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A CANONICAL PARAMETERIZATION
OF PATHS IN R”

L. C. HOEHN, L. G. OVERSTEEGEN, AND E. D. TYMCHATYN

ABSTRACT. For sufficiently tame paths in R™, Euclidean length provides a
canonical parametrization of a path by length. In this paper we provide such
a parametrization for all continuous paths. This parametrization is based on
an alternative notion of path length, which we call len. Like Euclidean path
length, len is invariant under isometries of R™, is monotone with respect to
sub-paths, and for any two points in R™ the straight line segment between
them has minimal len length.

Unlike Euclidean path length, the len length of any path is defined (i.e.,
finite) and len is continuous relative to the uniform distance between paths.
We use this notion to obtain characterizations of those families of paths
which can be reparameterized to be equicontinuous or compact. Finally,
we use this parametrization to obtain a canonical homeomorphism between
certain families of arcs.

1. INTRODUCTION

A path in R™ is a continuous function v from a closed interval [a,b] C R to R™.
Given 21, zo € R™, denote by Z1z3 the straight line segment path ¢ — (1—t)z1+t2o,

t € 0,1].
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Given a path 7 : [a,b] — R", the Euclidean path length of v, denoted Lg(v),
is defined by the formula

Lp(y) =sup {Z v(xic1) —=y(@i))|ra=20 <a1 < - <xp=b, nE Z+} € [0,00],
i=1

where |21 — 22| denotes the Euclidean distance between points z1, 2o € R™.

If a sequence of smooth paths 7; converges to 7. in C! (in the sense that the
paths «; and their derivatives v} converge uniformly to 7., and 7., respectively),
then Lg(v;) = Lg(vs) and, hence, Euclidean path length provides a canonical
parameterization of this entire family. One of the main goals in this paper is to
extend such results to the topological category. For this reason we introduce a
new notion of path length which is defined for all paths and behaves well with
respect to uniform convergence of paths.

The Euclidean path length function L = L satisfies the following basic prop-
erties for the path v : [a,b] — R™
(L1) If A C [a,b] is a closed subinterval, then L(y[4) < L(%);

(L2) If c € (a,b), then L(v) = L(l(q,)) + L(VT(e));

(L3) If & : R™ — R™ is an isometry, then L(® o~y) = L(7);

(L4) L(y) = the supremum, taken over all partitions ¢ = zg < 21 < -+ <
2, = b of [a,b], of the values L(P) where P is the polygonal path with
vertices y(zg), ..., y(Tn);

and moreover, we have

(L5) L(0e) =1, where e = (1,0,...,0) € R™.

Conversely, any function L defined on the set of all paths which satisfies the
properties (L1) through (L5) must be equal to Lr (and any function L which
satisfies the properties (L1) through (L4) must be a scalar multiple ¢- Lg of Lg,
where ¢ = L(0e)). Indeed, one can use properties (L1), (L2), (L3), and (L5) to
show that L(ab) = b — a for any a,b € R C R™ with a < b. Then by properties
(L2) and (L3) it follows that the length of any polygonal path is equal to the
sum of the (Euclidean) distances between consecutive vertices. We then conclude
by (L4) that L(y) = Lg(v) for all paths ~.

There are a number of results in metric geometry pertaining to when a given
metric on a Euclidean space is equal to the Euclidean metric; [1], [3], and [§]
each survey a variety of such results. Much of this work is related to Hilbert’s
fourth problem. The length function introduced in this paper contributes to the
corresponding program for path length functions by illustrating that there are
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other length functions which have many properties in common with the Euclidean
length.

In light of the above discussion, to provide a genuinely different path length
function from the Euclidean length, one must give up at least one of the properties
(L1) through (L4). In Section 2, we define a path length function, called “len”,
such that L = len satisfies properties (L1), (L3), and (L4) (see Propositions
3.1(iii), 3.2(i), and 3.4 below), as well as the following weaker form of (L2) (see
Proposition 3.2(ii)):

(L2') If ¢ € (a,b), then L(v) < L(¥[(4,) + LV [1e));

Furthermore, this length function has the following additional properties not

enjoyed by the Euclidean length Lg:

e len() < 1 for any path ~;

e len is continuous as a function from the space of all maps [0,1] — R"
(with the uniform metric) to R.

e len is defined for any continuous function 7 from a locally connected
continuum X to R”;

Moreover, this length function can differentiate between paths whose Euclidean
lengths are infinite. For instance, if v : [a,b] — R™ is a path and [c,d] is a
subinterval of [a,b] such that 7 is non-constant on at least one component of
[a,b] \ [e,d], then len(y) > len(v[[. 4), even if both of these paths have infinite
Euclidean length.

A very similar function is developed by Cannon et. al. in [4], called the total
oscillation of a path. The most notable difference is that the total oscillation is
not invariant under isometries of R"™.

Another similar function is given by Morse in [9], called the u-length, which is

defined for paths into any metric space.

After establishing the above properties in Section 3, we use len in Section 4
to obtain a standard parameterization of all paths in R™. This yields charac-
terizations of those families of paths which may be reparameterized so as to be
equicontinuous or compact, related to similar characterizations obtained by Sil-
verman in [12]. These results extend classical results on families of paths having
finite Euclidean length. In Section 5, we develop a second canonical parame-
terization of all paths in R™ with all of the above properties, and which also

LWe are indebted to J. Keesling for pointing out this paper of Morse to us.
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commutes with a reversal of orientation of a path. This second parameteriza-
tion yields a canonical extension of a bijection between the endpoint sets of two
arcs to a homeomorphism between the two arcs. We use this notion to construct
homeomorphisms between certain families of pairwise disjoint arcs in Theorem
5.2.

The results of this paper are already seeing use in two other papers. In [11] it
was shown that any isotopy of a planar continuum can be extended to an isotopy
of the entire plane. Using Theorem 5.1, this result is extended in [6] to a more
general class of planar compacta. It was shown in [2] that any two points in a
closed topological disk D in the plane can be connected by a unique arc A in D
which has the property that any subarc of A which connects two points, neither
of which is an endpoint of A, has minimal (finite) Euclidean length among all
such arcs. In [7] this result is generalized to shortest paths (in the sense of len
length, and in the above Euclidean sense for proper subpaths) in the closure of any
homotopy class in an open connected subset of the plane with arbitrary boundary.

2. DEFINITION OF THE FUNCTION len

A generalized path is a continuous function v : X — R", where X is a locally
connected metric continuum.

