
comfort, psychological expectations of the occupant also play
a crucial role in occupant satisfaction and need to be consid-
ered during decision making by an intelligent agent. Studies
have shown that occupants with a higher perception of con-
trol over their thermal environment have a higher satisfaction
in both indoor [39] and outdoor environments [40] even when
the physical conditions were the same. Providing actual control
over the environment leads to a larger improvement in thermal
satisfaction compared to only having perceived control [39].
Furthermore, occupants with greater perceived control over
the environment are likely to tolerate greater levels of dis-
comfort [39]. In field studies where shading systems were
fully automated, most of the occupants switched off the auto-
matic mode [41] or corrected the control actions made by the
automation system nearly half the time [42]. A potential rea-
son for low acceptance could be that completely automated
systems take away an occupant’s control over the environ-
ment, leading to lower satisfaction [43]. A possible solution
to overcome the drawbacks of full automation could be pro-
viding adjustable autonomy, where decision making is shared
between an intelligent agent and the user [44]. Levels of
automation vary across a continuum between fully manual
and fully automated conditions, and different taxonomies rang-
ing from 4 to 12 distinct levels of automation have been
proposed [45]. One study that focused on automation pref-
erences for appliance controls in residential homes found that
although occupant preferences toward automation of different

appliances varied depending on the context, personality, and
demographic characteristics, no automation could be identified
as the least preferred option [46]. These studies suggest that
there is no single solution that is likely to satisfy all users,
and automation systems should be designed to operate under
multiple levels of shared control between the intelligent agent
and the end user.

III. SYSTEM DESCRIPTION

The prototype system includes a sensor box containing
different sensors to monitor environmental parameters and
control the PCS devices as shown in Fig. 1. The sensor
box is connected to an Arduino Uno and Raspberry pi, a
small desk fan and a small heater that can be wirelessly
controlled using a smart plug, and a touchscreen with a cus-
tom interface where users can provide feedback regarding
their comfort and can control the connected fan or heater.
The intelligent agent, implemented on the Raspberry pi, can
also control the fan and heater. Levels of automation were
adopted based on Ahmadi-Karvigh et al. [46] where user pref-
erence toward different levels of automation is applied to
building systems and appliances, as compared to automa-
tion taxonomies developed for avionics, manufacturing, and
other domains [45]. Specifically, our agent used four levels of
automation.

1) No Automation (Manual Control): The agent does not

perform any control actions and PCS devices are con-
trolled manually by the user.

Authonized licensed use limited to: University of Southern California. Downloaded on July 09,2021 at 04:55:49 UTC from IEEE Xplore. Restrictions apply.



7092
Cloud servers for real time
prediction and storage
A \ ; °___ « Fanand heater actuated
s . R “«___ with smart plugs

Raspberry pilwith agent
implementation

Arduino Uno with
different sensors

e

User interaction
touchscreen

Fig. 2. Tllustration of the hardware architecture.

2) Inquisitive Automation: The agent predicts the user’s
comfort state, computes an appropriate PCS control
action, and asks for the user’s approval before executing
the control action.

3) Adaptive Automation: The agent learns the user’s pat-
terns over time of approving/declining control actions.
The agent automatically executes the control actions
when it predicts that the user will approve/decline the
control action and asks for user’s approval when it is
not certain.

4) Full Automation: The agent computes appropriate con-
trol action and automatically executes the control action
without any input from the user.

A. System Architecture

The system consists of a sensor box with sensors to monitor
ambient temperature, relative humidity, radiant temperature,
motion, distance, volatile organic compounds (VOCs) con-
centration, and lighting levels. These sensors are connected
to an Arduino Uno that relays the sensor measurements to
a Raspberry pi, which then sends the sensor data to a cloud
server every 30 s. ML models on the cloud server use these
data to predict the comfort and satisfaction of the user while
the thermal environment and control algorithms evaluate the
appropriate actions to adjust the thermal environment. These
control actions are transmitted back to the Raspberry pi which
can actuate the local fan or heater or ask the user for approval
using a custom user interface (UI). The custom UI runs on
a 7-inch touchscreen where the agent can place requests to
the user, thereby enabling bidirectional communication, as
well as allowing users to provide comfort ratings or manually
control the fan/heater. The entire system is built using open-
source hardware combined with custom software developed in
Python, which provides a high degree of flexibility to modify
and update the system as needed. The overall system archi-
tecture is shown in Fig. 2. It is important to note that the desk
fan and heater used in this study had only one level of oper-
ation when turned on. The fan was a low voltage USB fan
capable of producing air speeds of 1.2 m/s at a distance of
1 m. The heater was a fan-forced 500-W ceramic space heater
that provided heat by both radiation and convection.
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B. Training of Personal Comfort Models

