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Model Adaptation for Inverse Problems in
Imaging

Davis Gilton, Gregory Ongie, and Rebecca Willett.

Abstract— Deep neural networks have been applied suc-
cessfully to a wide variety of inverse problems arising
in computational imaging. These networks are typically
trained using a forward model that describes the measure-
ment process to be inverted, which is often incorporated
directly into the network itself. However, these approaches
are sensitive to changes in the forward model: if at test time
the forward model varies (even slightly) from the one the
network was trained for, the reconstruction performance
can degrade substantially. Given a network trained to solve
an initial inverse problem with a known forward model, we
propose two novel procedures that adapt the network to a
change in the forward model, even without full knowledge
of the change. Our approaches do not require access to
more labeled data (i.e., ground truth images). We show
these simple model adaptation approaches achieve empir-
ical success in a variety of inverse problems, including
deblurring, super-resolution, and undersampled image re-
construction in magnetic resonance imaging.

I. INTRODUCTION

Repeated studies have illustrated that neural networks can
be trained to solve inverse problems in imaging, including
problems such as image reconstruction in MRI, inpainting,
superresolution, deblurring, and more. Recent reviews and tuto-
rials on this topic [4], [27] have described various approaches
to this problem. For concreteness, we focus on the case of
linear inverse problems in imaging. In the general framework
of interest, an unknown n-pixel image (in vectorized form)
x ∈ Rn (or Cn) is observed via m noisy linear measurements
y ∈ Rm (or Cm) according to the model

y = A0x+ ε, (1)

where the matrix A0 ∈ Rm×n (or Cm×n) is the forward model
and ε represents a vector of noise. The goal is to recover x
from y.

In this paper, we focus on the setting in which the forward
model A0 is known and used during training. Past work has
illustrated that leveraging knowledge of A0 during training
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can reduce the sample complexity [12]. This paradigm is
particularly common in applications such as medical imaging,
where A0 represents a model of the imaging system. For
instance, in magnetic resonance imaging (MRI), A0 reflects
which k-space measurements are collected.

Unfortunately, these methods can be surprisingly fragile in
the face of model drift, which occurs when, at test time, we
are provided samples of the form

y = A1x+ ε′ (2)

for some new forward model A1 6= A0 and/or a change in the
noise distribution (i.e., the noise ε′ is distributed differently
than ε). That is, assume we have trained a solver that is a
function of both the original forward model A0 and a learned
neural network. One might try to reconstruct x from y using
this solver, but it will perform poorly because it is using a
misspecified model (A0 instead of A1). Alternatively, we might
attempt to use the same general solver where we replace A0

with A1 but leave the learned component intact. In this case,
the estimate x computed from y may also be poor, as illustrated
in [3] and [17]. The situation is complicated even further if
we do not have a precise model of A1 at test time.

These are real challenges in practice. For example, in MRI
reconstruction there is substantial variation in the forward
model depending on the type of acquisition – e.g., Cartesian
versus non-Cartesian k-space sampling trajectories, different
undersampling factors, different number of coils and coil
sensitivity maps, magnetic field inhomogeneity maps, and other
calibration parameters [10] – all which need to be accounted for
during training and testing. A network trained for one of these
forward models may need to be retrained from scratch in order
to perform well on even a slightly different setting (e.g., from
six-fold to four-fold undersampling of k-space). Furthermore,
training a new network from scratch may not always be feasible
after deployment due to a lack of access to ground truth images.
This could be either due to privacy concerns of sharing patient
data between hospitals and researchers, or because acquiring
ground truth images is difficult for the new inverse problem.

This leads us to formulate the problem of model adaptation:
given a reconstruction network trained on measurements
from one forward model adapt/retrain/modify the network
to reconstruct images from measurements reflecting a new
forward model. We consider a few variants of this problem:
(a) the new forward model A1 is known, along with one or
more unlabeled training samples yi reflecting A1, and (b) A1

is unknown or only partially known, and we only have one or
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(a) Ground truth (b) No model drift (c) Model drift (d) Model drift w/model adaptation

Fig. 1: Small perturbations in measurements for deep learning-based image reconstruction operators can lead to both subtle and
obvious artifacts in reconstructions across problems and domains. In the top row, we present results for undersampled MRI
reconstruction of knee images, and the second row illustrates deblurring images of human faces. (a) Ground truth image. (b) No
model drift. Training and test data correspond to same model, A0, yielding accurate reconstruction via learned model. (c) Model
drift but no model adaptation. Training assumes model A0 but at test time we have model A1. Reconstruction using trained
network without model adaptation gives significant distortions. (d) Model drift and model adaptation. Training assumes model
A0 but at test time we have model A1. Reconstruction using model adaptation prevents distortions and compares favorably to
the setting without model drift. The MRI example demonstrates our Reuse and Regularize method (Alg. 2), and the deblurring
example demonstrates our Parameterize and Perturb method (Alg. 1). Experimental details are in Section IV.

more unlabeled training samples reflecting A1. These training
samples are unlabeled in the sense that they are not paired with
“ground truth” images used to generate the yi’s. Our proposed
model adaptation methods allow a reconstruction network to
be trained for a known forward model and then adapted to a
related forward model without access to ground truth images,
and without knowing the exact parameters of the new forward
model.

Model drift as stated above is a particular form of distribution
drift, in which the distribution of Y |X = x changes between
training and deployment and we know Y has a linear depen-
dence on X before and after the drift (even if we do not know
the parameters of those linear relationships, represented as A0

and A1). That is, if we assume a noise model ε ∼ N (0, σ2I),
then the training distribution is Y |X = x ∼ N (A0x, σ

2I)
and the distribution at deployment (assuming the same noise
model) is Y |X = x ∼ N (A1x, σ

2I). In general, distribution
drift challenges may be addressed using transfer learning [28],
[37], [41] and domain adaptation [20], [26], [39]. One of the
methods we explore in the body of the paper, Parameterize
and Perturb, shares several features with transfer learning
methodology. However, since in our setting we have a specific
form of distribution drift, it is possible to design more targeted
methods with better performance, as illustrated by existing

specialized methods for image inpainting [9], as well as our
general-purpose Reuse and Regularize method (detailed below).

A. Related Work
A broad collection of recent works, as surveyed by [4]

and [27], have explored using machine learning methods to
help solve inverse problems in imaging. The current paper is
motivated in part by experiments presented in [3], which show
that deep neural networks trained to solve inverse problems are
prone to several types of instabilities. Specifically, they showed
that model drift in the form of slight changes in the forward
model (even “beneficial” ones, like increasing the number of
k-space samples in MRI) often have detrimental impacts on
reconstruction performance. While [3] is mostly empirical in
nature, a follow-up mathematical study [13] provides theoretical
support to this finding, implying that instability arises naturally
from training standard deep learning inverse solvers. However,
recent work also shows that the instabilities observed in
in [3] can be mitigated to some extent by adding noise to
measurements during training, though such techniques are not
sufficient to resolve artifacts arising from substantial model
drift.