Given n > 2, there is a length function len,, defined for generalized paths
X — R”. In this section, to simplify the definition and arguments below, we
restrict our attention to the case n = 2, and give a definition of len = lensy.
The case n > 2 proceeds similarly; the primary differences being that we cut by
(n — 1)-dimensional hyperplanes instead of lines (see below), and the parameter
t below varies through the upper half of the (n — 1)-dimensional sphere instead
of [0, 1] (which we use to parameterize the semi-circle {e?™ : ¢ € [0,1]}). We offer
some further details for the case n > 2 in section 2.1 below.

For notational convenience, we will identify R? with C. The reader may find
it easier to work through this construction for an ordinary path v : [a,b] — C
instead of a generalized path, on a first reading.

For j € Z, let S; denote the closed horizontal strip {a+ib:a € R,b € [j,7+1]}
in the plane C. Given z,t € [0,1], p € (0,1], and j € Z, let
Sf’t’” = pe™(S; +ix).
If A C C, define ||A||; = diam(proj;-(A)), where proji- denotes the orthogonal

projection of C onto the line {re*2)™ : r € R} and diam denotes the diameter
in the Euclidean metric. Note that the map which assigns to each ¢t € [0, 1] the
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line {re(*t2)7 | » € R} is bijective except on the set {0,1} while this set has zero
measure in [0,1]. Hence the integration used in the definition of len(y) below is
not affected by this ambiguity.

Fix a generalized path v : X — C. The following lemma will be used in the
definition of the function len below.

Lemma 2.1. For any (z,t,u) € [0,1] % [0,1] x (0,1] and any € > 0, there are only
finitely many components C' of the sets 771(5;’&#) (G € Z) with ||v(C)||: > €.

PRrROOF. We may assume that ¢ < £. Suppose for a contradiction that there are
infinitely many distinct components {C, }32 of the sets y~1(ST""") (j € Z) with
V(O = e

For each n let j(n) € Z be the integer for which y(C),) C ij(fl)“, and let p, € Cy,
be such that d(v(pn), 85’;0(’;’)” ) = ¢, where d denotes the Euclidean metric in R™.
Observe that by local connectivity of X, for each n we have v(9C,,) C BS;(Z)“ .

Let p € X be an accumulation point of the set {p,}22, and let U be an open
neighborhood of p which is small enough so that diam(vy(U)) < e. Then for any
n such that p, € U, we have v(U) N 65;”(;)” = (), hence U N 9C,, = (), and so
U N C, is closed and open in U. It follows that U cannot be connected, which is
a contradiction since X is locally connected. O

Given z,t € [0,1] and p € (0,1], let (CZ0#)> = enumerate the collection of
all components of the sets W*I(Sf’t’“ ) (j € Z) which have non-degenerate image
under the map proj;-, ordered so that ||y(CZ4#)||, > [[v(Caf4")|¢ for all n (this
is possible by Lemma 2.1).

Define

. =, (Ot
prangy) = 32 10CE )l
n=0

and define the length of v by

1,1l gl
Ien(fy):/o/O/OLx’t’“('y)dxdtdu.

Observe that if o is any injective function of the non-negative integers to them-
selves, then

= N C e
0 > gt < pry)

n=0
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It remains to show that the function L®*#(v) is in fact integrable, so that the
above definition of the function len makes sense. This is accomplished in Lemma
2.3 below.

Lemma 2.2. Let C be a component of 'y_l(S;-”’t’“) for some x,t, u, j which has
non-degenerate image under the map projf‘, and let € > 0. Then there exists a
subcontinuum D C C such that v(D) C int(Sf’t’“) and ||[v(D)|l+ = IV (CO)|l: — e.

PrOOF. For the purposes of this argument, let us naturally identify R with the
rotated line {re(+2)™ . € R} which is the range of the map proj;-.

Let 51,50 € R be such that s; < sy and proji (v(C)) = [s1,52] (and hence
[7(C)||¢ = s2 — s1). We may assume that ¢ < *25°1. Let S’ denote the narrower
(closed) strip (proj;)~!([s1 + £, 52 — £]) C 1nt(5f’t’”). Then C' N ~~1(S") must

g

have a component D such that proj; (v(D)) = [s1 + £, s2 — 5] (see e.g. Theorem

5.2 of [10]). This D is as desired. O

A real-valued function f is lower semicontinuous if f~'((c,00)) is open for
every a € R. Note that a lower semicontinuous function is Borel, hence (Lebesgue)
integrable.

Lemma 2.3. For a fived generalized path v : X — C, put L(z,t,p) = L®Y4(y).
Then the function L(z,t, u) from [0,1]x[0,1]x (0, 1] to R is lower semicontinuous,
hence integrable.

PROOF. Fix a number o € R, and suppose L%%#(y) > a. Choose N large enough
so that Z w > a.

For each n € {0,1,...,N} let j(n) be such that CZ** is a component of
7_1(5;”(’;’)“ ). Then, by Lemma 2.2, for each n we can find a proper subcontinuum
D,, € C%bH# such that y(D,,) is contained in the interior of S%“*, and so that

j(n)
Z ||7 Ht

Let €1 > 0 be small enough so that if |2/ — x|, |t' — t|, |0/ — p| < €1, then
~v(Dy) C S;(;f) # for each n € {0,1,..., N}, and moreover

N
(1) Z ||’Y(12)::)”t/ S a
n=0

For each pair of numbers n; < ng in {0,1,..., N} with j(n;) = j(nsg), find
an open set Ay, n, C X such that C20* C Ay, py C Apyny, € X N CEPF and
OAp, my Ny~ H(STERY = ; that is, Y(OAn, ny) NS )= 0.

J(n1) j(nq
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Let 0 < g2 < &1 be small enough so that if |z’ — x|, |t/ — ¢|, |¢' — p] < €2, then
Y(OAn, ny) N S;”(/;Ltllﬁ“l = () for every pair of numbers n; < ng in {0,1,..., N} with
j(n1) = j(nga). Since dA,, n, separates D,, from D,, in X, it follows that D,,
and D,, are contained in distinct components of 7’1(5;(’7’;/5" ,). Therefore, for

such o', ¢, 1/, by (x) and (1) we have
N
g Dn ’
L* R ('7) > TLE?O ||7( Qn)Ht > a.

Thus, the set {(z,t,p) : L%*(y) > a} is open in [0, 1] x [0, 1] x (0, 1], and so
L(z,t, ) is a lower semicontinuous function. O

Thus the function len is well-defined. Observe that the set v(C*“#) is con-
tained in some strip Sf’t’“ having width p, hence ||[v(CE5#)||; < p. It follows
that L®%#(y) < 2u, and therefore len(y) < 1.

