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Limited-Angle CT Reconstruction via the \bfitL \bfone /\bfitL \bftwo Minimization\ast 

Chao Wang\dagger , Min Tao\ddagger , James G. Nagy\S , and Yifei Lou\dagger 

Abstract. In this paper, we consider minimizing the L1/L2 term on the gradient for a limited-angle scanning
problem in computed tomography (CT) reconstruction. We design a specific splitting framework
for an unconstrained optimization model so that the alternating direction method of multipliers
(ADMM) has guaranteed convergence under certain conditions. In addition, we incorporate a box
constraint that is reasonable for imaging applications, and the convergence for the additional box
constraint can also be established. Numerical results on both synthetic and experimental datasets
demonstrate the effectiveness and efficiency of our proposed approach, showing significant improve-
ments over the state-of-the-art methods in the limited-angle CT reconstruction.
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1. Introduction. Recent developments in science and technology have led to a revolu-
tion in data processing, as large datasets are becoming increasingly available and useful. In
medical imaging, a series of imaging modalities, such as x-ray computed tomography (CT)
[31, 5, 13, 14], magnetic resonance imaging (MRI) [42], and electroencephalography (EEG)
[34, 35], offer different perspectives to facilitate diagnostics. On the other hand, however, one
often faces ``small data,"" e.g., only a small number of CT scans are allowed for the sake of ra-
diation dose. In this paper, we are particularly interested in a limited-angle CT reconstruction
problem, which often occurs in many medical imaging applications. In breast imaging, a tech-
nique gaining wide interest is tomosynthesis (sometimes referred to as 3D mammography)
[65, 73], which is a limited angle tomography approach designed to produce pseudo three-
dimensional images while keeping the radiation exposure to approximately that of traditional
two-dimensional mammograms.
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The CT data collection is a nonlinear process due to the polychromatic nature [31, 19]
of the x-ray source. A common practice in CT adopts some linearization and discretization
schemes that express the formation model as f = Au, where f denotes the measurement
data, u is the attenuation coefficients to be recovered, and A is a projection matrix. Specif-
ically for this paper, we consider two types of projection geometries: parallel beam and fan
beam, which are popular in the CT reconstruction literature. For parallel beam, the complete
scanning angle is 180\circ , while it is 360\circ for fan beam. If we restrict the maximum scanning
angle, it becomes the so-called limited-angle scanning, which is much more challenging than
the CT reconstruction from the complete scanning. Some conventional methods in the CT
reconstruction include filtered back projection (FBP) [15, 55], simultaneous iterative recon-
struction technique (SIRT) [31], and simultaneous algebraic reconstruction technique (SART)
[1, 30]. These approaches do not involve any regularization and perform poorly in the case of
limited-angle and/or noisy data, resulting in severe streaking artifacts [16, 46].

When data is insufficient, one often requires reasonable assumptions to be imposed as a
regularization term in order to reconstruct a desired solution. As such, the CT reconstruction
can be formulated as minimizing an objective function that consists of a data fidelity term and
a regularization term. There are two commonly studied data fitting terms for CT reconstruc-
tion: least squares (LS) [22, 29, 54] and weighted least squares (WLS) [57]. In this paper, we
focus on the LS data fitting with a discussion of WLS in section 5.2. As for regularizations,
the celebrated total variation (TV) [12, 29, 53, 54, 58, 69] prefers piecewise constant images.
However, two noticeable drawbacks for TV are loss of contrast and staircasing artifacts. To
resolve its limitations, Jia et al. [28] utilized a tight frame regularization and implemented
the algorithm on graphics processing units (GPUs) to achieve fast computation. Recently,
a combination of TV and wavelet tight frame was discussed in [41]. The extension of TV
in a nonlocal fashion by exploiting patch similarity was examined in [40] for the regular CT
reconstruction and in [43] for the limited-angle case.

The TV seminorm is equivalent to the L1 norm on the gradient. It is well known that
L1 is the tightest convex approximation to the L0 norm,1 which is used to enforce sparsity
for signals of interest. There are several alternatives to approximating the L0 norm, such as
Lp with 0 < p < 1 [11, 66], transformed L1 [44, 59, 71, 72], and L1-L2 [36, 37, 38, 45, 67].
Algorithmically, Cand\'es, Wakin, and Boyd [6] proposed an iteratively reweighted L1 (IRL1)
algorithm to solve for the L0 minimization. This idea was reformulated as a scale-space
algorithm in [27].

Motivated by recent works using L1/L2 [50, 56, 61] for sparse signal recovery, we apply
the L1/L2 form on the gradient, leading to a new regularization term. This regularization is
rather generic in image processing, and we find it works particularly well for piecewise con-
stant images, owing to its scale-invariant property when approximating L0. In addition, the
proposed regularization can mitigate the staircasing artifacts produced by TV, as the L2 norm
of the gradient in the denominator should be away from zero. Extensive experiments demon-
strate that our method outperforms the state of the art in CT reconstruction, and significant
improvements are achieved for the limited-angle case. L1/L2 on the gradient was originally
proposed in [50], which included the MRI reconstruction as a proof-of-concept example under

1Note that L0 is not a norm but is often referred to as one.D
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the noiseless setting, but it lacks practicality and convergence analysis of the algorithm. The
contributions of this work are threefold:

1. We propose a novel regularization together with a box constraint for the limited-angle
CT reconstruction.

2. We design a specific splitting scheme for solving several related models so that the
convergence of ADMM can be established under certain conditions.

3. We present extensive CT reconstruction results (using phantoms/experimental data
under parallel/fan beam) to demonstrate the practicality of the proposed approach.

The rest of the paper is organized as follows. In section 2, we present some preliminary
materials, such as notation, TV definition, and a previous work of L1/L2 [50]. We discuss the
proposed models and algorithms in section 3, followed by convergence analysis in section 4.
Experimental studies are conducted in section 5 using the projection data of two phantoms
subject to two types of noise (Gaussian noise and Poisson noise) as well as two experimental
datasets. Finally, conclusions and future work are given in section 6.

2. Preliminaries. Suppose an underlying image is defined on an m\times n Cartesian grid and
denote the Euclidean space Rm\times n as X. We adopt a linear index for the 2D image, i.e., for
u \in X, uij \in R is the ((i - 1)m+ j)th component of u. We define a discrete gradient operator,

(2.1) \nabla u := (\nabla xu,\nabla yu),

with \nabla z being the forward difference operator in the z-direction for z \in \{ x, y\} . Denote Y =
X \times X. Then \nabla u \in Y , and for any p \in Y , its ((i - 1)m+ j)th component is pij = (pij,1, pij,2).
We use a bold letter p to indicate that it contains two elements in each component. With
these notations, we define the inner products by

(2.2) \langle x, y\rangle X =

m,n\sum 
i,j=1

xijyij and \langle p,q\rangle Y =

m,n\sum 
i,j=1

2\sum 
k=1

pij,kqij,k,

as well as the corresponding norms

(2.3) \| x\| 2 =
\sqrt{} 

\langle x, x\rangle X and \| p\| 2 =
\sqrt{} 
\langle p,p\rangle Y .

2.1. Total variation. By incorporating the TV regularization [51] into the data fitting
terms, we can obtain the two models

min
u

\| \nabla u\| 1 s.t. Au = f,(2.4)

min
u

\| \nabla u\| 1 +
\lambda 

2
\| Au - f\| 22,(2.5)

where \nabla is defined in (2.1). We refer to (2.4) as a constrained formulation, while (2.5) is
an unconstrained one. The latter is often used when the noise is present and the parameter
\lambda > 0 in (2.5) shall be tuned according to the noise level. Note that the TV term, \| \nabla u\| 1, is
equivalent to the L1 norm of the gradient, which can be formulated as the anisotropic TV,

(2.6) \| \nabla u\| 1 = \| \nabla xu\| 1 + \| \nabla yu\| 1,D
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or the isotropic TV, defined by
\sum m,n

i,j=1

\sqrt{} 
(\nabla xu)2ij + (\nabla yu)2ij . The anisotropic TV was shown to

be superior to the isotropic one for CT reconstruction [12]. Here, we also adopt the anisotropic
TV to define the L1 norm on the gradient. In addition, the difference of anisotropic and
isotropic TV was proposed in [39] for general imaging applications. There are many efficient
algorithms to minimize (2.4) or (2.5), including dual projection [7], primal-dual [8], split
Bregman [18], and the alternating direction method of multipliers (ADMM) [3].