To address a subset of these issues, [30] and [23] propose
adversarial training frameworks that increases the robustness
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of inverse problem solvers. However, [30] and [23] focus on
robustness to adversarial perturbations in the measurements for
a fixed forward model, and do not address a global change in
the forward model, which is the focus of this work.

Similar to this work, a recent paper [15] has proposed domain
adaptation techniques to transfer a reconstruction network from
one inverse problem setting to another, e.g., adapting a network
trained for CT reconstruction to perform MRI reconstruction.
However, the focus of that approach is on adapting to changes
in the image distribution, whereas our approaches focus on
changes to the forward model assuming the image distribution is
unchanged. Additionally, to our knowledge, no existing domain
adaptation approaches consider the scenario where the new
forward model depends on unknown calibration parameters, as
we do in this work.

Another line of work explores learned methods for image
reconstruction with automatic parameter tuning; see [40] and
references therein. However, this work focuses on learning
regularization and optimization parameters, not parameters of
a drifting forward model. Also, [42] describes a unrolling
approach to learning a forward model in an imaging context,
but with the goal of designing a forward model that optimizes
reconstruction quality, rather than estimating a correction to the
forward model from measurements. Some recent studies have
used pre-trained generative models to solve inverse problems
with unknown calibration parameters [2]; this line of work can
be viewed as an extension of compressed sensing with general
models framework introduced in [8].

II. PROBLEM FORMULATION

Here we formalize the problem of model adaptation as
introduced above.

Suppose we have access to an estimator x̂ = f0(y) that has
been designed/trained to solve the inverse problem

y = A0x+ ε, x ∼ PX , ε ∼ PN0 (P0)

where A0 is a known (linear) forward model, PX denotes the
distribution of images x and PN0 denotes the distribution of the
noise ε. We assume the trained estimator “solves” the inverse
problem in the sense that it produces an estimate x̂ = f0(y)
such that the mean-squared error (MSE) Ex,ε[‖x̂ − x‖2] is
small.

Now assume that the forward model has changed from A0

to a new model A1 and/or the noise distribution has changed
from PN0

to a new noise distribution PN1
, resulting in the new

inverse problem

y = A1x+ ε′, x ∼ PX , ε′ ∼ PN1 . (P1)

We consider both the case where A1 is known (i.e., we have
an accurate estimate of A1) and the case where A1 is partially
unknown, in the sense that it belongs to a class of parameterized
forward models, i.e., A1 ∈ {A(σ) : σ ∈ Rq}, where the
parameters σ ∈ Rq are unknown.

The goal of model adaptation is to adapt/retrain/modify the
estimator x̂ = f0(y) that was designed to solve the original
inverse problem (P0) to solve the new inverse problem (P1).
We will consider two variants of this problem:

• Model adaptation without calibration data: In this setting,
we assume access to only one measurement vector y
generated according to (P1).

• Model adaptation with calibration data: In this setting
we assume access to a new set of measurement vectors
{yi}Ni=1 generated according to (P1), but without access
to the paired ground truth images (i.e., the corresponding
xi’s).

While the above discussion centers around a general esti-
mator x̂ = f0(y), we are particularly interested in estimators
that combine a trained trained deep neural network component
depending on a vector of weights/parameters θ0, along with
the original forward model A0; we will call such an estimator
a reconstruction network. Specifically, we assume that the
forward model A0 (or other derived quantities, such as its
transpose A>0 , psuedo-inverse A†0, etc.) is embedded in the
reconstruction network, either in an initialization layer and/or
in multiple subsequent layers. This is the case for networks
based on unrolling of iterative algorithms (see, for example,
[4], [14], [24], [27], [36], and references therein), in which A0

appears repeatedly in the network in “data-consistency” layers
that approximately re-project the intermediate outputs of the
network onto the set of data constraints {x ∈ Rn : A0x = y}.
In general, we will assume the reconstruction network can
be parametrized as f0(·) = f(·; θ0, A0) where θ0 ∈ Rp is the
vector of pre-trained neural network weights/parameters and
A0 is the original forward model.

Finally, to simplify the presentation, we will assume an
additive white Gaussian noise model for both (P0) and (P1),
i.e., PN0 = N (0, σ2

0I) and PN1 = N (0, σ2
1I) with known

variances σ2
0 and σ2

1 . In this case the negative log-likelihood of
x given y under measurement model (P1) is 1

2σ2
1
‖A1x− y‖22,

which justifies our use of quadratic data-consistency terms in
the development below.

A. The feasibility of model adaptation

To compute an accurate reconstruction under the original
forward model, A0, the learned solver must reconstruct
components of the image that lie in the null space N(A0): for
superresolution, these are high-frequency details lost during
downsampling, and in inpainting, these are the pixels removed
by A0.

Reconstructing under a different forward model, A1, requires
reconstructing different components of the image in the null
space N(A1). The general intuition behind model adaptation
is that if A0 and A1 are similar, then the mapping represented
by f0 can inform the new mapping that we need to learn from
image components in the range of A1 to components in N(A1).
For example, in an inpainting setting, the learned network not
only represents the missing pixels, but it also represents some
function of the observed pixels that are relevant to filling in
the missing pixels. Thus if A1 has a similar null space (e.g., an
offset in the collection of missing pixels), it is reasonable to
expect that the original network has learned to represent some
information about image components in the null space of A1

but not in the null space of A0. As the null spaces of A0 and
A1 get further apart, model adaptation becomes less effective.
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(a) Original reconstruction network.

(b) Model adaptation by Parametrize and Perturb (P&P).

(c) Model adaptation by Reuse & Regularize (R&R).

Fig. 2: Three basic paradigms of reconstruction under “model
drift”. (a) If the training data is generated using the model
y = A0x + ε, this can be used to learn a reconstruction
network f(y; θ0, A0) which is parameterized by weights or
parameters θ0 and may also explicitly depend on forward
model A0. (b) Parametrize and Perturb (P&P): If at test
time we are presented with data corresponding to the model
y = A1x+ ε′, we may not only use the new forward model
A1 but also learn a perturbation δ to the original network
parameters θ0 to compensate for the model drift. (c) Reuse
and Regularize (R&R): Alternatively to P&P, we may reuse
the pre-trained network f0 as an implicit regularizer in an
iterative model-based reconstruction scheme. The proposed
scheme alternates between applying f0 ◦A0, which denoises
and/or removes artifacts, and a data-consistency step (denoted
by DCA1

above) that enforces the estimated image x̂ satisfies
A1x̂ ≈ y.

This is similar to the widely-noted behavior of transfer learning,
where transfer learning efficacy depends on the similarity of
the training and target distributions. This intuition is supported
by our empirical results, which illustrate that when A0 and
A1 correspond to different blur kernels or perturbed k-space
sampling patterns in MRI, the learned mapping f0 does contain
information about image components in the null space of A1

that can be leveraged to improve reconstruction accuracy, even
without additional training samples drawn using the model A1.

