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Limited-Angle CT Reconstruction via the L, /L, Minimization*
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Abstract. In this paper, we consider minimizing the Li/Ls term on the gradient for a limited-angle scanning
problem in computed tomography (CT) reconstruction. We design a specific splitting framework
for an unconstrained optimization model so that the alternating direction method of multipliers
(ADMM) has guaranteed convergence under certain conditions. In addition, we incorporate a box
constraint that is reasonable for imaging applications, and the convergence for the additional box
constraint can also be established. Numerical results on both synthetic and experimental datasets
demonstrate the effectiveness and efficiency of our proposed approach, showing significant improve-
ments over the state-of-the-art methods in the limited-angle CT reconstruction.
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1. Introduction. Recent developments in science and technology have led to a revolu-
tion in data processing, as large datasets are becoming increasingly available and useful. In
medical imaging, a series of imaging modalities, such as x-ray computed tomography (CT)
[31, 5, 13, 14], magnetic resonance imaging (MRI) [42], and electroencephalography (EEG)
[34, 35], offer different perspectives to facilitate diagnostics. On the other hand, however, one
often faces “small data,” e.g., only a small number of CT scans are allowed for the sake of ra-
diation dose. In this paper, we are particularly interested in a limited-angle CT reconstruction
problem, which often occurs in many medical imaging applications. In breast imaging, a tech-
nique gaining wide interest is tomosynthesis (sometimes referred to as 3D mammography)
[65, 73], which is a limited angle tomography approach designed to produce pseudo three-
dimensional images while keeping the radiation exposure to approximately that of traditional
two-dimensional mammograms.
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The CT data collection is a nonlinear process due to the polychromatic nature [31, 19]
of the x-ray source. A common practice in CT adopts some linearization and discretization
schemes that express the formation model as f = Au, where f denotes the measurement
data, u is the attenuation coefficients to be recovered, and A is a projection matrix. Specif-
ically for this paper, we consider two types of projection geometries: parallel beam and fan
beam, which are popular in the CT reconstruction literature. For parallel beam, the complete
scanning angle is 180°, while it is 360° for fan beam. If we restrict the maximum scanning
angle, it becomes the so-called limited-angle scanning, which is much more challenging than
the CT reconstruction from the complete scanning. Some conventional methods in the CT
reconstruction include filtered back projection (FBP) [15, 55], simultaneous iterative recon-
struction technique (SIRT) [31], and simultaneous algebraic reconstruction technique (SART)
[1, 30]. These approaches do not involve any regularization and perform poorly in the case of
limited-angle and/or noisy data, resulting in severe streaking artifacts [16, 46].

When data is insufficient, one often requires reasonable assumptions to be imposed as a
regularization term in order to reconstruct a desired solution. As such, the CT reconstruction
can be formulated as minimizing an objective function that consists of a data fidelity term and
a regularization term. There are two commonly studied data fitting terms for CT reconstruc-
tion: least squares (LS) [22, 29, 54] and weighted least squares (WLS) [57]. In this paper, we
focus on the LS data fitting with a discussion of WLS in section 5.2. As for regularizations,
the celebrated total variation (TV) [12, 29, 53, 54, 58, 69] prefers piecewise constant images.
However, two noticeable drawbacks for TV are loss of contrast and staircasing artifacts. To
resolve its limitations, Jia et al. [28] utilized a tight frame regularization and implemented
the algorithm on graphics processing units (GPUs) to achieve fast computation. Recently,
a combination of TV and wavelet tight frame was discussed in [41]. The extension of TV
in a nonlocal fashion by exploiting patch similarity was examined in [40] for the regular CT
reconstruction and in [43] for the limited-angle case.

The TV seminorm is equivalent to the L; norm on the gradient. It is well known that
Ly is the tightest convex approximation to the Ly norm,' which is used to enforce sparsity
for signals of interest. There are several alternatives to approximating the Ly norm, such as
L, with 0 < p < 1 [11, 66], transformed Ly [44, 59, 71, 72], and Li-Lo [36, 37, 38, 45, 67].
Algorithmically, Candés, Wakin, and Boyd [6] proposed an iteratively reweighted L; (IRL1)
algorithm to solve for the Ly minimization. This idea was reformulated as a scale-space
algorithm in [27].

Motivated by recent works using Li/Lo [50, 56, 61] for sparse signal recovery, we apply
the Ly/Ls form on the gradient, leading to a new regularization term. This regularization is
rather generic in image processing, and we find it works particularly well for piecewise con-
stant images, owing to its scale-invariant property when approximating L. In addition, the
proposed regularization can mitigate the staircasing artifacts produced by TV, as the Ls norm
of the gradient in the denominator should be away from zero. Extensive experiments demon-
strate that our method outperforms the state of the art in CT reconstruction, and significant
improvements are achieved for the limited-angle case. Li/Lo on the gradient was originally
proposed in [50], which included the MRI reconstruction as a proof-of-concept example under

INote that Lo is not a norm but is often referred to as one.
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the noiseless setting, but it lacks practicality and convergence analysis of the algorithm. The
contributions of this work are threefold:
1. We propose a novel regularization together with a box constraint for the limited-angle
CT reconstruction.
2. We design a specific splitting scheme for solving several related models so that the
convergence of ADMM can be established under certain conditions.
3. We present extensive CT reconstruction results (using phantoms/experimental data
under parallel/fan beam) to demonstrate the practicality of the proposed approach.
The rest of the paper is organized as follows. In section 2, we present some preliminary
materials, such as notation, TV definition, and a previous work of L; /Ly [50]. We discuss the
proposed models and algorithms in section 3, followed by convergence analysis in section 4.
Experimental studies are conducted in section 5 using the projection data of two phantoms
subject to two types of noise (Gaussian noise and Poisson noise) as well as two experimental
datasets. Finally, conclusions and future work are given in section 6.

2. Preliminaries. Suppose an underlying image is defined on an m x n Cartesian grid and
denote the Euclidean space R™*"™ as X. We adopt a linear index for the 2D image, i.e., for
u € X, uj; € Ris the ((i —1)m+ j)th component of u. We define a discrete gradient operator,

(2.1) Vu := (Vyu, Vyu),

with V, being the forward difference operator in the z-direction for z € {z,y}. Denote ¥ =
X xX. Then Vu € Y, and for any p € Y, its ((¢ — 1)m + j)th component is p;; = (pij1,Pij2)-
We use a bold letter p to indicate that it contains two elements in each component. With
these notations, we define the inner products by

m,n mmn 2
(2.2) (@ y)x =D wyyy; and  (p,A)y = > > pijkijks
ij=1 ij=1k=1

as well as the corresponding norms

(2.3) lzllz = v (z,2)x  and |[pll2 = v/ (P, P)y-

2.1. Total variation. By incorporating the TV regularization [51] into the data fitting
terms, we can obtain the two models

(2.4) min [|[Vul|; st. Au=f,
. A
(2.5) min [|Vully + 3 [[Au — f[|3,

where V is defined in (2.1). We refer to (2.4) as a constrained formulation, while (2.5) is
an unconstrained one. The latter is often used when the noise is present and the parameter
A > 0in (2.5) shall be tuned according to the noise level. Note that the TV term, ||Vul|1, is
equivalent to the L1 norm of the gradient, which can be formulated as the anisotropic TV,

(2.6) IVully = [[Vaully + [|Vyull1,
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or the isotropic TV, defined by 37", \/ (qu)?j + (Vyu)?j. The anisotropic TV was shown to
be superior to the isotropic one for CT reconstruction [12]. Here, we also adopt the anisotropic
TV to define the L; norm on the gradient. In addition, the difference of anisotropic and
isotropic TV was proposed in [39] for general imaging applications. There are many efficient
algorithms to minimize (2.4) or (2.5), including dual projection [7], primal-dual [8], split
Bregman [18], and the alternating direction method of multipliers (ADMM) [3].

