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Supersymmetry-assisted high-fidelity ground-state preparation
of a single neutral atom in an optical tweezer
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Arrays of neutral-atom qubits in optical tweezers are a promising platform for quantum computation. Despite
experimental progress, a major roadblock for realizing neutral-atom quantum computation is the qubit initializa-
tion. Here we propose that supersymmetry, a theoretical framework developed in particle physics, can be used
for ultrahigh-fidelity initialization of neutral-atom qubits. We show that a single atom can be deterministically
prepared in the vibrational ground state of an optical tweezer by adiabatically extracting all excited atoms to
a supersymmetric auxiliary tweezer. The scheme works for both bosonic and fermionic atom qubits trapped
in realistic Gaussian optical tweezers and may pave the way for realizing large-scale quantum computation,
simulation, and information processing with neutral atoms.
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I. INTRODUCTION

Neutral atoms trapped in optical tweezer arrays have
emerged as a promising candidate for quantum computation
and simulation [1-5] due to their attractive features such
as identical qubits, large scalability through atom-by-atom
assemblers [6—12], and high-precision control and measure-
ment. For neutral-atom qubits, high-fidelity single-qubit gates
have been realized using microwave or two-photon Raman
transitions [13-19]. Two-qubit gates have been realized us-
ing short-range collisions or long-range Rydberg interactions
[20-28], with significantly improved gate fidelity in recent
years.

Significant experimental progress has been made on
high-fidelity neutral-atom qubit initialization that requires de-
terministic preparation of a single atom in the vibrational
ground state of an optical tweezer, but major obstacles still ex-
ist. For bosonic atoms, interaction blockade and single-atom
rapid imaging allow the deterministic preparation of a single
atom in an optical tweezer, and defect-free atom arrays with
up to tens of single atoms have been demonstrated by rear-
ranging the occupied tweezers [7—11]. However, atoms in the
tweezers are subject to imaging heating and the experimental
ground-state cooling is far from perfect due to photon recoil in
sideband cooling [29-35]. For fermionic atoms, high-fidelity
preparation of a few atoms is possible through the method
of trap deformation [36-39]. However, to obtain a single-
fermion ground state, the trap needs to be tilted and ramped
down to an extremely low depth to spill the excess atoms,
making the process very sensitive to external potential noises
and requiring a long trap-deforming time to avoid heating.
For both bosons and fermions, the fidelity to prepare a single
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atom in the ground state of a tweezer is approximately 90%
[29-32,37] in realistic experiments.

Supersymmetry was first introduced within the context of
particle physics and became one possible solution to many
important problems in high-energy physics [40]. Though su-
persymmetry remains to be observed in particle physics, it
has found applications in areas including condensed-matter
physics, cold atoms, and optics [41-47].

In this paper we propose a supersymmetry-based scheme
to achieve ultrahigh-fidelity single-atom ground-state prepa-
ration in an optical tweezer through adiabatically extracting
excited atoms to its supersymmetric partner, an auxiliary
tweezer. Specifically, the eigenstates of two tweezers (except
the main tweezer ground state) are pairwise related to one
another, yielding supersymmetry (either exact or approxi-
mate). For bosons, we can prepare a sideband-cooled single
atom [29-35] and transfer its excited components to the su-
persymmetric auxiliary trap, followed by postselecting the
measurement result with an empty auxiliary tweezer (i.e., the
single atom stays in the ground state of the original tweezer).
For fermions, we start from a few atoms [37] occupying the
low-lying states and transfer all excited atoms to the super-
symmetric auxiliary tweezer. We consider realistic Gaussian
optical tweezers and show that ultrahigh-fidelity ground-state
preparation can be achieved in a short time interval for both
bosons and fermions. In such a qubit initialization process,
supersymmetry plays an essential role for simultaneously
extracting all excited components or atoms from the main
tweezer to the auxiliary tweezer.