III. PROPOSED APPROACHES

We propose two distinct model adaptation approaches,
Parameterize & Perturb (P&P) and Reuse & Regularize (R&R),
as detailed below.

A. Parametrize and Perturb: A transfer learning approach
Let f0 be a reconstruction network trained to solve inverse

problem (P0). Suppose we can explicitly parameterize f0 both
in terms of the trained weights/parameters θ0 and the original

forward model A0, i.e., we may write f0(·) = f(· ; θ,A0).
Given a new measurement vector y under the measurement
model (P1), a “naive” approach to model adaptation is to
simply to replace substitute the new forward model A1 for A0

in this parametrization, and estimate the image as f(y; θ0, A1).
However, as illustrated in Figure 1, this can lead to artifacts
in the reconstruction due to model mismatch.

Instead, we propose estimating the image as f(y; θ1, A1)
where θ1 is a perturbed set of of network parameters obtained
by solving the optimization problem:

min
θ
‖y −A1f(y; θ,A1)‖22 + µ‖θ − θ0‖22. (3)

where µ > 0 is a tunable parameter. The first term enforces
data consistency, i.e., the estimated image x̂ should satisfy
y ≈ A1x̂, while the second term ‖θ−θ0‖22 ensures the retrained
parameters θ stay close to the original network parameters θ0.
This term is necessary to avoid degenerate solutions, which
we demonstrate in the Supplement. Our use of a proximity
term of this form is also inspired in part by its success in other
transfer learning applications (see, e.g., [43]).

If the forward model A1 is also unknown, we propose
optimizing for it as well in the above formulation, which
gives:

min
θ,A∈A

‖y −Af(y; θ,A)‖22 + µ‖θ − θ0‖22. (4)

where A denotes a constraint set. We assume the forward
model is parameterized such that the constraint set is given
by A = {A(σ) : σ ∈ Rq}, where A(σ) denotes a class of of
forward models parametrized by a vector σ ∈ Rq with q �
m ·n (e.g., in a blind deconvolution setting, A(σ) corresponds
convolution with an unknown kernel σ). In particular, we
propose optimizing over the parameters σ, which is possible
with first-order methods such as stochastic gradient descent,
provided the map σ 7→ Aσ is first-order differentiable.

Algorithm 1 Parameterize & Perturb (P&P)

Require: Original forward model A0, new forward model A1,
pre-trained reconstruction network f0(·) = f(·; θ0, A0),
regularization parameter µ, new measurements y.

1: Modify the reconstruction network f0 by internally chang-
ing A0 to A1, to obtain the estimate f(y; θ0, A1)

2: Fine-tune the network weights as θ1 = θ0 + δ where δ is
a perturbation learned by solving (3)

The preceding discussion focused on the case of recon-
structing single measurement vector y at test time, i.e., model
adaptation without calibration data. Additionally, we consider a
P&P approach in the case where we have access to calibration
data y1, ..., yN generated according to (P1). In this case we
propose retraining the network by minimizing the sum of data-
consistency terms over the calibration set:

(θ1, Ã1) = arg min
θ,A∈A

1

N

N∑
i=1

‖yi−Af(yi; θ,A)‖22+λ‖θ−θ0‖22.

(5)
At deployment, we propose using the retrained network x̂ =
f(y; θ1, Ã1) as our estimator.
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It is worth noting that the P&P model adaptation technique
presented above bears similarities to the deep image prior
(DIP) approach to solving inverse problems as introduced in
[38]. However, P&P differs from DIP in two key aspects:
First, in DIP the reconstruction network is initialized with
random weights, whereas in P&P we start with a network
whose initial weights θ0 are obtained by training to solve
the initial inverse problem (P0). Second, we explicitly enforce
proximity to the initial weights to prevent overfitting to the data,
and do not rely on early stopping heuristics as is the case DIP.
The P&P approach also shares similarities to the “fine-tuning”
step proposed in the Σ-net MRI reconstruction framework
[19], where a loss similar to (3) is minimized to enforce data
consistency at test time. However, different from P&P, the
fine-tuning approach in [19] regularizes the reconstruction by
minimizing the loss between initial reconstruction and the
new network output in the SSIM metric. As demonstrated in
Figure 1, this initial reconstruction can have severe artifacts in
certain settings due to model mismatch, in which case enforcing
proximity in image space to an initial reconstruction is less
justified.

B. Reuse & Regularize: Model adaptation without
retraining

One drawback of the P&P approach is that it requires fine-
tuning the network for each input y, which is computationally
expensive relative to a feed-forward reconstruction approach.
Additionally, the P&P approach is somewhat indirect, relying
only on the inductive bias of the network architecture and
its original parameter configuration to impart a regularization
effect for the new inverse problem (P1). Here we propose
a different model adaptation approach that does not require
retraining the original reconstruction network, and explicitly
makes use of the fact that the original network is designed to
solve (P0).

Suppose we are given a reconstruction network f0(y) trained
to solve (P0). The key idea we exploit is that the composition
of f0 with the original forward model A0, should act as an
auto-encoder, i.e., if we define the map g : Rd → Rd by
g(x) = f0(A0x) then by design we should have g(x) ≈ x for
any image x sampled from the image distribution PX . See
Figure 3 for an illustration in the case of undersampled MRI
reconstruction.

Given this fact, one simple approach to reconstructing a
measurement vector y under (P1) is to start from an initial
guess, e.g., the least squares solution x(0) = A†1y, and attempt
to find a fixed-point of g(·) by iterating:

x(k+1) = g(x(k)), k = 0, 1, 2, ... (6)

However, this approach only uses knowledge of the new
forward model A1 in the initialization step. Also, unless we
can guarantee the map g(·) is non-expansive (i.e., its Jacobian
is 1-Lipschitz), these iterations could diverge.

Instead, building off the intuition that g acts as an auto-
encoder, we propose using g as a regularizer in an iterative
model-based reconstruction scheme. In particular, we adopt
a regularization-by-denoising (RED) approach, which allows

A⊤0 A0x

simulated  
measurements  

A0x

reconstruction  
network 
f0( ⋅ )

original  
image 
x

reconstructed  
image 
f0(A0x)

f0(A0x) ≈ x

Fig. 3: Illustration of the auto-encoding property of the map
f0◦A0 as used in the proposed R&R model adaptation approach,
illustrated in an undersampled MRI reconstruction setting.

one to convert an arbitrary denoiser/de-artifacting map into
a regularizer [32]. The RED approach is motivated by the
following cost function:

min
x

1

2
‖A1x− y‖22 + λρ(x) (7)

where the function ρ(x) := x>(x− g(x)) can be interpreted
as a regularizer induced by the map g(x) and λ > 0 is a
regularization parameter. Under appropriate conditions on the
function g, one can show ∇ρ(x) = x− g(x). This fact is used
in [32] to derive a variety of iterative algorithms based on
first-order methods (see also [31] for further analysis of RED,
including convergence guarantees).