2.2. Ly /L5 on the gradient. We review a model of L /L on the gradient in a constrained
formulation [50],

IVl
(2.7) min
u [ Vaully

s.t. Au = f,

which is referred to as Li/Lo-con. Here || - |1 and || - ||2 are defined by (2.6) and (2.3),
respectively. We apply the ADMM framework [3] to minimize (2.7) by rewriting it into the
equivalent form

(2.8) -~

st. Au=f, d =Vu, h=Vu,
45 I /

with two auxiliary variables d and h. Note that we denote d and h in bold to indicate that
they have two components corresponding to x and y derivatives. The augmented Lagrangian
for (2.8) is given by

_ ]l

A

(2.9) + {p1b1, Vu — d) + E[d - Vul

+ {pabs, Vu— h) + 2 |h — Va3,

where w, by, by are Lagrange multipliers (or dual variables) and A, p1, p2 are positive param-
eters. The ADMM iterations proceed as follows:

w1 = arg min £(u, d®) h#); *), bgk), bék)),
d* D = argmin £(u* D), d, h*); (k) bgk), bgk)),
d
h(*+1) = argmin £(u*+1), d¢F+D h; k) bgk), bgk)),
h
w(k+1) — w(k) _|_ f — Au(k+1):

b = b vy kD) — gk,

(2.10)

bgkﬂ) — bgk) + VD) _ pk+D),

\

For more details, please refer to [50] that presented a proof-of-concept example when A” A and
V7TV can be simultaneously diagonalizable by the fast Fourier transform (FFT). In this paper,
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the matrix A corresponds to a projection matrix, where the inverse of NAT A 4 (p1 + p2) VIV
cannot be computed via FFT.

As the splitting scheme (2.8) involves two-block variables of u and (d,h), it is hard to
establish the convergence of (2.10). To prove for the convergence of ADMM, the existing lit-
erature [20, 49, 63] requires some associated function (e.g., objective function, merit function,
and augmented Lagrangian function) to be coercive, separable, or Lipschitz differentiable (on
a certain domain), neither of which holds for the L;/Ly functional.

3. The proposed models. Here we consider an unconstrained formulation of L;/Lo in
order to deal with noisy data. As opposed to (2.8), we propose a different splitting scheme,
under which we can establish the ADMM convergence. We then discuss a variant in section 3.2
to incorporate a box constraint, which is reasonable for the CT reconstruction problems.

3.1. Unconstrained formulation. The unconstrained L; /Ly formulation is given by

vl
o[ 7ull

A
(3.1) + 5 lAu - 13

which is referred to as Lj/Le-uncon.
We design a specific splitting scheme that reformulates (3.1) into

o | Vull:
wh |h2

A
(3.2) + §HAu —fl3 st. h=Vu.

The corresponding augmented Lagrangian function is expressed as

Vu A
(383)  Luncon(uhiby) = H|]h\||2|1 + S1Au = fIB+ (paba, Vu — ) + 22— Vul}

with a dual variable by and a positive parameter ps. The ADMM framework involves the
following iterations:

u(k""l) = arg minu »Cuncon (U, h(k)’ bgk))’

(3.4) h(*+D) = arg ming Lancon (u® ), h; bYY),
bng) _ bgk) + VoD — pe+1),

Same as in [50], the h-update has a closed-form solution given by

Rk {T(k)g(k) if g*) # 0,

e otherwise,

(3.5)

where g®) = Vot 4 bgk), e(%) is a random vector with its Ly norm being {/ M, and

P2
k) — 14 %(C(k) + ﬁ) with

o) _ </27D<k> +24/(27TD®) +2)2 — 4 and DO — Va0

2 p2llg®I3 -
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The u-subproblem can be expressed as

i 1Vlh
u [h®)];

A P2 k
(3.6) + SllAu = £13 + Z|® - Vu— by 3.

With h®) and bgk) fixed, we can apply ADMM to find the optimal solution of (3.6). Specifi-
cally by introducing an auxiliary variable d, we rewrite (3.6) as

il
S PG

A
+ SllAu - 13+ %Ilh(’“) ~Vu-bP2 st d=Vu

The augmented Lagrangian corresponding to (3.7) is given by

1dlx
[BUP

+ {p1b1, Vu — d) + £L|d - Va3,

£F)

uncon

A 02 k
(u,ds by) = + 5l — 13+ Fh® — Vu b3

where by is a dual variable and A, p; are positive parameters. Here we have k in the superscript
of Lyncon to indicate that it is the Lagrangian for the u-subproblem in (3.4) at the kth iteration.
The ADMM framework to minimize (3.7) leads to the iterations

. k

Uj+1 = arg Ny, El(m)con(ua dj; (bl)j>7
(3'8) dj+1 = arg mind Eglfl)con(ujﬂ, d; (bl)j)a

(b1)j+1 = (b1); + Vujy1 — djq1,
where the subscript j represents the inner loop index, as opposed to the superscript k& for
outer iterations in (3.4). Note that Eﬁlfl)con(u,d; b1) resembles the augmented Lagrangian
L(u, d,h(k);w7b1,bg€)) with w = 0 defined in (2.9), and hence (3.4) with one iteration of
(3.8) for the u-subproblem is equivalent to the previous approach [50]. If we can reach the

optimal solution of the u-subproblem, the convergence can be guaranteed; see section 4.
We then elaborate on how to solve the two subproblems in (3.8). By taking the derivative

of ,Cl(llfl)con with respect to u, we obtain a closed-form solution,
-1
(39) w1 = (MTA= (o1 +p2)8)  (AMTS +p1V7(d; = (b1);) + p2V7 (08 — b)),

where A = —V7TV denotes the Laplacian operator. For a general system matrix A that cannot
be diagonalized by the Fourier transform, we adopt the conjugate gradient (CG) descent
iterations [48] to solve for (3.9). The d-subproblem in (3.8) has a closed-form solution, i.e.,

1
(310) dj+1 = shrink (VUj+1 + (bl)j7 pl”h(k)H2> ,
where shrink(v, y) = sign(v) max {|v| — u,0} .