II. SUPERSYMMETRY

In quantum mechanics, supersymmetry theory involves a
pair of partner Hamiltonians such that for every eigenstate
|@1.,) (except the n =0 ground state) of one Hamiltonian
H,, its partner Hamiltonian H, has a corresponding eigenstate
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FIG. 1. Schematic illustration of a trap potential and its super-
symmetric partner. Except for the ground state, all eigenvalues of the
trap are exactly matched to those of its superpartner. The correspond-
ing eigenstates are related through the action of A and A",

|@2.,) with the same energy [41]. This can be established by
factorizing the Hamiltonian in terms of two operators A and
AT,

H =A'A, H, =AA", (1)

which are isospectral with eigenstates (non-normalized) pair-
wise related to one another through |¢,,) = Al ,) and
|@1..) = AT|@a.,). If the ground state of H, is annihilated by
A, ie., Alg1o) =0, then it does not have a corresponding
state in H,, leading to exact supersymmetry between the two
Hamiltonians, as schematically illustrated in Fig. 1.

For the nonrelativistic Schrodinger problems, one can al-
ways identify two supersymmetric potentials, V| (x) and the
superpartner V,(x), that are entirely isospectral except for
the ground state of Vi(x). Here we are interested in neutral
atoms trapped in optical tweezers, and only low-energy bound
states are relevant. We consider a deep optical tweezer with
Ny bound states that are filled with N, noninteracting neu-
tral atoms (N, < N,). Only the first N bound states (with
N < Np) are relevant if the system is precooled to a low
temperature. Here we still call V,(x) the superpartner tweezer
of Vi (x) if the first N bound-state energies of V;(x) (except the
ground state) are exactly matched by the first N — 1 bound-
state energies of V,(x).

II1I. ADIABATIC EXTRACTION

Although our scheme can be applied to any dimension, we
will first limit our analysis to one spatial dimension to sim-
plify the calculation. We assume significantly strong trapping
along transverse directions, where only the ground trans-
verse state is occupied. We consider a main optical tweezer
V1(x) with noninteracting atoms populating only the first N
bound states (i.e., the populations of higher-energy states
are negligible) and introduce an auxiliary empty tweezer
Va(x) that is the superpartner of Vi(x). Within the subspace
spanned by the first N bound states, the Hamiltonians read
Hy = YN o Eval@ra) (@il and Hy = 30| Eyul@2.0) (@2.al,
with El,n =5, forn > 1.

The adiabatic atom extraction is performed as follows. (i)
The auxiliary tweezer V,(x) is deformed such that its eigenen-

FIG. 2. Schematic illustration of adiabatic extraction of all ex-
cited atoms (or components) in the optical tweezer using the
superpartner as an auxiliary tweezer. Here J and A are, respectively,
the tunneling amplitude and detuning between two tweezers.

ergies are increased by A. (ii) V,(x) is transported toward the
main tweezer V)(x) adiabatically and the bound state |¢; ,)
is coupled with its counterpart |¢; ,) for n > 1. (iii) Va(x) is
adiabatically deformed to decrease its eigenenergies by —2A
and then transported away from the main tweezer V) (x). (iv)
The original empty V,(x) is restored for the next extraction.
After such an adiabatic process, all atoms (or atom compo-
nents) in the excited states of the main tweezer are transported
to the auxiliary tweezer, while the atom (component) in the
ground state |¢; o) is unaffected, as illustrated in Fig. 2. As a
result, the remaining atom (component) in the main tweezer
is prepared in the vibrational ground state. Here the pairwise
energy levels due to supersymmetry play a central role for the
atom extraction. Steps (i) and (iv) can be done very fast. We
will focus on steps (ii) and (iii) in the following.