2.2. \bfitL \bfone /\bfitL \bftwo on the gradient. We review a model of L1/L2 on the gradient in a constrained
formulation [50],

(2.7) min
u

\| \nabla u\| 1
\| \nabla u\| 2

s.t. Au = f,

which is referred to as L1/L2-con. Here \| \cdot \| 1 and \| \cdot \| 2 are defined by (2.6) and (2.3),
respectively. We apply the ADMM framework [3] to minimize (2.7) by rewriting it into the
equivalent form

(2.8) min
u,\bfd ,\bfh 

\| d\| 1
\| h\| 2

s.t. Au = f, d = \nabla u, h = \nabla u,

with two auxiliary variables d and h. Note that we denote d and h in bold to indicate that
they have two components corresponding to x and y derivatives. The augmented Lagrangian
for (2.8) is given by

\scrL (u,d,h;w,b1,b2) =
\| d\| 1
\| h\| 2

+\langle \lambda w, f  - Au\rangle +
\lambda 

2
\| Au - f\| 22

+ \langle \rho 1b1,\nabla u - d\rangle +
\rho 1
2
\| d - \nabla u\| 22

+ \langle \rho 2b2,\nabla u - h\rangle +
\rho 2
2
\| h - \nabla u\| 22,

(2.9)

where w,b1,b2 are Lagrange multipliers (or dual variables) and \lambda , \rho 1, \rho 2 are positive param-
eters. The ADMM iterations proceed as follows:

(2.10)

\left\{                             

u(k+1) = arg min
u

\scrL (u,d(k),h(k);w(k),b
(k)
1 ,b

(k)
2 ),

d(k+1) = arg min
\bfd 

\scrL (u(k+1),d,h(k);w(k),b
(k)
1 ,b

(k)
2 ),

h(k+1) = arg min
\bfh 

\scrL (u(k+1),d(k+1),h;w(k),b
(k)
1 ,b

(k)
2 ),

w(k+1) = w(k) + f  - Au(k+1),

b
(k+1)
1 = b

(k)
1 + \nabla u(k+1)  - d(k+1),

b
(k+1)
2 = b

(k)
2 + \nabla u(k+1)  - h(k+1).

For more details, please refer to [50] that presented a proof-of-concept example when ATA and
\nabla T\nabla can be simultaneously diagonalizable by the fast Fourier transform (FFT). In this paper,D
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the matrix A corresponds to a projection matrix, where the inverse of \lambda ATA+ (\rho 1 + \rho 2)\nabla T\nabla 
cannot be computed via FFT.

As the splitting scheme (2.8) involves two-block variables of u and (d,h), it is hard to
establish the convergence of (2.10). To prove for the convergence of ADMM, the existing lit-
erature [20, 49, 63] requires some associated function (e.g., objective function, merit function,
and augmented Lagrangian function) to be coercive, separable, or Lipschitz differentiable (on
a certain domain), neither of which holds for the L1/L2 functional.

3. The proposed models. Here we consider an unconstrained formulation of L1/L2 in
order to deal with noisy data. As opposed to (2.8), we propose a different splitting scheme,
under which we can establish the ADMM convergence. We then discuss a variant in section 3.2
to incorporate a box constraint, which is reasonable for the CT reconstruction problems.

3.1. Unconstrained formulation. The unconstrained L1/L2 formulation is given by

(3.1) min
u

\| \nabla u\| 1
\| \nabla u\| 2

+
\lambda 

2
\| Au - f\| 22,

which is referred to as L1/L2-uncon.
We design a specific splitting scheme that reformulates (3.1) into

(3.2) min
u,\bfh 

\| \nabla u\| 1
\| h\| 2

+
\lambda 

2
\| Au - f\| 22 s.t. h = \nabla u.

The corresponding augmented Lagrangian function is expressed as

(3.3) \scrL uncon(u,h;b2) =
\| \nabla u\| 1
\| h\| 2

+
\lambda 

2
\| Au - f\| 22 + \langle \rho 2b2,\nabla u - h\rangle +

\rho 2
2
\| h - \nabla u\| 22,

with a dual variable b2 and a positive parameter \rho 2. The ADMM framework involves the
following iterations:

(3.4)

\left\{         
u(k+1) = arg minu \scrL uncon(u,h(k);b

(k)
2 ),

h(k+1) = arg min\bfh \scrL uncon(u(k+1),h;b
(k)
2 ),

b
(k+1)
2 = b

(k)
2 + \nabla u(k+1)  - h(k+1).

Same as in [50], the h-update has a closed-form solution given by

(3.5) h(k+1) =

\Biggl\{ 
\tau (k)g(k) if g(k) \not = 0,

e(k) otherwise,

where g(k) = \nabla u(k+1) +b
(k)
2 , e(k) is a random vector with its L2 norm being 3

\sqrt{} 
\| \nabla u(k+1)\| 1

\rho 2
, and

\tau (k) = 1
3 + 1

3(C(k) + 1
C(k) ) with

C(k) =
3

\sqrt{} 
27D(k) + 2 +

\sqrt{} 
(27D(k) + 2)2  - 4

2
and D(k) =

\| \nabla u(k+1)\| 1
\rho 2\| g(k)\| 32

.
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The u-subproblem can be expressed as

(3.6) min
u

\| \nabla u\| 1
\| h(k)\| 2

+
\lambda 

2
\| Au - f\| 22 +

\rho 2
2
\| h(k)  - \nabla u - b

(k)
2 \| 22.

With h(k) and b
(k)
2 fixed, we can apply ADMM to find the optimal solution of (3.6). Specifi-

cally by introducing an auxiliary variable d, we rewrite (3.6) as

min
u,\bfd 

\| d\| 1
\| h(k)\| 2

+
\lambda 

2
\| Au - f\| 22 +

\rho 2
2
\| h(k)  - \nabla u - b

(k)
2 \| 22 s.t. d = \nabla u.(3.7)

The augmented Lagrangian corresponding to (3.7) is given by

\scrL (k)
uncon(u,d;b1) =

\| d\| 1
\| h(k)\| 2

+
\lambda 

2
\| Au - f\| 22 +

\rho 2
2
\| h(k)  - \nabla u - b

(k)
2 \| 22

+ \langle \rho 1b1,\nabla u - d\rangle +
\rho 1
2
\| d - \nabla u\| 22,

where b1 is a dual variable and \lambda , \rho 1 are positive parameters. Here we have k in the superscript
of \scrL uncon to indicate that it is the Lagrangian for the u-subproblem in (3.4) at the kth iteration.
The ADMM framework to minimize (3.7) leads to the iterations

(3.8)

\left\{       
uj+1 = arg minu \scrL (k)

uncon(u,dj ; (b1)j),

dj+1 = arg min\bfd \scrL 
(k)
uncon(uj+1,d; (b1)j),

(b1)j+1 = (b1)j + \nabla uj+1  - dj+1,

where the subscript j represents the inner loop index, as opposed to the superscript k for

outer iterations in (3.4). Note that \scrL (k)
uncon(u,d;b1) resembles the augmented Lagrangian

\scrL (u,d,h(k);w,b1,b
(k)
2 ) with w = 0 defined in (2.9), and hence (3.4) with one iteration of

(3.8) for the u-subproblem is equivalent to the previous approach [50]. If we can reach the
optimal solution of the u-subproblem, the convergence can be guaranteed; see section 4.

We then elaborate on how to solve the two subproblems in (3.8). By taking the derivative

of \scrL (k)
uncon with respect to u, we obtain a closed-form solution,

(3.9) uj+1 =
\Bigl( 
\lambda ATA - (\rho 1 + \rho 2)\bigtriangleup 

\Bigr)  - 1\Bigl( 
\lambda AT f + \rho 1\nabla T (dj  - (b1)j) + \rho 2\nabla T (h(k)  - b

(k)
2 )
\Bigr) 
,

where \bigtriangleup =  - \nabla T\nabla denotes the Laplacian operator. For a general system matrix A that cannot
be diagonalized by the Fourier transform, we adopt the conjugate gradient (CG) descent
iterations [48] to solve for (3.9). The d-subproblem in (3.8) has a closed-form solution, i.e.,

(3.10) dj+1 = shrink

\biggl( 
\nabla uj+1 + (b1)j ,

1

\rho 1\| h(k)\| 2

\biggr) 
,

where shrink(v, \mu ) = sign(v) max \{ | v|  - \mu , 0\} .
We summarize in Algorithm 1 for minimizing the L1/L2-uncon model (3.1). Admittedly,

Algorithm 1 involves 3 levels of iterations: outer/inner ADMM and CG for solving (3.9),
which is not computationally appealing. An alternative is the linearized ADMM [47] so as to
avoid the CG iterations, which will be explored in the future.D
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Algorithm 1 The L1/L2 unconstrained minimization (L1/L2-uncon).