We summarize in Algorithm 1 for minimizing the L;/La-uncon model (3.1). Admittedly,
Algorithm 1 involves 3 levels of iterations: outer/inner ADMM and CG for solving (3.9),
which is not computationally appealing. An alternative is the linearized ADMM [47] so as to
avoid the CG iterations, which will be explored in the future.
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Algorithm 1 The L;/Ly unconstrained minimization (L;/La-uncon).

1: Input: projection matrix A and observed data f

2: Parameters: p1, p2, \,€ € RT, and kMax, jMaxe Z*

3: Initialize: h,by,bo,d, and k,7 =0

4: while k < kMax or [u®) — w*=D|/|u*)| > & do

5. while j < jMax or |u; — uj—1|/|u;| > € do

6: ujr1 = AATA = (p1 + p2) D) TAATf + p1 VT (d; — (b1);)

+p2V7 (0¥ — b))

dj_|_1 = shrink (VU,J‘_H + (bl)j, 7p1||h1(k)H2>

(b1)j+1 = (b1); + Vujt1 — djn

9: j=73+1

10:  end while

11:  return uktD

R (Vu<k+1> + bg’“)) R v N
elk), Va4 bgk) =0

1. b = bl L gy _ pk+D)

14 k=k+landj=0

15: end while

16: return u* = u'

12:

k)

3.2. Box constraint. It is reasonable to incorporate a box constraint for image processing
applications [9, 32], since pixel values are usually bounded by [0, 1] or [0, 255]. Specifically for
CT, the pixel value has physical meanings, and hence the bound can often be estimated in
advance [31, 5]. The box constraint is particularly helpful for the L; /Lo model to prevent its
divergence [61]. We add a general box constraint u € [c,d] to (3.1), thus leading to

[Vl

(3.11) min
o [[Vull2

A
+ §HAu— fl3 st weled,
referred to as L1 /Lo-box. To derive an algorithm for solving the L /Lo-box model, we rewrite
(3.11) equivalently as

vl
ah ]l

A
(3.12) + 5l Au — FI3+Meq(u) st h=Vuy,

where IIg(t) is an indicator function enforcing ¢ into the feasible set S, i.e.,

(3.13) Tg(f) = {0 iftes,

+o0o otherwise.

The augmented Lagrangian function for (3.12) can be expressed as

(3.14) Lox(u, h; by) = Lyncon(u, h; ba) + H[c,d] (u).
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By using ADMM, we have the same update rules for h and by as in (3.4), while the u-
subproblem is given by

I Vu A k
(3.15) kD) — arg min \|||h(k)|]’]12 + §HAu — fH% + %Hh(k) —Vu— bg )H% A e,y (u)-

We introduce two variables, d for the gradient and v for the box constraint, thus getting

(3.16) min ld

A 2, P21 (k) (k)12
min o + g 14U S+ F IO = Vu-b P+ (@) st d=Vuu=v.

The augmented Lagrangian corresponding to (3.16) becomes

£®)

box

d
(u,d, vi by, e) — S

P2 k (k)2 A )
= o, T2 Ve h® + b33 + e (v) + 5 [l Au — £13

(3.17)
L1 2 B 2
+ (o1, Vi — d) + 2 d = Vallf + (Be,u — v) + o - ul}

where by, e are dual variables and A, p;, 8 are positive parameters. Similar to (3.8), there is a
closed-form solution of the u-subproblem,

i1 = </\ATA + (p1+ p2) s+ m)_l (/\ATf + V7 (d; — (b1);)

(3.18) i
+ 29" (0 b 1+ 5 — o)),
The update for d is the same as (3.10), and we update v by projecting it onto [c,d],
i.e., vj41 = min {max{uj;1 + €j,c},d} . The pseudocode with the additional box constraint is
summarized in Algorithm 2.

4. Convergence analysis. We intend to establish the convergence of Algorithms 1-2. We
observe that the ADMM framework for both models shares the same structure,

u* 1) = argmin, £(u, h*); bgf))7
(4.1) h(*+1) = arg miny, £(u*+D h; bék)),
by = bl 4+ vukt) k),

where L is either Luncon Or Lpox. We show that the sequence generated by ADMM for
L1/ La-uncon either diverges due to unboundedness or has a convergent subsequence, while
the sequence for Lj/Ls-box always has a convergent subsequence. For this purpose, we in-
troduce Lemma 4.2 for an upper bound of Hbgkﬂ) - bgk)Hg in terms of [Ju**Y — u®) |, and
|h*+D —h®)||,. Lemmas 4.3 and 4.4 are standard in convergence analysis [26, 33, 62, 63] to
guarantee that the augmented Lagrangian decreases sufficiently and the subgradient at each
iteration is bounded by successive errors, respectively. The lemmas require the following three
assumptions:

Al : N(V)NN(A) = {0}, where N denotes the null space and V is defined in (2.1).
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Algorithm 2 The L;/Ly minimization with a box constraint (L;/La-box).

: Input: projection matrix A, observed data f, and a bound |[c, d] for the original image
: Parameters: p1, p2, A\, 8, € € RT, and kMax, jMax € Z*
: Initialize: h,bq,bo,d,w =0,¢, and k,5 =0
. while k < kMax or |u® — 4*=D|/|u*)| > € do
while j < jMax or |u; — uj—1|/|uj| > € do
ujr1 = (AATA = (p1 + p2) A + BT AATf + p1 VT (dj — (by);)
+p297 (0®) — b)) + B — )
7 dj+1 = shrink (VUj+1 + (bl)j,

[ T S

S

p1[[hF)]|
: vj+1 = min {max{u;1 + ej,c},d}

9: (b1)j4+1 = (b1)j + Vujp1 — djn

10: €j+1 = €5 + Ujt+1 — Vj41
11: j=j+1

12: end while
13: return u(

(k1) — T“ﬂ(vU%+D+4éM>, Vulk+1 4 bl £ 0,
el vyt 4 bg’“) ~0

15: bgk—H) — bék) + vu(kJrl) . h(k+1)

16: k=k+1landj=0

17: end while

18: return u* = u(

B = g

14:

k)

A2 : The sequence {u(®)} generated by (4.1) is bounded, and then so is {Vu(*)} and we
denote M = sup,{||Vu®|}.

A3 : The norm of {h(®)} generated by (4.1) has a lower bound, i.e., there exists a positive
constant e such that ||h®) |y > € Vk.

Remark 4.1. Assumption Al is standard in image processing [10, 39]. Assumption A2
requires the boundedness of {u(®)}, and hence the convergence results can be interpreted as
the sequence either diverges (due to unboundedness) or converges to a critical point. To make
the Ly /Lo regularization well-defined, we shall have ||h||s > 0. Certainly, ||h|l2 > 0 does not
imply a uniform lower bound of €, but we can redefine the divergence of an algorithm by
including the case of |h*®)||y < €, which can be checked numerically with a preset value of .

Please refer to the appendix for the proofs of these lemmas, based on which we can establish
the convergence in Theorems 4.5 and 4.6 for Algorithms 1 and 2, respectively. Furthermore,
Theorems 4.7 and 4.8 extend the convergence analysis to the case when the u-subproblem in
(4.1) can be solved inexactly.