The time-dependent effective Hamiltonian can be written
as Hy (1) = H; + Hy + Hiy(t) (see Appendix A), with

N
A,
Hin(0) = 3 S 192002l + Ju@)l01) (@2] + He. (2)

n=1

where we have neglected the far-off-resonance couplings
which do not affect the adiabatic extraction. In fact, the
adiabatic process is robust against perturbations, and the de-
formation and transport of the auxiliary tweezer are very
flexible. The only requirement is that |A,| and |J,,| are small
compared to the level splitting |E} , — E} ,+;| during the adi-
abatic process such that all energy levels are gapped (see
Appendix B). Furthermore, even when V,(x) is not initial-
ized as the exact superpartner of V,(x) with E,, # E;,,
we can still extract all excited atoms if we have approxi-
mate supersymmetry (i.e., the symmetry breaking is weak
with |E;, — Ex 0| < |E1n — E1 px1]) (see Appendix C). The
extraction would fail if the supersymmetry were strongly
broken.
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FIG. 3. (a) Gaussian optical tweezer and its superpartner with
an additional transverse trap (TT). (b) Trap depth and center of
the auxiliary (superpartner) tweezer as functions of time during the
adiabatic extraction. The inset shows the adiabatic path. (c) Total
eigenspectrum of the system along the path in (b). Colors correspond
to the population probability in the two tweezers, with pink (light
gray) and black representing the full population in the main and aux-
iliary tweezers, respectively. (d) Fidelity F, as a function of adiabatic
duration length 7.

IV. PHYSICAL REALIZATION

Although our proposal does not rely on the specific shape
of the tweezer, here we consider a realistic Gaussian trap
function V;(x) = ale’zxz/’”% [see Fig. 3(a)], where wy is the
width and «; is the trap depth. As an example, we choose
a typical width wy = 1 um [7] and the trapping wave;length

2T

A =810 nm [7] and use the recoil momentum kg = 5* and

energy Er = fi—i‘z‘ as the units (with m the atom mass). For
a deep Gaussian trap, the low-energy dynamics is approx-
imately characterized by a harmonic oscillator with equal
energy splitting. The superpartner of a harmonic trap can be
easily obtained by a constant shift of the trapping potential
that equals the trapping frequency. Therefore, a slight change
in Gaussian trap depth leads to an approximate superpart-
ner trap Vs (x, 1) = [0 + da(t)]e 2O/ With a proper
choice of @ and a5 (e.g., «; = —12ER and ap = —10.76ER),
the energy levels (we consider N = 5 here) of two optical
tweezers are paired except for the ground state of V| (see
Appendix C). The extraction is realized by adiabatically tun-
ing the depth Sa(f) and center x.(¢) of V,, as shown in
Fig. 3(b). The creation and manipulation of controlled optical
tweezers can be accomplished with an electro-optic deflec-
tor which toggles between two voltages on a sufficiently
fast timescale so that the atoms experience a time-averaged
effective potential [48,49]. Merging and separating the su-
persymmetric tweezer pairs could be done by a programed
sequence of voltages that is applied to an electro-optic deflec-
tor.

In Fig. 3(c) we plot the spectrum of the system during the
adiabatic process along the path in Fig. 3(b), which is obtained
by solving the real-space Schrodinger equation [—% +
Vilx,t) + Va(x, 1)]le) = E|p). We see that the spectrum is

(2)
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FIG. 4. (a) Two tweezers with longitudinal relative shift z.
(b) Atom distributions during the extraction for the ground state
(bottom) and the fifth excited state (top) obtained from a full 3D
simulation of the Schrodinger equation. The inset shows z.(t) and
da(t) during the adiabatic process with a; = 200Eg, o, = 198.8Ek,
and wo = 0.9 um. The other parameters are the same as in Fig. 3.
The results for the other excited state are similar. The fidelities are
F, ~1-107* (up to n =5) with an adiabatic interval T ~ 20 ms
(t ~ 200 ms) for Li (Rb) atoms.

gapped all the time, while the eigenstates in the two tweezers
are exchanged, except for the ground state of V;. In principle,
the extraction fidelity can achieve 100% for a sufficient long
adiabatic interval t. Assuming an atom stays in state |¢; ,)
at time t = 0, we define the fidelity F, as the probability to
find the atom at time ¢t = 7 in the ground state |¢; o) of the
main tweezer for n = 0 or in the auxiliary tweezer for n > 0.
In Fig. 3(d) we show the fidelities as functions of t obtained
from numerically simulating the time-dependent real-space
Schrodinger equation. The extraction process is a multistate
Landau-Zener problem (see Appendix B), and there are cou-
plings between different eigenstates when t is small, yielding
fidelities that are far below 1. The fidelity F; can be close
to 1 at a larger t. For a realistic shallow trap «; = —12E,
the fidelity can be up to F,, > 1 — 107> with a short adiabatic
interval T 2 7 ms (t 2 70 ms) for Li (Rb) atoms, which can
be improved further by optimizing the adiabatic loop or using
deeper tweezers.