For simplicity, we focus on a RED approach with proximal
gradient descent (see, e.g., [29]) as the base algorithm with
stepsize τ > 0. This results in an alternating scheme:

z(k) = (1− τ)x(k) + τg(x(k))

x(k+1) = arg min
x

1

2λ
‖A1x− y‖22 +

1

2τ
‖x− z(k)‖22

The x-update above has the closed-form expression

x(k+1) =
(
A>1 A1 + λ

τ I
)−1 (

A>1 y + λ
τ z

(k)
)

(8)

For simplicity of implementation and to reduce the number
of tuning parameters, we fix the stepsize to τ = 1 in all our
experiments. We summarize these steps in Algorithm 2.

Algorithm 2 Reuse & Regularize (R&R)

Require: Pre-trained reconstruction network f0(·), original
forward model A0, new forward model A1, regularization
parameter λ > 0, max iterations K, new measurements y.

1: x← A†1y . least-squares initialization
2: for k = 1, 2, ...,K do
3: z ← f0(A0x) . regularize using pre-trained network
4: x← (A>1 A1 + λI)−1(A>1 y + λz) . data consistency
5: end for
6: return x

Note that in the limit as λ → ∞, Algorithm 2 reduces
to the fixed-point scheme (6), and in the limit as λ → 0
Algorithm 2 will return the initialization x = A†1y. In general,
the output from Algorithm 2 will interpolate between these
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two extremes: x will be an approximate fixed point of g and
will approximately satisfy data consistency, i.e., y ≈ A1x.

For certain types of forward models the x-update in (8)
can be computed efficiently (e.g., if A1 corresponds to a 2-D
discrete convolution with circular boundary conditions, then
A>1 A1 diagonalizes under the 2-D discrete Fourier transform).
However, in general, the matrix inverse (A>1 A1 + λI)−1 may
be expensive. Therefore, in practice we propose approximating
(8) with a fixed number of conjugate gradient iterations.

A notable aspect of the R&R approach is that it has potential
to improve the accuracy of network-based reconstructions
even in the absence of model drift, i.e., even if A1 = A0.
This is because data-consistency is not guaranteed by certain
reconstruction networks (e.g., U-Nets). However, we are less
likely to see a benefit in the case where the reconstruction
network already incorporates data-consistency layers, such as
networks inspired by unrolling iterative optimization algorithms.
We explore this aspect empirically in Section IV-E in the context
of MRI reconstruction.

The R&R approach can also be extended the case where the
new forward model A1 depends on unknown parameters. First,
we define an estimator x̂(y;A1) by unrolling of a fixed number
of iterates of Algorithm 2, i.e., we take x̂(y;A1) = x(K) where
x(K) is the Kth iterate of Algorithm 2 with input y for some
small fixed value of K (e.g., K = 5). Supposing A1 belongs
to a parameterized class of forward models A = {A(σ) : σ ∈
Rq}, we propose optimizing a data-fit term over A:

Ã1 = arg min
A∈A

‖Ax̂(y;A)− y‖22. (9)

The resulting image estimate is then taken to be x̂(y; Ã1).
Finally, we also consider a combination of the P&P and R&R

approaches where we additionally fine-tune the weights θ0 of
the reconstruction network f0 embedded in the unrolled R&R
estimator. We call this approach R&R+. Writing the R&R+
estimator as x̂R&R+(y; θ,A1), similar to the P&P approach
we propose “fine-tuning” the weights θ0 by approximately
minimizing the cost function, with µ > 0 a tunable parameter,

min
θ
‖A1x̂R&R+(y; θ,A1)− y‖22 + µ||θ1 − θ||22, (10)

to obtain the updated network parameters θ1 = θ + δ where δ
is some small perturbation. The estimated image is then given
by x = x̂R&R+(y; θ,A1).

Empirically we see consistent improvement in reconstruction
accuracy from R&R+ over R&R without any fine-tuning
(see Figures 7 and 8). However, this comes at the additional
computational cost of having to retrain the reconstruction
network parameters at test time.

If we have access to calibration data y1, ..., yN generated
according to (P1) we can train R&R by minimizing the sum
of data-consistency terms over the calibration set:

(θ1, Ã1) = arg min
θ,A∈A

1

N

N∑
i=1

‖yi −Ax̂R&R+(yi; θ,A)‖22

+ µ||θ − θ0||22. (11)

At deployment, we propose using Algorithm 2 with the
retrained f(y; θ1, Ã1) in place of f0.

Algorithm 3 Reuse & Regularize with fine-tuning (R&R+)

Require: Pretrained reconstruction network f0(·) = f(·; θ0),
original forward model A0, new forward model A1,
regularization parameter λ, new measurements y.

1: Construct an estimator x̂(y; θ0) by unrolling K iterations
of Algorithm 2

2: Fine-tune the network weights as θ1 = θ0 + δ where δ is
a perturbation learned by approximately minimizing the
cost (10) via SGD.

3: return x = x̂(y; θ1)

IV. EXPERIMENTS

In this section we empirically demonstrate our approach to
model adaptation on three types of inverse problems with two
example reconstruction network architectures. We have chosen
these comparison points for their simplicity and to illustrate the
broad applicability of our proposed approaches. In particular,
our approaches to model adaptation are not tied to a specific
architectural design.

A. Methods and datasets used

We demonstrate our approaches on three inverse problems:
motion deblurring, superresolution, and undersampled single-
coil MRI reconstruction.

For motion deblurring, our initial model A0 corresponds
to a 10◦ motion blur with a 7 × 7 kernel, and A1 is a 20◦

motion blur with a 7× 7 kernel, with angle given with respect
to the horizontal axis. In superresolution, our initial model is
a bilinear downsampling with rate 2×, and A1 corresponds to
2× bicubic downsampling.

MRI reconstruction is performed with a 6× undersampling
of k-space in the phase encoding direction for both A0 and
A1. The sampling maps are shown in Fig 4.

(a) Original k-space sam-
pling pattern (A0)

(b) Resampled k-space sam-
pling pattern (A1)

Fig. 4: Visualization of k-space masks used for MRI experi-
ments. Each mask represents a 6-fold Cartesian undersampling
with 4% of the center k-space lines fully sampled, and the
remaining lines sampled according to a Gaussian variable
density scheme. The A1 mask contains the same center lines,
but the higher frequency k-space lines are sampled separately.

We use two datasets in our experiments. First, for motion
deblurring and superresolution, we train and test on 128x128-
pixel aligned photos of human faces from the CelebA dataset
[21].
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The data used in the undersampled MRI experiments were
obtained from the NYU fastMRI Initiative [45]. The primary
goal of the fastMRI dataset is to test whether machine learning
can aid in the reconstruction of medical images. We trained
and tested on a subset of the single-coil knee dataset, which
consist of simulated single-coil measurements. In all tests,
we use complex-valued data, which interfaces with our deep
networks by treating the real and imaginary parts of the images
as separate channels. We measure reconstruction accuracy with
respect to the center 320×320 pixels of the complex IFFT of
the fully-sampled k-space data. For the purpose of visualization,
we display only the magnitude images in the following sections.

