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Abstract. This paper presents two new algorithms to compute sparse solutions of large-scale
linear discrete ill-posed problems. The proposed approach consists in constructing a sequence of
quadratic problems approximating an `2-`1 regularization scheme (with additional smoothing to en-
sure differentiability at the origin) and partially solving each problem in the sequence using flexible
Krylov–Tikhonov methods. These algorithms are built upon a new solid theoretical justification
that guarantees that the sequence of approximate solutions to each problem in the sequence con-
verges to the solution of the considered modified version of the `2-`1 problem. Compared to other
traditional methods, the new algorithms have the advantage of building a single (flexible) approxi-
mation (Krylov) subspace that encodes regularization through variable “preconditioning” and that
is expanded as soon as a new problem in the sequence is defined. Links between the new solvers
and other well-established solvers based on augmenting Krylov subspaces are also established. The
performance of these algorithms is shown through a variety of numerical examples modeling image
deblurring and computed tomography.
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1. Introduction. Large-scale linear ill-posed inverse problems of the form

Axtrue = btrue + e = b, A ∈ Rm×n,(1.1)

where xtrue is the desired unknown solution and e is some unknown Gaussian white
noise that affects the data b, arise in the discretization of problems stemming from
various scientific and engineering applications, such as astronomical and biomedical
imaging, or computed tomography in medicine and industry. In particular, we are
interested in the case where A is ill-conditioned with ill-determined rank, i.e., the
singular values of A decay and cluster at zero without an evident gap between two
consecutive ones to indicate numerical rank. In this case, due to the presence of noise
in the measured data, the naive solution A†b of (1.1) (where A† is the Moore–Penrose
pseudoinverse of A) can be very different from the desired solution, A†btrue, due to
noise amplification; see, e.g., [23]. Therefore, to obtain a meaningful approximation of
xtrue, problem (1.1) should be regularized, i.e., replaced by a closely related problem
whose solution is less sensitive to perturbations in the data b (for a more detailed
discussion on ill-posed and discrete ill-posed problems and regularization see, e.g.,
[25]).
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S48 S. GAZZOLA, J. G. NAGY, AND M. SABATÉ LANDMAN

One of the best-known approaches for regularizing linear ill-posed problems is
Tikhonov regularization, which, in its general formulation, computes a regularized
approximation to the solution of (1.1) by solving the following minimization problem:

xλ,L = min
x
‖Ax− b‖22 + λ‖Lx‖22 .(1.2)

Here, the regularization parameter λ > 0 balances the effect of the fit-to-data term
‖Ax − b‖22 and the regularization term ‖Lx‖22. The regularization matrix L ∈ Rq×n
has the effect of enhancing certain properties on the solution and it is usually chosen
to be the identity (in this case, problem (1.2) is said to be in standard form) or a
rescaled finite differences approximation of a derivative operator (to enforce smoother
solutions); if the null space of A and the null space of L intersect trivially, the general-
form Tikhonov solution xλ,L is unique.

For large-scale problems, where A does not have an exploitable structure nor is
even explicitly stored (i.e., may be defined as a function that efficiently computes the
actions of A and, possibly, AT on vectors), the only way to solve problem (1.1) is to
apply an iterative method to obtain a sequence of approximated solutions {xk}k≥1.
In fact, many well-known general iterative solvers, e.g., Landweber and Kaczmarz
methods, and many Krylov subspace methods leverage the so-called semiconvergence
phenomenon and lead to a regularized solution if the iterations are stopped sufficiently
early, with the number of iterations playing the role of a discrete regularization pa-
rameter (see [25, Chapter 6] for a more accurate description). This paper will only
consider the GMRES and LSQR iterative methods and variations thereof: these are
Krylov methods that compute a regularized solution by expanding an approxima-
tion subspace for the solution and solving a projected least squares problem at each
iteration. Note that LSQR is mathematically equivalent to CGLS.

When regularization relies on semiconvergence only, a bad stopping criterion can
lead to a big error in the approximated solution. Moreover, semiconvergence may hap-
pen before the relevant basis vectors for the solution are incorporated in the Krylov
approximation subspace for the solution; see [25, Chapter 6] and [28] for more details.
These issues can be mitigated by applying further regularization within the iterations,
e.g., by using schemes that combine an iterative Krylov solver and Tikhonov regu-
larization, as detailed below. Consider, for simplicity, L = I in (1.2), i.e., Tikhonov
regularization in standard form. Projecting (1.2) into a kth dimensional Krylov sub-
space spanned by the columns of the matrix Vk leads to

xk = Vkyk, yk = arg min
y
‖AVky − b‖22 + λ‖Vky‖22,(1.3)

which is sometimes referred to as the “first-regularize-then-project” approach [25,
Chapter 6]. Alternatively, a “first-project-then-regularize” approach can also be used,
which involves projecting the original linear system (1.1) and then applying standard
Tikhonov regularization, leading to

xk = Vkyk, yk = arg min
y
‖AVky − b‖22 + λ‖y‖22.(1.4)

For fixed λ, and assuming the columns of Vk to be orthonormal, expressions (1.3)
and (1.4) are equivalent and both schemes are interchangeable. Methods employing
the latter approach are also known as hybrid methods [11, 37] and they have recently
attracted a lot of attention in the case of large-scale problems where the regularization
parameter λ is not known a priori; see [10, 19, 21, 30]. Indeed, hybrid methods
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ITERATIVELY REWEIGHTED FGMRES AND FLSQR S49

allow for a very efficient (local) choice of the parameter λ = λk at each iteration
k� min{m,n}; moreover, when k increases, λk seems to stabilize around a value that
is suitable for the full-dimensional problem (1.2).

Tikhonov regularization as defined in (1.2) is rather restrictive, and more general
regularization strategies can yield to better approximations of the solution of (1.1).
In particular, this paper focuses on regularized problems of the form

min
x
‖Ax− b‖22 + λ‖x‖pp ,(1.5)

where, for 0 < p ≤ 1, the `p-norm regularization term enforces sparsity in the so-
lution. Although sparse vectors have a small `0 “norm,” considering an `0 regu-
larization term yields to an NP hard optimization problem (1.5); see [16]. There-
fore, it is common to approximate the `0 regularization term by an `p term with
0 < p ≤ 1, noting that for 0 < p < 1 problem (1.5) is nonconvex, and for p = 1
problem (1.5) approximates the desired `0-norm via convex relaxation but is non-
differentiable at the origin; see, e.g., [27, 31, 32]. Note that if sparsity of the so-
lution is assumed in a different domain (e.g., wavelets or discrete cosine transform)
a sparsity transform can be incorporated in the regularization term. The values
0 < p ≤ 2 will be considered in this paper; when p = 2, problem (1.5) reduces to
Tikhonov regularization in standard form. The `2-`p regularization problem (1.5) can
be solved by a variety of optimization methods [4, 22, 33, 46] or by employing iterative
schemes that approximate the regularization term in (1.5) by a sequence of weighted
`2 terms [39]. Methods of the second kind come equipped with (local) convergence
proofs for most values of p > 0 but usually rely on inner-outer schemes so they can
become very expensive computationally; see, e.g., [5, Chapter 4].

More recently, solvers for the `2-`p regularization problem that avoid nested loops
of iterations by combining reweighting techniques and modified Krylov methods have
gained popularity. Namely, generalized Krylov subspaces are considered in [31, 27,
6], and hybrid solvers based on the flexible Arnoldi and the flexible Golub–Kahan
decompositions are considered in [9, 18, 20].