We now consider the tweezer realized by a single strong
and tightly focused Gaussian beam without additional trans-
verse trapping [i.e., a three-dimensional (3D) tweezer]. The

trap is given by Vi (r) = o —‘3 exp[—2(x* + y*)/w?], with the

spot size w, = wy,/1 +% and Rayleigh range zx = ”waz‘
In this case, the tight transverse trapping, realized by the
Gaussian tweezer itself, is much stronger than the longitudi-
nal trapping. Therefore, atoms would stay in the transverse
ground state with high probability after sideband cooling
(laser culling) for bosons (fermions) [29,30,37], and the over-
all fidelity is mainly limited by the residual excitations in the
longitudinal direction. We may (1) slowly bring the auxiliary
tweezer to the main tweezer with their beam waists largely
separated by z. along the longitudinal direction [see Fig. 4(a)],
(2) tune z. and S along the adiabatic path [see the inset of
Fig. 4(b)], and (3) slowly move the auxiliary tweezer away
from the main tweezer. Steps 1 and 3 can be done with high
fidelity due to large separation of the two tweezers. Here
we focus on step 2 and solve the 3D Schrodinger equation
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numerically. We find that the extract fidelity can be up to
F, ~ 1-10~* with a proper choice of parameters, as shown
in Fig. 4(b). A longer extraction time is needed to achieve
higher fidelity. Here the transverse and longitudinal modes do
not mix [50] for the two tweezers shown in Fig. 4(a).

V. BOSON QUBIT INITIALIZATION

We assume an initial low-temperature single-atom state
(i.e., N, = 1). This is because more than one atom may be left
in the ground state after the extraction for N, > 1 noninteract-
ing bosons, and the energy level coupling with the auxiliary
tweezer would be strongly modified for interacting bosons.
Fortunately, deterministic preparation of a single boson in
an optical tweezer has been realized through single-atom
imaging and the atom can be further sideband cooled with
a ground-state population of approximately 90% [7,29,31].
Assuming a thermal population distribution, the total prob-
ability to find the atom in n > N states is less than 1073 for
N = 5. After the supersymmetric adiabatic extraction process,
all excited components of the atom are transferred to the
auxiliary tweezer, in which the atom number is measured.
If one atom is detected in the auxiliary tweezer, we discard
the atom qubit in the main tweezer and the process fails. If
no atom is probed in the auxiliary tweezer, the atom must
be in the ground state of the main tweezer; therefore, we
keep the atom qubit in the main tweezer. The process is
successful and we know with 100% probability that there is
a single atom in the ground state of the main tweezer. Such
postselection measurement leads to deterministic preparation
of a single atom in the main tweezer with a total ground-state
fidelity greater than or equalto 1 — )" % > 1-107°
(P, is the nth state occupation probability). Here postselection
is to condition a probability space upon the occurrence of
a given event, and the fidelity is defined as the probability
to find the atom in the ground state of the main tweezer
upon the occurrence of an empty auxiliary tweezer. Notice
that the success probability is PyFp, while the probability to
find an empty auxiliary tweezer is PoFy + Y, Pu(1 — Fp).
Therefore, the fidelity is PoFo[PoFo + Y0 Pi(1 — F)]7' >
1-> 0 W. The detection of the auxiliary tweezer can
be done by the single-atom-resolved fluorescence imaging
technique [2,15,51], where a practical issue is that the re-
sulting scattered resonant light may be absorbed by other
qubits, degrading their fidelity [note that fermions do not need
resonant detection during preparation, which is an advantage
(discussed below)]. The resonant scattering light could be
avoided by first transferring the auxiliary-tweezer atom to
another hyperfine state (e.g., F = 2 state of 8’Rb) with order
of gighertz energy splitting [14], where the imaging laser
(focused on the auxiliary tweezer) is far-off-resonance with
the main-tweezer atoms in other qubits, and thus would not
disturb their states.