Lemma 4.2. Under assumptions Al and A2, the sequence {u(k),h(k),bék)} generated by
(4.1) satisfies

a2 o n s () et < (G55 e
2 2
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Lemma 4.3 (sufficient descent). Under assumptions A1-A3 and a sufficiently large po, the
sequence {u(k),h(k),bgk)} generated by (4.1) satisfies

(4.3) L™ hED BEY < £(0® 158 — o f[uttD — y B2 — oy nEHD — n®)|2

where ¢1 and co are two positive constants.

Lemma 4.4 (subgradient bound). Under assumptions A1-A3 and a sufficiently large po,
there exists a vector n*+t1) € 9L (uF+D hkE+1), bgkﬂ)) and a constant v > 0 such that

(4.4) I3 < 5 (I = n®3 4 b — b{3)

Theorem 4.5 (convergence of Lj/Lo-uncon). Under assumptions A1-A3 and a sufficiently
large pa2, the sequence {u(k), h(k)} generated by (3.4) has a subsequence convergent to a critical
point of (3.2).

Proof. We first show that if {u(*)} is bounded, then {h(*), bék)} is also bounded. As |[u(®|,
is bounded, so is ||[Vu(®|;. It follows from assumption A2 and the optimality condition for
by in (A.3) that we have

Hvu(k)”1 h()
b3

IVu®|;

L
n2n2‘ e

2

Therefore, {bgk)} is bounded and hence {h(*)} is also bounded due to the h-update (3.5) and
boundedness of Vu. Then it follows from the Bolzano—Weierstrass theorem that the sequence

{u®), h(k),bék)} has a convergent subsequence, denoted by (u(%), h(*), bgkj)) — (u*,h*, b}),
as kj — co. In addition, we can estimate that

Luncon(w®) h®); b))

vub A P P k
- H||h(k)|||2|1 + §|]Au — f||§ + Eth(k) R v b2”% _ ;Hbé )||§
o Iva®y [ va®
~ [h(®)]] paet

which gives a lower bound of Lyncon owing to the boundedness of ulk), Therefore, we have

that ﬁuncon(u(k), h(), bék)) converges due to its monotonic decreasing by Lemma 4.3.
We then sum inequality (4.3) from k& = 0 to K, thus getting

Euncon(u(K'H) , h(K+D) : béK—H))

K K
< ['uncon(u(o)’ h(o); béO)) —C Z Hu(kJrl) - u(k) H% — C2 Z ”h(kJrl) - h(k) ”%
k=0 k=0

Letting K — oo, we have that both > 32 [u*+1) — w®)|2 and "5, [|h*+) — h(®)|3 are
finite, indicating that u® — w*+1) — 0, h®) — W+ — 0. Then by Lemma 4.2, we get
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bgk) — bgﬁ_l) — 0. By (u(kj),h(kj),bgkj)) — (u*,h*, b}), we have (u(kﬂ'“‘l),h(kj+1),békj+1)) —
(u*,h*,b%), and Vu* = h* (by the update of by). Here, by Lemma 4.4, we have 0 €
OLuncon (u*, h*, b%), and hence (u*,h*) is a critical point of (3.2). [ ]

For the box model (3.11) with an explicit bounded assumption on u, we can prove that the
ADMM framework has the same convergence results as in Theorem 4.5 without assumption
A2. The proof is thus omitted.

Theorem 4.6 (convergence of L1 /Lo-box). Under assumptions Al and A3 and a sufficiently
large p2, the sequence {u(k), h(k)} generated by Algorithm 2 always has a subsequence conver-
gent to a critical point of (3.11).

Theorem 4.7 (convergence of inexact scheme in L;/Lo-uncon). Under assumption Al and
a sufficiently large pa, one can solve the u-subproblem in (3.6) within an error tolerance €x41,
i.e.,

(4.5) [+ — uHDE < e,

and the sequence {fl(k+1), ngﬂ)} s generated by an inexact ADMM scheme, i.e.,

(4.6) {

If {&(k), fl(k)} satisfies assumptions A2-A3 and ), €}, < +00, then this sequence has a subse-
quence convergent to a critical point of (3.2).

Proof. As @ is bounded, we denote M := supy, ||[V@*||; and M := sup,{||a®||s}. Fol-
lowing the proof of Lemma 4.3, we have

(k+1) = arg ming Luncon (@*+D, h; b)),
G — B gt Rk,

T B

Lancon () 5O 5) < Lopeon (@0, B B — T ultr) 503,

Euncon(a(k—i-l)’fl(k—i-l);f)gk)) < Euncon(a(k—&-l)’fl(k);f)gk)) _ @HB(’““) _ B("f)\|§,

where L = 26—1‘3;1 Simple calculations lead to

o — a3 = ) — a0 4 (@44 0|3
> Hu(kJrl) - 71(1@+1)H2 + Hﬁ(kJrl) o ﬂ(k)Hz _ ZHﬁ(kJrl) _ a(k)H”u(k+1) - ,a(kJrl)”
> Hu(kJrl) - ﬂ(k+1)H2 + Hﬁ(kJrl) - ﬂ(k)HQ o 4M8k+1

> D — a® |2 - 4N7eyr.

It follows from Lemma A.2 that
- . ~ - - L
Luncon(@" D, h5);55Y) < £ypeon (u® D, 20 B ) 4 Z|at+D) — o k112

< Euncon(u(lﬁ_l)) fl(k)» ng)) +
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Analogous to Lemma 4.2, it holds that

A

_ 8M?

32m" = g By combining all the inequalities, we get

where k7 : and kg :

Euncon(a(k—l-l)? fl(k—i-l); f)ék“))
(A7) < Luneon(@®, B®;BEY) — & a1 — a0 |3 — & [R*HD — RO)|Z + ey,
where ¢ 1= % — 1§;Zf, Gy 1= 230 ‘;2{2,
large po such that é;,é > 0. Summing inequality (4.7) with k£ from 0 to K and letting
K — 00, we obtain that Y 32 [[a®+D) — a®)|3 and 3232, ||h**+1) — h*)|3 are finite, since
¢3 ) €k < +0o by assumption. The rest of the proof follows along the same lines as that of
Theorem 4.5 and is thus omitted. |

and & := 2Mo )\ + % We can choose a sufficiently

Similarly, we have the convergence of inexact scheme in L;/Ls-box under a restriction
that @+ should belong to the feasible set, i.e., aktD) ¢ e, d].

Theorem 4.8 (convergence of inexact scheme in L;/La-box). Under assumption Al and a
sufficiently large p2, one can solve the u-subproblem in (3.15) within an error tolerance € and
feasible set, i.e.,

(4.8) [a®+D) — o FH2 <oy and @Y e e, d).

If Y ex < 400 and h(*) satisfies assumption A3, then the sequence {ﬂ(k), fl(k)} has a subse-
quence convergent to a critical point of (3.11).