Learning rates and regularization parameters (i.e., µ in
Algorithm 1 and λ in Algorithm 2) were tuned via cross-
validation on a hold out validation set of 512 images for CelebA,
and 64 MR images for fastMRI. Batch sizes were fixed in
advance to be 128 for the motion blur and superresolution
settings, and 8 for the MRI setting. Hyperparameters were
tuned via grid search on a log scale. For R&R, we use K = 5
iterations in the main loop of Algorithm 2. During training,
we add Gaussian noise with σ = 0.01 to all measurements, as
suggested by [11] to improve robustness.

We compare the performance of two reconstruction network
architectures across all datasets. First, we utilize the U-Net
architecture [33]. Our U-Net implementation takes as input the
adjoint of the measurements under the forward model A>0 y or
A>1 y, which is then passed through several CNN layers before
obtaining a reconstructed image x̂.

We also utilize the MoDL architecture [1], a learned
architecture designed for solving inverse problems with known
forward models. MoDL is an iterative or “unrolled” architecture,
which alternates between a data-consistency step and a trained
CNN denoiser, with weights tied across unrolled iterations. We
use a U-Net architecture as the denoiser in our implementation
of MoDL, ensuring that the overall number of parameters
(except for a learned scaling factor in MoDL) is the same in
both architectures.

To compare to deep learning-based approaches which do not
require training on particular forward models, we compare to
the Image-Adaptive GAN (IAGAN) [18] and to Regularization
by Denoising (RED) [32]. IAGAN leverages a pretrained GAN
to reconstruct arbitrary linear measurements by fitting the latent
code input to the GAN, while also tuning the GAN weights
in a way similar to our proposed P&P approach and the Deep
Image Prior approach [38]. We utilize early stopping in this
optimization process by choosing a fixed early stopping point
based on a held-out validation set.

RED requires only a pretrained denoiser, which we imple-
ment by pretraining a set of residual U-Net denoisers on the
fastMRI and CelebA training sets, with a variety of different
Gaussian noise levels. Specifically, we train 15 denoisers for
each problem setting, with σ ranging from 10−4 to 101 on a
logarithmic scale. All results shown are tuned on the validation
set to ensure the optimal denoisers are used.

We also compare to a penalized least squares approach with
total variation regularization [34], a classical approach that does
not use any learned elements. While more complex regularizers
are possible, total variation (TV) is used because of its status

as a simple, widely-used conventional baseline.

B. Parametrizing forward models
Both of our proposed model adaptation methods permit the

new forward model to be unknown during training, provided it
has a known parametrization. In this case, the parameters
describing the forward model are learned along with the
reconstruction. Here we describe the parametrizations of the
forward models that are used.

For the deblurring task, the unknown blur kernel is
parametrized as a 7x7 blur kernel, initialized with the weights
used for the ground-truth kernel during the initial stage of
training. Practically, this is identical to a standard convolutional
layer with a fixed initialization and only one learned kernel.

A similar approach is used for superresolution. The forward
model can be efficiently represented by strided convolution, and
the adjoint is represented by a standard "convolution transpose"
layer, again with the weights initialized to match the forward
operator in the initial pre-training phase.

In the case of MRI, we use two choices of A1, depending on
whether we assume A1 is fully known or not. In the case A1

is fully known, we utilize another 6× undersampled k-space
mask, but with resampled high-frequency lines. We display
the original and new k-space sampling masks in Figure 4. To
illustrate the utility of our approach under miscalibration of
the forward model in an MRI reconstruction setting, we also
consider a unknown random perturbation of the original k-space
lines, which we attempt to learn during reconstruction. The
vertical k-space lines are still fully sampled, as are the center
4% of frequencies, but all high frequency lines are perturbed
uniformly at random with a continuous value from -2 to 2. We
wish to emphasize that this experiment is not meant to reflect
clinical practice, since such miscalibration of k-space sampling
locations is not typically encountered in anatomical imaging
with Cartesian k-space sampling trajectories. However, we
include this experiment simply to illustrate that our approach
could be extended to unknown parametric changes in the
forward model in an MR reconstruction setting.

C. Main results
In Table I we present our main results. We present sample

reconstructions for the deblurring problem and MRI recon-
struction problem in Figs. 7 and 8. For reference, the ground
truth, inputs to the networks, a total variation regularized
reconstruction, and a RED reconstruction are presented in
Figs. 5 and 6. We also provide in the Appendix a table of
SSIM values as well as the full version of Table I, which
contains the standard deviations of PSNR.

While the magnitude of the improvements vary across
domains and problems, we find that retraining the network with
the proposed model adaptation techniques significantly improve
performance by several dBs in the new setting. This effect is
particularly striking in the case of MRI reconstruction with
MoDL, where the “naive” approach of replacing A0 with A1

in the network gives catastrophic results (a roughly 9 dB drop
in reconstruction PSNR), while the proposed model adaptation
approaches give reconstruction PSNRs within 1-2 dB of the
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Baselines

TV RED Train w/A0 Train w/A0 Train w/A1

Test w/A0 Test w/A1 Test w/A1

Blur 27.61 30.23 U-Net 34.15 25.42 33.98
MoDL 36.25 23.91 36.13

SR 28.33 28.59 U-Net 30.74 26.3 31.22
MoDL 31.32 22.27 31.98

MRI 25.09 27.76 U-Net 31.51 27.47 32.33
MoDL 31.88 22.82 31.79

Proposed Model Adaptation Methods
Known A1 Unknown A1

P&P (Alg. 1) R&R (Alg. 2) R&R+ (Alg. 3) P&P (Alg. 1) R&R (Alg. 2) R&R+ (Alg. 3)

Blur U-Net 33.01 32.11 33.50 29.18 27.67 30.05
MoDL 30.08 33.82 34.73 29.89 27.81 27.94

SR U-Net 28.00 29.95 29.99 27.77 26.98 29.35
MoDL 24.59 28.18 29.83 23.14 24.93 25.29

MRI U-Net 29.07 29.71 31.43 28.92 28.06 29.54
MoDL 30.63 30.25 31.44 26.64 23.46 27.67

TABLE I: Comparison of performance of various baseline methods for inverse problems across a variety of datasets and forward
models. The metric presented is the mean PSNR. SSIM values can be found in Table IV.

Ground Blurred TV-Regularized RED
Truth Reconstruction

Fig. 5: Comparison figures for the deblurring methods in
Figure 7. We present the ground truth, the blurred image (with
Gaussian noise with σ = 0.01 added), a total variation (TV)
regularized reconstruction, and a comparison to Regularization
by Denoising (RED), a model-agnostic method leveraging a
deep denoiser. Below each of the above is the residual image,
multiplied by 5× for ease of visualization.

baseline approach of training and testing with the same forward
model in the case where A1 is known.

D. Learning multiple forward models

In this section we explore an alternative approach to model
adaptation. In this setting, we assume that a set of candidate
forward models are known during training time. During test
time, a single forward model is used for measurement, but the
test-time forward model is not known during training. This
case represents the setting where the forward model might be
parametrized, and so a reasonable approach may be to train the
learned network using a number of different forward models
to improve robustness.