1: Input: projection matrix A and observed data f
2: Parameters: \rho 1, \rho 2, \lambda , \=\epsilon \in R+, and kMax, jMax\in Z+

3: Initialize: h,b1,b2,d, and k, j = 0
4: while k < kMax or | u(k)  - u(k - 1)| /| u(k)| > \=\epsilon do
5: while j < jMax or | uj  - uj - 1| /| uj | > \=\epsilon do
6: uj+1 = (\lambda ATA - (\rho 1 + \rho 2)\bigtriangleup ) - 1(\lambda AT f + \rho 1\nabla T (dj  - (b1)j)

+\rho 2\nabla T (h(k)  - b
(k)
2 ))

7: dj+1 = shrink
\Bigl( 
\nabla uj+1 + (b1)j ,

1
\rho 1\| \bfh (k)\| 2

\Bigr) 
8: (b1)j+1 = (b1)j + \nabla uj+1  - dj+1

9: j = j + 1
10: end while
11: return u(k+1) = uj

12: h(k+1) =

\Biggl\{ 
\tau (k)

\Bigl( 
\nabla u(k+1) + b

(k)
2

\Bigr) 
, \nabla u(k+1) + b

(k)
2 \not = 0,

e(k), \nabla u(k+1) + b
(k)
2 = 0

13: b
(k+1)
2 = b

(k)
2 + \nabla u(k+1)  - h(k+1)

14: k = k + 1 and j = 0
15: end while
16: return u\ast = u(k)

3.2. Box constraint. It is reasonable to incorporate a box constraint for image processing
applications [9, 32], since pixel values are usually bounded by [0, 1] or [0, 255]. Specifically for
CT, the pixel value has physical meanings, and hence the bound can often be estimated in
advance [31, 5]. The box constraint is particularly helpful for the L1/L2 model to prevent its
divergence [61]. We add a general box constraint u \in [c, d] to (3.1), thus leading to

min
u

\| \nabla u\| 1
\| \nabla u\| 2

+
\lambda 

2
\| Au - f\| 22 s.t. u \in [c, d],(3.11)

referred to as L1/L2-box. To derive an algorithm for solving the L1/L2-box model, we rewrite
(3.11) equivalently as

(3.12) min
u,\bfh 

\| \nabla u\| 1
\| h\| 2

+
\lambda 

2
\| Au - f\| 22 + \Pi [c,d](u) s.t. h = \nabla u,

where \Pi S(t) is an indicator function enforcing t into the feasible set S, i.e.,

(3.13) \Pi S(t) =

\Biggl\{ 
0 if t \in S,

+\infty otherwise.

The augmented Lagrangian function for (3.12) can be expressed as

(3.14) \scrL box(u,h;b2) = \scrL uncon(u,h;b2) + \Pi [c,d](u).D
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By using ADMM, we have the same update rules for h and b2 as in (3.4), while the u-
subproblem is given by

(3.15) u(k+1) = arg min
u

\| \nabla u\| 1
\| h(k)\| 2

+
\lambda 

2
\| Au - f\| 22 +

\rho 2
2
\| h(k)  - \nabla u - b

(k)
2 \| 22 + \Pi [c,d](u).

We introduce two variables, d for the gradient and v for the box constraint, thus getting

(3.16) min
u,\bfd ,v

\| d\| 1
\| h(k)\| 2

+
\lambda 

2
\| Au - f\| 22 +

\rho 2
2
\| h(k) - \nabla u - b

(k)
2 \| 22 + \Pi [c,d](v) s.t. d = \nabla u, u = v.

The augmented Lagrangian corresponding to (3.16) becomes

\scrL (k)
box(u,d, v;b1, e) =

\| d\| 1
\| h(k)\| 2

+
\rho 2
2
\| \nabla u - h(k) + b

(k)
2 \| 22 + \Pi [c,d](v) +

\lambda 

2
\| Au - f\| 22

+ \langle \rho 1b1,\nabla u - d\rangle +
\rho 1
2
\| d - \nabla u\| 22 + \langle \beta e, u - v\rangle +

\beta 

2
\| v  - u\| 22,

(3.17)

where b1, e are dual variables and \lambda , \rho 1, \beta are positive parameters. Similar to (3.8), there is a
closed-form solution of the u-subproblem,

uj+1 =
\Bigl( 
\lambda ATA + (\rho 1 + \rho 2)\bigtriangleup + \beta I

\Bigr)  - 1\Bigl( 
\lambda AT f + \rho 1\nabla T (dj  - (b1)j)

+ \rho 2\nabla T (h(k)  - b
(k)
2 ) + \beta (v(k)  - e(k))

\Bigr) 
.

(3.18)

The update for d is the same as (3.10), and we update v by projecting it onto [c, d],
i.e., vj+1 = min \{ max\{ uj+1 + ej , c\} , d\} . The pseudocode with the additional box constraint is
summarized in Algorithm 2.

4. Convergence analysis. We intend to establish the convergence of Algorithms 1--2. We
observe that the ADMM framework for both models shares the same structure,

(4.1)

\left\{       
u(k+1) = arg minu \scrL (u,h(k);b

(k)
2 ),

h(k+1) = arg min\bfh \scrL (u(k+1),h;b
(k)
2 ),

b
(k+1)
2 = b

(k)
2 + \nabla u(k+1)  - h(k+1),

where \scrL is either \scrL uncon or \scrL box. We show that the sequence generated by ADMM for
L1/L2-uncon either diverges due to unboundedness or has a convergent subsequence, while
the sequence for L1/L2-box always has a convergent subsequence. For this purpose, we in-

troduce Lemma 4.2 for an upper bound of \| b(k+1)
2  - b

(k)
2 \| 2 in terms of \| u(k+1)  - u(k)\| 2 and

\| h(k+1)  - h(k)\| 2. Lemmas 4.3 and 4.4 are standard in convergence analysis [26, 33, 62, 63] to
guarantee that the augmented Lagrangian decreases sufficiently and the subgradient at each
iteration is bounded by successive errors, respectively. The lemmas require the following three
assumptions:

A1 : \scrN (\nabla )
\bigcap 
\scrN (A) = \{ 0\} , where \scrN denotes the null space and \nabla is defined in (2.1).D
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Algorithm 2 The L1/L2 minimization with a box constraint (L1/L2-box).

1: Input: projection matrix A, observed data f , and a bound [c, d] for the original image
2: Parameters: \rho 1, \rho 2, \lambda , \beta , \=\epsilon \in R+, and kMax, jMax \in Z+

3: Initialize: h,b1,b2,d, w = 0, e, and k, j = 0
4: while k < kMax or | u(k)  - u(k - 1)| /| u(k)| > \=\epsilon do
5: while j < jMax or | uj  - uj - 1| /| uj | > \=\epsilon do
6: uj+1 = (\lambda ATA - (\rho 1 + \rho 2)\bigtriangleup + \beta I) - 1(\lambda AT f + \rho 1\nabla T (dj  - (b1)j)

+\rho 2\nabla T (h(k)  - b
(k)
2 ) + \beta (v(k)  - e(k)))

7: dj+1 = shrink
\Bigl( 
\nabla uj+1 + (b1)j ,

1
\rho 1\| \bfh (k)\| 2

\Bigr) 
8: vj+1 = min \{ max\{ uj+1 + ej , c\} , d\} 
9: (b1)j+1 = (b1)j + \nabla uj+1  - dj+1

10: ej+1 = ej + uj+1  - vj+1

11: j = j + 1
12: end while
13: return u(k+1) = uj

14: h(k+1) =

\Biggl\{ 
\tau (k)

\Bigl( 
\nabla u(k+1) + b

(k)
2

\Bigr) 
, \nabla u(k+1) + b

(k)
2 \not = 0,

e(k), \nabla u(k+1) + b
(k)
2 = 0

15: b
(k+1)
2 = b

(k)
2 + \nabla u(k+1)  - h(k+1)

16: k = k + 1 and j = 0
17: end while
18: return u\ast = u(k)

A2 : The sequence \{ u(k)\} generated by (4.1) is bounded, and then so is \{ \nabla u(k)\} and we
denote M = supk\{ \| \nabla u(k)\| 1\} .

A3 : The norm of \{ h(k)\} generated by (4.1) has a lower bound, i.e., there exists a positive
constant \epsilon such that \| h(k)\| 2 \geq \epsilon \forall k.

Remark 4.1. Assumption A1 is standard in image processing [10, 39]. Assumption A2
requires the boundedness of \{ u(k)\} , and hence the convergence results can be interpreted as
the sequence either diverges (due to unboundedness) or converges to a critical point. To make
the L1/L2 regularization well-defined, we shall have \| h\| 2 > 0. Certainly, \| h\| 2 > 0 does not
imply a uniform lower bound of \epsilon , but we can redefine the divergence of an algorithm by
including the case of \| h(k)\| 2 < \epsilon , which can be checked numerically with a preset value of \epsilon .

Please refer to the appendix for the proofs of these lemmas, based on which we can establish
the convergence in Theorems 4.5 and 4.6 for Algorithms 1 and 2, respectively. Furthermore,
Theorems 4.7 and 4.8 extend the convergence analysis to the case when the u-subproblem in
(4.1) can be solved inexactly.

Lemma 4.2. Under assumptions A1 and A2, the sequence \{ u(k),h(k),b
(k)
2 \} generated by

(4.1) satisfies

(4.2)
\bigm\| \bigm\| \bigm\| b(k+1)

2  - b
(k)
2

\bigm\| \bigm\| \bigm\| 2
2
\leq 
\biggl( 

32mn

\rho 22\epsilon 
4

\biggr) \bigm\| \bigm\| \bigm\| u(k+1)  - u(k)
\bigm\| \bigm\| \bigm\| 2
2

+

\biggl( 
8M2

\rho 22\epsilon 
6

\biggr) \bigm\| \bigm\| \bigm\| h(k+1)  - h(k)
\bigm\| \bigm\| \bigm\| 2
2
.
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Lemma 4.3 (sufficient descent). Under assumptions A1--A3 and a sufficiently large \rho 2, the

sequence \{ u(k),h(k),b
(k)
2 \} generated by (4.1) satisfies

(4.3) \scrL (u(k+1),h(k+1);b
(k+1)
2 ) \leq \scrL (u(k),h(k);b

(k)
2 )  - c1\| u(k+1)  - u(k)\| 22  - c2\| h(k+1)  - h(k)\| 22,

where c1 and c2 are two positive constants.