Remark 4.9. Theorems 4.5-4.8 are about subsequential convergence, which is weaker than
global convergence, i.e., the entire sequence converges. If the augmented Lagrangian £ has
the Kurdyka—Lojasiewicz (KL) property [2], global convergence can be shown in a similar
way as [20, Theorem 3.1]. Unfortunately, the KL property is an open problem for the L;/Lo
functional. On the other hand, it is true that Theorems 4.7 and 4.8 relax the accuracy of
solving the u-subproblem within the tolerance ¢ at the kth iteration, but in practice we solve
for a fixed number of iterations, under which the convergence remains open in the optimization
literature.

5. Experimental results. We carry out extensive experiments to demonstrate the per-
formance of the proposed approaches in comparison to the state of the art. We test on two
phantoms of Shepp—Logan (SL) by the MATLAB command phantom and FORBILD (FB) [70]
as well as two experimental datasets of a walnut [21] and a lotus [4], all shown in Figure 1.
Note that the MATLAB SL phantom has a higher contrast than the original one presented
in [52], as illustrated in Figure 2 by the horizontal and vertical profiles. The reference images
for the experimental data are reconstructed from a complete scanning via the Tikhonov reg-
ularization (MATLAB function is provided in [4, 21]). As the FB phantom has a very low
image contrast, we display it with the grayscale window of [1.03, 1.10] in order to reveal its
structures. Using the SL phantom, we discuss some computational aspects of the proposed
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Figure 1. Ground truth of Shepp—Logan (SL) phantom and FORBILD (FB) head phantom with the
grayscale window of [0, 1] and [1.03, 1.10], respectively. The last two are reference images of a walnut and a
lotus reconstructed by using the complete projection data with the grayscale window of [0, 0.6].

2F . 2r
——high contrast H H ——high contrast
181 ——low contrast 187 —— low contrast
16 16
1.4 1.4

0.8 0.8 W

0.6 0.6

0.4 0.4 1
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;AN N S I v :
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1 1 1 1
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Figure 2. Horizontal (left) and vertical (right) profiles of two SL phantoms with low contrast and high
contrast, the latter of which is used in this paper.

algorithms in subsection 5.1. We then present numerical results on synthetic data (SL and
FB) in subsection 5.2 and experimental data (walnut and lotus) in subsection 5.3. All the
numerical experiments are conducted on a desktop with CPU (Intel i7-5930K, 3.50 GHz) and
MATLAB 9.7 (R2019b).

To synthesize the limited-angle CT projection data, we discretize both SL and FB phan-
toms at a resolution of 256 x 256. The forward operator A is generated as the discrete Radon
transform with the same resolution as the digital phantoms. We use the IR and AIR tool-
box [17, 23] to simulate parallel beam and fan beam for the CT scanning. Both settings are
sampled at Oyrax/30 over a range of fyax, resulting in a subsampled data of size 362 x 31.
We use the same number of projections when we vary ranges of projection angles. Note that
complete scanning ranges for parallel beam and fan beam are 180° and 360°, respectively.
Therefore, fan beam is more challenging to reconstruct than parallel beam with the same
value of Oyax. We then add either Gaussian noise or Poisson noise to the projected data.
The Gaussian noise follows the zero mean Gaussian distribution with a standard deviation
set by a noise level multiplying the maximum intensity of the projected data. We consider
two Gaussian noise levels: 0.5% and 0.1%. A more realistic noise distribution for CT data is
that the data has the Poisson distribution with the mean Iyexp(—f), where Iy denotes the
number of incident x-ray photons and f is the noise-free sinogram. We consider two Poisson
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noise levels: Iy = 10* and 10°. The larger the value of I is, the higher the signal-to-noise
ratio is for the measured data.

We evaluate the performance in terms of the root mean squared error (RMSE) and the
overall structural similarity index (SSIM) [64]. RMSE is defined as

RMSE(u*, @) := ”“N_ iz

pixel

where u* is the restored image, @ is the ground truth, and Nk is the total number of pixels.
SSIM is the mean of local similarity indices,

N
1
SSIM(u”, @) = < ) _ ssim(x;, i),
=1

where x;,1y; correspond to the ith 8 x 8 windows for u* and #, respectively, and N is the
number of such windows. Note that N # Ny if we do not consider zero-padded pixels
along the edges. The local similarity index is defined as

(2upby + €1)(204y + c2)
(12 + p2 +c1)(02 + 02 4 c2)’

ssim(z,y) :=

where the averages/variances of x,y are denoted as j, /o> and y/ JZ, respectively. Here, c;

and cy are two fixed constants to stabilize the division with weak denominator, which are set
to be ¢; = co = 0.05.

We compare the proposed Lj /Ly model with a clinical standard approach of SART [1], the
TV model (2.4), referred to as L;, as well as two nonconvex regularizations: L, for p = 0.5
and Li-Lo [39] on the gradient. To solve for the L, model, we replace the soft shrinkage
by the proximal operator corresponding to L,, derived in [66], and apply the same ADMM
framework as the L minimization. As for Li-Lo, we modify the MATLAB package provided
by the authors [39] for the CT reconstruction problem. All these regularization methods are
solved in a constrained formulation with the same box constraint to make a fair comparison.
We pose the box constraints: [0, 1] for SL and [0, 1.8] for FB, since we know the upper/lower
bounds of the ground-truth images. As for the experimental images, we set the box constraint
as [0,0.5], which is estimated from the reference images. The initial condition of u is chosen
to be a zero vector for all the methods. We set the maximum iteration in the inner loop
and outer loop for both L;/Lo and Li-Lo as 5 and 300, respectively, while the maximum

(k) _q(k—1)
w < 107°. As for
flul)]2

the other parameters in L1/Lo, we set p1 = p2 = p and find the optimal combination among
the candidate set of A € {1073,1072,107!,1} and p, 3 € {0.1,1,10} that gives the lowest
RMSE. We tune parameters at each noise level for every testing dataset. In a similar way, we
tune the parameters individually for L, Ly, and Li-Lo.

iteration of L; and L, is 500. The (outer) stopping criterion is

5.1. Algorithm behavior. In this section, we discuss computational aspects of the pro-
posed algorithms. We first analyze the influence of the box constraint on the reconstruction
results. The analysis is based on the SL phantom from parallel beam CT projection data
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Figure 3. The effects of the box constraint in terms of the objective value (left) and RMSE (right).
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Figure 4. The effects of the upper bound of the box constraint in terms of the objective value (left) and
RMSE (right).

with the scanning range of 135° subject to Gaussian noise of 0.5%. The fidelity of the CT re-
construction and the convergence are assessed in terms of objective values and RMSE (u(®), @)
versus outer iteration counter k. In Figure 3, we present algorithmic behaviors of the box
constraint on the unconstrained model. Here we set jMax to be 5 (we will discuss the ef-
fects of inner iteration number shortly.) We plot both inner and outer iterations in Figure 3,
showing that the proposed algorithms with and without the box constraint are convergent, as
the objective functions decrease. On the other hand, the box constraint yields smaller RMSE
compared to the one without the box. Moreover, the box constraint helps avoid local mini-
mizers, as the RMSE of the algorithm without the box increases and the objective function
keeps going down. Therefore, the box constraint plays an important role in the success of our
approach for the CT reconstruction.