The agent uses personal comfort models trained using ML
algorithms for each user to predict thermal sensation and
thermal satisfaction separately. Even though it is typically
assumed that occupants are satisfied under a neutral thermal
sensation, it is important to predict thermal sensation and sat-
isfaction separately for controlling the thermal environment
because it is possible for an occupant to be satisfied under
cool or warm sensation or dissatisfied under neutral sensation.
Users report thermal sensation and thermal satisfaction on the
7-point Likert scales ranging from —3 to 43 through the UI;
these ratings are used to create training labels. Thermal sen-
sation votes (TSVs) are grouped into three classes: 1) cold
(TSV e {—3, —2}); 2) comfortable (TSV < {—1, 0, +1}); and
3) hot (TSV € {+2, 4+3}), and thermal satisfaction ratings are
grouped into two classes: 1) satisfied (satisfaction rating € {0,
+1, +2, +3}) and 2) dissatisfied (satisfaction rating € { —1,
—2, —3}). These groupings are based on ASHRAE 55 sug-
gestions for determining thermal satisfaction and acceptability
from the Likert scales [5]. Different features that capture the
average value of sensor measurements and changes in sensor
measurements (first derivative) in the last 1, 5, 10, and 30-min
time windows prior to each comfort rating are extracted from
the indoor temperature, humidity, and radiant temperature
measurements. In addition to the indoor measurements, cloth-
ing level, heater and fan states (on or off), time of day, outdoor
temperature, humidity, and apparent temperature (which com-
bines the effects of temperature, humidity, and air speed) are
included. Due to the large number of extracted features, fea-
ture selection is performed using chi-squared statistic between
the features and the training class to select the 15 most useful
features. The ML comfort models map the extracted features
to user ratings of thermal sensation and thermal satisfaction.

RF and KNNs models are trained using fivefold cross vali-
dation for predicting thermal sensation and thermal satisfaction
separately for each participant. The models with the highest
accuracy between the two algorithms are selected for each par-
ticipant. RF and KNN algorithms were selected based on their
usefulness in predicting thermal sensation and satisfaction in
our previous studies [23], [24]. The overall model training
approach is similar to our previous studies and the detailed
procedure for model training can be found in [23] and [24].
Although the users can also indicate their thermal preference
on the UI (whether they would prefer to have a warmer or
cooler environment), the current implementation of the agent
does not use a preference-based model because this study
focuses on improving thermal satisfaction. A similar model
training approach could be used to train preference-based
models if needed.

C. Control Logic

Because this study focuses on improving thermal satisfac-
tion, and people can be satisfied even if they feel warm or
cold based on their preference, the agent first predicts ther-
mal satisfaction for all levels of automation. If the user is
predicted to be satisfied, the agent does not take any action.
If the user is predicted to be dissatisfied, the agent predicts
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the user’s thermal sensation and selects an appropriate control
action based on thermal sensation and the current state of the
fan and heater as shown in Table 1. The training duration for
each model was less than 2 min per participant. It is impor-
tant to note that since the models were only updated between
phase 1 and phase 2 rather than continuously, the duration for
model training was not a key consideration in this study. The
agent then follows the control logic in Fig. 3 to determine if
interaction with the occupant is necessary or not, depending
on the level of automation.

A new prediction is made by the agent every 30 s. The agent
needs to be able to predict changes that might occur in a con-
tinuous fashion and take an action before the user decides to
make manual adjustments. A shorter time interval increases the
chances of the agent being able to take control actions before
the user does but also increases the communication costs to
the cloud server. A longer time interval reduces the commu-
nication costs but also reduces the chances of the agent being
able to take control actions before the user does. Therefore,
the time interval of 30 s was deemed reasonable where the
agent would be able to take a control action before the user
does so in a relatively continuous way without incurring high
communication costs.