VI. FERMION QUBIT INITIALIZATION

For fermions, it is more convenient to start from several
atoms (e.g., N, = 4,5) distributed on the low-lying energy
levels in the tweezer (see Appendix D); then we apply the
supersymmetric adiabatic atom extraction process to obtain a

single ground-state fermion. Note that no postselection mea-
surement of the auxiliary tweezer is needed for fermionic
qubits. We consider spin-polarized fermions with negligible
interactions due to the antisymmetric wave function. The
preparation fidelity is greater than or equal to P, ]_[1:;61 F, If
one loads fermions from a reservoir with typical temperature
T/Tr = 0.5 into a tweezer with depth SkgTr, one obtains
Py > 1-1073 [52]. The total fidelity can be up to approx-
imately 1-107. To obtain a tweezer with N, low-energy
atoms, one can first load a large number of fermions from
a reservoir and spill excess highly excited atoms by vary-
ing the depth of the tweezer and the strength of a magnetic
field gradient [36,37]. For a large N, (e.g., N, =4,5), the
tweezer depth remains much higher than the ground-state
energy whose occupation is hardly affected during the spilling
process. Moreover, imperfect spilling that changes N, by %1
or +2 does not affect our high-fidelity preparation as long as
the ground state is occupied with a high probability.

It is also possible to prepare a single fermion in the ground
state based on the spilling method in [36,37]; however, the
overall fidelity is very limited in realistic experiments. This
is because the trap needs to be tilted and ramped down to an
extremely low depth, which not only makes the spilling pro-
cess very sensitive to potential noises (induced by fluctuations
in laser intensity and magnetic field), but also requires a long
trap-deforming time to avoid heating.

VII. DISCUSSION

The fidelity might be slightly suppressed by the common
heating sources existing in the system. The atom heating due
to off-resonance light scattering (the rate is approximately
ALEF, with V the trap depth and I" the damping rate of the
excited state) is negligible for a large detuning A. to the
excited state [53]. Intensity fluctuations of the trapping lasers
can be very weak and dominated by low-frequency (much
smaller than the trapping frequency) noise using intensity
stability techniques [54—56]; therefore, the fluctuations have
very minor effects in the adiabatic process [57,58]. The fluc-
tuation effects can be further suppressed by using the same
laser source for both the main and auxiliary tweezers. The
background gas collision-limited lifetime is about 10 s [7-9],
which is much longer than the adiabatic duration. The adia-
batic transfer times for Li and Rb atoms are about 7 and 70 ms,
respectively, and both can be further improved using deeper
dipole traps (the shallow trap considered above has a trapping
frequency only about several kilohertz). Here the adiabatic
duration can be at the same order as the sideband cooling (i.e.,
several milliseconds) [29]. Therefore, our scheme can lead to
high fidelity and fast qubit preparation even in the presence
of these common heating sources in realistic experiments.
We want to point out that, for boson qubit preparation based
on sideband cooling only, one could improve the fidelity by
decreasing the Raman beam power and increasing the de-
tuning with the excited state [59], but the cooling time will
also increase significantly, which may enhance the heating
from other sources. The cooling fidelity may also be im-
proved using very deep traps, which is, however, quite limited
for neutral atoms (typical tweezer trapping frequency ranges
from several kilohertz to several tens of kilohertz, compared
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Dicke NOON

FIG. 5. Scheme to generate nonclassical entangled Dicke and
NOON states by merging and splitting many single-atom tweezers.
The spin states could be atomic hyperfine states.

to 10 MHz for ion traps). More importantly, our adiabatic
extraction scheme applies to both fermion and boson qubit
preparation, while the sideband cooling cannot be used for
fermion qubit preparation with many atoms in the tweezer
initially.