We then discuss the effect of upper bound of the box constraint, i.e., d, on the CT re-
construction performance. Again, we consider the SL phantom from paralleled beam CT
projection with the scanning range of 135° subject to a noise level of 0.5%. We compare the
oracle upper bound (100%) with relaxed bounds (110%, 120%, and 130%). In Figure 4, we
plot the objective values and RMSE with respect to iteration numbers. All the curves of
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Figure 5. The effects of the mazimum number of the inner loops in terms of the objective value (left) and
RMSE (right).

objective values in different d are almost the same, while the RMSE shows the accuracy is
slightly different. Figure 4 demonstrates that the proposed method is insensitive to the upper
bound of the box constraint.

Finally, we discuss the influence of jMax on the sparse recovery performance. Fixing the
maximum outer iterations at 300, we examine the results of jMax= 1, 3,5, and 10. In Figure 5,
we plot the objective values and RMSE with respect to iterations (counting both inner and
outer loops). The objective function with only one inner iteration does not decrease as much
as the ones with more inner iterations. RMSE reaches a lower value by fewer outer iterations
when using larger jMax. Following Figure 5, we set jMax to be 5 throughout the experiments.

5.2. Synthetic dataset. We start with the parallel beam CT reconstruction of the SL
phantom from 90° and 150° projection ranges, labeled SL-90°/SL-150°, with 0.5% Gaussian
noise. The quantitative results in terms of SSIM and RMSE are reported in Table 1. As
illustrated in Figure 6, SART fails to recover the ellipse shape of the skull with such small
ranges of projection angles. Both L1 and L;-Lo models are unable to restore the bottom skull
and preserve details of some ellipses in the middle. The L, model leads to a nearly perfect
reconstruction of the skull, but containing a lot of salt-and-pepper artifacts inside the brain.
The proposed Lj/Ls method yields a reasonable recovery in a balanced manner. In the case
of SL-150°, L,, is superior over the other approaches, while the proposed method is the second
best. This outcome is consistent with the compressed sensing literature [68] that L, performs
quite well for the incoherent problem, which corresponds to a larger scanning angle in the
CT reconstruction. The performance of L, decays for narrow scanning ranges, as reported in
Table 1.

We present the visual results of FB-90° and FB-150° with 0.1% Gaussian noise in Figure 7.
None of the methods can get satisfactory recovery results under the grayscale window of
[1.03,1.10]. Large fluctuations inside of the skull are produced by the competing methods,
among which L;/Ls can restore the most details of the image. Furthermore, we plot the
horizontal and vertical profiles in Figure 8, which illustrates that L; /Ly leads to the smallest
fluctuations compared to others. In contrast to the simple SL phantom, L, does not work
well for FB. We also observe a well-known artifact of the L; method, i.e., loss of contrast, as
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Table 1
Parallel beam CT reconstruction of the SL phantom by SART, L1, Ly, L1-L2, and Li/Ls.

h

SART L N Li-Ls L1/Ls
SSIM RMSE | SSIM RMSE | SSIM _ RMSE | SSIM_RMSE | SSIM_ RMSE
90° | 0.56 0.138 | 0.88 0.075 | 091 0.029 | 0.78 0.087 | 0.96 0.017
150° | 058 0.106 | 0.98 0038 | 0.99 0.008 | 088 0.034 | 0.98  0.011
90° | 058 0.137 | 0.96 0.041 | 1.00 0.006 | 0.88 0.072 | 1.00 0.003
150° | 0.60 0.104 | 0.98 0035 | 1.00 0005 | 099 0.076 | 1.00 0.001

Noise | Range

0.5%

0.1%

Li-Lo Li/Ly

[¥] [¥]
[¥] [¥]

SART

Ly L,

Figure 6. CT reconstruction from 90° (top) and 150° (bottom) parallel beam projection for the SL phantom
with 0.5% noise. The grayscale window is [0, 1].

SART Ly L, L1-Lo Li/Ls

Figure 7. CT reconstruction from 90° (top) and 150° (bottom) parallel beam projection for the FB phantom
with 0.1% Gaussian noise. The grayscale window is [1.03,1.10].

its profile fails to reach the height of jump on intervals such as [160, 180] in the left plot and
[220, 230] in the right plot of Figure 8, while L; /Lo makes a good recovery in these regions.
As shown in Figure 7, errors in these low contrast regions are magnified when we display
the restored image in a narrow grayscale window. Furthermore, the profile plots in Figure 8
confirm that our approach performs very well for high contrast details [60]. We report the
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Figure 8. Horizontal and vertical profiles generated via SART, L1, Ly, L1-L2, and L1/Ls in the range of
projection 90° (top) and 150° (bottom) for the FB phantom.

Table 2
Parallel beam CT reconstruction of the FB phantom by SART, L1, Lp, L1-L2, and L1/L>.

SART L, L, L1-Lo Li/L,
SSIM  RMSE | SSIM  RMSE | SSIM RMSE | SSIM RMSE | SSIM RMSE
90° 0.26 0.275 0.82 0.135 0.77 0.101 0.65 0.169 0.91 0.080
150° 0.28 0.206 0.90 0.059 0.70 0.078 0.70 0.107 0.95 0.028
90° 0.30 0.266 0.93 0.101 0.97 0.049 0.78 0.123 0.99 0.012
150° 0.32 0.192 0.99 0.026 1.00 0.003 0.94 0.026 1.00 0.002

Noise | Range

0.5%

0.1%

quantitative results of FB in Table 2. Comparing Tables 1 and 2 shows that all the methods
yield better performance for smaller noise levels and a larger range of scanning angles. In
addition, the recovery results of FB are much worse than those of SL, which are largely due
to low contrast structures in FB.

We then test fan beam CT reconstruction using the SL phantom with 0.5% Gaussian
noise. Note that fan beam with the same scanning angle is more ill-posed than in the cases
of parallel beam. Figure 9 illustrates that the ellipse shape of skull cannot be completely
recovered except for the proposed method. In the case of SL-150°, L1 /Lo recovers the image
with RMSE of 0.014, while RMSEs of other approaches all exceed 0.020. Overall, the proposed
Li/Ly approach achieves significant improvements over SART, Ly, and Li-Ly. Here L, is
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Ly

Li-Lo Li/Ly

SART Ly

Figure 9. CT reconstruction from 90° (top) and 150° (bottom) fan beam projection for the SL phantom

with 0.5% Gaussian noise. The grayscale window is [0, 1].
L4 L,

Figure 10. CT reconstruction from the 150° fan beam projection for the SL phantom with Poisson noise
Io = 10° using LS (top) and WLS (bottom) data-fidelity terms. The grayscale window is [0, 1].

Li-Lo Li/Ly

comparable to L /Ly only in the case of wider scanning ranges and ground-truth images with
simple geometries.