In this paper, we propose two new iterative Krylov–Tikhonov methods that use
the flexible Arnoldi and the flexible Golub–Kahan decomposition, respectively, to
solve the `2-`p regularization problem (1.5) by building a single approximation sub-
space through the iterations. Both algorithms are essentially different from the strate-
gies already available in the literature. On the one hand, differently from [31, 27, 6],
the approach proposed in this paper is based on flexible Krylov subspaces. On the
other hand, differently from the “first-project-then-regularize” scheme corresponding
to hybrid methods implicitly adopted in [9, 18], the approach proposed in this pa-
per exploits a “first-regularize-then-project” scheme. In fact, another contribution of
this paper is to show that regularizing and projecting are not interchangeable any-
more in the flexible Krylov subspace setting, and properties derived from using the
“first-regularize-then-project” approach are used to provide theoretical justification
of convergence for the newly proposed algorithms. An original interpretation of the
new algorithms in the general framework of augmented and recycled Krylov sub-
spaces is also given. It should be stressed that both new algorithms are inherently
“matrix-free” (i.e., they only require the action of A on vectors, and additionally the
action of AT if the flexible Golub–Kahan decomposition is considered) and allow for
an iteration-dependent choice of the regularization parameter.

The paper is organized as follows. In section 2 background material on `2-`p reg-
ularization is reviewed. In particular, section 2 explains how to approximate the `p
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S50 S. GAZZOLA, J. G. NAGY, AND M. SABATÉ LANDMAN

regularization term in (1.5) using an iteratively reweighted scheme, and how the trans-
formation of the resulting problem into standard form leads to iteration-dependent
right preconditioning for a Tikhonov problem of the form (1.2). In section 3 two new
algorithms for sparse reconstruction (called IRW-FGMRES and IRW-FLSQR) are
introduced, along with a solid theoretical proof of convergence and links with aug-
mented Krylov subspace methods. Finally, numerical results are presented in section
4, and general conclusions are given in section 5.

2. Background on `2-`p regularization. Iteratively reweighted schemes for
the `2-`p regularization problem intrinsically rely on the interpretation of problem
(1.5) as a nonlinear weighted least squares problem of the form

min
x
‖Ax− b‖22 + λ‖x‖pp = min

x
‖Ax− b‖22 + λ‖W (p)(x)x‖22,(2.1)

where the diagonal weighting W (p)(x) is defined as

W (p)(x) = diag

((
|[x]i|

p−2
2

)
i=1,...,n

)
,(2.2)

and [x]i denotes the ith component of the vector x. Note that when 0 < p < 2,
division by zero might occur if [x]i = 0 for any i ∈ {1, . . . , n} and, in fact, this is a far
from unlikely situation in the case of sparse solutions. For this reason, in this paper,
instead of (2.2), the closely related weights

W̃ (p,τ)(x) = diag

(((
[x]2i + τ2

) p−2
4

)
i=1,...,n

)
,(2.3)

where τ is a fixed parameter chosen ahead of the iterations, are considered, and
problem (2.1) is replaced by

min
x
‖Ax− b‖22 + λ‖W̃ (p,τ)(x)x‖22︸ ︷︷ ︸

T (p,τ)(x)

,(2.4)

where τ 6= 0 also ensures that T (p,τ)(x) is differentiable at the origin for p > 0.
Note that (2.4) should be considered a smooth version of problem (2.1) and, formally,
problem (2.1) can be recovered from problem (2.4) setting τ = 0.

A well-established framework to solve problem (2.4) is the local approximation
of T (p,τ) by a sequence of quadratic functionals Tk(x) that give rise to a sequence of
quadratic problems of the form

xk,? = arg min
x
‖Ax− b‖22 + λ‖Wkx‖22 + ck︸ ︷︷ ︸

Tk(x)

,(2.5)

where Wk = W̃ (p,τ)(xk−1,?). Here, ck (a constant term for the kth problem in the
sequence with respect to x) and λ (which has absorbed other possible multiplicative
constants with respect to (2.4)) are chosen so that Tk(x) in (2.5) corresponds to a
quadratic tangent majorant of T (p,τ)(x) in (2.4) at x = xk−1,?. By definition, this
implies that Tk(x) ≥ T (p,τ)(x) for all x ∈ Rn, Tk(xk−1,?) = T (p,τ)(xk−1,?), and
∇Tk(xk−1,?) = ∇T (p,τ)(xk−1,?); see also [27, 39]. Since p and τ are chosen ahead of
the iterations, they are omitted from the notation for the weighting matrix Wk.

The vector xk,? formally denotes the solution of (2.5). For moderate-scale prob-
lems, or for large-scale problems where A has some exploitable structure, xk,? may be
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ITERATIVELY REWEIGHTED FGMRES AND FLSQR S51

obtained by applying a direct solver to (2.5). For large-scale unstructured problems,
only iterative solvers can be used in different fashions to approximate the solution of
(2.5), naturally leading to an inner-outer iteration scheme for the sequence of prob-
lems (2.4). This is the case considered in the present paper, so that xk,? corresponds
to the approximate solution xk,l of the kth problem of the form (2.5) (or “at the
kth outer iteration”) at the lth iteration of the inner cycle of iterations. Iteratively
reweighted least squares (IRLS) and iteratively reweighted norm (IRN) methods based
on an inner-outer iteration scheme are very popular [12, 39] and have been used in
combination with different inner solvers, such as steepest descent and CGLS. Typi-
cally xk,? = xk,l is obtained when a stopping criterion is satisfied for problem (2.5)
to indicate convergence of the approximate solution; alternatively, problem (2.5) can
be partially solved and xk,? = xk,l denotes the latest available approximation of x.
In any case, Tk(x) in (2.5) is a quadratic tangent majorant of T (p,τ)(x) in (2.4) at
x = xk−1,?, and IRLS or IRN approaches are particular instances of majorization-
minimization schemes: for fixed λ, it is known that solving a sequence of problems
of the form (2.5) produces a sequence of approximate solutions that converge to the
minimizer of problem (2.4); see, e.g., [12]. Fully solving each problem (2.5) can result
in a computationally demanding scheme.

For Wk square and invertible (note that this can be assumed for any fixed p > 0
when the weights are defined as in (2.3) with τ > 0), problem (2.5) can be easily and
conveniently transformed into standard form as follows:

x̄k,? = arg min
x̄
‖AW−1

k x̄− b‖22 + λ‖x̄‖22 so that xk,? = W−1
k x̄k,?.(2.6)

The interpretation of the matrix W−1
k as a right preconditioner for problem (2.5) can

be exploited under the framework of prior-conditioning [7]. The simplest way to use
formulation (2.6) in combination with Krylov methods is to rely on an inner-outer
scheme (e.g., with an inner loop of (hybrid) GMRES or LSQR iterations [9, 18]) so
that, at each outer iteration, a new Krylov subspace is built. Let Vk,l ∈ Rn×l be the
matrix whose columns, at the lth inner iteration of the kth outer cycle, span a Krylov
subspace Kk,l of dimension l. Then, problem (2.6) can be projected and solved in
Kk,l by computing