It can easily be seen that len(0z) — 1 as © — oo, x € R. It follows from
Propositions 3.1(iii) and 3.3 below that if v, : X,,, = C, m € N is a sequence of
generalized paths such that diam (v, (X)) — oo as m — oo, then len(v,,) — 1
as m — 0o.

On the other hand, if we define v,, : [0,1] — C by v,(t) = > then
len(ym) — 1 as m — oo, even though diam(v,, ([0, 1])) = 2 for all m.

2.1. Definition of len in R™ for n > 2. Let n > 2 be fixed. In this section we
give an overview of the general definition of len = len,,.
Let Sifl denote the upper hemi-sphere of S*~!; that is

S17' = {(th,-oota) €R™ 1 48 = Land 1, 2 0},

equipped with the usual spherical measure m, normalized so that m(Sﬁfl) =1.

Let t € ST™'. If A C R™, define ||A||¢ = diam(proj; (A)), where proj;- denotes
the orthogonal projection of R™ onto the line containing the unit vector t.

Consider the hyperplane Hy = {z € R" : z-t = 0}. Thus we use 7' to
parameterize the collection of all (n — 1)-dimensional hyperplanes through the
origin, via the mapping t — Hi. We remark that this mapping is one-to-one
except on the set {(t1,...,t,) € 7' : ¢, = 0}, and this set has measure zero in
Sﬁ71 with respect to m.

Given j € Z, let Sjt» denote the region between the two translates Hy + jt and
Hi + (§ + 1)t of the hyperplane Hy. In other words,

t _ sz et — ] )
Si={z+rt:z-t=0and j <r<j+1}.
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Given z € [0,1], t € S’f;l, € (0,1], and j € Z, let

ST = (St + wt).

Fix a generalized path v: X — R™. Given z € [0,1], t € Si_l, and p € (0,1],
let (C7® “)e , enumerate the collection of all components of the sets 7*1(5;"":’“)
(j € Z) which have non-degenerate image under the map proth, ordered so that
IV (CF ) e = I (CE5™) e for all £.

Define

Lot Z (G

and define the length of v by

1 1
len(y) = len,(y) = /0 /S“*l/o L&%H () dz dm dp.
¥

3. PROPERTIES OF THE FUNCTION len

Let n > 2 be fixed. All results in this section will be stated for len = len,,, but
for simplicity all proofs will be given only for the case n = 2.

The following basic properties follow immediately from the definition of the
function len.

Proposition 3.1. Let v: X — R" be a generalized path.

(i) len(y) = 0 if and only if v is a constant function.
(i) If h: X =Y is a homeomorphism, then len(y o h) = len(y).
(i1i) If ® : R™ — R™ is an isometry, then len(® o) = len(7).

For the next properties, we need to consider a more restricted class of locally
connected continua, namely dendrites. A dendrite is a locally connected contin-
uum which contains no simple closed curve. A characteristic feature of dendrites
is that they are hereditarily unicoherent; that is, given any two intersecting sub-
continua A and B of a dendrite X, the intersection ANDB is connected. See Section
6 for examples to illustrate how these properties can fail when the domain of a
generalized path is not a dendrite.

Proposition 3.2. Let X be a dendrite, and let v : X — R"™ be a generalized path.

(i) If Ais a subcontinuum of X, thenlen(y[ 4) < len(vy). Moreover, len(~[4) =
len(y) if and only if v is constant on each component of X \ A.
(i) If A, B are subcontinua of X with AU B = X, then

len(+) < len(y14) + len(v1):
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PROOF. We treat the case n = 2.

Fix z,t, , and for convenience denote Sf’t’“ and C%H# (defined as in Section
2) simply by S; and C,,, respectively.

Let A C X be a subcontinuum. Given j € Z and a component C of (] 4)~*(S;),
there exists some n such that C C C,,. Since C,, N A is connected (by hereditary
unicoherence), it follows that C' = C,, N A.

Therefore there exists an injective function ¢ from the non-negative integers to
themselves such that (Co(ny N A)"" o enumerates the collection of all components
of the sets (y[4)~H(ST"*) (j € Z) Wthh have non-degenerate image under the

J
map proj;-, so that 17(Comy N At > I7(Co(ng1) N A)]|¢ for all n. Then

Lx,tp, Z ||'Y
< Z ||,Y o n) Ht

< L‘”’t’“(v) (by the observation (x)).

o n) N A)”t

Since this holds for all z, ¢, u, we have established the first statement of (i).

For the second statement of (i), suppose 7 is non-constant on some component
K of X \ A. The intersection K N A consists of a single point (see e.g. 10.9 and
10.24 of [10]). Let {p} = KN A, and let ¢ € K be such that v(p) # v(q). There
is a positive measure set of parameters x,¢, u and an integer j € Z for which
v(q) € int(S} b1 and ~(p) ¢ S;”’t’”. For such z,t, u, j, there is a component of
(ST ) contained in K, which contributes positively to the sum L*#(v),
thereby making it larger than L®%# ([ ). It follows that len(y) > len(y[ ). The
converse implication is immediate.

Now suppose A, B C X are subcontinua with AU B = X. As above, for any
j € Z, each component of (y],4)7*(S;) (respectively (v/5)~1(S;)) has the form
Cp, N A (respectively C,, N B) for some n.

Let (n(a))a_y and (m(B))z_, be the strictly increasing sequences of non-
negative integers such that (C),(q) N A) o enumerates the collection of all com-
ponents of the sets (’yFA)_l(Sf’t’“) (j € Z) which have non-degenerate image
under the map plrojtL o7, and (Cy,5) N B>ZO:0 enumerates the collection of all

components of the sets (] B)’l(S;”’t’“ ) (j € Z) which have non-degenerate im-

age under the map projtl o~. Note that these enumerations are not necessarily
ordered according to the sizes of the images under proj#‘ 0.
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For any n, we clearly have ||[v(Cp)|l: < [|7(CrNA) ||t + ||7(Cr N B)||¢- Therefore

L%t ,u, Z ||7 ||t

n=0

<Z||WC N A ZHW’C N B)l|¢

17(Crgay N A) | v(C m(B) ﬂB)Ht
- Z Qn(a Z

- Z Iv(Chn a) N Al Z v (C )mB”'t (since o < n(a), B8 < m(B))

< Lzﬂfyﬂ(’y[A) + L% “(fy[B) (by the observation (x)).

Since this holds for all z, ¢, u, we have established (ii). O

Proposition 3.3. Let 21,20 € R™. Ifv: X — R" is any generalized path such
that z1, z2 € ¥(X), then len(Z1zz) < len(~y). Moreover, if v(X) is not the straight
line segment joining z1 and zz, or if v~ 1(w) is disconnected for some w on the
straight line segment between z; and z2, then len(Z1zz) < len(y).