For each level of automation, the control scheme is slightly
different. Fig. 3 provides a high-level overview of the control
logic for each level of automation. For inquisitive automa-
tion, the agent always asks the user if they would like to turn
the fan/heater on/off based on the state transitions shown in
Table 1. For full automation, the agent automatically executes
the control actions based on state transitions in Table I. For
adaptive automation, a clustering-based model is used to clas-
sify if the user is likely to approve or decline the control action
based on all of their previous approve/decline interactions with
the agent under inquisitive and adaptive automation. For the
adaptive action model, the cluster center and radius are calcu-
lated for each approved/declined action based on the possible
comfort states and state transitions shown in Table I with the

TABLE I
CONTROL ACTIONS BASED ON COMFORT AND PCS STATES

Comfort State Fan On Heater On | Both Off
Satisfied No Change | No Change | No Change
Dissatisfied, Cold Fan Off, | No Change | Heater On
Heater On
Dissatisfied, Warm No Change | Heater Off, | Fan On
Fan On
Dissatisfied, Neutral | No Change | No Change | No Change

Euclidian distance as the distance metric. The clustering model
uses the same features used for thermal sensation prediction.
If a new observation falls within 75% of the cluster radius of a
cluster center and does not overlap with another cluster, then
the new observation is classified with the same label as the
corresponding cluster and the control action is automatically
executed without asking the user in the Adaptive Automation
control scheme. The threshold of 75% cluster radius for deter-
mining membership to a cluster is used to reduce the influence
of any single data point on changing the cluster center and
radius, making the model more stable. If the new observation
overlaps with two or more clusters or does not belong to any
cluster, then the agent asks the user to approve/decline the
control action similar to Inquisitive Automation.

IV. IMPLEMENTATION AND VALIDATION

To validate the agent and to answer the research question:
“how does occupant satisfaction vary among different levels
of automation of PCS devices?” we conducted a study with
a 15-week deployment of the PCS prototype in 14 offices to
evaluate each of the levels of automation. The study was con-
ducted from October 2019 to March 2020 with breaks in data
collection during official holidays. The study was approved
by the university’s institutional review board, and an informed
consent was obtained from each participant prior to enrolling
them in the study.
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TABLE I
TECHNOLOGY READINESS OF PARTICIPANTS

Scale Average Standard Deviation
Optimism 43 0.6
Innovativeness 33 1.1
Discomfort 2.7 1.0
Insecurity 34 0.8
TRI 2.0 score 34 0.5

A. Participants and Location

Participants were administrative staff (9), research staff (3),
faculty (1), and a graduate student (1) at the University of
Southern California (USC). Four participants were male and
ten were female. The age of the participants ranged from 23-
years to 56-years old with an average age of 39 + 10 years.
Participants completed the technology readiness index (TRI)
2.0 [47] to identify the propensity to adopt and embrace tech-
nology at home and work on a scale of 1 (low) to 5 (high) with
3 being a neutral score. The TRI 2.0 evaluates four dimensions
of optimism, innovativeness, discomfort, and insecurity toward
technology. Our participants scored slightly higher than neutral
in the overall TRI 2.0 scale and were generally very optimistic
as shown in Table IL

Eight participants worked in a private office and six par-
ticipants worked in private cubicles within a shared office
space. The sensor box, UI and the fan shown in Fig. 1 were
placed on the participants’ desks and the heaters were placed
on the floor close to the participants’ feet. The participants
were free to choose the exact placement of the system compo-
nents on their desks. The participants were distributed in four
different buildings located in three separate USC campuses
in Los Angeles, California. According to the Koppen—Geiger
climate classification [48], Los Angeles has a warm-summer
Mediterranean climate and has relatively small fluctuations in
outdoor weather conditions. During the data collection period,
the average daily temperature was 16.5 + 2.2 °C, with an
average daily maximum of 20.8 + 2.8 °C and average daily
minimum of 12.6 + 1.8 °C. The average indoor temperature
recorded by the system was 26.4 £ 2.2 °C. The minimum and
maximum recorded indoor temperatures were 22.5 + 1.9 °C
and 30.1 &+ 1.8 °C, respectively.