Lemma 4.4 (subgradient bound). Under assumptions A1--A3 and a sufficiently large \rho 2,

there exists a vector \bfiteta (k+1) \in \partial \scrL (u(k+1),h(k+1);b
(k+1)
2 ) and a constant \gamma > 0 such that

\| \bfiteta (k+1)\| 22 \leq \gamma 
\Bigl( 
\| h(k+1)  - h(k)\| 22 + \| b(k+1)

2  - b
(k)
2 \| 22

\Bigr) 
.(4.4)

Theorem 4.5 (convergence of L1/L2-uncon). Under assumptions A1--A3 and a sufficiently
large \rho 2, the sequence \{ u(k),h(k)\} generated by (3.4) has a subsequence convergent to a critical
point of (3.2).

Proof. We first show that if \{ u(k)\} is bounded, then \{ h(k),b
(k)
2 \} is also bounded. As \| u(k)\| 2

is bounded, so is \| \nabla u(k)\| 1. It follows from assumption A2 and the optimality condition for
b2 in (A.3) that we have

\| b(k)
2 \| 2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \| \nabla u(k)\| 1
\rho 2

h(k)

\| h(k)\| 3

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq \| \nabla u(k)\| 1
\rho 2\epsilon 2

.

Therefore, \{ b(k)
2 \} is bounded and hence \{ h(k)\} is also bounded due to the h-update (3.5) and

boundedness of \nabla u. Then it follows from the Bolzano--Weierstrass theorem that the sequence

\{ u(k),h(k),b
(k)
2 \} has a convergent subsequence, denoted by (u(kj),h(kj),b

(kj)
2 ) \rightarrow (u\ast ,h\ast ,b\ast 

2),
as kj \rightarrow \infty . In addition, we can estimate that

\scrL uncon(u(k),h(k);b
(k)
2 )

=
\| \nabla u(k)\| 1
\| h(k)\| 2

+
\lambda 

2
\| Au - f\| 22 +

\rho 2
2
\| h(k)  - \nabla u(k)  - b2\| 22  - 

\rho 2
2
\| b(k)

2 \| 22

\geq \| \nabla u(k)\| 1
\| h(k)\| 2

 - \| \nabla u(k)\| 21
\rho 2\epsilon 4

,

which gives a lower bound of \scrL uncon owing to the boundedness of u(k). Therefore, we have

that \scrL uncon(u(k),h(k),b
(k)
2 ) converges due to its monotonic decreasing by Lemma 4.3.

We then sum inequality (4.3) from k = 0 to K, thus getting

\scrL uncon(u(K+1),h(K+1);b
(K+1)
2 )

\leq \scrL uncon(u(0),h(0);b
(0)
2 )  - c1

K\sum 
k=0

\| u(k+1)  - u(k)\| 22  - c2

K\sum 
k=0

\| h(k+1)  - h(k)\| 22.

Letting K \rightarrow \infty , we have that both
\sum \infty 

k=0 \| u(k+1)  - u(k)\| 22 and
\sum \infty 

k=0 \| h(k+1)  - h(k)\| 22 are
finite, indicating that u(k)  - u(k+1) \rightarrow 0, h(k)  - h(k+1) \rightarrow 0. Then by Lemma 4.2, we getD

ow
nl

oa
de

d 
07

/0
9/

21
 to

 1
70

.1
40

.1
42

.2
52

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIMITED-ANGLE CT VIA \bfitL \bfone /\bfitL \bftwo 759

b
(k)
2  - b

(k+1)
2 \rightarrow 0. By (u(kj),h(kj),b

(kj)
2 ) \rightarrow (u\ast ,h\ast ,b\ast 

2), we have (u(kj+1),h(kj+1),b
(kj+1)
2 ) \rightarrow 

(u\ast ,h\ast ,b\ast 
2), and \nabla u\ast = h\ast (by the update of b2). Here, by Lemma 4.4, we have 0 \in 

\partial \scrL uncon(u\ast ,h\ast ,b\ast 
2), and hence (u\ast ,h\ast ) is a critical point of (3.2).

For the box model (3.11) with an explicit bounded assumption on u, we can prove that the
ADMM framework has the same convergence results as in Theorem 4.5 without assumption
A2. The proof is thus omitted.

Theorem 4.6 (convergence of L1/L2-box). Under assumptions A1 and A3 and a sufficiently
large \rho 2, the sequence \{ u(k),h(k)\} generated by Algorithm 2 always has a subsequence conver-
gent to a critical point of (3.11).

Theorem 4.7 (convergence of inexact scheme in L1/L2-uncon). Under assumption A1 and
a sufficiently large \rho 2, one can solve the u-subproblem in (3.6) within an error tolerance \varepsilon k+1,
i.e.,

\| \~u(k+1)  - u(k+1)\| 22 \leq \varepsilon k+1,(4.5)

and the sequence \{ \~h(k+1), \~b
(k+1)
2 \} is generated by an inexact ADMM scheme, i.e.,

(4.6)

\Biggl\{ 
\~h(k+1) = arg min\bfh \scrL uncon(\~u(k+1),h; \~b

(k)
2 ),

\~b
(k+1)
2 = \~b

(k)
2 + \nabla \~u(k+1)  - \~h(k+1).

If \{ \~u(k), \~h(k)\} satisfies assumptions A2--A3 and
\sum 

k \varepsilon k < +\infty , then this sequence has a subse-
quence convergent to a critical point of (3.2).

Proof. As \~u(k) is bounded, we denote \~M := supk \| \nabla \~uk\| 1 and \^M := supk\{ \| \~u(k)\| 2\} . Fol-
lowing the proof of Lemma 4.3, we have

\scrL uncon(u(k+1), \~h(k); \~b
(k)
2 ) \leq \scrL uncon(\~u(k), \~h(k); \~b

(k)
2 )  - \sigma \lambda 

2
\| u(k+1)  - \~u(k)\| 22,

\scrL uncon(\~u(k+1), \~h(k+1); \~b
(k)
2 ) \leq \scrL uncon(\~u(k+1), \~h(k); \~b

(k)
2 )  - \rho 2  - 3\~L

2
\| \~h(k+1)  - \~h(k)\| 22,

where \~L = 2 \~M
\epsilon 3

. Simple calculations lead to

\| u(k+1)  - \~u(k)\| 22 = \| (u(k+1)  - \~u(k+1)) + (\~u(k+1)  - \~u(k))\| 22
\geq \| u(k+1)  - \~u(k+1)\| 2 + \| \~u(k+1)  - \~u(k)\| 2  - 2\| \~u(k+1)  - \~u(k)\| \| u(k+1)  - \~u(k+1)\| 
\geq \| u(k+1)  - \~u(k+1)\| 2 + \| \~u(k+1)  - \~u(k)\| 2  - 4 \^M\varepsilon k+1

\geq \| \~u(k+1)  - \~u(k)\| 2  - 4 \^M\varepsilon k+1.

It follows from Lemma A.2 that

\scrL uncon(\~u(k+1), \~h(k); \~b
(k)
2 ) \leq \~\scrL uncon(u(k+1), \~h(k); \~b

(k)
2 ) +

\~L

2
\| \~u(k+1)  - u(k+1)\| 22

\leq \scrL uncon(u(k+1), \~h(k); \~b
(k)
2 ) +

\~L\varepsilon k+1

2
.D
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Analogous to Lemma 4.2, it holds that\bigm\| \bigm\| \bigm\| \~b
(k+1)
2  - \~b

(k)
2

\bigm\| \bigm\| \bigm\| 2
2
\leq \kappa 1

\bigm\| \bigm\| \bigm\| \~u(k+1)  - \~u(k)
\bigm\| \bigm\| \bigm\| 2
2

+ \kappa 2

\bigm\| \bigm\| \bigm\| \~h(k+1)  - \~h(k)
\bigm\| \bigm\| \bigm\| 2
2
,

where \kappa 1 := 32mn
\rho 22\epsilon 

4 and \kappa 2 := 8 \~M2

\rho 22\epsilon 
6 . By combining all the inequalities, we get

\scrL uncon(\~u(k+1), \~h(k+1); \~b
(k+1)
2 )

\leq \scrL uncon(\~u(k), \~h(k); \~b
(k)
2 )  - \~c1\| \~u(k+1)  - \~u(k)\| 22  - \~c2\| \~h(k+1)  - \~h(k)\| 22 + \~c3\varepsilon k+1,(4.7)

where \~c1 := \sigma \lambda 
2  - 16mn

\rho 2\epsilon 4
, \~c2 := \rho 2 - 3L

2  - 4 \~M2

\rho 2\epsilon 6
, and \~c3 := 2 \^M\sigma \lambda +

\~L
2 . We can choose a sufficiently

large \rho 2 such that \~c1, \~c2 > 0. Summing inequality (4.7) with k from 0 to K and letting
K \rightarrow \infty , we obtain that

\sum \infty 
k=0 \| \~u(k+1)  - \~u(k)\| 22 and

\sum \infty 
k=0 \| \~h(k+1)  - \~h(k)\| 22 are finite, since

\~c3
\sum 

k \varepsilon k < +\infty by assumption. The rest of the proof follows along the same lines as that of
Theorem 4.5 and is thus omitted.