Proposition 3.3 can be proved directly from the definition of the function len,
and we leave this to the reader. Note that it also follows that if in a path ~ :
[0,1] — R™ we replace the subpath [, ;) with the straight line segment (a)v(b)
and if we denote the resulting path by ~*, then len(v*) < len(y) with strict
inequality if [, ;) is not a monotone parametrization of the straight line segment
v(a)y(b).

Next we consider C(X) = C(X,R"™), the set of all generalized paths X — R™.
This is a metric space with the usual metric dsup(71,72) = suppe x [71(p) —72(p)|-

Proposition 3.4. The function len : C(X) — R is continuous.

PROOF. We treat the case n = 2. Let vy be in C(X).

Suppose a < len(yg) < 8. We will prove that for small enough & > 0, if
v € C(X) with dsup(7,7) < &, then a < len(vyg) < 5.

A simple modification of the proof of Lemma 2.3 shows that for £ > 0 small
enough, if dsup(7,7) < € then len(y) > . Thus it remains to show len(y) < 3
for sufficiently small & > 0.
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Fix a countable dense set {gx}7>; C X. Given k # [ and j € Z, let

B, ={(a,t,1) € [0,1] x [0,1] x (0,1] :
there is a continuum C C Wal(Sf’t”‘) with ¢z, q; € C and
for every such C' we have v(C) N 8Sf’t”‘ #0}

and let B = Jgu Bil. It is easy to see that ([0,1] x [0,1] x (0,1]) ~ B,zl is open,
iEZ

J
and so B is F,, hence measurable.
Claim 3.4.1. B has measure zero.

ProoF oF CLAIM 3.4.1. Fix k # [ and j € Z. It will be convenient to change
variables from (z,t, 1) to (z,t, 1) so that for any fixed rotation angle ¢ and transla-
tion parameter z, as the strip width p shrinks, the j-th strip itself shrinks inwards,
nesting down on a line.

Given (z,t,p) € [0,1] x [0,1] x (0,1], let 2 = pu(z + & + j) € (—o0,00), and
define ®(x,t, u) = (z,t, p).

Observe that for (z,t, 1) in the image of ®, ®~1(z,t,u) = (i - % — gyt ).
Thus @(Bil) is contained in the set

B’ ={(z,t,p) : there is a continuum C C ;' (T*"*) with gz, q € C and
for every such C we have ~o(C) N T tH )

where T = pe'™ (S +i(% — 2 —7)) = €™ (u(S; — 3i— ji) +iz). Observe that
the strip T%%* is centered about the line e!™ (R + iz), and if x4/ < p, then Y
is contained in the interior of T%%#. Thus for any fixed z, ¢, there can be at most
one p for which (z,t, 1) € B’. By Fubini’s theorem, this implies B’ has measure
zero. Since @(Bil) C B’, we have that @(le) has measure zero as well.

A straightforward calculation shows that ® is a C!-diffeomorphism on [0, 1] x
[0,1] x (0,1] with Jacobian equal to . Thus by the change of variables theorem

[5, Theorem 2.47], the measure of ®(By,) is equal to

[

g
Bkl

Since p > 0 and @(Bil) has measure zero, it follows that Bil has measure zero

as well. Since B = Jx Bj,, the Claim follows. O(Claim 3.4.1)
JEZ
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Claim 3.4.2. Given (zo, %0, o) € ([0,1] x [0,1] x (0,1]) ~ B and ¢ > 0, there
exists 6 > 0 and & > 0 such that if |x — xo| < d, |t —to| <, |1 — po] < 9, and
doup(7:70) < €0, then LT HH () < Lro-tolo(yg) + ¢

PROOF OF CLAIM 3.4.2. For j € Z, let S} denote the narrower (closed) strip

o,l0,

obtained from S #0 by moving the boundary lines in towards the middle a

distance of 55 ea]ch.
Let (C,,)>°_, enumerate the collection of all components of the sets v, * (S;-U”’t"’“”)
(j € Z) which have non-degenerate image under the map proj;-, ordered so that
70 (Co)llze = N170(Cht1)llt, for all n. For each n, let j(n) be the integer such
that vo(Cy) C S;c("y;ﬁo’“ °. By Lemma 2.1, there are only finitely many components
Co,...,Cn such that v9(C,) meets the narrower strip S;.(n), for 0 <n < N.

Fix some n with 0 < n < N. Let Uy, ..., U, be a finite cover of C’nﬂ%_l(Sé(n))
by connected open subsets of X whose closures are mapped by - into the interior

of S;”("T’SO’“O. Let k be such that g, € Uy, and for each 2 < i < r let I(i) be such
that g;;) € U;. Then for each 2 < i < 7, since (w0, to, po) ¢ Bi,(;(li)) and C), is a
continuum in vy, 1(5’?&30’” ?) containing g and g;(;), there exists a continuum K;

z0,t0, 40

containing g and ¢;(;y which is mapped by 7o into the interior of the strip Sj(n) .
Let C], = Uy UUy<;<, (Ui U K;). Then C}, is a continuum which is mapped by o
into the interior of the strip S;D(Uﬁio’““ and such that C, N 70_1(,5';-) C Oy, C Cy.

Having done this for each 0 < n < N, let § > 0 be small enough and let
& > 0 be small enough so that if |z — x| < J, |t — to| < 0, | — po| < 6, and
dsup(7,70) < &o, then for each 0 < n < N we have:

t,p
n)’

(i) v(CY) is contained in the interior of the strip Sj(’
(i) [Iv(C)lle < llvo(Ch)llee + 5, and
(ii) if A € X with 79(A) contained in between two consecutive narrowed
strips S} and 57, then [|[y(A)[|: < §.

Note that if 0 < n < N and if C is the component of 7_1(5;0(’;’)” ) containing
C!, then C consists of C/, plus some part which vy maps in between S;.(n) and
!
Simy=17
by (ii) and (iii) we have

and some part which 79 maps in between S;.(n) and S;.(n) 41+ Therefore,

V(@) < Io(Colleo + 5 +2- 5 = [10(Co)lle + 5
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Every other component C' of 7_1(55”’“) satisfies |7(C)||; < £ by (iii). It follows
that

N 0
Z C +5 Z 8
Lajﬂf,u/(,}/) < ||70( 7L2)J|t0 2 + E/n
n=0 n=N+1

N
170 (Cr)llo
< -
7;) on +e
< Ll‘o,tmNo (’VO) +e.

O(Claim 3.4.2)

We are now ready to show that len(y) < S for « sufficiently close to 7.