Lastly, we consider more realistic noise statistics, i.e., Poisson noise, for the CT problem.
Under such a noise model, we also examine a popular data fitting term, called weighted least
squares (WLS) [57], to measure the data misfit. In fact, WLS replaces the LS term in (3.1) by
%HAu—fH%V = %(Au—f)TW(Au—f), where W = diag(exp(—f)). As aresult, we can simply
modify the LS implementations to fit in WLS. We present one example of reconstructing the
SL phantom from 150° fan beam projection with noise level Iy = 10°. Figure 10 shows similar
results of LS and WLS. Specifically, LS gives a better recovery of the skull, while WLS has
fewer fluctuations inside the brain. We further compare the two data terms under different
noise levels in Table 3, reporting minor improvements of WLS over LS for all the regularization
methods.
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Table 3
CT reconstruction from 150° fan beam projection for the SL phantom with Poisson noise by L1, Ly, L1-Lo,
and L1 /Lz .

I Data-fittin, L Ly Li-Le L1 /L
0 & SSIM  RMSE | SSIM RMSE | SSIM RMSE | SSIM RMSE
10% LS 0.93 0.057 0.90 0.054 0.79 0.068 0.85 0.053
WLS 0.91 0.056 0.88 0.051 0.78 0.066 0.95 0.051
10° LS 0.96 0.042 0.95 0.017 0.91 0.046 0.99 0.009
WLS 0.97 0.041 0.98 0.028 0.93 0.045 0.99 0.007

5.3. Experimental dataset. We set up a limited-angle CT problem from two experimen-
tal datasets [4, 21]. The reference image of the walnut is of size 164 x 164, while that of the
lotus is 128 x 128. The sinogram for walnut is f € R164¥120 (3° per projection), and the
projection matrix A € RI9680x26896 Tp the lotus case, f € R429%¥120 and A ¢ RO1480%16384
When we perform the limited-angle CT reconstruction, we take partial data from f. Specifi-
cally, we consider a 150° scanning angle by selecting the first 50 projections, i.e., extracting
the corresponding rows of A and the columns of sinogram to generate the projection matrix
and sinogram, respectively. Since the real data contains noise generated by the CT machine,
we do not add additional noise in the sinogram. The reference images shown in Figure 1
are reconstructed from the complete scanning data by using the Tikhonov regularization. We
further impose a region of interest (ROI) when computing the quantitative evaluation metrics.
The ROl is a circle with radius of 62 for walnut and 72 for lotus.

We consider a [0, 0.5] box constraint on all the regularization methods (L1, Ly, Li-L2, and
L1/Lsy), which is estimated from the reference images. We do not assume any noise type (or
noise level), and we only consider LS as the data fitting term. The optimal parameters are
selected based on the “eyeball” norm of the restored image, focusing on textures and details
such as the walnut’s shell and its inner structure. The reconstruction results are presented in
Figures 11 and 12 for walnut and lotus, respectively, within the corresponding ROIs and under
a grayscale window of [0, 0.6]. In Figure 11, SART produces a lot of artifacts. The L; model
makes a good recovery, but loses some details in the bottom-left corner with blurring inner
texture. All these nonconvex regularization models have sharper images than Ly, while Ly /Lo
can have a higher contrast, especially for the internal region of the walnut. The lotus is more
difficult to reconstruct, as its root is filled with attenuating objects that cause severe metal
artifacts. In Figure 12, the restored image via our proposed model has fewer streaking artifacts
than the ones by other approaches. Lastly, we provide some quantitative analysis in Table 4.
All these regularization methods have similar performance in terms of SSIM and RMSE, while
L1 has the best results. As reference images have some obvious streaking artifacts, the method
with the best quantitative measures does not grant the optimal performance.

6. Conclusions and future works. Following a preliminary work [50], we considered the
use of L1/Lo on the gradient as a regularization for imaging applications. We formulated an
unconstrained model, which is novel and suitable when noise is present. We also incorporated
a box constraint that is reasonable and yet helpful for the CT reconstruction problem. We
provided convergence guarantees for the proposed algorithms under mild conditions. We
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Ly

Li/L,

Reference

L,
Reference SART

Ly
L, L1-Lo Li/L,

Figure 11. CT reconstruction of a walnut in the 150° projection range. The internal region of the walnut
is zoomed-in and highlighted in red. The display window is [0, 0.6].

conducted extensive experiments to demonstrate that our approaches outperform the state
of the art in the limited-angle CT reconstruction subject to either Gaussian noise or Poisson
noise. Specifically, we validated the effectiveness and efficiency of our approach with two
experimental datasets.

As both L; and L;/Ls models take about 10 minutes to run on MATLAB, we will im-
plement the algorithms on the GPU for fast computation. Extensions to a higher dimension
as well as to other medical and biological applications with real data, e.g., MRI, cone-beam
CT, positron emission tomography (PET), and transmission electron microscopy (TEM), are
worth exploring in the future.
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Figure 12. CT reconstruction of a lotus in the 150° projection range.

CHAO WANG, MIN TAO, JAMES G. NAGY, AND YIFEI LOU

Reference

Reference

.ﬁh -

SART

Li-Lo

SART

Li-Lo

Li/Ly

Li/Ly

objects is zoomed-in and highlighted in red. The display window is [0,0.6].

One hole filled with attenuating

Table 4
CT reconstruction of experimental data.
Dataset SART Ly Ly Li-Lo Ly/Ly
SSIM  RMSE | SSIM  RMSE | SSIM RMSE | SSIM RMSE | SSIM RMSE
walnut 0.87 0.049 0.92 0.036 0.91 0.040 0.90 0.041 0.91 0.041
lotus 0.93 0.022 0.96 0.015 0.96 0.016 0.95 0.017 0.96 0.017
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Appendix A. Proofs. To prepare for convergence analysis, we summarize some equivalent
conditions for strong convexity and Lipschitz smooth functions in Lemmas A.1 and A.2,
respectively.

Lemma A.1. A function f(x) is called strongly conver with parameter u if and only if one
of the following conditions holds:

(a) g(x) = f(x) — L]2l}3 is convea;

(b) (Vf(2) = Vf(y),z —y) > pllz -yl Vz,y;

(©) fy) = f(a) +(Vf(2),y —2) + §lly — 2[5 Vo, y.

Lemma A.2. The gradient of f(x) is Lipschitz continuous with parameter L > 0 if and
only if one of the following conditions holds:

(a) IVf(z) =V IW)l2 < Llz —yl2 Vo, y;

(b) g(z) = Ll|el3 — f(z) is conves;

(¢) fy) < f(@) +(Vf(z),y —a)+ §lly — z[3 Yz, y.

We show in Lemma A.3 that the gradient of the function f(x) =
uous on a set with a lower bound.