ȳk,l = arg min
ȳ

∥∥∥A x︷ ︸︸ ︷
W−1
k Vk,lȳ︸ ︷︷ ︸

x̄

−b
∥∥∥2

2
+ λ‖Vk,lȳ︸ ︷︷ ︸

x̄

‖22 ,(2.7)

so that x̄k,l = Vk,l ȳk,l and xk,l = W−1
k x̄k,l = W−1

k Vk,l ȳk,l. Note that since Vk,l has
orthonormal columns, solving (2.7) is equivalent to solving

ȳk,l = arg min
ȳ

∥∥∥A x︷ ︸︸ ︷
W−1
k Vk,l︸ ︷︷ ︸
Zk,l

ȳ−b
∥∥∥2

2
+ λ‖ȳ‖22,(2.8)

which is consistent with the idea of “first-regularize-then-project” being equivalent to
“first-project-then-regularize” for hybrid solvers (cf. [25, Chapter 6]). An alternative
interpretation of this scheme is that, at the lth inner iteration of the kth outer cycle,
an approximate solution to the original problem is sought in the preconditioned space
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R(Zk,l) = R(W−1
k Vk,l), where R(·) denotes the range of a matrix. Note that, when

applying preconditioned GMRES,

R(Zk,l) = W−1
k Kl

(
AW−1

k , b
)

(2.9)

= span
{
W−1
k b,W−1

k

(
AW−1

k

)
b, . . . ,W−1

k

(
AW−1

k

)l−1
b
}
,

while, when applying preconditioned LSQR,

R(Zk,l) = W−1
k Kl

(
W−1
k ATAW−1

k ,W−1
k AT b

)
(2.10)

= span

{(
W−1
k

)2
AT b, , . . . ,

((
W−1
k

)2
ATA

)l−1 (
W−1
k

)2
AT b

}
.

With respect to preconditioned GMRES, preconditioned LSQR naturally applies the
inverse of the weight matrix Wk twice for every new direction included in the search
space and, hence, twice at each iteration.

It should be stressed that for both (2.7) and (2.8) to be equivalent to (2.6), the
regularization term in (2.7) has to be ‖Vk,lȳ‖22, where Vk,l ȳ = x̄ in (2.6), and not
‖Zk,lȳ‖22. Using ‖Zk,lȳ‖22 as a regularization term would in fact be equivalent to
solving a different problem, namely, Tikhonov problem (1.2) with the identity as a
regularization matrix (i.e., in standard form), in the preconditioned Krylov subspace
R(Zk,l). It is important to note that R(Zk,l) incorporates regularization through
preconditioning.

Flexible Krylov methods provide a natural framework to efficiently avoid nested
loops of iterations by regarding the inverse of the regularization matrix (stemming
from an iteratively reweighted regularization term) as iteration-dependent right pre-
conditioning in (2.6). In this setting, at the kth iteration, the weights Wk are updated
using the most recent approximation of the solution, i.e., the one at the (k −1)th iter-
ation of the flexible solver, and incorporated in the construction of the flexible Krylov
space in the form of the adaptive preconditioner W−1

k . Flexible Krylov subspaces
based on either the flexible Arnoldi or the flexible Golub–Kahan decompositions are
summarized below.

Flexible Arnoldi decomposition. The flexible Arnoldi decomposition of A ∈ Rn×n
was first introduced in [40], and it is commonly employed in different settings to incor-
porate adaptive or increasingly improved preconditioners into the solution subspace;
see [42, Chapter 9] and [43, 44]. Given A (square), b and right iteration-dependent
preconditioning matrices W−1

k , the partial factorization

AZk = Vk+1H̄k(2.11)

is updated at iteration k (for k ≤ n), where H̄k ∈ R(k+1)×k is upper Hessenberg, Vk+1

has orthonormal columns with v1 = b/‖b‖2, and Zk = [W−1
1 v1, . . . ,W

−1
k vk] ∈ Rn×k.

Note that when the preconditioning is fixed, i.e., Wi = W , flexible Arnoldi reduces to
standard right preconditioned Arnoldi (see (2.9)).

Flexible Golub–Kahan decomposition. The flexible Golub–Kahan decomposi-
tion of A ∈ Rm×n has been recently introduced in [9] to solve `p-regularized least
squares problems. Given A, b, and iteration-dependent right preconditioning matri-
ces (W−1

k )2, the partial factorizations

AZk = Uk+1Mk and ATUk+1 = Vk+1Sk+1(2.12)

are updated at iteration k (for k ≤ min{m,n}). In the first equation of (2.12),
Mk ∈ R(k+1)×k is upper Hessenberg, Uk+1 ∈ Rm×(k+1) has orthonormal columns

D
ow

nl
oa

de
d 

07
/0

9/
21

 to
 1

70
.1

40
.1

42
.2

52
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ITERATIVELY REWEIGHTED FGMRES AND FLSQR S53

with u1 = b/‖b‖2, and Zk = [(W−1
1 )2v1, . . . , (W

−1
k )2vk] ∈ Rn×k. Moreover, Sk+1 ∈

R(k+1)×(k+1) is upper triangular and Vk+1 ∈ Rn×(k+1) has orthonormal columns. Note
that for fixed preconditioning, i.e., Wi = Wk, FLSQR with preconditioner (W−1

k )2

reduces to right preconditioned LSQR, which is mathematically equivalent to CG
applied to the normal equations with split preconditioner W−1

k . Although this relation
is not stressed in [9], it can be observed in the definition of the search space for
preconditioned LSQR in (2.10). The cost of computing these partial factorizations is
dominated by one matrix-vector product with A and one matrix-vector product with
AT per iteration.

Detailed computations to update the partial flexible Arnoldi and flexible Golub–
Kahan decompositions at the kth iteration are reported below. Notationwise, [·]i,j
denotes the (i, j)th entry of a matrix, and the vectors vi, ui, and zi denote the ith
column of the matrices Vk, Uk, and Zk, correspondingly.

Flexible Arnoldi update

1: zk = W−1
k vk

2: w = Azk
3: Compute [H ]i,k = wT vi for i = 1, . . . , k and set w = w −

∑k
i=1[H]i,kvi

4: Set [H ]k+1,k = ||w||2 and, if [H]k+1,k 6= 0, take vk+1 = w/[H]k+1,k

Flexible Golub–Kahan update

1: w = ATuk
2: Compute [S]i,k = wT vi for i = 1, . . . , k − 1 and set w = w −

∑k−1
i=1 [S]i,kvi

3: Set [S]k,k = ||w||2 and, if [S]k,k 6= 0, take vk = w/[S]k,k
4: zk = (W−1

k )2vk
5: w = Azk
6: Compute [M ]i,k = wTui for i = 1, . . . , k and set w = w −

∑k
i=1[M ]i,kui

7: Set [M ]k+1,k = ||w||2 and, if [M ]k+1,k 6= 0, take uk+1 = w/[M ]k+1,k

Flexible methods to solve `p-regularized least square problems have already been
used in [18, 9], where, at the kth iteration, the following projected problem is solved:

ȳk = arg min
ȳ
‖AZkȳ − b‖22 + λ‖ȳ‖22 so that xk = Zkȳk .(2.13)