In simple settings, training on multiple models might be
reasonable. However, when the forward model parameterization
is high-dimensional, learning to invert all possible forward
models may be difficult.

Ground IFFT TV-Regularized RED
Truth Reconstruction Reconstruction

Fig. 6: Comparison figures for the MRI reconstruction methods
in Figure 8. We present the IFFT with all k-space data main-
tained, the naïve IFFT reconstruction after k-space masking,
a total variation (TV) regularized reconstruction (with PSNR
27.3 dB), and a RED reconstruction (with PSNR 28.4 dB). We
also present the residuals relative to the fully-sampled IFFT,
multiplied by 5× for ease of visualization.

We demonstrate this setting with a deblurring example,
in which the same network is trained using a number of
blur kernels. The blur kernels are the same kernels used for
comparisons in [16]. For consistency, we resize all 50 blur
kernels to 7x7, and normalize the weights to sum to 1. We
compare reconstruction accuracy when the ground truth blur
kernel is included in the set of kernels used for training, as
well as when the reconstruction network has never seen data
blurred with the testing kernel.

The results are shown in Fig 9. Experimentally, we find
that training on multiple blur kernels simultaneously incurs
a performance penalty as the number of blur kernels used in
training increases. In this setting, where the forward model
has many degrees of freedom and data is limited, attempting
to learn to solve all models simultaneously is worse than
transferring a single learned model, even in the absence of
further ground truth data for calibration.
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Train w/A0 Train w/A0 P&P R&R R&R+ P&P R&R R&R+
Test w/A0 Test w/A1 Known A1 Known A1 Known A1 Unknown A1 Unknown A1 Unknown A1

U-Net

U-Net
Residual

MoDL

MoDL
Residual

Fig. 7: Visual examples of reconstruction quality for the motion deblurring inverse problem solved by U-Net and MoDL, as
well as the associated residuals. Each residual is multiplied by 5 for ease of inspection. The initial forward model A0 is a 7x7
motion blur with angle 10◦, and the A1 model has a 7x7 motion blur kernel with angle 20◦. The analogous figure for the
superresolution problem, and further examples, are available in the Supplement. Best viewed electronically.

Train w/A0 Train w/A0 P&P R&R R&R+
Test w/A0 Test w/A1

U-Net

U-Net
Residual

MoDL

MoDL
Residual

Fig. 8: Visual examples of different reconstruction approaches for the MRI inverse problem under model drift, along with
associated residuals. All residual images are scaled by 5x for ease of inspection. Best viewed electronically.
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Fig. 9: Naïvely learning to deblur with a single network and
multiple blur kernels sacrifices performance on all blurs. In
green, the test-time accuracy of a network trained to deblur
multiple blurs, tested on a known kernel. In orange, the same
network, but tested on a new blur that was not used during
training. In black, our proposed P&P approach (Alg. 1), with
a known model, and in yellow the same with a learned forward
model. Blue and red show the performance of our R&R
approach (Alg. 2), with and without a known forward model.

E. Adapting to variable sampling rates in single-coil MRI

A particular concern raised in [3] is related to the stability
of a learned solver with respect to the level of undersampling
at measurement time. In particular, the authors of that work
observe that an image reconstruction system trained to recover
images sampled at a particular rate would experience a
degradation in reconstruction accuracy for higher sampling
rates than the one the system was trained on.

In Fig. 10 we explore this problem in the MRI setting
using a U-Net as the reconstruction method, and demonstrate
that our R&R method can adapt to this setting as well.
By using R&R during inference, the learned network was
trained at a 6× accceleration acquisition setting, but was safely
deployed for other accelerations without significant degradation
in reconstruction quality, and comparing favorably to networks
trained explicitly for other sampling rates.

For comparison purposes, we also train a U-Net using
multiple sampling rates α. During training, the multiple-α
solver is trained to reconstruct MRIs that are measured using
the five different sampling patterns demonstrated in Fig. 10.
We present the mean PSNR on the test set in Table II, along
with the mean test PSNR for applying R&R to the multiple-
model solver, assuming at test time that the sampling pattern
is known. Reconstructions from the multiple-model solver can
be found in the Supplement. We observe that training with
multiple models means that at test time all models produce
reasonable reconstructions, but at the cost of reconstruction
quality compared to networks trained for single sampling
patterns.

In this experiment, we also observe an interesting side-
effect of R&R: when R&R is used to “adapt” to a forward
model A0 that the original network was trained on, we tend
to see an improvement in reconstruction quality. This effect is

Deployment Acceleration Factor α
Adaptation Training A 2× 4× 6× 8× 12×

None α 35.74 32.53 31.51 30.69 29.48
None 6× 27.02 30.20 31.51 27.76 26.15
None All α 33.99 31.62 30.48 29.25 28.35
R&R 6× 35.11 32.61 31.73 29.40 27.34
R&R All α 35.80 32.35 30.81 29.60 28.61

TABLE II: Comparison of reconstruction PSNR for a variety
of MRI acceleration factors for several different approaches.
“All α” refers to a U-Net trained for reconstruction on all
shown sampling rates, whereas each column of the “α” row
results represents a network trained for that particular sampling
pattern, i.e. the 2× column is tested on a network trained for
2× acceleration. The grayed-out “α” row represents the “oracle”
setting where the deployment forward model is known at train
time. 6× refers to the network shown in other experiments.
Training the 6× model consistently performs well for that
particular forward model, but without model adaptation it has
lower performance on accelerations it was not trained for,
even for higher sampling rates. The All α approach sacrifices
performance on any one forward model, but most of the
difference can be removed by augmenting the All α network
with our R&R method.

most pronounced for the U-Net trained to reconstruct multiple
sampling patterns, but is also true for the “dedicated” solver,
demonstrated in Fig. 10.

F. Model adaptation under variable model overlap

In this section we explore how varying the distance between
the forward models A0 and A1 affects reconstruction quality,
and how our proposed R&R method deals with different
amounts of overlap between A0 and A1. The forward model
under investigation is 6× single-coil MRI reconstruction.

To explore variable levels of model drift in the single-coil
MRI reconstruction case, we vary which k-space frequencies
are sampled in a Cartesian pattern. Specifically, we construct
a list of “non-sampled” frequencies and a list of “sampled”
frequencies under A0. We create A1 by swapping n “sampled”
frequencies for n frequencies in the original “non-sampled” list,
to ensure that the new A1 contains exactly n frequencies that
were not sampled under A0. We do not swap the 4% center
frequencies in any test.

In Fig. 11 we plot n vs the mean PSNR over 10 separate
instantiations of the above experiment for a no-adaptation
approach as well as our R&R method. We run 10 separate
instances since the frequencies that are swapped, as well as
what frequencies they are swapped to, is random, introducing
some variance to the process. We also visually represent
the maximum and minimum PSNR across all instances with
shading.