B. Data Collection

The study consisted of two phases, phase 2 where the level
of automation was gradually increased and phase 2 where the
level of automation was randomized. Phase 1 began with a
baseline condition lasting about three weeks where no PCS
devices were used by the participants, followed by two weeks
for each level of automation sequentially increased from no
automation to full automation as described in Section III, total-
ing 11 weeks. Phase 2 consisted of one week for each level
of automation, totaling four weeks. In phase 2, the order of
the level of automation was randomized for each participant
to avoid potential biases resulting from changes in outdoor
thermal conditions or order effect from gradually increasing
the level of automation. Phase 2 did not include a baseline
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condition because taking away PCS devices from the par-
ticipants might have caused a biased response in occupant
satisfaction due to the loss of control rather than the physical
aspects of the thermal environment.

For each level of automation, the participants were asked
to periodically rate their thermal sensation (cold to hot), ther-
mal satisfaction (very dissatisfied to very satisfied) and thermal
preference (want much cooler to want much warmer) on the
T-point Likert scales using the UI at their convenience. Figs. 4
and 5 show the overall distribution of thermal sensation and
thermal satisfaction votes collected during the entire study.
It is important to note that even though the 7-point Likert
scales were used to collect comfort votes, the model training
and prediction were done by grouping the comfort votes as
described in Section III-B. The system used a gentle vibra-
tion of the sensor box to remind the participants to rate their
comfort every hour when the motion sensor detected that
the participant was present. Participants were also asked to
report their clothing information in the morning when they
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arrived at the office and during the day if their clothing
level changed (e.g., putting on a jacket). At the end of each
level of automation in phase 1 and phase 2, participants were
asked to rate their overall satisfaction for the level of automa-
tion used. One of the participants did not complete the Full
Automation level in Phase 2 because of University shutdown
due to COVID-19 but completed all other levels of automation.
All other participants completed the entire study.

For phase 2, the comfort models were trained using the
data from the baseline and No Automation period. The com-
fort models were then used to predict thermal satisfaction and
thermal sensation for inquisitive, adaptive, and full automa-
tion levels. Before starting the data collection for phase 2, we
updated the models using data from all levels of automation in
phase 1. The inquisitive automation, adaptive automation, and
full automation used the same comfort prediction models in
each phase to ensure an equivalent comparison across the lev-
els of automation. For each participant, average accuracy of the
fivefold cross validation is taken as the participant’s model’s
prediction accuracy. The accuracies are based on the two-class
classification for thermal satisfaction (satisfied or dissatisfied),
and three-class classification for thermal sensation (cold, com-
fortable, or hot) as described in Section III-B. The satisfaction
prediction models had an accuracy of 0.81 + 0.15 in phase 1
and 0.86 & 0.11 in phase 2. The sensation prediction models
had an accuracy of 0.74 + 0.15 in phase 1 and 0.77 £+ 0.12 in
phase 2. The average number of training labels (satisfaction
and sensation ratings) was 125.1 £ 49.9 in phase 1 and 224.8
=+ 120.8 in phase 2. For both thermal sensation and satisfac-
tion models, adding more data resulted in more accurate ML
models as expected.

The cluster-based model wused to predict users’
approval/decline patterns for adaptive automation was
initially trained using approve/decline interactions from
inquisitive automation. The clusters were updated at the
end of every day by adding new approve/decline actions
during the adaptive automation period, while retaining older
interactions in the model. Since the adaptive model evolved
with each new approval/decline by the user, model accuracy
using training and testing set were not evaluated and all
available data were used for model training.

In all levels of automation, participants were still able
to override the agent’s actions and manually control the

Ilustration of system and user interactions over a day under the full automation level.

fan/heater. An example of control actions by the agent and
manual actions by the user during one day in full automation
is shown in Fig. 6 for illustration. For adaptive automation
and full automation, the system recorded the overrides when
the participants manually overrode a control action by the
agent within 5 min of the automatic control action execu-
tion. Because the agent made predictions every 30 s, 5 min
was deemed a reasonable length of time for the participants
to override the agent’s control actions if they were not satis-
fied. A shorter time window (1-2 min) for counting overrides
might not have given enough time for the participant to take
an action, and a longer time window (10—15 min) might not
have been reflective of the participant’s reaction to the control
action as their comfort state could have changed due to the
agent’s control action.