Lemma A.3. Given a function f(x) =
constant € > 0, we have

HXH is Lipschitz contin-

and a set M. := {x|||x||2 > €} for a positive

[ES[

2
Vi) = VIlz < llx —yl2Vxy € Me.

Proof. Some calculations lead to Vf(x) = =1 ”3 and V2f(x) = - ”3[ + 3xxT T H“’ with
X X 2
the identify matrix I. Then Vy, one has
T Ty T
T2 Yy Yy XXy y’ Y - 2 7
y Vifx)y=-— +3 <2 <3y Y
I3 113 g = &

which implies that the maximum spectral radius of Hessian of f is less than 6% |

A.1. Proof of Lemma 4.2.
Proof. Tt follows from the optimality condition of the h-subproblem in (4.1) that

o (kD)

(A1) RO+ 4 gy (ROH) - ) — p0) —o,

- ”h(k+1)||3

where a(®) := ||Vu(®|;. Using the dual update b(k+1) h(k+1) — gk bgk), we have

kD) QD)
p2 RS

(A.2) bt =

and similarly

o®  h®

A3 b(k) e —
(4-3) 2 = TR
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We can estimate

(k+1) h(*)
k1) k) _ L || gy b o Y
by by ||2—p2 a Hh(kH)H% a ||h(k)H3 ,
1 1 h(k+1) h(k)
Ad L (S S Y (RS VN (O YR B ‘
(A.4) < (Hh<k+1>||g‘a S SR T

For the first term in (A.4), we use the facts that ||x||; < v/I||x]|2 for a vector x of length I and
V|3 < 8, thus leading to

o™ — oW < |V (u* T — u®)|); < Vomn|| V(T —u®)|,
(A.5) <V2mn - |Vg - [u®tD — u®)|ly < 4y/mn|u*tD — u®)|,.

Note that v € R™*™ and Vu € R™*"*2 (thus of length 2mn.) Invoking Lemma A.3, we get

h(k+1) h(*)

(A.6) a® -
[REFD)3 [h®]3

2

< %Hhml) —h®)],.
€

By putting together (A.4)—(A.6) and using the Cauchy—Schwarz inequality, we get (4.2). MW

A.2. Proof of Lemma 4.3. In order to prove Lemma 4.3, we show in Lemma A.4 that
the augmented Lagrangian decreases sufficiently with respect to u(%).

Lemma A.4. Under the same assumptions as in Lemma 4.3, there exists a constant c; > 0
such that

(A7) LD, 500 — £, 80 b)) < ~Tul) —u® 3

holds for the augmented Lagrangian corresponding to Ly /La-uncon and Ly /La-boz.

Proof. Denote by o the smallest eigenvalue of the matrix A7 A + VT'V. We show that o
is strictly positive. If ¢ = 0, there exists a vector  such that z7(ATA + VIV)x = 0. It is
straightforward that 27 AT Az > 0 and 27 VT V2 > 0. Therefore, one shall have 27 AT Az = 0
and 27 VTVx = 0, which contradicts assumption Al that N (V)N (A) = 0. Therefore, we
have that

v (ATA+ VIV > o|vl3 Vo,

which implies that Lypcon(u, h(k);bgk)) with fixed h®) and with bék) strongly convex with
parameter ¢; = oA (we can choose py > A as it is sufficiently large). It follows from (3.14)
that the only difference between Lyncon and Ly,ox is the indicator function H[C,d} (u). Since the
indicator function is convex, then Ly is strongly convex with the same parameter c¢;. We
can unify Lyncon and Ly to be £. Then Lemma A.1 leads to

L) 10 by < £(u® n®; b)) - %Auu(k“’ —u®|3.

Therefore, we can choose ¢; = oA such that inequality (A.7) holds. [ |
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Now we are ready to prove Lemma 4.3.

Proof. Denote a = ||[u**t1)]|; and L = 2. Lemmas A.2 and A.3 lead to

€

a a ah®) L
o (k+1) _ 1,(k) k1) (k)2
(4.8) G+D] = h®)] <||h<k)Hg’h h >+ 5|1 B2

Denoting z = Vu+1) 4+ bgk) and using the optimality condition of h(++1) (A.1), we get

P2 P2
2R — 23— 2 — g

2
(k+1)
_ P2 (k1) 2 P2y (R) 2 ah k+1) 1, (k+1 k
—2mﬂ>m—2%“m—<mwmw+wﬂ H“)—N§
ah(k+1) p

Combining (A.8) and (A.9), we obtain

(A.10) L(uE+D) kD), bgk)) — L(u+D p®), bg“))

ah®*) ah® g _ 2 L e
ANl N Ol 2 2

k+1 k
o[ b ah® H <k+1>_h(k>H _MHh(Hl)_h(mH?
I N and | A ) 2 2 2
2
p2 — 3L
< =S Y — 3

2

Lastly, from the update of by, we compute

(A.11) L(u®+D pk+D), bg’““)) — L(u®+D) pE+D), bg’“))
P2 k k+1 k P2 k+1 k
= 2 (I3 = B+ — 26 13) < 22 — b3,

By putting inequalities (A.7), (A.10), and (A.11) together with Lemma 4.2, we have

£(u(k+1)7 h(k+1); bgk+1)) < L’(u(k), h(k); b(2k)) _ Cluu(k—i-l) _ u(k)H% _ Cth(k) _ h(k—H)H%,

_ p2 e3—6M 16M2

where ¢; = % — f;”f and cg 53 T et For sufficiently large po, we can have

c1,co > 0. [ |

Remark A.5. Tt seems that we need a very large value of py to guarantee ci,co > 0 in
Lemma 4.3. Fortunately, it is just a sufficient condition for convergence, and we can choose a
reasonable value of py in practice; please refer to section 5 for parameter tuning.
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A.3. Proof of Lemma 4.4.

Proof. To accommodate the models (with and without box), we express the optimality
condition of (4.1) as follows:

”p}i’(“%)lul g+ 1) 4 o U T (kD) — p(k) 4 bgk)) —0,
w(k+1) k
(A.12) _wh(ml) + po(h+D) — wyk+D) b; N =0,

bngFl) _ bgk) + vylk+1) — h(k—i—l)’

where p+h ¢ 9||VuFHD|, ¢*+D) = NAT(Au*+) — f), and D either belongs to

(I g (u*+1)) with the box constraint or is zero otherwise. Let ngkﬂ), nékﬂ), nékﬂ) be
k (k+1) k
g = B gD D) T (kD) D) + b,
k+1 u(k+1) k+1
(A.13) 775 1) _Hllvh(k+1)|l\g|1h(k+l) 4 pa(hHD) — gy bg + ))7

nék—&-l) ‘= po(VaulE+D) — p+D),

Clearly, we have
n§k+1) c ahﬁ(u(k—kl),h(k+1)7bgk+1))7
n§k+1) c ab2ﬁ(u(k+1)’h(k—i—l)’bngrl))

for £ = Luncon Or Lpox. Combining (A.12) and (A.13) leads to

(k+1) (k+1)
Y = P + e + eV (00 — WD) 4 v T (b — b)),
D 2 () _ Dy,
k k k
ny ) = pa(bfY — b)),

The chain rule of subgradient [24, 25] suggests that d||Vu||; = V' q, where

qa=1{a| (a,Vu)y = |Vull1, |gjr| < 1Vi,j,k}.

Therefore, we have an upper bound for |[p*+V|y < [[VT|l2]la®* V|2 < 2v/2mn. Simple
calculations show that

p(k—i-l) B p(k—i-l)
h® R,

L
, | M®] [ht],

)

< ), < 4 e ]

2 2

Finally, by setting v = max{26p?, 24p% + 246733”}, (4.4) follows immediately. [ ]
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