Similarly, we have the convergence of inexact scheme in L1/L2-box under a restriction
that \~u(k+1) should belong to the feasible set, i.e., \~u(k+1) \in [c, d].

Theorem 4.8 (convergence of inexact scheme in L1/L2-box). Under assumption A1 and a
sufficiently large \rho 2, one can solve the u-subproblem in (3.15) within an error tolerance \varepsilon k and
feasible set, i.e.,

\| \~u(k+1)  - u(k+1)\| 22 \leq \varepsilon k+1 and \~u(k+1) \in [c, d].(4.8)

If
\sum 

k \varepsilon k < +\infty and \~h(k) satisfies assumption A3, then the sequence \{ \~u(k), \~h(k)\} has a subse-
quence convergent to a critical point of (3.11).

Remark 4.9. Theorems 4.5--4.8 are about subsequential convergence, which is weaker than
global convergence, i.e., the entire sequence converges. If the augmented Lagrangian \scrL has
the Kurdyka--\Lojasiewicz (KL) property [2], global convergence can be shown in a similar
way as [20, Theorem 3.1]. Unfortunately, the KL property is an open problem for the L1/L2

functional. On the other hand, it is true that Theorems 4.7 and 4.8 relax the accuracy of
solving the u-subproblem within the tolerance \varepsilon k at the kth iteration, but in practice we solve
for a fixed number of iterations, under which the convergence remains open in the optimization
literature.

5. Experimental results. We carry out extensive experiments to demonstrate the per-
formance of the proposed approaches in comparison to the state of the art. We test on two
phantoms of Shepp--Logan (SL) by the MATLAB command phantom and FORBILD (FB) [70]
as well as two experimental datasets of a walnut [21] and a lotus [4], all shown in Figure 1.
Note that the MATLAB SL phantom has a higher contrast than the original one presented
in [52], as illustrated in Figure 2 by the horizontal and vertical profiles. The reference images
for the experimental data are reconstructed from a complete scanning via the Tikhonov reg-
ularization (MATLAB function is provided in [4, 21]). As the FB phantom has a very low
image contrast, we display it with the grayscale window of [1.03, 1.10] in order to reveal its
structures. Using the SL phantom, we discuss some computational aspects of the proposedD
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Figure 1. Ground truth of Shepp--Logan (SL) phantom and FORBILD (FB) head phantom with the
grayscale window of [0, 1] and [1.03, 1.10], respectively. The last two are reference images of a walnut and a
lotus reconstructed by using the complete projection data with the grayscale window of [0, 0.6].
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Figure 2. Horizontal (left) and vertical (right) profiles of two SL phantoms with low contrast and high
contrast, the latter of which is used in this paper.

algorithms in subsection 5.1. We then present numerical results on synthetic data (SL and
FB) in subsection 5.2 and experimental data (walnut and lotus) in subsection 5.3. All the
numerical experiments are conducted on a desktop with CPU (Intel i7-5930K, 3.50 GHz) and
MATLAB 9.7 (R2019b).

To synthesize the limited-angle CT projection data, we discretize both SL and FB phan-
toms at a resolution of 256\times 256. The forward operator A is generated as the discrete Radon
transform with the same resolution as the digital phantoms. We use the IR and AIR tool-
box [17, 23] to simulate parallel beam and fan beam for the CT scanning. Both settings are
sampled at \theta Max/30 over a range of \theta Max, resulting in a subsampled data of size 362 \times 31.
We use the same number of projections when we vary ranges of projection angles. Note that
complete scanning ranges for parallel beam and fan beam are 180\circ and 360\circ , respectively.
Therefore, fan beam is more challenging to reconstruct than parallel beam with the same
value of \theta Max. We then add either Gaussian noise or Poisson noise to the projected data.
The Gaussian noise follows the zero mean Gaussian distribution with a standard deviation
set by a noise level multiplying the maximum intensity of the projected data. We consider
two Gaussian noise levels: 0.5\% and 0.1\%. A more realistic noise distribution for CT data is
that the data has the Poisson distribution with the mean I0 exp( - f), where I0 denotes the
number of incident x-ray photons and f is the noise-free sinogram. We consider two PoissonD
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noise levels: I0 = 104 and 105. The larger the value of I0 is, the higher the signal-to-noise
ratio is for the measured data.

We evaluate the performance in terms of the root mean squared error (RMSE) and the
overall structural similarity index (SSIM) [64]. RMSE is defined as

RMSE(u\ast , \~u) :=
\| u\ast  - \~u\| 2
Npixel

,

where u\ast is the restored image, \~u is the ground truth, and Npixel is the total number of pixels.
SSIM is the mean of local similarity indices,

SSIM(u\ast , \~u) :=
1

N

N\sum 
i=1

ssim(xi, yi),

where xi, yi correspond to the ith 8 \times 8 windows for u\ast and \~u, respectively, and N is the
number of such windows. Note that N \not = Npixel if we do not consider zero-padded pixels
along the edges. The local similarity index is defined as

ssim(x, y) :=
(2\mu x\mu y + c1)(2\sigma xy + c2)

(\mu 2
x + \mu 2

y + c1)(\sigma 2
x + \sigma 2

y + c2)
,

where the averages/variances of x, y are denoted as \mu x/\sigma 
2
x and \mu y/\sigma 

2
y , respectively. Here, c1

and c2 are two fixed constants to stabilize the division with weak denominator, which are set
to be c1 = c2 = 0.05.

We compare the proposed L1/L2 model with a clinical standard approach of SART [1], the
TV model (2.4), referred to as L1, as well as two nonconvex regularizations: Lp for p = 0.5
and L1-L2 [39] on the gradient. To solve for the Lp model, we replace the soft shrinkage
by the proximal operator corresponding to Lp, derived in [66], and apply the same ADMM
framework as the L1 minimization. As for L1-L2, we modify the MATLAB package provided
by the authors [39] for the CT reconstruction problem. All these regularization methods are
solved in a constrained formulation with the same box constraint to make a fair comparison.
We pose the box constraints: [0, 1] for SL and [0, 1.8] for FB, since we know the upper/lower
bounds of the ground-truth images. As for the experimental images, we set the box constraint
as [0, 0.5], which is estimated from the reference images. The initial condition of u is chosen
to be a zero vector for all the methods. We set the maximum iteration in the inner loop
and outer loop for both L1/L2 and L1-L2 as 5 and 300, respectively, while the maximum

iteration of L1 and Lp is 500. The (outer) stopping criterion is \| u(k) - u(k - 1)\| 2
\| u(k)\| 2

\leq 10 - 5. As for

the other parameters in L1/L2, we set \rho 1 = \rho 2 = \rho and find the optimal combination among
the candidate set of \lambda \in \{ 10 - 3, 10 - 2, 10 - 1, 1\} and \rho , \beta \in \{ 0.1, 1, 10\} that gives the lowest
RMSE. We tune parameters at each noise level for every testing dataset. In a similar way, we
tune the parameters individually for L1, Lp, and L1-L2.

5.1. Algorithm behavior. In this section, we discuss computational aspects of the pro-
posed algorithms. We first analyze the influence of the box constraint on the reconstruction
results. The analysis is based on the SL phantom from parallel beam CT projection dataD
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Figure 3. The effects of the box constraint in terms of the objective value (left) and RMSE (right).
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Figure 4. The effects of the upper bound of the box constraint in terms of the objective value (left) and
RMSE (right).

with the scanning range of 135\circ subject to Gaussian noise of 0.5\%. The fidelity of the CT re-
construction and the convergence are assessed in terms of objective values and RMSE(u(k), \~u)
versus outer iteration counter k. In Figure 3, we present algorithmic behaviors of the box
constraint on the unconstrained model. Here we set jMax to be 5 (we will discuss the ef-
fects of inner iteration number shortly.) We plot both inner and outer iterations in Figure 3,
showing that the proposed algorithms with and without the box constraint are convergent, as
the objective functions decrease. On the other hand, the box constraint yields smaller RMSE
compared to the one without the box. Moreover, the box constraint helps avoid local mini-
mizers, as the RMSE of the algorithm without the box increases and the objective function
keeps going down. Therefore, the box constraint plays an important role in the success of our
approach for the CT reconstruction.