Note that ȳk corresponds to the coefficients of the solution of (1.2) (in standard
form) in the basis given by the columns of Zk, which span a flexible Krylov space of
dimension k with iteration-dependent preconditioner W−1

k and (W−1
k )2 for FGMRES

and FLSQR, respectively, where Wk = W̃ (p,τ)(xk−1). Although extensive numerical
tests show that methods (2.13) are efficient and deliver excellent reconstructions when
compared to other Krylov solvers and other state-of-the-art methods for (1.5), it
should be noted that solving problem (2.13) is not equivalent to solving problem
(2.5) projected onto an appropriate flexible Krylov subspace at the kth iteration.
Indeed, assume that n iterations of a flexible algorithm (2.13) have been performed,
so that R(Zn) = Rn: in this situation expression (2.13) corresponds to the Tikhonov
problem (1.2) in standard form associated to (1.1) (and not the modification of the
`2-`p problem in (2.4)). In other words, the “first-regularize-then-project” approach
is not equivalent to the “first-project-then-regularize” approach for flexible Krylov
solvers. Alternatively, this mismatch can be explained using the fact that, unlike in
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the case of (nonflexible) preconditioned Krylov methods, in the problem projected
using flexible Krylov subspaces there is no straightforward way of representing the
variable x̄ in (2.6) before “back-transformation.” Note that [9] proposes to replace the
regularization term ‖ȳ‖22 in (2.13) by ‖Zkȳ‖22: while (2.13) can be regarded as a hybrid
regularization method that imposes additional standard form Tikhonov regularization
on the projected solution ȳk, the regularization term ‖Zkȳ‖22 enforces standard form
Tikhonov regularization on xk = Zkȳk and does not lead to a scheme equivalent to
the “first-regularize-then-project” one, either.

In the following section, two algorithms exploiting flexible Krylov subspaces in
connection with the “first-regularize-then-project” framework will be presented along
with a proof of convergence of the resulting schemes.

3. Iteratively reweighted flexible Krylov subspace methods. In this sec-
tion, two new algorithms are presented to solve (2.4) using a sequence of approximate
problems of the form (2.5) and flexible Krylov subspaces (based on the flexible Arnoldi
decomposition and the flexible Golub–Kahan decomposition, respectively).

Here and in the following, without loss of generality, no initial guess is considered
for the solution of (2.4) in a “warm start” fashion; however, a possible initial guess
x0 6= 0 may be purely used to initialize the weights (2.3) at the very first iteration
of the algorithm. The presented algorithms are assumed to be breakdown-free, i.e.,
at iteration k ≤ min{m,n}, the approximation subspace R(Zk) for the solution has
dimension k.

3.1. The new IRW-FGMRES and IRW-FLSQR methods. The kth itera-
tion of the new IRW-FGMRES and IRW-FLSQR methods computes an approximate
solution xk belonging to the space spanned by the columns of the matrix Zk appearing
in (2.11) or (2.12), respectively. More precisely, problem (2.5) is solved partially (i.e.,
in the space spanned by the columns of Zk) as a projected least squares problem of
the form

ȳk = arg min
ȳ
‖AZkȳ − b‖22 + λ‖WkZkȳ‖22 so that xk = Zkȳk .(3.1)

Let

WkZk = QkRk, with Qk ∈ Rn×k, Rk ∈ Rk×k,(3.2)

be the reduced QR factorization of the tall and skinny matrix WkZk, which can be
computed efficiently (see, for example, [13]). Then (3.1) is equivalent to

ȳk = arg min
ȳ
‖H̄kȳ − ‖b‖2e1‖22 + λ‖Rkȳ‖22 , so that xk = Zkȳk,(3.3)

for IRW-GMRES, or

ȳk = arg min
ȳ
‖Mkȳ − ‖b‖2e1‖22 + λ‖Rkȳ‖22 , so that xk = Zkȳk,(3.4)

for IRW-FLSQR. With a notation analogous to (2.13), ȳk corresponds to the coeffi-
cients of the solution of (2.5) in the basis formed by the columns of Zk, which span a
flexible Krylov space of dimension k with iteration-dependent preconditioning W−1

k

for IRW-FGMRES and (W−1
k )2 for IRW-FLSQR (where Wk = W̃ (p,τ)(xk−1)). Af-

ter the approximate solution xk to problem (3.1) has been computed, the weights

Wk+1 = W̃ (p,τ)(xk) are (immediately) updated to be used in the next IRW-FGMRES
or IRW-FLSQR iteration.
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Although (3.1) might seem a rather unnecessarily convoluted formulation, since
a change of variables for the regularization term is done and undone (i.e., an initial
transformation into standard form in (2.6) eventually leads to a Tikhonov problem in
general form), formulation (3.1) provides two main advantages over (2.8) and other
IRN strategies based on Krylov subspaces. First, the iteration-dependent regular-
ization matrix Wk favorably affects the approximation subspace for the solution of
problems of the form (2.5), i.e.,

xk ∈ R(Zk) = R
([
W−1

1 v1, . . . ,W
−1
k vk

])
,

for a set of vectors vi that depend on the choice of IRW-FGMRES or IRW-FLSQR;
see also [9, 20]. Second, problem (3.1) can be interpreted as a projection of the
kth full-dimensional Tikhonov problem (2.5) (i.e., in a “first-regularize-then-project”
framework). As a consequence, it can be proven that the sequence of approximate
solutions {xk}k≥1 computed by IRW-FGMRES or IRW-FLSQR converges to the so-
lution of problem (2.4).

Remark 3.1. Note that, assuming n ≤ m in (1.1), the IRW-FGMRES and IRW-
FLSQR methods can be extended to the case when the number of iterations exceeds
n by considering

xk =

{
arg minx∈R(Zk) Tk(x) for k = 1, . . . , n− 1,

arg minx∈Rn Tk(x) for k = n, . . . ,
(3.5)

where Tk(x) is defined in (2.5). Indeed, when n ≤ k, an iteration of IRW-FGMRES
or IRW-FLSQR corresponds to an IRN iteration for `p regularization (1.5), where
the solution of each subproblem (2.5) is computed in a “direct” fashion because the
approximation subspace for the solution coincides with Rn. Note, however, that this
situation is not expected to happen in practice for large-scale problems.

Remark 3.2. Some numerical instabilities might happen in generating WkZk in
the regularization term in (3.1) when applying the new IRW-FGMRES and IRW-
FLSQR methods, due to division by almost zeros in the weights component. Section
4 presents an example where this happens and discusses two possible fixes that can
be adopted at the implementation level to improve stability.

The new IRW-FGMRES and IRW-FLSQR methods are sketched in Algorithm 3.1.
If k � min{m,n}, the computational cost of the kth iteration of Algorithm 3.1 is

dominated by the computational cost of updating the factorizations (2.11) or (2.12).
Indeed, for IRW-FGMRES and assuming that A is dense, computing matrix-vector

Algorithm 3.1. IRW-FGMRES and IRW-LSQR methods.

1: Input: A, b, p, τ> 0, x0

2: Initialize: v1 = b/||b||2 for IRW-FGMRES, u1 = b/||b||2 for IRW-FLSQR

3: If x0 6= 0 W1 = W̃ (p,τ)(x0) else W1 = In
4: for k = 1, . . . , until a stopping criterion is satisfied do
5: Update (2.11) (for IRW-FGMRES) or (2.12) (for IRW-FLSQR)
6: Compute ȳk in (3.3) (for IRW-FGMRES) or in (3.4) (for IRW-FLSQR)
7: Compute xk = Zkȳk
8: Update the weights Wk+1 = W̃ (p,τ)(xk)
9: end for
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products with A amounts to O(mn) flops (but could be much less if A is sparse or has
some structure), while performing the orthonormalization steps amounts to O(kn)
flops. Forming the matrix WkZk and computing the QR factorization (3.2) amounts
to O(nk2) flops, while solving problem (3.3) and forming xk amounts to O(k3) flops.
Similar estimates can be derived for IRW-FLSQR.