C. Data Analysis

To answer the research question, “How does occupant sat-
isfaction vary between different levels of automation of PCS
devices?” we compared the thermal satisfaction obtained in the
baseline condition and in each level of automation in phase 1
and phase 2, as well as combined satisfaction across both
phases. Since phase 2 did not include a baseline condition
where PCS devices were not used, the baseline from Phase 1
was also used in phase 2 analyses. Thermal satisfaction was
evaluated using two metrics: 1) Ul-based thermal satisfaction
was the average thermal satisfaction across all the ratings pro-
vided by the users using the UI under each level of automation
and 2) survey-based thermal satisfaction was an overall rat-
ing reported by the participants at the end of each level of
automation.

A within-subject analysis of variance (ANOVA) F-test was
performed to compare thermal satisfaction across the five lev-
els of automation (i.e., baseline, manual, inquisitive, adaptive,
and full). When comparing more than two groups, the omnibus
ANOVA shows whether significant differences are present
between different groups or not but does not show which
groups are significantly different. If the omnibus ANOVA
test showed that significant differences were present, a post
hoc analysis with multiple comparison of means was per-
formed using Tukey’s range test to identify which levels of
automation had significantly different thermal satisfaction. The
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TABLE III
AVERAGE SATISFACTION UNDER EACH LEVEL OF AUTOMATION

Phase Source | Baseline | Manual | Inquisitive | Adaptive Full
Phase 1 0] § 0.113 0.383 0.546 0.007 0.135
Survey -0.643 0.500 1.214% 0.500 0.929*

Phase 2 0] § 0.394 0.604 0.333 0.288 0.152
Survey -0.770 0.923* 0.923 0.692 0.692

Combined 9] § 0.113 0.363 0.521 0.020 0.193
Survey -0.643 0.679 1.143% 0.679 0.893*

* denotes significantly different from Baseline (p-value < 0.05)

results from the ANOVA are reported as [F-statistic (degrees
of freedom), p-value], and the results from the multiple means
comparison are reported as [Group Mean (M), standard error
of the mean (SEM), p-value when compared to baseline]. If
the p-value is less than 0.05, a commonly used threshold, then
it is concluded that significant differences are present.

The satisfaction ratings from phase 1 and phase 2 were
combined to compare the overall satisfaction under each level
of automation. For both the survey-based satisfaction and
Ul-based satisfaction, the combined satisfaction rating is the
average of all recorded satisfaction ratings from phase 1 and
phase 2 for each level of automation. One participant did not
complete the full automation level in phase 2, so the satisfac-
tion rating under full automation from phase 2 was used as the
combined satisfaction for full automation. One additional par-
ticipant did not complete all levels of automation in phase 2;
this participant was omitted from phase 2 analyses.

To understand how the accuracy of thermal satisfaction
prediction models influenced the actual system performance,
we evaluated the correlations between the accuracy of satis-
faction prediction models with different performance metrics
using the Pearson correlation coefficients. Phase 1 and phase 2
were analyzed separately. For inquisitive automation, the
performance metric was the percentage of requests that were
declined, calculated as the number of control requests that
were declined by a user divided by the total number of requests
placed for that user. For full automation, because the con-
trol actions were automatically executed, we used the number
of overrides as the performance metric. For adaptive automa-
tion, we used both the percentage of declined requests and
the number of overrides as performance metrics because the
agent automatically executes the control request when it pre-
dicts the user will approve/decline the request, and asks the
user before executing the control action when it is not certain.
A Pearson correlation coefficient was also calculated between
the accuracy of thermal satisfaction prediction with Ul-based
satisfaction for each phase. Along with correlation results, the
average and standard deviation of different performance met-
rics are reported as mean + standard deviation to indicate the
variability among the participants.

V. RESULTS

Table III shows the average satisfaction obtained under
each level of automation. Overall, the results show that hav-
ing local control with PCS devices leads to higher occupant

satisfaction compared to not having PCS devices, and having
some automation leads to higher occupant satisfaction com-
pared to the manual control. In phase 2, the comparison of
survey-based thermal satisfaction with ANOVA showed that
significant differences were present [F (4,52) = 3.922 and p
= (0.0074] between thermal satisfaction under different levels
of automation. The multiple means comparison showed that
occupant satisfaction was significantly higher for inquisitive
automation (M = 1.214, SEM = 0.366 and p-value = 0.021)
and full automation (M = 0.929, SEM = 0.412, and p-value
= 0.024) compared to the baseline (M = —0.643 and SEM =
0.307) in phase 1. When comparing the Ul-based satisfaction
in phase 1, the ANOVA test showed that none of the groups
was significantly different from each other (F = 1.032 and p-
value = 0.400). Even though significant differences were not
present when comparing the Ul-based satisfaction, Inquisitive
automation also led to the highest satisfaction followed by
manual control in phase 1.