Recalling that L*"* () < 2u < 2, choose a step function 1) = 2 — E?:o ciXa,,
where the A; C [0,1] x [0, 1] x (0, 1] are pairwise disjoint compact sets and X4, is
the characteristic function of the set A;, with

Lz,t,u(%) < (x,t,u) forall x,t, pu

/01/01/01¢(x,t,u)dxdtdu < B.

Let n =3 — folfolfolw drdtdy > 0. By Claim 3.4.1, we can find a compact set
Q c ([0,1] x [0,1] x (0,1]) \ B of measure > 1 — 7.

Using Claim 3.4.2 and compactness of the sets A; N2, we can find & small
enough so that if deup(v,70) < &, then L™"H(y) < ¢(x,t, ) + 7 for all (x,t, ) €
A; N Q. Letting £ = min, §;, it follows that if dgup (7, 70) < &, then

1,1l gl
Ien(fy):///Lm’t’”(fy)dxdtdu
o Jo Jo
§///L””’t’“('y)dxdtd,u+20%
Q

= ///(w(x,t,u)Jrg) drdtdu+2- 1
Q

<@B-m+i+2d
<B.

and
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It follows from Proposition 3.4 that for any path o : [0, 1] — R™ and any € > 0,
there exists 0 > 0 such that if dsup(7,70) < 9, then [len(v[( ) — len(y0l(o,q)] <&
for all t € [0,1].

To see this, note that by Proposition 3.4, for any to € [0, 1], there is a small
open interval Jy around ¢¢ and dp > 0 small enough such that if dsup(v,70) < o,
then [len(v[(o ) —len(vol[,,])| < § for any ¢ € Jo. Take a finite cover of [0, 1] by
such intervals Jy and take ¢ to be the minimum of the corresponding numbers &g.
Suppose dsup(7,7) < . Given any t € [0, 1], take one of the intervals Jy from
the cover such that t € Jy. Then we have

llen(YTj0,¢7) — len(vo T 10,4 < [len(vT10.41) — len(0Tjo,01)| + [len(YoT(0,) — len(v0T1o,4,))]

<5+5
—+ - =c.
2 2

A consequence of Proposition 3.4 is that for a path v : [a,b] — R™, len(y) is
small if and only if diam(vy([a,b])) is small. This will suffice for our purposes, but
in fact one can argue from the definition of len = len,, that there are constants
c1(n), c2(n) > 0 such that:

(#x): If v :[a,b] — R™ is a path with diam(v([a,b])) < 3, then

c1(n) - diam(y([a, b)) < len, (7) < cz(n) - diam(([a, B]))-

4. PARAMETERIZATION BY len

Let n > 2 be fixed. As before, all results in this section will be stated for
len = len,,, and proofs will be given for the case n = 2.

In this section, we work with C[0,1] = C([0,1],R"™), the set of all paths ~ :
[0,1] — R™. This is a metric space with the usual metric dsup (71, 72) = supye(o 17 [71 () —

72(t)]-

Definition 1. Given two paths 71,72 : [0,1] — R™, we say that v is a repa-
rameterization of vy if there are non-decreasing onto maps my,ms : [0,1] — [0, 1]
such that v; is constant on each fiber m;l(s), s € ]0,1], for both ¢ = 1,2, and
10 m;l =50 m;l. In this case, we write v1 = v».

Thus 77 ~ 7 if they both parameterize the same path, with the same ori-
entation, where we disregard any constant sections. Note that if 73 & 79, then
len(y1) = len(y2). It is easy to see that a2 is an equivalence relation on C[0, 1].
Denote by [v] the equivalence class of v with respect to =.
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Let II denote the collection of all equivalence classes [y]. We define a metric p
on II as follows:
p([nl; [y2]) = inf{ sup [A(t) = A2(t)] : A1 €[], Az € [12]}-
telo,
In fact, by reparameterizing, this can be expressed as p([v1], [v2]) = inf{sup,¢[o 1 [A1(¢)—
Y2(t)| : A1 € [11]}. It is easy to show that p is a metric, and that the resultant
metric topology on II coincides with the quotient topology induced from C[0, 1].

One can deduce from Propositions 3.2(i) and 3.4 that given a path v :[0,1] —
R”, the function [0,1] — [0, 1) defined by ¢ > len(7[}g ) is continuous and non-
decreasing. As a result, we can make the following definition:

Definition 2. The standard parameterization 7 : [0,1] — R™ of ~, also called
the parameterization of = by len, is defined as follows. If - is constant, then
4 = ~. Otherwise, given s € [0,1], ¥(s) = ~(¢), where ¢t € [0,1] is such that
len(v[{o,g) = s - len(7).

Note that this value ¢ may not be unique, but by Proposition 3.2(i), the point
~(t) is uniquely determined by s. One can easily check that ¥ is a path (i.e. is a
continuous function), ¥ ~ v, and len(Y[(g ) = s-len(y) for any s € [0, 1]. However,
note that in general len(7[(, ,7) # (s2 — s1)len(y) when 0 < s; < s < 1.

For the Euclidean path length, such a parameterization is only available for
rectifiable paths, i.e. those paths with finite Euclidean length.

Observe that the standard parameterization is unique within each equivalence
class of paths, in the sense that if v; & 9, then 47 = 5.

Consider the standard parameterization as a function II — C[0, 1] which maps
each class [7] to the unique standard parameterization 5 € [7]. Denote by II the
range of this function; that is, II is the set of all standard parameterizations of
paths [0, 1] — R™.

Theorem 4.1. II is a closed subset of C[0,1], and the function [y] — 7 is a
homeomorphism from II to II.

PROOF. Suppose 7 € C[0,1] ~ II, which means that len(v[{0,5)) # s - len(y) for
some s € [0,1]. Then for all A € C[0,1] which are uniformly close to -y, we have
that Al 4 is uniformly close to [y 4 as well, hence by Proposition 3.4 we have
that len(\) and len(Afy ;) are close to len(y) and len(v[ ), respectively. It
follows that len(Alo ) # s - len(A) if A is sufficiently close to v, hence A\ ¢ IL.

Thus C[0,1] ~ II is open, and so II is closed.
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It is clear that [y] — 7 is one-to-one, and that the inverse of this map is
continuous, by definition of the metric p on II (indeed the map 74 — [] is Lipschitz
continuous with constant 1).

To see that [y] — 7 is continuous, suppose [v;] is a sequence in II converging
t0 [Yoo] € I (in the metric p on II). By changing representatives if necessary, we
may assume that 7; — 7o uniformly. By Proposition 3.4 (and the statements
immediately after), it follows that for every € > 0 there exists ng such that for all
i >mng and all ¢ € [0,1], [len(7;[}g ) — len(Voo[0,4)] < €.