3.2. Convergence of IRW-FGMRES and IRW-FLSQR. Note that even if
in practice IRW-FGMRES and IRW-FLSQR allow for an iteration-dependent choice
of the regularization parameter λ in the functional T (p,τ)(x) in (2.4), in this section
λ is assumed to be known a priori and fixed throughout the iterations.

Lemma 3.3. Assume that no breakdown happens in the flexible Arnoldi and
Golub–Kahan algorithms. Then the sequence {T (p,τ)(xk)}k≥1 for 0 < p ≤ 2, where
T (p,τ)(x) is defined in (2.4), and where xk is the approximate solution computed after
k steps of the IRW-FGMRES or the IRW-FLSQR method, is decreasing monotonically
and it is bounded from below by zero.

Proof. Consider a fixed p ∈ (0, 2] and τ > 0. Since T (p,τ)(x) ≥ 0, only the fact
that T (p,τ)(xk) is monotonically decreasing needs to be proved, i.e., that T (p,τ)(xk) ≤
T (p,τ)(xk−1) for every k ≥ 1. Consider Tk(x) defined in (2.5) (note that it is defined

with respect to Wk = W̃ (p,τ)(xk−1)) and recall that Tk(x) is a quadratic tangent
majorant of T (p,τ)(x) at point xk−1, i.e.,

T (p,τ)(xk−1) = Tk(xk−1) and T (p,τ)(x) ≤ Tk(x) ∀x.(3.6)

In particular, for xk,

T (p,τ)(xk) ≤ Tk(xk).(3.7)

Moreover, recalling the definition of xk in (3.1), and since xk−1 ∈ R(Zk−1) ⊂ R(Zk),

Tk(xk) = min
x∈R(Zk)

Tk(x) ≤ Tk(xk−1),(3.8)

so, combining (3.6), (3.7), and (3.8),

T (p,τ)(xk) ≤ Tk(xk) ≤ Tk(xk−1) = T (p,τ)(xk−1) ,(3.9)

which concludes the proof.

Theorem 3.4. Under the same assumptions of Lemma 3.3, the sequence
{xk}k≥1, where xk is the approximated solution computed after k steps of IRW-
FGMRES or IRW-FLSQR with p > 0, is such that

lim
k→∞

‖xk − xk−1‖2 = 0.

Moreover, it converges to a stationary point of T (p,τ) and, if p ≥ 1, this is the unique
solution of (2.4).

Proof. Thanks to Lemma 3.3, {T (p,τ)(xk)}k≥1 has a stationary point. The con-
vergence result for {xk}k≥1 proved in Theorem 5 of [27] for majorization-minimization
methods based on generalized Krylov subspaces, when k ≥ n, can be applied in this
setting as the same majorization for T (p,τ) is used.
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It should be stressed that, although the regularization parameter λ in (3.1) is
assumed fixed, the IRW-FGMRES and the IRW-FLSQR methods naturally allow for
an iteration-dependent regularization parameter λk to be adaptively set at the kth
iteration (e.g., at line 6 of Algorithm 3.1). Indeed, when considering inner-outer
iterative schemes for (2.6) or flexible Krylov methods for (2.13), one can employ ap-
proaches typically used for hybrid methods (e.g., projected versions or approximations
of well-known regularization parameter rules for Tikhonov problem (1.2); see [9, 18]).
For IRW-FGMRES and IRW-FLSQR to be consistent with the “first-regularize-then-
project” framework, one should make sure that the parameter λk selected at the kth
iteration according to the adopted rule is a suitable λ for problem (2.5) and, eventually,
for problem (1.5): although for projection methods based on standard Krylov sub-
spaces convergence of λk to a λ can be guaranteed in some situations (e.g., when using
standard Golub–Kahan bidiagonalization and the discrepancy principle; see [21]), it is
not immediate to generalize these results to IRW-FGMRES and IRW-FLSQR. In the
numerical experiments displayed in section 4 the discrepancy principle is employed to
select the regularization parameter at each IRW-FGMRES or IRW-FLSQR iteration.

3.3. Alternative interpretation of IRW flexible methods. Augmented
Krylov subspaces are most commonly used to incorporate an initial “guess” subspace
of moderate dimension within a (traditional) Krylov subspace for the approximation
of the solution of a linear system. In the framework of ill-posed problems, this ap-
proach is extremely beneficial if the initial “guess” vectors are chosen to model known
features of the solution (see, e.g., [1, 2, 3, 15]); a combination of Tikhonov regular-
ization and projection onto augmented Krylov subspaces has been considered in [24].
When performing iteratively reweighted schemes, a sequence of different but closely
related problems of the form (2.5) or, equivalently, (2.6) is considered. Potentially,
an augmented Krylov subspace method could be used to solve each of the problems
if one had a good initial set of “guess” vectors. In this setting it is argued that IRW
flexible Krylov methods can be regarded as particular instances of augmented Krylov
methods where, when approximating the solution of the kth problem of the form (2.5)
(i.e., at iteration k ≤ min{m,n}), the initial “guess” subspace is taken to be R(Zk−1)
(i.e., the flexible Krylov subspace available from the previous iteration) and only one
iteration of a (standard) Krylov method is performed (so that, in particular, the size
of the augmentation subspace for the kth problem of the form (2.5) is k − 1). This
interpretation also draws similarities with the idea of recycling Krylov methods for
sequences of linear systems [29, 38] and can be extended to flexible Krylov methods
in general. Indeed, some analogies between flexible GMRES and augmented GMRES
were already established in [8, 41]. Although the following derivations are specified
for IRW-FGMRES and for augmented methods based on GMRES, they can be easily
extended to handle IRW-FLSQR and augmented methods based on LSQR.

Consider the kth IRW-FGMRES iteration. Using the identity

Zk = [Zk−1,W
−1
k vk] = W−1

k [WkZk−1, vk] ,

the flexible Arnoldi partial factorization (2.11) can be reformulated as

A[Zk−1,W
−1
k vk] = AW−1

k [WkZk−1, vk] = [Vk, vk+1]H̄k,(3.10)

and the kth minimization problem (3.1), solved at the kth iteration of IRW-FGMRES,
can be expressed as

ȳk = arg min
ȳ
‖AW−1

k [WkZk−1, vk]ȳ − b‖22 + λ‖[WkZk−1, vk]ȳ‖22 .(3.11)
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Then, x̄k = [WkZk−1, vk]ȳk is an approximate solution of the kth problem of the form
(2.6) that belongs to the space R([WkZk−1, vk]), and xk = W−1

k x̄k is an approximate
solution of the kth problem of the form (2.5) that belongs to the space R(Zk).

Now consider a single step of the augmented Arnoldi process with augmentation
space R(Zk−1) and with starting vector

v̂k =
(
I − Vk−1V

T
k−1

)
rk−1

/∥∥(I − Vk−1V
T
k−1

)
rk−1

∥∥
2
, with rk−1 = b−Axk−1 ,

(3.12)

so that v̂k = vk. This leads to an approximation subspace for the solution of dimen-
sion k and can be written as follows:

1: Define v̂k as in (3.12) and set Vk = [Vk−1, v̂k].
2: Compute ẑk = W−1

k v̂k.
3: Compute ŵ = (I − VkV Tk )Aẑk.