In the phase 2 survey-based satisfaction comparison, the
ANOVA test showed that significant differences [F (4,48) =
2.922 and p-value = 0.030] were present between thermal sat-
isfaction under different levels of automation. The multiple
means comparison showed that manual control (M = 0.923,
SEM = 0.500, and p-value = 0.035) was significantly higher,
and adaptive automation (M = 0.692, SEM = 0.414, and p-
value = 0.070) was marginally higher compared to the baseline
(M = —0.769 and SEM = 0.3023). When comparing the UI-
based satisfaction in phase 2, the ANOVA test did not show
any significant differences (F = 0.462 and p-value = 0.763)
among different levels of automation. However, it is impor-
tant to note that since phase 2 involved only one week of data
for each level of automation, the chances of seeing significant
effects were smaller.

When comparing the combined survey-based satisfaction
ratings from both phases, the ANOVA test showed that signifi-
cant differences (F = 5.70 and p-value = 0.0007) were present
in thermal satisfaction under different levels of automa-
tion. The multiple means comparison showed that Inquisitive
Automation (M = 1.143, SEM = 0.337, and p-value= 0.028)
and full automation (M = 0.893, SEM = 0.320, and p-value=
0.026) were significantly higher, and adaptive automation (M
= 0.679, SEM = 0.391, and p-value= 0.093) was marginally
higher than the Baseline (M = —0.643 and SEM = 0.308). The
ANOVA test showed that none of the groups were significantly
different (F = 1.014 and p-value = 0.410) when comparing the
combined Ul-based satisfaction from both phases. Although
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CORRELATIONS BETWEEN ACCURACY OF SATISFACTION PREDICTION
AND DIFFERENT PERFORMANCE METRICS

TABLE IV

Automation Performance Phase 1 | Phase 2

Level Metric Satisfaction Satisfaction
Accuracy Accuracy

Inquisitive Percent Declined | -0.813* -0.59*

Adaptive Percent Declined -0.671* -0.51

Adaptive Overrides 0.119 0.149

Full Overrides -0.284 -0.557*

Inquisitive Satisfaction-UI 0.5405% 0.528

Adaptive Satisfaction-UI 0.436 0.491

Full Satisfaction-UI 0.449 0.500

The reported values are Pearson correlation coefficients.
* indicates significance at p-value < 0.05

significant differences were only observed for some conditions
due to the small number of participants, the results overall
strongly support that having PCS devices for local control of
the thermal environment leads to higher satisfaction compared
to the baseline condition, and having some level of automation,
especially inquisitive automation, led to a higher satisfaction
than manual control.

The accuracy of the comfort models also had a direct corre-
lation with the performance of the agent. The performance is
evaluated based on the percent declined for inquisitive and
adaptive automation, the number of overrides for adaptive
and full automation, and Ul-based thermal satisfaction for all
levels of automation. For inquisitive automation, the percent
declined averaged 55.8% &+ 26% in phase 1, and 23% =+ 30%
in phase 2. For adaptive automation, the percent declined aver-
aged 46.7% =+ 34% in phase 1, and 22% =+ 29% in phase 2.
The number of overrides under adaptive automation averaged
2.9 £ 4.9 in phase 1, and 0.14 4 0.36 in phase 2. For full
automation, the number of overrides averaged 1.7 & 3.2 in
phase 1, and 3.3 £ 4.5 in phase 2. The Ul-based satisfaction
averaged 0.55 £ 1.09 for inquisitive automation, 0.01 £ 0.96
for adaptive automation, and 0.12 + 1.35 for full automation
in phase 2, 0.27 & 1.68 for inquisitive automation, 0.12 £ 1.42
for adaptive automation, and 0.12 =+ 1.56 for full automation in
phase 2 on the 7-point thermal satisfaction scale [—3 to 4-3].
In general, we observed a large variation across different par-
ticipants as evidenced by the relatively large standard deviation
compared to the mean.