Fix € > 0. Let 6 > 0 be small enough so that for all ¢ > 1 and all ¢,t5 € [0, 1],
if [len(7il{o,,,7) — len(il(o,,))| < & then diam(v;([t1,2])) < 5. Let ng be large
enough so that for all i > ng and t € [0,2], [len(7i[[o4) — len(Yoo [[0,17)] < ¢ and
[7i(t) = Yoo (B)] < 5-

Given s € [0,1] and i > no, let #;,toc € [0,1] be such that len(vilj,,) =
s - len(v;) and len(voolfos..1) = s - len(7x0), so that F;(s) = 7i(t;) and Feo(s) =
Yoo (o). We have

llen(vil(0,e,) — len(Viljo,e )| < llen(viljo,0,7) — len(Voo o, ) + llen (Voo To,e)) — len(Vil (o, )
=[s-len(v;) — s len(yeo)| + [len(voo r[o,tw]) — len(; f[o,tm])|

08
-2 2
<.

By the definition of ¢, it follows that diam(v;([t;,fec])) < 5. This implies

[7i(8) = Yoo (8)] = [7i(ti) = Yoo (too)

< yi(ti) = Yiltoo)| + [Yi(too) — Yoo (too)]
<fii-e
-2 2

Thus ¥; = Yoo uniformly. Therefore, [y] — 7 is continuous. O

Given a family F C I, define F = {7 : [y] € F}.

Corollary 4.2. A set F C1I is closed (respectively, compact) if and only zfﬁ is
a closed (respectively, compact) subset of C[0,1].

A classical result from metric geometry (see e.g. [3]) is that if L > 0 and
(Ym)eo_, is a sequence of paths in a bounded set, with Euclidean path lengths
< L, and if 7, : [0,1] — R™ is the parameterization of v,, by Euclidean path
length (with domain linearly rescaled to [0,1]), then the sequence (3,,)-_, has
a subsequence which converges uniformly to a path of finite Euclidean length.
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This reparameterization is necessary, as standard examples show (consider e.g.
Ym ¢ [0,1] — [0, 1] defined by v, (s) = s™).

We will now prove a version of this result for the function len, where the uniform
bound on length assumption is replaced by a weaker restriction on the number
of long sections of the paths. Moreover, we prove that this condition is in fact a
characterization of those families of paths which can be parameterized so as to be
equicontinuous. A similar result is proved in [12] using Morse’s length function.

Theorem 4.3. Let F C II. Suppose that

(f):  for each € > 0, there is a positive integer N such that
for every [y] € F, there is no collection of more than N pairwise
disjoint subintervals of [0, 1] whose images under v have diameters
> €.
Then the family F = {7 : [7] € F} is equicontinuous.
Conversely, if an equicontinuous family can be formed by choosing parameter-
izations of all the paths in F, then F satisfies the property (7).

PROOF. We treat the case n = 2. As usual, we identify R? with C.

Fix ¢ > 0. Let N > 1 be such that for every v with [y] € F, there is no
collection of more than N pairwise disjoint subintervals of [0,1] whose images
under v have diameters > 5. Let § = sx5rgy-

Suppose for a contradiction that for some [y] € F there exist 0 < 57 < 592 <1
with so —s1 < ¢ and p(7(s1),7(s2)) > €. Note that

len(¥(0,s,]) = 52 - len(7)
< s1-len(y) + 8- len(y)
<len(Yl(,s,)) + 6.

Let to € [0, 1] be such that the line {refo™ : r € R} is orthogonal to the segment
~(s51)7(s2). Define W C [0,1] x [0,1] x (0,1] by

W =1[0,1] x [to — 3,0 + 5] x [§, 5],

where the interval [to — i,to + ﬂ should be considered reduced mod 1 (i.e. it
represents the set of all ¢ € [0,1] such that one of [t — to|, |t — (to — 1)], or
|t — (to + 1) is < 1). Note that for any (x,¢,u) € W, any strip Sf’t’” (j ez
covers less than half of the line segment J(s1)7(s2).

Consider a fixed z,t,u € W. Let Cy,...,Cn and Dy, ..., Dy be the first N+1
components of (7[[0,‘91])’1(Sf’t’“) and (?[[0732])’1(5';’“”) (j € Z), respectively,
ordered so that [7(Ci)lle > [5(Cir)le and [F(Dlle > [5(Dis)le for cach
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1=0,1,...,N —1. Soz I5(C 5ot and ZZ 0 M(g)ut are the first N + 1 terms
of the sums L*"*(3[(o 1) and L ( [[0,5])» Tespectively.

Note that
(1) 17(D)|l: > |I7(Cy)||¢ for each ¢ = 0,1,..., N.

Moreover, there is some j € {0,1,...,N — 1} such that D; C (s1,s2) and
I7(D;)|l+ = p. Since such a component is absent in the list Co,...,Cn, we
have ||5(D;+1)|l: = |I7(C )||t for each i = 7, .. .7N - 1.

Now [|[¥(Dj)[l = > g, and ||[¥(Dn)l|: < 15 by choice of N, so there must be
some i between j and N — 1 such that ||5(D Ht > ||[¥(Dis1)le + g Hence

(2) 7 (Da)lle > [V(Co)lle + 057 8N

It follows from (1) and (2) that

e/8N
9
-, ¢/8N
>L t7M( f[051])+ 9N

_ x,t, €
= L""M(y f[()sl])er

Lm’t’“ﬁf[msz]) > LPhH (5 r[Osl])J’_

Noting that the measure of W is 1- 5 - (§ — §) = 15, it follows that

~ 9 9
len(F1jo.s21) = 1en(¥lp0,00)) + 5355 * 76

= Ien('y[[om]) + (5

But this contradicts the assumption that so — s1 < 6.
Thus for every [y] € F,if 0 < s1 < so < 1 with so—s1 < §, then p(F(s1),7(s2)) <

For the converse, suppose there is some € > 0 such that for any positive integer
N, there exists a path vy with [yx] € F and a collection of N disjoint subintervals
of [0,1] whose images under vy have diameters > . Note that at least one of
these subintervals must have width < & denote it by Jx.

Let s € [0,1] be an accumulation pomt of the centers of the intervals Jy,
N = 1,2,3,.... Then for any 6 > 0, there is some N such that Jy C (s —
d, s+ ), and hence yn((s — d,s + 0)) has diameter > ¢. Thus we cannot choose
parameterizations of the paths in F to obtain an equicontinuous family. O



A CANONICAL PARAMETERIZATION OF PATHS IN R" 19

Theorem 4.3 implies in particular that if it is possible to parameterize the paths
of a family F to obtain an equicontinuous family, then the standard parameteri-
zation will accomplish this.