Note that the new A1 in this subsection and Fig. 11 is
different from the A1 shown in Fig. 4b that is used in other
MRI experiments in Table III. The A1 in Fig. 4b corresponds
to a new random selection of frequencies, some of which
might also be represented in A0 (in Fig. 4a). In contrast, the
A1 used for the results in Fig. 11 may be "harder" for model
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4x Acceleration 6x Acceleration 8x Acceleration2x Acceleration

k-space 
masks

Fully-sampled 
IFFT

Model  
Adaptation 
with R&R

No  
Adaptation

25.86 27.44 29.49 27.89

29.6929.8631.5335.34

12x Acceleration

27.06

28.54

29.3829.4931.9335.49 28.74

Trained for 
Same 

Acceleration

Fig. 10: Using the R&R model adaptation approach permits using a U-Net trained for 6× acceleration on MRI reconstruction
across a range of acceleration parameters. The various k-space sampling patterns used in these experiments are shown in the top
row. Without adaptation (second row), the reconstruction quality decreases when changing the acceleration factor, even when
more k-space measurements are taken, as originally observed in [3]. The R&R reconstructions (third row) compare favorably to
the performance of networks trained on each particular k-space sampling pattern (bottom row). The PSNR of each image is
presented in dB in yellow on each image.

Fig. 11: Comparison of the mean PSNR for the R&R method
and no adaptation for single-sample MRI reconstruction vs.
the number of frequencies that differ between A0 and A1. The
shaded areas represent the standard deviation of mean test
PSNR over 10 runs, since frequencies are replaced randomly.

adaptation because the new frequencies were explicitly chosen
to have zero joint support with those in A0. In this experiment,
the number of changed frequencies acts as a proxy for the
difference between N(A0) and N(A1), the null spaces of A0

and A1.

G. Sample complexity

Our other experiments assume that model adaptation is
performed at the level of individual test samples. However,
in the case where we have access to a calibration set of
measurements under the new forward model A1 that we can
leverage to retrain the network using the P&P approach. In this
case, the optimization is performed over an objective function
that is the mean of Eq. 3 for all yi in the calibration set.

In the transfer learning setting, a key concern is the size of the
transfer learning set necessary to achieve high-quality results.
In this section we compare the performance of P&Pacross
different calibration set sizes.

In Fig. 12 we explore the effect of the number of samples
observed under the new forward model on the adapted model.
We observe that even without knowing the forward model,
a single calibration sample is sufficient to give improvement
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Fig. 12: Performance of the P&P model adaptation approach
for motion deblurring as a function of the number of calibration
samples (blurred images) under the new forward model. Both of
our approaches outperform a naive approach (“No Adaptation”),
even without exact knowledge of the new forward model.

over the “naive” method that replaces A0 with A1 without
further retraining. When the forward model is known during
calibration and testing, a single example image can result in a
2 dB improvement in PSNR.

H. Model-blind reconstruction with generative networks
Recent work [2], [5], [8], [18] has explored solving inverse

problems using generative networks, which permit reconstruc-
tion under arbitrary forward models assuming an expressive
enough generative network. In particular, [2] and [5] consider
the case where the forward model is either partially or entirely
unknown, and hence may be learned by parameterizing and
jointly optimizing over both the forward model and the latent
code for the generative network.

In Fig. 13 we provide an illustration of reconstructions
on a 2x superresolution with bicubic downsampling problem
obtained by the method of [18], compared to our proposed
R&R approach. In our demonstration, as in [18], the generative
network under consideration is a pretrained Boundary Equilib-
rium GAN (BEGAN) [6]. The R&R approach uses a U-Net
trained for 2× superresolution with bilinear downsampling.
The reconstruction quality is higher when a model-specific
network is used, especially when examining fine details and
textures.

In the absence of (xi, yi) pairs, a generative approach may
be reasonable. However, learning the data manifold in its
entirety requires a great deal of data at minimum, along with a
sufficiently large and well-tuned generator. The authors of [44]
also note this fundamental limitation: for smaller or simpler
applications, learning a high-quality GAN is straightforward,
but for more complex applications it is difficult to train GAN
models that are sufficiently accurate to rely on for high-quality
reconstructions.

V. DISCUSSION AND CONCLUSION

This paper explores solutions to the fragility of learned
inverse problem solvers in the face of model drift. We

Truth R&R+ IAGAN

Fig. 13: Comparison of model adaptation (R&R+) with a
model-blind GAN-based reconstruction approach (IAGAN [18])
for 2× super-resolution with bicubic downsampling. The R&R
approach adapts a U-Net trained on a forward model of 2×
bilinear downsampling. While a GAN-based approach only
requires learning a single generative network for all forward
models, our results suggest that a network trained for a specific
forward model with the same number of training samples gives
better reconstructions. Best viewed electronically.

demonstrate across a range of simple, practical applications that
using a learned image reconstruction network in settings even
slightly different than they were trained in results in significant
reconstruction errors, both subtle and obvious. We propose two
model adaptation procedures: the first is based on a transfer
learning approach that attempts to learn a perturbation to the
pre-trained network parameters, which we call Parametrize and
Perturb (P&P); the second reuses the network as an implicitly
defined regularizer in an iterative model-based reconstruction
scheme, which we call Reuse and Regularize (R&R). We also
look at a hybrid approach combining these techniques we call
R&R+.

We show that our model adaptation techniques enable reuse
of learned solvers under a change in the forward model, even
when the change in forward model is not known. In addition,
we demonstrate that just learning to invert a variety of forward
models at once is not necessarily the solution to the problem
of model drift: directly training on many forward models
empirically appears to cause reconstruction quality to fall across
all learned models. We also show that our approach is superior
to one that requires learning a model of the entire image space
via a generative model.

The proposed P&P, R&R, and R&R+ model adaptation
approaches each have different trade-offs, and may be useful
in different scenarios. In general, we observe that R&R+
produces superior reconstructions over R&R and P&P, but
incurs significant computation and time costs associated with
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network retraining specified in (10). The P&P approach
also incurs similar costs associated with network retraining.
However, when a calibration set is available (as in Section
IV-G), the P&P approach only needs to be retrained once, and
computation cost at deployment matches the original solver.
However, we observe two significant benefits of the R&R
approach. First, empirically we observe that only few iterations
of R&R (see Algorithm 2) tend to be required to give accurate
results (namely, 5 iterations in all our experiments), which
increases computational cost by only a constant factor relative
to the original reconstruction network. In addition, in the R&R
approach only one new parameter is introduced, in contrast
to several parameters related to the optimization required for
P&P and R&R+. Finally, our experiments suggest that the
improvement offered by R&R+ tends to be marginal relative
to the improvement seen by going from no adaptation to R&R.
Therefore, in situations where reconstruction time is crucial,
model adaptation by R&R may be preferred over R&R+.