We then discuss the effect of upper bound of the box constraint, i.e., d, on the CT re-
construction performance. Again, we consider the SL phantom from paralleled beam CT
projection with the scanning range of 135\circ subject to a noise level of 0.5\%. We compare the
oracle upper bound (100\%) with relaxed bounds (110\%, 120\%, and 130\%). In Figure 4, we
plot the objective values and RMSE with respect to iteration numbers. All the curves ofD
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Figure 5. The effects of the maximum number of the inner loops in terms of the objective value (left) and
RMSE (right).

objective values in different d are almost the same, while the RMSE shows the accuracy is
slightly different. Figure 4 demonstrates that the proposed method is insensitive to the upper
bound of the box constraint.

Finally, we discuss the influence of jMax on the sparse recovery performance. Fixing the
maximum outer iterations at 300, we examine the results of jMax= 1, 3, 5, and 10. In Figure 5,
we plot the objective values and RMSE with respect to iterations (counting both inner and
outer loops). The objective function with only one inner iteration does not decrease as much
as the ones with more inner iterations. RMSE reaches a lower value by fewer outer iterations
when using larger jMax. Following Figure 5, we set jMax to be 5 throughout the experiments.

5.2. Synthetic dataset. We start with the parallel beam CT reconstruction of the SL
phantom from 90\circ and 150\circ projection ranges, labeled SL-90\circ /SL-150\circ , with 0.5\% Gaussian
noise. The quantitative results in terms of SSIM and RMSE are reported in Table 1. As
illustrated in Figure 6, SART fails to recover the ellipse shape of the skull with such small
ranges of projection angles. Both L1 and L1-L2 models are unable to restore the bottom skull
and preserve details of some ellipses in the middle. The Lp model leads to a nearly perfect
reconstruction of the skull, but containing a lot of salt-and-pepper artifacts inside the brain.
The proposed L1/L2 method yields a reasonable recovery in a balanced manner. In the case
of SL-150\circ , Lp is superior over the other approaches, while the proposed method is the second
best. This outcome is consistent with the compressed sensing literature [68] that Lp performs
quite well for the incoherent problem, which corresponds to a larger scanning angle in the
CT reconstruction. The performance of Lp decays for narrow scanning ranges, as reported in
Table 1.

We present the visual results of FB-90\circ and FB-150\circ with 0.1\% Gaussian noise in Figure 7.
None of the methods can get satisfactory recovery results under the grayscale window of
[1.03, 1.10]. Large fluctuations inside of the skull are produced by the competing methods,
among which L1/L2 can restore the most details of the image. Furthermore, we plot the
horizontal and vertical profiles in Figure 8, which illustrates that L1/L2 leads to the smallest
fluctuations compared to others. In contrast to the simple SL phantom, Lp does not work
well for FB. We also observe a well-known artifact of the L1 method, i.e., loss of contrast, asD
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Table 1
Parallel beam CT reconstruction of the SL phantom by SART, L1, Lp, L1-L2, and L1/L2.

Noise Range
SART L1 Lp L1-L2 L1/L2

SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE

0.5\%
90\circ 0.56 0.138 0.88 0.075 0.91 0.029 0.78 0.087 \bfzero .\bfnine \bfsix \bfzero .\bfzero \bfone \bfseven 
150\circ 0.58 0.106 0.98 0.038 \bfzero .\bfnine \bfnine \bfzero .\bfzero \bfzero \bfeight 0.88 0.034 0.98 0.011

0.1\%
90\circ 0.58 0.137 0.96 0.041 \bfone .\bfzero \bfzero 0.006 0.88 0.072 \bfone .\bfzero \bfzero \bfzero .\bfzero \bfzero \bfthree 
150\circ 0.60 0.104 0.98 0.035 \bfone .\bfzero \bfzero 0.005 0.99 0.076 \bfone .\bfzero \bfzero \bfzero .\bfzero \bfzero \bfone 

SART L1 Lp L1-L2 L1/L2

Figure 6. CT reconstruction from 90\circ (top) and 150\circ (bottom) parallel beam projection for the SL phantom
with 0.5\% noise. The grayscale window is [0, 1].

SART L1 Lp L1-L2 L1/L2

Figure 7. CT reconstruction from 90\circ (top) and 150\circ (bottom) parallel beam projection for the FB phantom
with 0.1\% Gaussian noise. The grayscale window is [1.03, 1.10].

its profile fails to reach the height of jump on intervals such as [160, 180] in the left plot and
[220, 230] in the right plot of Figure 8, while L1/L2 makes a good recovery in these regions.
As shown in Figure 7, errors in these low contrast regions are magnified when we display
the restored image in a narrow grayscale window. Furthermore, the profile plots in Figure 8
confirm that our approach performs very well for high contrast details [60]. We report theD
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Figure 8. Horizontal and vertical profiles generated via SART, L1, Lp, L1-L2, and L1/L2 in the range of
projection 90\circ (top) and 150\circ (bottom) for the FB phantom.

Table 2
Parallel beam CT reconstruction of the FB phantom by SART, L1, Lp, L1-L2, and L1/L2.

Noise Range
SART L1 Lp L1-L2 L1/L2

SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE

0.5\%
90\circ 0.26 0.275 0.82 0.135 0.77 0.101 0.65 0.169 \bfzero .\bfnine \bfone \bfzero .\bfzero \bfeight \bfzero 
150\circ 0.28 0.206 0.90 0.059 0.70 0.078 0.70 0.107 \bfzero .\bfnine \bffive \bfzero .\bfzero \bftwo \bfeight 

0.1\%
90\circ 0.30 0.266 0.93 0.101 0.97 0.049 0.78 0.123 \bfzero .\bfnine \bfnine \bfzero .\bfzero \bfone \bftwo 
150\circ 0.32 0.192 0.99 0.026 \bfone .\bfzero \bfzero 0.003 0.94 0.026 \bfone .\bfzero \bfzero \bfzero .\bfzero \bfzero \bftwo 

quantitative results of FB in Table 2. Comparing Tables 1 and 2 shows that all the methods
yield better performance for smaller noise levels and a larger range of scanning angles. In
addition, the recovery results of FB are much worse than those of SL, which are largely due
to low contrast structures in FB.

We then test fan beam CT reconstruction using the SL phantom with 0.5\% Gaussian
noise. Note that fan beam with the same scanning angle is more ill-posed than in the cases
of parallel beam. Figure 9 illustrates that the ellipse shape of skull cannot be completely
recovered except for the proposed method. In the case of SL-150\circ , L1/L2 recovers the image
with RMSE of 0.014, while RMSEs of other approaches all exceed 0.020. Overall, the proposed
L1/L2 approach achieves significant improvements over SART, L1, and L1-L2. Here Lp isD
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SART L1 Lp L1-L2 L1/L2

Figure 9. CT reconstruction from 90\circ (top) and 150\circ (bottom) fan beam projection for the SL phantom
with 0.5\% Gaussian noise. The grayscale window is [0, 1].

L1 Lp L1-L2 L1/L2

Figure 10. CT reconstruction from the 150\circ fan beam projection for the SL phantom with Poisson noise
I0 = 105 using LS (top) and WLS (bottom) data-fidelity terms. The grayscale window is [0, 1].

comparable to L1/L2 only in the case of wider scanning ranges and ground-truth images with
simple geometries.

Lastly, we consider more realistic noise statistics, i.e., Poisson noise, for the CT problem.
Under such a noise model, we also examine a popular data fitting term, called weighted least
squares (WLS) [57], to measure the data misfit. In fact, WLS replaces the LS term in (3.1) by
\lambda 
2\| Au - f\| 2W := \lambda 

2 (Au - f)TW (Au - f), where W = diag(exp( - f)). As a result, we can simply
modify the LS implementations to fit in WLS. We present one example of reconstructing the
SL phantom from 150\circ fan beam projection with noise level I0 = 105. Figure 10 shows similar
results of LS and WLS. Specifically, LS gives a better recovery of the skull, while WLS has
fewer fluctuations inside the brain. We further compare the two data terms under different
noise levels in Table 3, reporting minor improvements of WLS over LS for all the regularization
methods.D
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Table 3
CT reconstruction from 150\circ fan beam projection for the SL phantom with Poisson noise by L1, Lp, L1-L2,

and L1/L2.

I0 Data-fitting
L1 Lp L1-L2 L1/L2

SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE

104
LS 0.93 0.057 0.90 0.054 0.79 0.068 0.85 0.053

WLS 0.91 0.056 0.88 0.051 0.78 0.066 \bfzero .\bfnine \bffive \bfzero .\bfzero \bffive \bfone 

105
LS 0.96 0.042 0.95 0.017 0.91 0.046 0.99 0.009

WLS 0.97 0.041 0.98 0.028 0.93 0.045 \bfzero .\bfnine \bfnine \bfzero .\bfzero \bfzero \bfseven 

5.3. Experimental dataset. We set up a limited-angle CT problem from two experimen-
tal datasets [4, 21]. The reference image of the walnut is of size 164 \times 164, while that of the
lotus is 128 \times 128. The sinogram for walnut is f \in R164\times 120 (3\circ per projection), and the
projection matrix A \in R19680\times 26896. In the lotus case, f \in R429\times 120 and A \in R51480\times 16384.
When we perform the limited-angle CT reconstruction, we take partial data from f. Specifi-
cally, we consider a 150\circ scanning angle by selecting the first 50 projections, i.e., extracting
the corresponding rows of A and the columns of sinogram to generate the projection matrix
and sinogram, respectively. Since the real data contains noise generated by the CT machine,
we do not add additional noise in the sinogram. The reference images shown in Figure 1
are reconstructed from the complete scanning data by using the Tikhonov regularization. We
further impose a region of interest (ROI) when computing the quantitative evaluation metrics.
The ROI is a circle with radius of 62 for walnut and 72 for lotus.