Theorem 4.4. Let F C II. Then F is compact if and only if the following two
properties are satisfied:

(1) the set {(0) : [y] € F} is bounded; and
(2) F satisfies the property (1) (from Theorem 4.3).

In particular, if F satisfies properties (1) and (2), then the closure of F in
C[0,1] is compact.

PROOF. By the Arzela-Ascoli theorem [5, Theorem 4.43], the closure of F is

compact if and only if Fis equicontinuous and pointwise bounded, i.e. for every

t € [0,1] the set {F(t) : 5 € F} is bounded. By Theorem 4.3, equicontinuity of F

is equivalent to F satisfying the property (). Moreover, in the presence of (}),
the condition (1) is clearly equivalent to F being pointwise bounded.

Finally, by Theorem 4.1, F is compact if and only if the closure of Fis compact.

U

5. MIDPOINT PARAMETERIZATION

One drawback to the standard parameterization of a path, introduced in the
previous section, is that it does not commute with reversal of orientation of a path.
That is, if we define r : [0, 1] — [0,1] by r(¢) = 1 —¢, then for a non-constant path
~, the standard parameterization of « o r is not the same as 5 o r.

In this section we introduce a second parameterization of a path and consider
some applications, including a way to canonically define a homeomorphism be-
tween two arcs (or even between two families of arcs) once the endpoints have
been assigned.

Definition 3. Given a path v, the midpoint parameterization ~* : [0,1] — C is
defined as follows. Let m € (0,1) be such that len(y[ ) = len(y[},17) = L.
Define 1,72 : [0,1] = C by v(t) = y1(m — mt) and y2(t) = y(m + (1 — m)t), and
consider their standard parameterizations 71, 72 : [0,1] — C. Then

i M(l—2t) fo<t<
Yt =4 - .
T2t —1) ifi<t<1

Observe that v* or = (yor)*.
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As with the standard parameterization, the midpoint parameterization is unique
within each equivalence class of paths, in the sense that if v; ~ 72, then 7§ = ~3.

We leave it to the reader to see that the following analogue of Theorem
4.1 also holds (where the standard parameterization is replaced by the mid-
point paramterization). We denote by II* the set of all midpoint parameteri-
zations of paths [0,1] — R™. Recall that the topology on II is given by the
metric p and that II* is a subspace of C[0,1] = C([0,1],R™) with the metric

dsup (715 72) = SuPyepo 1) 111 (t) — 72(1)]-

Theorem 5.1. II* is a closed subset of C[0,1], and the function [y] — v* is a
homeomorphism from II to IT*.

An arc is a space A which is homeomorphic to the interval [0,1]. By a
parametrization of an arc A we mean a homeomorphism + : [0, 1] — A.

Given two arcs A; and As, and a bijection f between their endpoint sets, we
can extend f to a canonical homeomorphism F' : A; — A, as follows. Choose
a parameterization 1 of A;, and a parameterization o of Ay such that ~2(0) =
f(71(0)) and 42(1) = f(y1(1)). Then given x € Ay, define F(z) = v5((77) " 1(2)).
Observe that F' is independent of the choice of orientation of ~;, since v or =
(y1or)  and 5 or = (y2 or)* (hence the word “canonical”).

In the next result, we show that this canonical homeomorphism has some useful
convergence properties.

The following definition is inspired by the concept of a lamination, which ap-
pears in dynamics (see e.g. [13]) and plane topology (see e.g. [11]). In those
contexts one defines a space X by starting with a smaller “base” space, which we
call B(X) here, then adding a family of arcs with endpoints attached to B(X),
with disjoint interiors and which converge nicely to each other.

Definition 4. A laminated space is a space X C R™ together with a closed (in
X) subspace B(X) and a collection A(X) of arcs in X, such that:

(1) X = BIX) UUAX);
(2) each arc in A(X) has endpoints in B(X), but is otherwise disjoint from
B(X);
(3) any two distinct arcs in A(X) meet at most in one common endpoint;
(4) given a sequence (4;)?2, of arcs in A(X):
(a) if diamA; — 0, then the set of accumulation points in R"™ of | J; 4; is
disjoint from X \ B(X);
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(b) otherwise, there is an arc Ao, € A(X), a subsequence (4;;)2; and
homeomorphisms h; : Asc — Aj;; such that dsup(hy,ida, ) — 0 as

j — o0.

Note that the conclusion in condition (4)(b) is equivalent to the statement that
AUl I Aj; is homeomorphic to the product of [0, 1] and the convergent sequence
{oyu{t:n=12..1}

Theorem 5.2. Let X andY be laminated spaces, and let f : B(X) — B(Y) be a
continuous function. Suppose f maps the endpoints of any arc in A(X) onto the
set of endpoints of some arc in A(Y). Then there exists a continuous extension
F:X =Y of f which is one-to-one on each arc in A(X).

Moreover, if additionally f is a homeomorphism and f~' maps the endpoints
of any arc in A(Y) to the endpoints of some arc in A(X), then F is a homeo-
morphism.

PRrROOF. Let P = {[v] : v parameterizes some arc in A(X)} C [T and Q = {[\] : A
parameterizes some arc in A(Y)} C II. Define the function g : P — Q by

g(h]) = A if f(7(0)) = A(0) and f(~(1)) = A(1).
Claim 5.2.1. g is continuous.

PRrROOF OF CLAIM 5.2.1. Suppose that ([v;])$2, is a sequence of elements of P
converging to [Yeo] € P. By continuity of f, lim;, f(7:(0)) = f(7e0(0)) and
lim; 00 f(75(1)) = f(700(1)), and it follows from property (4) (for Y) that lim; o g([v:]) =
g([Yoo])- O(Claim 5.2.1)

Define F' : X — Y as follows. Given A € A(X), choose 7 parameterizing
A. Let v* be the midpoint parameterization of ~, and let A* be the midpoint
parameterization of g([7]). Now for each z € A, define F(x) = \*((v*) " (z)).

Observe that the definition of F' on an arc A € A(X) does not depend on the
choice of orientation of the parameterization -y of A, because v* or = (yor)*,
XM or=(Aor)* and g([yor]) = [Aor]. Thus F is well-defined on each arc A.
Moreover, if x € £(A(X)), then F(z) = f(x). Thus F is well-defined on X (since
two arcs in A(X) meet at most in an endpoint), and extends f. It is also clear
that F' is one-to-one on any arc in A(X) since 4* and A* are homeomorphisms.

Claim 5.2.2. F' is continuous.