Table IV shows the correlations between different
performance metrics and accuracy of satisfaction prediction
models in each phase. We observed moderate to strong nega-
tive correlations between the accuracy of thermal satisfaction
models and the percent declined in inquisitive automation
and adaptive automation in both phase 1 and phase 2. We
observed a weak negative correlation between the accuracy
of thermal satisfaction models and the number of overrides
in the full automation for phase 1 and a moderate negative
correlation in phase 1. We also observed moderate positive
correlations between accuracy of thermal satisfaction models
and Ul-based thermal satisfaction in the inquisitive, adaptive,
and full automation levels for both phases. These correlations
indicate that if the prediction accuracy of thermal satisfaction

models is increased, then overrides and percent declined are
likely to decrease, and thermal satisfaction is likely to increase.
The overall results show that the accuracy of thermal satisfac-
tion prediction models have a direct influence on the system
performance and developing new ways to improve comfort
prediction could lead to even higher occupant satisfaction.

V1. DISCUSSION

In this study, we developed and evaluated intelligent agents
capable of controlling PCS devices under different levels of
automation. Our objective was to improve occupant satisfac-
tion with the thermal environment. We observed that the use
of PCS devices improved occupant satisfaction compared to
a baseline condition where PCS devices were not used. We
also observed a significant improvement in end of condition
survey-based satisfaction for inquisitive automation and full
automation compared to the baseline condition. General trends
of improved satisfaction were also observed in average daily
Ul-based satisfaction ratings obtained across these conditions,
although significant differences were not observed.

Although the same 7-point Likert scale was used to assess
thermal satisfaction, survey-based satisfaction was represented
by one rating at the end of each level of automation. This
rating more likely represented the participant’s satisfaction
with how the automation condition managed the thermal envi-
ronment overall. Alternatively, the Ul-based satisfaction was
reported periodically and then averaged over a long period of
time. Since participants were likely to report both satisfac-
tion and dissatisfaction based on the agent’s control actions
and changes in the thermal environment throughout the study
period, Ul-based satisfaction ratings had a higher potential for
regression toward the neutral mean. The resulting near neu-
tral averages across all four conditions indicates that either
the participants were primarily in a neutral state of thermal
satisfaction regardless of the PCS use or that none of the
automation levels continuously created either a highly satis-
factory or highly unsatisfactory thermal environment across
time.

In addition to regression to the neutral mean, there is
also potential for anchoring bias in repeated sensorial assess-
ments, which can cause a current assessment to be based on
past assessment of comfort or satisfaction [49]. This poten-
tial anchoring bias could have also resulted in participants not
utilizing the full scale from —3 to +3 when their thermal sat-
isfaction improves or declines during different time periods,
thereby leading to reduced differences in Ul-based satisfaction
under different levels of automation. As a collective rating of
overall satisfaction under each level of automation, the survey-
based results were less subject to anchoring bias. Therefore,
significant findings from the survey supporting the inquisi-
tive and full automation conditions may most closely represent
levels of automation preferred by the occupants.

In addition, we observed strong to moderate correlations
between the accuracy of thermal satisfaction models and actual
performance of the agent assessed by the percent declined in
inquisitive and adaptive automation, and the number of over-
rides in full automation. However, the correlations between
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model accuracy and percent declined were weaker in phase 2
compared to phase 2 even though the offline accuracy of
thermal satisfaction models on the test set were higher in
phase 2. This suggests that the comfort requirements of par-
ticipants might have changed due to seasonal variations that
were not completely reflected in the satisfaction prediction
models.

We also noted a gradual decrease in the number of com-
fort votes over time, which could have lowered the accuracy of
the comfort models. For instance, the average number of votes
was 26.1 in week 1, 12.4 in week 8, and 13.1 in week 15. The
reduction in number of comfort votes could have been caused
by a decline in interest of participants periodically providing
comfort votes. Future studies could conduct paired compar-
isons to understand the underlying factors behind gradual
decline and develop ways of maintaining regular interactions
with such systems or design systems that do not rely heavily
on continuous interaction with the user. Although we updated
our comfort models between phase 1 and phase 2 to account
for seasonal variations, this reduction in the number of comfort
votes over time could have reduced the ability of comfort mod-
els to reflect the changes in occupant requirements even though
they were periodically updated. In addition, adaptive automa-
tion also depended on the adaptive behavior of prediction
models. It is difficult to isolate the separate impact of the dif-
ferent prediction models on occupant satisfaction. However,
the adaptive model for predicting approve/decline behavior
seems to have improved in phase 2 because of the addition
of new data and daily updates to the adaptive model as seen
by improvements in thermal satisfaction along with a reduction
in overrides and percent declined.