We consider a [0, 0.5] box constraint on all the regularization methods (L1, Lp, L1-L2, and
L1/L2), which is estimated from the reference images. We do not assume any noise type (or
noise level), and we only consider LS as the data fitting term. The optimal parameters are
selected based on the ``eyeball"" norm of the restored image, focusing on textures and details
such as the walnut's shell and its inner structure. The reconstruction results are presented in
Figures 11 and 12 for walnut and lotus, respectively, within the corresponding ROIs and under
a grayscale window of [0, 0.6]. In Figure 11, SART produces a lot of artifacts. The L1 model
makes a good recovery, but loses some details in the bottom-left corner with blurring inner
texture. All these nonconvex regularization models have sharper images than L1, while L1/L2

can have a higher contrast, especially for the internal region of the walnut. The lotus is more
difficult to reconstruct, as its root is filled with attenuating objects that cause severe metal
artifacts. In Figure 12, the restored image via our proposed model has fewer streaking artifacts
than the ones by other approaches. Lastly, we provide some quantitative analysis in Table 4.
All these regularization methods have similar performance in terms of SSIM and RMSE, while
L1 has the best results. As reference images have some obvious streaking artifacts, the method
with the best quantitative measures does not grant the optimal performance.

6. Conclusions and future works. Following a preliminary work [50], we considered the
use of L1/L2 on the gradient as a regularization for imaging applications. We formulated an
unconstrained model, which is novel and suitable when noise is present. We also incorporated
a box constraint that is reasonable and yet helpful for the CT reconstruction problem. We
provided convergence guarantees for the proposed algorithms under mild conditions. WeD
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Reference SART L1

Lp L1-L2 L1/L2

Reference SART L1

Lp L1-L2 L1/L2

Figure 11. CT reconstruction of a walnut in the 150\circ projection range. The internal region of the walnut
is zoomed-in and highlighted in red. The display window is [0, 0.6].

conducted extensive experiments to demonstrate that our approaches outperform the state
of the art in the limited-angle CT reconstruction subject to either Gaussian noise or Poisson
noise. Specifically, we validated the effectiveness and efficiency of our approach with two
experimental datasets.

As both L1 and L1/L2 models take about 10 minutes to run on MATLAB, we will im-
plement the algorithms on the GPU for fast computation. Extensions to a higher dimension
as well as to other medical and biological applications with real data, e.g., MRI, cone-beam
CT, positron emission tomography (PET), and transmission electron microscopy (TEM), are
worth exploring in the future.D
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Reference SART L1

Lp L1-L2 L1/L2

Reference SART L1

Lp L1-L2 L1/L2

Figure 12. CT reconstruction of a lotus in the 150\circ projection range. One hole filled with attenuating
objects is zoomed-in and highlighted in red. The display window is [0, 0.6].

Table 4
CT reconstruction of experimental data.

Dataset
SART L1 Lp L1-L2 L1/L2

SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE

walnut 0.87 0.049 \bfzero .\bfnine \bftwo \bfzero .\bfzero \bfthree \bfsix 0.91 0.040 0.90 0.041 0.91 0.041
lotus 0.93 0.022 \bfzero .\bfnine \bfsix \bfzero .\bfzero \bfone \bffive 0.96 0.016 0.95 0.017 0.96 0.017
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Appendix A. Proofs. To prepare for convergence analysis, we summarize some equivalent
conditions for strong convexity and Lipschitz smooth functions in Lemmas A.1 and A.2,
respectively.

Lemma A.1. A function f(x) is called strongly convex with parameter \mu if and only if one
of the following conditions holds:

(a) g(x) = f(x)  - \mu 
2\| x\| 

2
2 is convex;

(b) \langle \nabla f(x)  - \nabla f(y), x - y\rangle \geq \mu \| x - y\| 22 \forall x, y;
(c) f(y) \geq f(x) + \langle \nabla f(x), y  - x\rangle + \mu 

2\| y  - x\| 22 \forall x, y.
Lemma A.2. The gradient of f(x) is Lipschitz continuous with parameter L > 0 if and

only if one of the following conditions holds:
(a) \| \nabla f(x)  - \nabla f(y)\| 2 \leq L\| x - y\| 2 \forall x, y;
(b) g(x) = L

2 \| x\| 
2
2  - f(x) is convex;

(c) f(y) \leq f(x) + \langle \nabla f(x), y  - x\rangle + L
2 \| y  - x\| 22 \forall x, y.

We show in Lemma A.3 that the gradient of the function f(x) = 1
\| \bfx \| 2 is Lipschitz contin-

uous on a set with a lower bound.

Lemma A.3. Given a function f(x) = 1
\| \bfx \| 2 and a set \scrM \epsilon := \{ x| \| x\| 2 \geq \epsilon \} for a positive

constant \epsilon > 0, we have

\| \nabla f(x)  - \nabla f(y)\| 2 \leq 
2

\epsilon 3
\| x - y\| 2 \forall x,y \in \scrM \epsilon .

Proof. Some calculations lead to \nabla f(x) =  - \bfx 
\| \bfx \| 32

and \nabla 2f(x) =  - 1
\| \bfx \| 32

I + 3xxT 1
\| \bfx \| 52

with

the identify matrix I. Then \forall y, one has

yT\nabla 2f(x)y =  - yTy

\| x\| 32
+ 3

yTxxTy

\| x\| 52
\leq 2

yTy

\| x\| 32
\leq 2

\epsilon 3
yTy,

which implies that the maximum spectral radius of Hessian of f is less than 2
\epsilon 3
.

A.1. Proof of Lemma 4.2.

Proof. It follows from the optimality condition of the h-subproblem in (4.1) that

(A.1)  - a(k+1)

\| h(k+1)\| 3
h(k+1) + \rho 2

\Bigl( 
h(k+1)  - \nabla u(k+1)  - b

(k)
2

\Bigr) 
= 0,

where a(k) := \| \nabla u(k)\| 1. Using the dual update  - b
(k+1)
2 = h(k+1)  - \nabla u(k+1)  - b

(k)
2 , we have

(A.2) b
(k+1)
2 =  - a(k+1)

\rho 2

h(k+1)

\| h(k+1)\| 32
,

and similarly

(A.3) b
(k)
2 =  - a(k)

\rho 2

h(k)

\| h(k)\| 32
.
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We can estimate

\| b(k+1)
2  - b

(k)
2 \| 2 =

1

\rho 2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| a(k+1) h(k+1)

\| h(k+1)\| 32
 - a(k)

h(k)

\| h(k)\| 3

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq 1

\rho 2

\Biggl( 
1

\| h(k+1)\| 22

\bigm| \bigm| a(k+1)  - a(k)
\bigm| \bigm| + a(k)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| h(k+1)

\| h(k+1)\| 32
 - h(k)

\| h(k)\| 32

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\Biggr) 
.(A.4)

For the first term in (A.4), we use the facts that \| x\| 1 \leq 
\surd 
l\| x\| 2 for a vector x of length l and

\| \nabla \| 22 \leq 8, thus leading to

| a(k+1)  - a(k)| \leq \| \nabla (u(k+1)  - u(k))\| 1 \leq 
\surd 

2mn\| \nabla (u(k+1)  - u(k))\| 2
\leq 

\surd 
2mn \cdot \| \nabla \| 2 \cdot \| u(k+1)  - u(k)\| 2 \leq 4

\surd 
mn\| u(k+1)  - u(k)\| 2.(A.5)

Note that u \in Rm\times n and \nabla u \in Rm\times n\times 2 (thus of length 2mn.) Invoking Lemma A.3, we get

a(k)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| h(k+1)

\| h(k+1)\| 32
 - h(k)

\| h(k)\| 32

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq 2M

\epsilon 3
\| h(k+1)  - h(k)\| 2.(A.6)

By putting together (A.4)--(A.6) and using the Cauchy--Schwarz inequality, we get (4.2).

A.2. Proof of Lemma 4.3. In order to prove Lemma 4.3, we show in Lemma A.4 that
the augmented Lagrangian decreases sufficiently with respect to u(k).

Lemma A.4. Under the same assumptions as in Lemma 4.3, there exists a constant \=c1 > 0
such that

(A.7) \scrL (u(k+1),h(k);b
(k)
2 )  - \scrL (u(k),h(k);b

(k)
2 ) \leq  - \=c1

2
\| u(k+1)  - u(k)\| 22

holds for the augmented Lagrangian corresponding to L1/L2-uncon and L1/L2-box.