4: Take [Ĥ]k+1,k = ‖ŵ‖2.

5: Compute v̂k+1 = ŵ/[Ĥ]k+1,k.

In the above algorithm, the matrix Vk in line 1 coincides with the matrix Vk in (3.10)
because v̂k = vk. Lines 3 to 5 can be rearranged as

[Ĥ]k+1,k v̂k+1 =
(
I − VkV Tk

)
Aẑk so that Aẑk = Vk

(
V Tk Aẑk

)
+ v̂k+1[Ĥ]k+1,k .

Incorporating augmentation and considering the partial factorization (2.11) with k
replaced by k − 1, the following decomposition is obtained:

A[Zk−1, ẑk] = [Vk, v̂k+1]

[
H̄k−1 V Tk Aẑk

0 [Ĥ]k+1,k

]
= [Vk, v̂k+1]Ĥk.(3.13)

Comparing the above algorithm to the flexible Arnoldi algorithm in section 2, it is
immediate to see that ẑk = W−1

k v̂k = W−1
k vk = zk, and v̂k+1 = vk+1. Therefore,

by inspection, it can be seen that this formulation is equivalent to (3.10) and that
H̄k = Ĥk.

As a consequence, the projection step performed to compute ȳk in (3.11) using
either the flexible or the augmented approach is equivalent, so the same kth approxi-
mate solution xk of (3.1) is obtained.

The augmented method (3.13) mainly differs from the available augmented meth-
ods in the starting vector that is chosen for building the (standard) Krylov subspace:
indeed, the latter take either the normalized right-hand side b (i.e., the (standard)
Krylov subspace is built first, and then enriched with the initial “guess” subspace;
see [15, 24]) or the orthogonal projection of b on the orthogonal complement of the
initial “guess” subspace (i.e., the (standard) Krylov subspace is built preserving or-
thogonality to the initial “guess” subspace; see [1, 2, 3]). Note that the choice of
the initial vector (3.12) for IRW-FGMRES more radically stems from the fact that
(I − VkV Tk )b = 0, as b ∈ R(Vk).

The decomposition (3.13) associated to IRW-FGMRES is also analogous to the
decompositions typically associated to recycling methods [38], the only difference be-
ing in the way the solution is computed (recycling often considers “warm restarts,”
where computing the solution at the kth iteration amounts to computing the correc-
tion of an initial guess).

4. Numerical experiments. In this section the results of three experiments
concerned with imaging problems are presented to illustrate the behavior of the new
methods. In all the experiments, x is the vector obtained by stacking the columns of a
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two-dimensional discrete image. The new IRW-FGMRES and IRW-FLSQR methods
are compared with other state-of-the-art solvers for (1.5) with 0 < p ≤ 2, including
other solvers based on generalized and flexible Krylov methods, first-order optimiza-
tion methods or optimization methods based on quadratic separable approximations
of part of the objective function, and solvers that employ standard or preconditioned
Krylov methods based on the Arnoldi and the Golub–Kahan bidiagonalization al-
gorithms. To the best of our knowledge, comparisons between methods based on
flexible and generalized Krylov subspaces have never been considered before. Table
1 summarizes the methods considered in this section, providing acronyms and brief
descriptions thereof. Note that for all the considered examples, the computation of
matrix-vector products with A and, possibly, AT dominates the computational cost
of each iteration of all the methods listed in Table 1. In particular, Krylov methods
based on the (flexible) Golub–Kahan algorithm (i.e., IRW-FLSQR, IRN-hLSQR, (hy-
brid) FLSQR) have the same computational cost per iteration as GKSpq, FISTA, and
SpaRSA, since they require one matrix-vector product with A and AT ; Krylov meth-
ods based on the (flexible) Arnoldi algorithm (i.e., IRW-FGMRES, IRN-hGMRES,
(hybrid) FGMRES) are the ones with the lowest cost per iteration, since they require
only one matrix-vector product with A. As a consequence, in the following tests,
methods that require fewer iterations to compute solutions of comparable qualities
have to be regarded as more efficient.

Table 1
Summary of the methods considered in this section for approximating the solution of problem

(1.5).

Method Description Note Reference Marker

IRW-FGMRES
IRW-FLSQR

the new Algorithm 3.1
adaptive reg. parameter
selection

–
blue
line

IRN-hGMRES
IRN-hLSQR

IRN strategy
within an inner-outer
scheme

preconditioned hybrid
GMRES or LSQR
is used to solve (2.6)
at each outer iteration;
adaptive reg. parameter
selection

[39]
green
line

hybrid FGMRES
hybrid FLSQR

hybrid versions
of FGMRES or FLSQR

standard form
Tikhonov regularization
applied on the projected
solution;
adaptive reg. parameter
selection

[9, 18]
pink
line

FGMRES
FLSQR

flexible GMRES or LSQR
with sparsity-enforcing
iteration-dependent
preconditioning

no Tikhonov regularization
for the projected problem

[9, 18]
dark red
line

GKSpq
generalized Krylov
subspace methods

initial subspace
Kl(A

TA,AT b)
with l = 5;
adaptive reg. parameter
selection

[31]
light blue
line

FISTA fast ISTA
accelerated first-order
optimization method

[4]
purple
line

SpaRSA
sparse reconstruction
by separable
approximation

quadratic separable
approximations of part of the
objective function

[46]
orange
line
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When a method allows the regularization parameter λ to be adaptively set at each
iteration, this is done according to the discrepancy principle [34] as described below.
Assuming that a good approximation of the 2-norm of the noise vector e appearing in
(1.1) is available, a zero-finder is employed to solve the following nonlinear equation
with respect to λ ≥ 0 at the kth iteration:

‖Axk(λ)− b‖2 = η‖e‖2 ,(4.1)

where xk(λ) is the approximate solution at iteration k given as a function of the regu-
larization parameter λ, and η≥ 1 is a safety parameter. Note that (4.1) is guaranteed
to have a solution as soon as ‖Axk(0)− b‖2 ≤ ‖e‖2. For IRW-FGMRES,

xk(λ) = Zkȳk = Zk
(
H̄T
k H̄k + λRTkRk

)−1
H̄T
k ‖b‖2e1

= Zk
(
H̄T
k H̄k + λRTkRk

)−1
H̄T
k V

T
k+1b,(4.2)

where H̄k is defined in (2.11) and Rk is obtained computing the reduced QR factor-
ization of WkZk; see (3.2). Then

‖Axk(λ)− b‖2 =
∥∥∥AZk (H̄T

k H̄k + λRkR
T
k

)−1
H̄T
k V

T
k+1b− b

∥∥∥
2

=
∥∥∥Vk+1H̄k

(
H̄T
k H̄k + λRkR

T
k

)−1
H̄T
k V

T
k+1b− b

∥∥∥
2

=
∥∥∥H̄k

(
H̄T
k H̄k + λRkR

T
k

)−1
H̄T
k ‖b‖2e1 − ‖b‖2e1

∥∥∥
2
,(4.3)

so that applying the discrepancy principle (4.1) does not require performing any
additional matrix-vector product with A per iteration. An analogous argument can
be made specifically for IRW-FLSQR (as expression (4.3) formally holds for IRW-
FLSQR after replacing the matrix H̄k by Mk), as well as for most of the algorithms
listed above; see also [30, 19]. Note that although synthetic noise e with known ‖e‖2
is always used in the following, estimates of the noise level or alternative parameter
choice strategies that do not require an estimate of ‖e‖2 can be used if ‖e‖2 is not
immediately available; see, e.g., [21, 45]. When no adaptive regularization parameter
choice is supported (e.g., for FISTA and SpaRSA), the value of the regularization
parameter computed by IRW-FGMRES or IRW-FLSQR (upon iteration termination)
is used. Alternatively, such solvers can be run from scratch for different preselected
values of the regularization parameter and the best solution can be picked according
to some criterion, resulting in a very computationally demanding strategy.