Combined with the capability of rearranging tweezers, our
method can initialize a large array of neutral-atom (bosonic or
fermionic) qubits in the vibrational ground state. In addition to
quantum computation, such ground-state single-atom tweez-
ers can be used as building blocks for generating entangled
states such as Dicke and NOON states [60] that are useful
for high-precision quantum metrology beyond the standard
quantum limit 1/+/N.

The Dicke state is a symmetrized spin state with total spin
J and z component m;, corresponding to a two-mode Fock
state with J & m;, spin-up and -down atoms. Such Dicke state
can be realized by merging 2J single-atom optical tweezers,
with J 4+ m, tweezers containing spin-up and -down atoms
(see Fig. 5). The repulsive interaction is turned on to en-
sure 2J atoms remaining in the ground state [61] during the
adiabatic evolution. Here the many-body energy gap during
the adiabatic merging is roughly given by the smaller of two
energy scales: the interaction energy Ej, (interaction between
two atoms in one tweezer) and the excited-state energy E.
(when the barriers between neighboring tweezers vanish). For
typical tweezers and atom scattering lengths, Ej, can be up
to several tens of hertz and E. ~ 457’*2 is around 100 Hz for
J =10 (i.e., 20 atoms), leading to the adiabatic merging time
of approximately 10 ms.

With 2J atoms in the ground state of one tweezer, we
can slowly switch the repulsive interaction to attractive and
then split the tweezer into two identical tweezers (see Fig. 5),
generating a NOON state (i.e., a coherent superposition of all
particles in the left or right tweezer) [61]. If the interaction
energy is smaller than the single-tweezer trapping frequency,
even a sudden switching of the interaction would not excite
the system [61], which is still satisfied with 20 atoms in one
tweezer. During this splitting, the many-body gap is enhanced
by J times compared to the merging process, and thus can
be done much faster. Both Dicke and NOON states can yield
measurement precision scaling as the Heisenberg limit ap-
proximately equal to 1/N [60].

Finally, the ability of generating a few-atom Fock state in
the tweezer provides a different platform for studying few-
body physics with the fixed atom number. For instance, by
tuning the interaction through Feshbach resonance, it is pos-
sible to study the universality of the Efimov trimer and other
multibody bound states [62-65].

VIII. CONCLUSION

In summary, we have proposed a method to deterministi-
cally prepare a single atom in the vibrational ground state of
an optical tweezer with high fidelity, using a supersymmetric
auxiliary tweezer. The supersymmetry is crucial for tweezer
geometry design and plays a central role in extracting excited
atoms. The scheme is built upon recent experimental progress
on single-atom preparation and sideband cooling and ap-
plies to both fermionic and bosonic atom qubits. It addresses
one major roadblock for realizing high-fidelity neutral-atom
qubit initialization and therefore may pave the way for the
experimental realization of intermediate-scale neutral-atom
quantum computation and simulation. Our proposed qubit ini-
tialization can also be used to generate nonclassical quantum
states which may find applications in other fields such as
high-precision measurement and quantum sensors.
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APPENDIX A: EFFECTIVE HAMILTONIAN

Here we show how the simple model of Eq. (2) can be used
to describe the adiabatic process. We first consider the 1D
case, in which a double-well trap V(x,t) = Vi(x) + Va(x, 1)
is formed by the two tweezers at time ¢ during the adiabatic
process. The low-energy local modes |¢; ,(2)) of the left well
(corresponding to the main tweezer) can be approximately
obtained by solving a harmonic oscillator with curvature and
center determined by the left trap minimum, and similarly for
the right well (auxiliary tweezer) |, ,(¢)). Then the coupling
reads

7?92
Jom(t) = /(pf’n(x,t)[_ > x +V(x,t)j|g02,m(x,t)dx.