One surprising benefit of the R&R approach is that even in
the absence of model drift (i.e., A0 = A1) the reconstruction
accuracy improves relative to the output from the reconstruction
network. This is because R&R iteratively modifies the output
of the network to enforce data-consistency at test time. This
may potentially resolve the issue raised in [35] about whether
learned image reconstruction networks are truly “solving” a
given inverse problem, i.e., give a well-defined inverse map of
the measurement model. However, to show this would require
a much more detailed analysis of the estimator defined by the
R&R approach that is beyond the scope of this work.

Adapting learned inverse problem solvers to function under
new forward models is just one step towards robustifying these
powerful approaches. Our approach for unknown A1 assumes
an explicit parametrization of the forward model, but such
a parametrization is not always straightforward or realistic.
How best to adapt to complex changes in the forward model
that are not easily parametrized is an important open question
for future work; see [22] for one recent approach to learning
non-parametric (and potentially non-linear) changes to forward
models in an iterative reconstruction framework.

Other crucial aspects of robustness of learned inverse
problem solvers have been proposed by [3] and [13]. In
particular, the tendency of learned solvers to be sensitive
to small perturbations in the input and the possibility of
nonphysical “hallucinations” remain important open problems
to solve. This work is directed towards solving the brittleness
of learned solvers to changes in the forward model, but we
do not address these other important elements of robustness.
Exploring the impact of model drift on such hallucinations is
an important future direction.

While this work focused on linear inverse problem, many of
the principles introduced in this work extend also to non-linear
inverse problems. For example, the R&R approach, which is
based on the regularization-by-denoising technique (RED), is
readily adapted to non-linear problems amenable to a RED
approach, which includes phase retrieval [25] among others.

Our empirical evidence suggests that successful model
adaptation is possible provided the nullspace (or approximate
nullspaces) of A0 and A1 are close in some sense. However,

in settings where nullspaces of A0 and A1 are far apart, model
adaptation may lead to artifacts or hallucinated details in
the reconstructions. In order to understand these limitations
of model adaptation, recent methods introduced to quantify
hallucinations induced by neural-network based reconstructions
may prove to be useful [7].

Finally, while we focused our attention on model drift,
an important open problem is how to adapt to simultaneous
model and data distribution drift, and the extent to which these
effects can be treated independently. We hope to address these
questions in future work.

APPENDIX

In this Appendix we present companion tables to Table I
which contain further information, including corresponding
mean SSIM over the test set, as well as the standard deviations
of PSNR and SSIM.
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Baselines

TV RED Train w/A0 Train w/A0 Train w/A1

Test w/A0 Test w/A1 Test w/A1

Blur 27.61 ± 2.57 30.23 ± 2.98 U-Net 34.15 ± 2.33 25.42 ± 1.74 33.98 ± 2.15
MoDL 36.25 ± 2.25 23.91 ± 2.02 36.13 ± 2.19

SR 28.33 ± 2.42 28.59 ± 2.09 U-Net 30.74 ± 2.59 26.3 ± 1.65 31.22 ± 2.71
MoDL 31.32 ± 2.65 22.27 ± 2.04 31.98 ± 2.61

MRI 25.09 ± 2.50 27.76 ± 3.37 U-Net 31.51 ± 2.83 27.47 ± 2.47 32.33 ± 2.64
MoDL 31.88 ± 2.85 22.82 ± 2.75 31.79 ± 2.81

Proposed Model Adaptation Methods
Known A1 Unknown A1

P&P (Alg. 1) R&R (Alg. 2) R&R+ (Alg. 3) P&P (Alg. 1) R&R (Alg. 2) R&R+ (Alg. 3)

Blur U-Net 33.01 ± 1.85 32.11 ± 2.64 33.50 ± 2.47 29.18 ± 1.81 27.67 ± 2.23 30.05 ± 2.73
MoDL 30.08 ± 1.59 33.82 ± 1.73 34.73 ± 1.82 29.89 ± 1.66 27.81 ± 2.3 27.94 ± 2.4

SR U-Net 28.00 ± 1.83 29.95 ± 2.49 29.99 ± 2.48 27.77 ± 2.15 26.98 ± 2.39 29.35 ± 2.36
MoDL 24.59 ± 2.31 28.18 ± 1.64 29.83 ± 2.00 23.14 ± 2.01 24.93 ± 2.04 25.29 ± 2.33

MRI U-Net 29.07 ± 2.72 29.71 ± 2.75 31.43 ± 2.99 28.92 ± 3.04 28.06 ± 2.63 29.54 ± 2.53
MoDL 30.63 ± 2.85 30.25 ± 3.10 31.44 ± 2.75 26.64 ± 2.60 23.46 ± 2.54 27.67 ± 2.62

TABLE III: Comparison of performance of various baseline methods for inverse problems across a variety of datasets and
forward models. The metric presented is the mean PSNR ± the standard deviation.

Baselines

TV RED Train w/A0 Train w/A0 Train w/A1

Test w/A0 Test w/A1 Test w/A1

Blur 0.94 ± 0.06 0.96 ± 0.05 U-Net 0.98 ± 0.05 0.89 ± 0.09 0.98 ± 0.05
MoDL 0.98 ± 0.03 0.84 ± 0.08 0.98 ± 0.04

SR 0.95 ± 0.06 0.96 ± 0.03 U-Net 0.97 ± 0.03 0.92 ± 0.09 0.97 ± 0.02
MoDL 0.97 ± 0.04 0.89 ± 0.06 0.98 ± 0.04

MRI 0.79 ± 0.04 0.80 ± 0.05 U-Net 0.82 ± 0.06 0.74 ± 0.06 0.82 ± 0.06
MoDL 0.83 ± 0.06 0.65 ± 0.08 0.83 ± 0.06

Proposed Model Adaptation Methods
Known A1 Unknown A1

P&P (Alg. 1) R&R (Alg. 2) R&R+ (Alg. 3) P&P (Alg. 1) R&R (Alg. 2) R&R+ (Alg. 3)

Blur U-Net 0.81 ± 0.09 0.81 ± 0.07 0.82 ± 0.07 0.75 ± 0.05 0.79 ± 0.09 0.77 ± 0.08
MoDL 0.82 ± 0.07 0.81 ± 0.09 0.83 ± 0.07 0.72 ± 0.09 0.68 ± 0.07 0.75 ± 0.10

SR U-Net 0.94 ± 0.09 0.96 ± 0.04 0.96 ± 0.04 0.94 ± 0.09 0.94 ± 0.08 0.96 ± 0.06
MoDL 0.92 ± 0.06 0.94 ± 0.02 0.95 ± 0.02 0.91 ± 0.04 0.92 ± 0.02 0.94 ± 0.01

MRI U-Net 0.81 ± 0.09 0.81 ± 0.07 0.82 ± 0.07 0.75 ± 0.05 0.79 ± 0.09 0.77 ± 0.08
MoDL 0.82 ± 0.07 0.81 ± 0.09 0.83 ± 0.07 0.72 ± 0.09 0.68 ± 0.07 0.75 ± 0.10

TABLE IV: Comparison of performance of various baseline methods for inverse problems across a variety of datasets and
forward models. The metric presented is the mean SSIM ± the standard deviation.
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