Throughout all the experiments, if not stated otherwise, the values p = 1 and
τ = 10−10 are chosen in (2.3), η = 1 is chosen in (4.1), and all the solvers are set
to perform 200 (total) iterations. Although, provided that a suitable value of the
regularization parameter is set at each iteration, the quality of the reconstructions
computed by the new methods does not significantly deteriorate as the iterations
proceed, one or more stopping criteria should be set in practice. A reasonable choice
is to stop at the first iteration k such that

|λk − λk−1|
λk

< θ1 or
|s(xk)− s(xk−1)|

s(xk)
< θ2,(4.4)

where θ1, θ2 > 0 are user-selected thresholds, and where s(·) is a (practical) measure
of the sparsity of the solution. In the following, given a vector y,

s(y) = #
{
i : |[y]i| ≥ 10−3||y||2

}
, where # denotes cardinality.(4.5)
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Stopping criteria (4.4) monitor the stabilization of some relevant quantities for the
solution, so that one can expect xk not to vary too much once they are satisfied;
see [19]. In all the graphs presented below, the iteration satisfying the first stopping
criterion in (4.4) with θ1 = 10−4 is marked by a circle, and the iteration satisfying
the second stopping criterion in (4.4) with θ2 = 10−10 is marked by a triangle.

Experiment 1. The first experiment is concerned with image deblurring. The
star cluster test problem from Restore Tools [35] is used to generate an exact
test image of size 256 × 256 pixels (so n = 65536 in (1.1)) and a square blurring
matrix modeling spatially variant blur (we refer interested readers to [36] for a dis-
cussion of how the matrix A is represented and how matrix-vector products can be
done efficiently). The measurements are corrupted by Gaussian white noise e of level
‖e‖2/‖btrue‖2 = 10−2. The setting for this example can be observed in Figure 1. Note
that s(xtrue) = 470, i.e., only approximately 0.07% of the pixels can be regarded as dif-
ferent from zero in practice, according to definition (4.5). This example has been mim-
icked from [18]. Since A is square, the performance of IRW-FGMRES can be tested.

Figure 2 displays the behavior of the relative errors versus the number of iter-
ations for the methods listed in Table 1. It can be observed in Figure 2(a) that
IRW-FGMRES shows a faster and more stable convergence when compared to other
standard methods for `2-`p regularization. In particular, the new method stabilizes
to roughly the same value of the relative error as IRN and FISTA, while SpaRSA
converges to a reconstruction of worse quality. Even restricting the comparisons to
other methods that build only one generalized or flexible Krylov subspace for the
solution, the new IRW-FGMRES method shows a more desirable behavior. Indeed,
it can be observed in Figure 2(b) that the solver based on FGMRES displays some
semiconvergence; this feature is shared by the hybrid version of FGMRES and may
appear because a Tikhonov problem in standard form is solved, so that sparsity is only
enforced through the construction of a suitable flexible Krylov subspace. Also, within
the maximum number of allowed iterations, the quality of the solution computed by
the solver based on generalized Krylov subspaces is lower than the IRW-FGMRES one:
this shows that, for this test problem, the approximation subspace for the solution
computed by IRW-FGMRES is better than the one computed by GKSpq.

Figure 3(a) displays the values of the relative residuals ‖b−Axk(λ)‖2/‖b‖2 versus
the number of iterations k. One can clearly see that, since λ is adaptively set at each

(a) (b)

Fig. 1. Experiment 1. Setting for the star cluster test problem. (a) True image xtrue.
(b) Noisy measurement b.
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(a)

50 100 150 200
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-1

10
0

IRW-FGMRES

IRN-hGMRES

FISTA

SPARSA

(b)

50 100 150 200
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10
0

IRW-FGMRES

hybrid FGMRES

GKSpq

FGMRES

Fig. 2. Experiment 1. History of relative error norms (i.e., ‖xk(λ)−xtrue‖2/‖xtrue‖2 against
iteration number k) for the new IRW-FGMRES, compared to (a) other standard solvers for the `2-`1
problem, (b) other flexible and generalized Krylov-based solvers. The circle and triangle markers
correspond to stopping criteria (4.4) based on the stabilization of λ and s(xk), respectively.

(a)

50 100 150 200
10

-4

10
-3

10
-2

10
-1

10
0

IRW-FGMRES

hybrid FGMRES

IRN-hGMRES

GKSpq

FGMRES

(b)

50 100 150 200

10
-4

10
-3

10
-2

10
-1

10
0

IRW-FGMRES

hybrid FGMRES

IRN-hGMRES

GKSpq

Fig. 3. Experiment 1. Methods based on Krylov subspaces. (a) History of the relative residuals.
(b) History of the regularization parameters. The circle and triangle markers correspond to stopping
criteria (4.4) based on the stabilization of λ and s(xk), respectively.

iteration using the discrepancy principle (for all the displayed methods except for
FGMRES), the relative residual eventually stabilizes around the noise level, as should
happen for regularization methods applied to ill-posed problems: this happens quite
quickly for methods based on the flexible Arnoldi algorithm, but sensibly later for the
GKSpq method (coherently to what is observed in Figure 2(a)). Figure 3(b) displays
the values of the regularization parameters λ = λk selected at each iteration versus the
number of iterations k. It can be observed that the regularization parameter chosen
by the new IRW-FGMRES method quickly stabilizes to a value that is similar to the
one eventually selected by the IRN and GKSpq methods. The regularization param-
eter chosen by the hybrid version of FGMRES stabilizes to a different value, which
is more similar to the one selected during the first IRN outer iteration, i.e., when a
Tikhonov problem in standard form is solved. This behavior is consistent with the
arguments presented in sections 2 and 3. Indeed, similarly to IRN and GKSpq, IRW-
FGMRES can be proved to converge to a stationary point of (2.4): therefore it should
be expected that the regularization parameter adaptively selected by these methods
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(a)

0 50 100 150 200

10
-2

10
-1

(b)

0 50 100 150 200
450

500

550

Fig. 4. Experiment 1. (a) History of the IRW-FGMRES relative error norms for different
values of p in the `p regularization term. (b) History of s(xk) for IRW-FGMRES and for different
values of p in the `p regularization term.

according to the discrepancy principle also stabilizes around a common value. On the
contrary, hybrid FGMRES imposes additional standard form Tikhonov regularization
on the projected solution: therefore it should be expected that the regularization pa-
rameter stabilizes around a value suitable for standard form Tikhonov regularization.