Proof. Denote by \sigma the smallest eigenvalue of the matrix ATA + \nabla T\nabla . We show that \sigma 
is strictly positive. If \sigma = 0, there exists a vector x such that xT (ATA + \nabla T\nabla )x = 0. It is
straightforward that xTATAx \geq 0 and xT\nabla T\nabla x \geq 0. Therefore, one shall have xTATAx = 0
and xT\nabla T\nabla x = 0, which contradicts assumption A1 that \scrN (\nabla )

\bigcap 
\scrN (A) = 0. Therefore, we

have that
vT (ATA + \nabla T\nabla )v \geq \sigma \| v\| 22 \forall v,

which implies that \scrL uncon(u,h(k);b
(k)
2 ) with fixed h(k) and with b

(k)
2 strongly convex with

parameter \=c1 = \sigma \lambda (we can choose \rho 2 \geq \lambda as it is sufficiently large). It follows from (3.14)
that the only difference between \scrL uncon and \scrL box is the indicator function \Pi [c,d](u). Since the
indicator function is convex, then \scrL box is strongly convex with the same parameter c1. We
can unify \scrL uncon and \scrL box to be \scrL . Then Lemma A.1 leads to

\scrL (u(k+1),h(k);b
(k)
2 ) \leq \scrL (u(k),h(k);b

(k)
2 )  - \sigma \lambda 

2
\| u(k+1)  - u(k)\| 22.

Therefore, we can choose \=c1 = \sigma \lambda such that inequality (A.7) holds.D
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Now we are ready to prove Lemma 4.3.

Proof. Denote a = \| u(k+1)\| 1 and L = 2M
\epsilon 3

. Lemmas A.2 and A.3 lead to

(A.8)
a

\| h(k+1)\| 2
\leq a

\| h(k)\| 2
 - 

\Biggl\langle 
ah(k)

\| h(k)\| 32
,h(k+1)  - h(k)

\Biggr\rangle 
+

L

2
\| h(k+1)  - h(k)\| 22.

Denoting z = \nabla u(k+1) + b
(k)
2 and using the optimality condition of h(k+1) (A.1), we get

\rho 2
2
\| h(k+1)  - z\| 22  - 

\rho 2
2
\| h(k)  - z\| 22

=
\rho 2
2
\| h(k+1)\| 22  - 

\rho 2
2
\| h(k)\| 22  - 

\Biggl\langle 
 - ah(k+1)

\| h(k+1)\| 3
+ \rho 2h

(k+1),h(k+1)  - h(k)

\Biggr\rangle 

=

\Biggl\langle 
ah(k+1)

\| h(k+1)\| 3
,h(k+1)  - h(k)

\Biggr\rangle 
 - \rho 2

2
\| h(k+1)  - h(k)\| 22.(A.9)

Combining (A.8) and (A.9), we obtain

\scrL (u(k+1),h(k+1);b
(k)
2 )  - \scrL (u(k+1),h(k);b

(k)
2 )(A.10)

\leq 

\Biggl\langle 
ah(k+1)

\| h(k+1)\| 32
 - ah(k)

\| h(k)\| 32
,h(k+1)  - h(k)

\Biggr\rangle 
 - \rho 2  - L

2
\| h(k+1)  - h(k)\| 22

\leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| ah(k+1)

\| h(k+1)\| 32
 - ah(k)

\| h(k)\| 32

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\bigm\| \bigm\| \bigm\| h(k+1)  - h(k)
\bigm\| \bigm\| \bigm\| 
2
 - \rho 2  - L

2

\bigm\| \bigm\| \bigm\| h(k+1)  - h(k)
\bigm\| \bigm\| \bigm\| 2
2

\leq  - \rho 2  - 3L

2
\| h(k+1)  - h(k)\| 22.

Lastly, from the update of b2, we compute

\scrL (u(k+1),h(k+1);b
(k+1)
2 )  - \scrL (u(k+1),h(k+1);b

(k)
2 )(A.11)

=
\rho 2
2

\Bigl( 
\| b(k)

2 \| 22  - \| b(k+1)
2  - 2b

(k)
2 \| 22

\Bigr) 
\leq \rho 2

2
\| b(k+1)

2  - b
(k)
2 \| 22.

By putting inequalities (A.7), (A.10), and (A.11) together with Lemma 4.2, we have

\scrL (u(k+1),h(k+1);b
(k+1)
2 ) \leq \scrL (u(k),h(k);b

(k)
2 )  - c1\| u(k+1)  - u(k)\| 22  - c2\| h(k)  - h(k+1)\| 22,

where c1 = \=c1
2  - 16mn

\rho 2\epsilon 4
and c2 = \rho 2\epsilon 3 - 6M

2\epsilon 3
 - 16M2

\rho 2\epsilon 6
. For sufficiently large \rho 2, we can have

c1, c2 > 0.

Remark A.5. It seems that we need a very large value of \rho 2 to guarantee c1, c2 > 0 in
Lemma 4.3. Fortunately, it is just a sufficient condition for convergence, and we can choose a
reasonable value of \rho 2 in practice; please refer to section 5 for parameter tuning.D
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A.3. Proof of Lemma 4.4.

Proof. To accommodate the models (with and without box), we express the optimality
condition of (4.1) as follows:\left\{         

p(k+1)

\| \bfh (k)\| 2
+ q(k+1) + r(k+1) + \rho 2\nabla T (\nabla u(k+1)  - h(k) + b

(k)
2 ) = 0,

 - \| \nabla u(k+1)\| 1
\| \bfh (k+1)\| 32

h(k+1) + \rho 2(h
(k+1)  - \nabla u(k+1)  - b

(k)
2 ) = 0,

b
(k+1)
2 = b

(k)
2 + \nabla u(k+1)  - h(k+1),

(A.12)

where p(k+1) \in \partial \| \nabla u(k+1)\| 1, q(k+1) := \lambda AT (Au(k+1)  - f), and r(k+1) either belongs to

\partial (\Pi [c,d](u
(k+1))) with the box constraint or is zero otherwise. Let \eta 

(k+1)
1 , \eta 

(k+1)
2 , \eta 

(k+1)
2 be\left\{         

\eta 
(k+1)
1 := p(k+1)

\| \bfh (k+1)\| 2
+ q(k+1) + r(k+1) + \rho 2\nabla T (\nabla u(k+1)  - h(k+1) + b

(k+1)
2 ),

\eta 
(k+1)
2 :=  - \| \nabla u(k+1)\| 1

\| \bfh (k+1)\| 32
h(k+1) + \rho 2(h

(k+1)  - \nabla u(k+1)  - b
(k+1)
2 ),

\eta 
(k+1)
3 := \rho 2(\nabla u(k+1)  - h(k+1)).

(A.13)

Clearly, we have

\eta 
(k+1)
1 \in \partial u\scrL (u(k+1),h(k+1),b

(k+1)
2 ),

\eta 
(k+1)
2 \in \partial \bfh \scrL (u(k+1),h(k+1),b

(k+1)
2 ),

\eta 
(k+1)
3 \in \partial \bfb 2\scrL (u(k+1),h(k+1),b

(k+1)
2 )

for \scrL = \scrL uncon or \scrL box. Combining (A.12) and (A.13) leads to\left\{         
\eta 
(k+1)
1 =  - p(k+1)

\| \bfh (k)\| 2
+ p(k+1)

\| \bfh (k+1)\| 2
+ \rho 2\nabla T (h(k)  - h(k+1)) + \rho 2\nabla T (b

(k+1)
2  - b

(k)
2 ),

\eta 
(k+1)
2 = \rho 2(b

(k)
2  - b

(k+1)
2 ),

\eta 
(k+1)
3 = \rho 2(b

(k+1)
2  - b

(k)
2 ).

The chain rule of subgradient [24, 25] suggests that \partial \| \nabla u\| 1 = \nabla Tq, where

q = \{ q | \langle q,\nabla u\rangle Y = \| \nabla u\| 1, | qijk| \leq 1 \forall i, j, k\} .

Therefore, we have an upper bound for \| p(k+1)\| 2 \leq \| \nabla T \| 2\| q(k+1)\| 2 \leq 2
\surd 

2mn. Simple
calculations show that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| p(k+1)

\| h(k)\| 2
 - p(k+1)

\| h(k+1)\| 2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

=

\bigm| \bigm| \bigm| \bigm| 1

\| h(k)\| 2
 - 1

\| h(k+1)\| 2

\bigm| \bigm| \bigm| \bigm| \bigm\| \bigm\| \bigm\| p(k+1)
\bigm\| \bigm\| \bigm\| 
2

\leq 1

\epsilon 2

\bigm\| \bigm\| \bigm\| h(k+1)  - h(k)
\bigm\| \bigm\| \bigm\| 
2

\bigm\| \bigm\| \bigm\| p(k+1)
\bigm\| \bigm\| \bigm\| 
2
\leq 2

\surd 
2mn

\epsilon 2

\bigm\| \bigm\| \bigm\| h(k+1)  - h(k)
\bigm\| \bigm\| \bigm\| 
2
.

Finally, by setting \gamma = max\{ 26\rho 2, 24\rho 2 + 24mn
\epsilon 4

\} , (4.4) follows immediately.
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