m

(AD)
The integral J,, is nonzero even when the wave func-
tions ¢y ,(x, t) and ¢, ,,(x, t) have opposite parity, since their
parity-symmetry centers are different. As the two tweezers
approach each other, the energy levels may also shift slightly,
since the curvature of the main (auxiliary) tweezer would be
modified by the auxiliary (main) tweezer. The full Hamilto-
nian reads Hy, (1) = H (t) + Hy(t) + Hin(t), with

N
Hi(t) =) Eva(D)l@in) (@inl (A2)

n=1
and

N A,
Hin(0) = D =920 @2l + Julo1) (020 + Hee. (A3)

n=1

The off-resonance coupling terms J,, ,, |¢1.,) (¢2.,| + H.c. with
m # n are neglected.
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The effective Hamiltonian is similar for the 3D case if we
focus on the transverse ground-state subspace, which reads

v
Jn,m(t) = / (PT_,,(I', t)|:_ 3 +V(r, t)j|§02,m(rv t)dx.

m

(A4)
Here ¢; ,(r, t) is the wave function of the nth longitudinal
mode in the transverse ground state. Notice that ¢; ,(r, ) and
¢@2.m(r, 1) have the same transverse parity-symmetry center.
They stay in the ground transverse state and have the same
transverse parity, and therefore can couple with each other.
The two tweezers are parallel to each other and they have the
same optical axis as shown in Fig. 4(a); therefore, transverse
and longitudinal modes do not mix for our system. In fact, the
extraction of excited longitudinal modes is independent of the
transverse state of the atoms in the main tweezer. Generally,
the transverse modes are more confined, which typically have
six (or more) times larger trapping frequency than the longitu-
dinal modes. Therefore, high-fidelity transverse ground state
can be obtained by sideband cooling for bosons or by spilling
for fermions, with occupation only on the first N longitudinal
modes.

APPENDIX B: ADIABATIC CONDITION

The simple model given by Eqgs. (A2) and (A3) describes
many independent two-level Landau-Zener processes. We
have assumed that the detuning A, and coupling J, are
small compared to the tweezer energy level splitting w, =
E| ,+1 — Ey,, so the off-resonance couplings are neglected.
The instantaneous eigenenergy levels and eigenstates of the
nth Landau-Zener pair are &, = Ej, = vJ? + (5)* and
|9x.n)s With Hiot|@s n) = €nxl0+,). The gap between the
higher level of the nth pair and the lower level of the (n + 1)th
pairis &,41,— — &4+ = @, — 2VJ7 + (52)%. We see that even

for small A, and J, [e.g., \/J,f + (42)? ~ {w,), the eigenen-

ergy levels ¢, + would move by % their spacing, as shown in
Fig. 3.
The adiabaticity condition of the two-level Landau-Zener

process is % <« 1. That is, the process duration should

be long compared to the inverse of the gap, leading to the
speed proportional to the gap. We emphasize that the full
description of the adiabatic process is given by a multistate
Landau-Zener problem by including off-resonance couplings
(Jn.ml®1.0) {(@2.m| + H.c.). The adiabaticity condition becomes
t’tl—ﬁ: <« 1 and the adiabatic duration is long compared to
all the eigenenergy gaps En+ —&n— and &, _ — &, 4. Our
full numerical simulation has taken into account all these
effects.

Since a larger gap leads to a faster qubit preparation,
we would like to use larger J, and A, during the adiabatic
process. As we discussed above, J, and A, should still be

small compared to w, to ensure that the all gaps are large
enough. For example, one can use vJ> + (%)2 ~ %wn such
that &, — &, ~ €ny1,— — &4 ~ 5. Therefore, the speed
is limited by w,. The speed can be very fast (10 or 100 ms
preparation time for Li or Rb atoms, respectively) for the

tweezers considered in this paper.

FIG. 6. Energy levels and corresponding wave functions for two
Gaussian traps satisfying approximate supersymmetry with wy =
1 um, oy = —12Eg, and a; = —10.76E. The results are obtained by
numerically solving the Schrodinger equation. Here Ey is the energy
unit.