In this study, we utilized supervised learning-based com-
fort prediction models that rely on direct comfort ratings from
the occupants. Alternative ways of inferring occupant comfort
could reduce the biases in self-reported comfort assessments
and potentially improve the accuracy of comfort prediction
models. A previous study showed an average accuracy of 68%
in inferring thermal preference from manual control actions
of PCS devices in a post-hoc analysis [50]. The significant
correlations observed in this study between the accuracy of
thermal satisfaction prediction models and performance met-
rics (manual overrides, percent declined) supports the concept
that occupant satisfaction can be inferred from the usage pat-
terns. Alternate ways of inferring occupant comfort could
accommodate for changes in seasonal variations by removing
the reliance on direct assessment from occupants. Further stud-
ies are needed to evaluate the usefulness of indirect measures
of occupant satisfaction or preference based on user control
actions.

A within-subjects design was used in this study where each
participant experienced all levels of automation. Due to the
nature of within-subjects design, there might have been some
biases due to carryover effects, such as participants getting
habituated with the system and decline in interest to interact
with the system over time. Although the order of the levels of
automation was randomized in phase 2, the carry-over effects
might not have been completely eliminated. Future studies can
explore other experimental designs, such as between-subjects
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designs to eliminate some of the carryover effects that are
possible due to within-subjects design of this study.

Costs associated with the prototype development (about
$500) and the long duration of the study, resulted in a small
number of participants. Despite being limited to a small num-
ber of participants, our sample included individuals of varied
gender, age, job type, and office building setting, together
reducing potential for sample bias that could occur with a
more homogenous participant sample. Additionally, since all
data were obtained from workers in one geographic location,
our findings may not be representative of findings for individ-
uals in other regions or climates. Finally, we did not consider
the energy implications of using PCS devices or the costs and
benefits across different levels of automation.

Previous studies have shown improvement in occupant sat-
isfaction with manually controlled PCS. To the best of our
knowledge, this is the first study to consider different levels of
automation of PCS devices. Despite the limits of this study, our
findings provide preliminary support for the use of intelligent
systems for personalizing indoor environmental conditions to
improve occupant satisfaction further than what is possible
with manual control. Such intelligent systems could be linked
with centralized HVAC systems to provide information about
each occupant’s comfort requirements and operational states of
PCS devices. Further research is required to validate our find-
ings in larger populations and across different regions. These
studies will inform the development of HVAC control schemes
accounting for occupant comfort and PCS operations while
maintaining energy efficient operations.

VII. CONCLUSION

Current HVAC systems, which operate under a “one size
fits all” approach, are unable to accommodate for individual
occupant requirements due to a lack of solutions to integrate
real-time occupant comfort requirements in their operation,
and the inability to control the thermal environment at a gran-
ular level. PCS devices provide the ability to control the
environment around each occupant and enable local control
of the thermal environment. Previous studies have mostly left
the burden of PCS control to the end user, which can lead to
inefficient operation and lack the necessary intelligence that
could be integrated into HVAC operations. In this study, we
developed and implemented an IoT-based intelligent agent that
can personalize the thermal environment around each occupant
by use of a PCS device. The agent is capable of learning indi-
vidual comfort preferences and controlling the PCS devices
using multiple levels of automation to improve occupant sat-
isfaction. We conducted a 15-week field study to evaluate the
impact on occupant satisfaction under four different levels of
automation for controlling PCS devices.

The overall results from this study support the use of PCS
devices, as we observed higher thermal satisfaction under
all levels of automation compared to the baseline condition
where PCS devices were not used. Furthermore, our results
support that some level of automation is useful, as signifi-
cantly higher thermal satisfaction was observed for Inquisitive
Automation and Full Automation of PCS devices than with
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Manual Control alone. We also observed significant corre-
lations between the accuracy of comfort prediction models
and actual performance based on the percentage of declined
requests and number of user overrides. The observed correla-
tions point toward the need for more accurate comfort models.
Current comfort prediction models, including the one used in
our study, rely on direct comfort ratings from the end user
for model training. In our field study, we observed a grad-
ual decline in the number of comfort ratings over time, which
suggests a need for alternate approaches to model occupant
comfort without the need of periodic input from the end user
for long-term real-world deployment of such systems.
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