Finally, Figure 4(a) displays the history of relative errors obtained using IRW-
FGMRES for different values of p in the `p regularization term. Note that since the
quality of the solution generally improves when taking p < 1 (coherently with the fact
that xtrue is very sparse), one can expect that IRN-FGMRES is converging to a global
minimum when started with x0 = 0 for this test problem. Correspondingly, Figure
4(b) displays the values of s(xk) versus the number of iterations k. It can be observed
that when the value of p in the `p regularization term is 2, the recovered solution is
considerably less sparse than xtrue, whereas for smaller values of p, the value of s(xk)
approximates s(xtrue) = 470. In particular, note that when p = 1, s(xk) converges
to s(xtrue) = 470 when using IRW-FGMRES. Even if not shown, this is also true
for FISTA, SpaRSA, IRN-hGMRES, FGMRES, and hybrid FGMRES. Similarly, the
solution obtained using the GKSpq method at the end of the iterations had an s(xk)
of 472.

Experiment 2. The second test problem uses the so-called hst (Hubble space tele-
scope) test image together with the spatially invariant speckle medium blur linear
operator available within IR Tools [17]. The noise level is ‖e‖2/‖btrue‖2 = 10−2 and
η = 1 is chosen in (4.1). The setting for this experiment can be observed in Figure
5. The object displayed in this test image is not as sparse as in the previous test
problem; the overall sparsity is associated to the uniform (zero) background. Note
that, in this example, the square matrix A ∈ Rn×n (where n = 65536) is generated
by a highly anisotropic blur (see Figure 5(b)): in this situation, there is no guarantee
that GMRES can perform well; see [14]. For this reason, only the performance of
methods based on LSQR will be compared.

The relative error history associated to different solvers for (2.4) is displayed in
Figure 6. It should be stressed that, when running IRW-FLSQR for this experiment,
τ = 0.01 is set in (2.3) to avoid numerical instabilities happening in the generation of
WkZk (as mentioned in Remark 3.2). As can be seen in Figure 7(a), a smaller value of
τ would lead to solutions of worse quality. Alternatively, Figure 7(b) shows the history

of the relative errors when the components of the weights Wk = W̃ (p,τ)(xk−1,?) are
set to 0 in (2.5) if they are higher than a certain threshold τW (as suggested in [39]).
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(a) (b)

Fig. 5. Experiment 2. Setting for the hst test problem. (a) True image xtrue. (b) Noisy
measurement b.

(a)

50 100 150 200
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0.3
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IRW-FLSQR

IRN-hLSQR
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(b)
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0.2

0.3

0.4

0.5

0.6
IRW-FLSQR

hybrid FLSQR

GKSpq

FLSQR

Fig. 6. Experiment 2. History of relative error norms for the new IRW-FLSQR, compared
to (a) other standard solvers for the `2 − `1 problem, (b) other flexible and generalized Krylov-
based solvers. The circle and triangle markers correspond to stopping criteria (4.4) based on the
stabilization of λ and s(xk), respectively.

As in the previous example, Figure 8(a) displays the values of the relative residuals
‖b − Axk(λ)‖2/‖b‖2 versus the number of iterations k, and Figure 8(b) displays the
values of the regularization parameters λ = λk selected at each iteration k according
to the discrepancy principle. The behavior of these quantities is very similar to that
observed in the previous example and it can be interpreted in the same way.

Experiment 3. This test problem models sparse X-ray tomographic reconstruc-
tion with oversampled data. The chosen test phantom is the ppower image from [26],
generated in such a way that only 10% of its pixels are exactly nonzero; this phan-
tom is also fairly smooth (see Figure 9(a)). A measurement geometry consisting of
362 equidistant parallel beams rotated around 224 equidistant angles between 1◦ and
180◦ is considered. This corresponds to a discrete forward operator A ∈ Rm×n with
m = 81088 and n = 65536, so that only methods based on the Golub–Kahan decom-
position can be compared. The noise level in this example is ‖e‖2/‖btrue‖2 = 1.5·10−2.

The convergence results for this tomography example with oversampled data are
displayed in Figures 10 and 11. The methods based on flexible Krylov subspaces all
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(a)
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Fig. 7. Experiment 2. Different strategies to stabilize the quality of the solution. History of the
relative error norms for the new IRW-FLSQR: (a) for different values of τ , (b) for different values
of τW .
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Fig. 8. Experiment 2. Methods based on Krylov subspaces. (a) History of the relative residuals.
(b) History of the regularization parameters. The circle and triangle markers correspond to stopping
criteria (4.4) based on the stabilization of λ and s(xk), respectively.

(a) (b)

Fig. 9. Experiment 3. Setting for the ppower test problem. (a) True phantom xtrue. (b) Noisy
sinogram measurement b.D
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Fig. 10. Experiment 3. History of relative error norms for the new IRW-FLSQR, compared
to (a) other standard solvers for the `2 − `1 problem; (b) other flexible and generalized Krylov-
based solvers. The circle and triangle markers correspond to stopping criteria (4.4) based on the
stabilization of λ and s(xk), respectively.
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Fig. 11. Experiment 3. Methods based on Krylov subspaces. (a) History of the relative residuals.
(b) History of the regularization parameters chosen according to the discrepancy principle. The circle
and triangle markers correspond to stopping criteria (4.4) based on the stabilization of λ and s(xk),
respectively.

perform similarly well. FISTA seems to deliver a solution of slightly better quality
than IRW-FLSQR, but it takes more iterations to do so. SpaRSA seems to perform
poorly for this test problem; it may be expected that experimenting with different
values of the regularization parameter could lead to an improved solution.

5. Conclusions. This paper presents two new algorithms, called IRW-FGMRES
and IRW-FLSQR, that efficiently solve the `2-`p minimization problem (1.5) by par-
tially solving a sequence of quadratic problems arising from the IRN strategy. The
new methods compute approximate solutions belonging to flexible Krylov subspaces of
increasing dimension that encode regularization through iteration-dependent “precon-
ditioning” so as to avoid nested loops of iterations and build only one approximation
subspace for the solution. With respect to other available IRN solvers, the new ap-
proach not only improves the efficiency of the algorithm but also avoids the need of
choosing stopping criteria for the inner iterations. Moreover, the regularization pa-
rameter can be set adaptively along the iterations (even using strategies other than
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the discrepancy principle, which is considered in this paper). The new flexible Krylov
solvers are supported by a solid theoretical justification: indeed, the sequence of ap-
proximate solutions given by Algorithm 3.1 is guaranteed to converge to the solution
of the smoothed formulation (2.4) of problem (1.5).

Extensive numerical testing, involving large-scale inverse problems in imaging,
shows that IRW-FGMRES and IRW-FLSQR are competitive with other standard
implementations of IRN methods as well as other optimization methods. Moreover,
although IRW-FGMRES can only be applied to a square coefficient matrix A and
is not guaranteed to work well if A is highly nonnormal, it requires only a single
matrix-vector product with A at each iteration, while IRW-FLSQR needs an addi-
tional matrix-vector product with AT at each iteration. It is worth highlighting again
that, although the hybrid implementations of FGMRES, FLSQR [18, 9] and IRW-
FGMRES, IRW-FLSQR have a similar behavior in most of the performed numerical
tests, the former still lack a solid theoretical justification of convergence.

Future work will include a theoretical investigation of the convergence of IRW-
FGMRES and IRW-FLSQR in the presence of a variable regularization parameter
that is automatically set at each iteration according to a given rule, and the extension
of the new IRW flexible Krylov methods to handle more involved regularizers, such
as total variation and generalizations thereof.
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