APPENDIX C: APPROXIMATE SUPERSYMMETRY

Exact supersymmetry requires isospectrality such that the
corresponding eigenvalues of the two tweezers are exactly
matched initially [i.e., Ey ,(t = 0) = E; ,(t = 0)]. In the pres-
ence of perturbations that weakly break the energy degeneracy
El,n # E2,n with El,n(t =0) - E2,n(t =0) € w,(t =0), the
supersymmetry becomes an approximate symmetry (an ap-
proximate symmetry arises when the symmetry is weakly
broken). Our scheme works for both exact and approximate
supersymmetries, i.e., in the region E; ,(t =0) — E, ,(t =
0) < {J,(2), Au(t)} < wy(t = 0), such that all gaps remain
during the adiabatic process. If the supersymmetry is strongly
broken, we may have either unpaired states or an extremely
small gap during the extraction. Therefore, the supersymme-
try (either exact or approximate) is crucial for the design of
our tweezer geometry and plays a central role in the atom
extraction process. Two tweezer potentials that do not obey
the supersymmetry would not work.

Though it is possible to obtain exact supersymme-
try by tailoring the tweezer shapes, it is more realistic
to work in the approximate supersymmetry region. For
the 1D Gaussian example, the auxiliary tweezer corre-
sponds to an approximate supersymmetric partner of the
main tweezer (see Fig. 6). In particular, we are inter-
ested in the low-lying energy levels; therefore, the traps
Vi(x) and V,(x) can be approximately characterized by har-
monic traps Vi(x) ~ a;(1 — 2x*/w?) and Vo(x) ~ an(1 —
222 /wd) = Vi(x) + Aa — ZAaxz/wg. Besides the constant
shift Aoe = (ap — o) < o compared to V;, V, contains an
additional small term 2Aax?/wj which only leads to slight
differences in the energy splittings between the two traps,
ie., |Ei, — Ey,| =~ ﬁw],nﬂ — Ey,|. For a constant shift
equal to the energy splitting Ao = E; 11 — E1 ,, we obtain
V, as the approximate superpartner of V| with |E} ,, — E» | =~
21—0 |E1.n+1 — Ej1 4], as shown in Fig. 6. Such a tiny difference in
energy splitting can be suppressed further by slightly modify-
ing the beam waist of the auxiliary tweezer which eliminates
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the curvature difference 2Aax?/wg. Similar results apply to
the 3D tweezers.

APPENDIX D: DIFFERENCE BETWEEN BOSON
AND FERMION QUBITS

We start from the single atom (several noninteracting
atoms) in the tweezer for the bosonic (fermion) qubit. In both
cases (single boson or several fermions), the atom interaction
is irrelevant in our ground-state preparation scheme because
of the Pauli exclusion principle for fermions.

The tightly confined bosons strongly interact with each
other; therefore, multioccupation is avoided as one loads the
reservoir atoms into the tweezer. Through this method, defect-
free single-atom tweezer arrays have been experimentally
realized by postselecting and rearranging occupied tweez-
ers [7,9,11,12]. The single atom after such a process is
hot, and further sideband cooling could bring the ground-
state occupation probability to approximately 90%, which

means still a few excited vibrational states could be occupied.
Then one can apply our supersymmetry cooling proposal to
achieve ground-state preparation fidelity up to approximately
99.99%.

The case for fermionic qubits is very different because two
spinless fermions do not occupy the same motional ground
state and interact with each other. Therefore, the method for a
bosonic qubit does not apply for a fermion qubit. A different
laser culling method [36] can be used to prepare a few atoms
in an optical tweezer from a reservoir of degenerate Fermi
gas through gradually reducing the optical tweezer potential,
as demonstrated in experiments [37]. In this case, the ground
state is already occupied with a high probability and the
difficulty is how to remove the last few low-lying excited-
state atoms without affecting the ground-state atom. In our
fermion qubit preparation, we start from a few spinless atoms
distributed on the low-lying energy levels, and the supersym-
metry scheme can extract all excited fermions. These spinless
atoms have no interaction.
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