PROOF OF CLAIM 5.2.2. Suppose {x;)$°, is a sequence in X converging to z €
X. We will show that f(x;) — f(2). By continuity of f and closedness of B(X)
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in X, we may assume that the points z; belong to X ~ B(X). For each i, let
A; € A(X) be the arc containing z;, and let Q; = F(A;) € A(Y).

If diam(A;) — 0, then by property (4) o is a point in B(X). For each i, let
x} be an endpoint of A;. Then z} — %o, so by continuity of f, f(z}) = f(zs)-
Thus both endpoints of the arcs Q; converge to f(z), so again by (4) (for Y)
we have diam(Q;) — 0, and so f(z;) = f(Zs0)-

Otherwise, by property (4) we may assume (by taking a subsequence of x;),
that there exists an arc Ao, € A(X) and homeomorphisms h; : Ao — A; such
that dgup(hi,ida,) — 0. Let Qoo = F(Ax) € A(Y). For cach n € NU {oo},
let v, parameterize A,, and let g([v,]) = [An], so that A, parameterizes Q.
We may assume (by choosing appropriate orientations) that ;(0) — v(0) and
7i(1) = Yoo(1). Then [v;] = [Yoo], and by continuity of g, [A;] = [Aso]-

By Theorem 5.1, we have v} — ~% and A} — A% uniformly. For each n €
N U {oo}, let ¢, € [0,1] be such that v, (t,) = z,,. Then by uniform convergence
and continuity, t; — teo, and A (t;) = A% (o). Thus

F(ai) = N ()7 @) = A (1) = Mo (tes) = Flaso)
as needed. O(Claim 5.2.2)

If, in addition, f is a homeomorphism and f~! also maps the endpoints of any
arc in A(Y') to the endpoints of some arc in A(X), then f~! extends in the same
way to a continuous function Y — X which is the inverse of F. Thus F is a
homeomorphism. O

For a fixed laminated space X C R"”, let

M ={(Y,f):Y C R" is a bounded laminated space, and
f:B(X) — B(Y) satisfies the hypotheses of Theorem 5.2}.

Theorem 5.2 affords an operator © from M to the set Cp(X,R™) of bounded
continuous functions from X into R™, where if F = O(Y, f) then F(X) CY and
Flpxy =1

We next prove that this operator is continuous, in the sense that if Y7 and Y5
are nearby laminated spaces, and if f; : B(X) — B(Y1) and f5 : B(X) — B(Y2)
are close functions as in Theorem 5.2, then the extensions F; : X — Y7 and
F5 : X — Y5 are close as well. To make this precise, we define a metric d on M
below. Let (Yl, fl), (YQ, f2) e M.

First, given A € A(X), let v be a parameterization of A, and for i = 1,2,
let \; parameterize the corresponding arc in A(Y;) with A;(0) = f;(v(0)) and
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Ai(1) = fi(v(1)). Define sa(f1,f2) = p([\],[A2]). Clearly sa(fi1, f2) does not
depend on the choice of parameterizations -, A1, and As.

Now define

d (Y1, f1), (Y2, f2)) = dsup(f1, f2) + sup{sa(f1, f2) : A € A(X)}.

It is straightforward to verify that d is a metric on M. On Cp(X,R™), we use the
metric dgyp.

Theorem 5.3. Let X C R" be a laminated space, and let M be as defined above.
The operator © : M — Cyp(X,R™) given by Theorem 5.2 is continuous. Moreover,
O(X,idp(x)) = idx.

ProOF. Let (Yy, fo) € M, and let Fy = O(Yp, fo) € Co(X,R™). Let € > 0.

Since Yj is bounded, by the definition of a laminated space, the set {[A] : A
parameterizes an arc Qg € A(Yp) with diam(Qo) > 5} is compact in II. Therefore,
by Theorem 5.1, there exists § > 0 such that if Ao parameterizes an arc in A(Yp)
of diameter > £ and if X is any path with p([Ao], [A]) < 0, then dgup(Ag, \*) < €.
We may assume that § < 5.

Observe that if diam(A([0,1])) < § and p([Ao], [A]) < §, then every point in
the range of Ay is within ¢ of each point in the range of A, hence dg,p(A§, \*) < e
as well. Thus in fact for any arc Qp € A(Yp), if A\ parameterizes Qo and if X is
any path with p([Ao], [A]) < 0, then dg,p(A§, A*) < €.

Let (Y, f) € M with d((Yo, fo), (Y, f)) < 6, and let F' = O(Y, f).

Clearly, by definition of d, for any point z € B(X) we have | f1(z) — fa(z)| < e.
Thus to confirm dgu,(F1, F>) < &, we need only consider points in |J.A(X).

Let A € A(X), let v parameterize A, and let Ay and A parameterize the corre-
sponding arcs Qo € A(Yp) and @ € A(Y) with Ag(0) = fo(7(0)), Ao(1) = fo(v(1)),
A(0) = f(7(0)), and A(1) = f(y(1)). By definition of d, we have p([Ao], [A]) < 9,
hence by the choice of 8, dsup(A§, A*) < €. Moreover, by the definition of F' and Fy
from Theorem 5.2, dgup(Fol 4, F[4) = dsup(A§, A*). Thus since A was arbitrary,
we have dg,p(Fo, F) < €.

The second part of this Theorem is clear from the definition of ©. O

6. GENERALIZED PATHS

To see that the assumption that X is a dendrite in Proposition 3.2 is necessary,
consider the identity function idp on the unit disk D C C with boundary circle
S'. It is not difficult to see that len(idp) < len(idg:).

Moreover, consider the embedding O of the circle S' depicted in Figure 1. Let
v :[0,1] = O be a path which goes exactly once around the circle O, starting
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p

FIGURE 1. A particular embedding of the circle in the plane.

and ending at the indicated point p, and otherwise one-to-one. We claim that
len(y) < len(idp), which can be argued as follows:

Given a strip S;E’t’“ containing the point p, the component C' of O N S;’t’“
containing p corresponds to two components [0, c| and [d, 1] of 7*1(5;"”5’“). For
nearly horizontal strips (i.e. for t values close to 0 or 1) the sets proj; (v([0, c]))
and proj;- (v([d, 1])) may overlap; however, because of the oscillation up and down
on the left and right sides of the circle O, for such parameters z,t, u there are
many other components of [0, 1] ﬂvil(Sf’t’“) and of ON Sf’t’” (j € Z) with large
projections, hence the weighted sums L*"*(idp) and L**#(~) will differ only very
slightly. For all other values of z,t, u, the sets proji (([0, ¢])) and proj; (v([d, 1]))
share only the point pro jf‘ (p), and one of them will be added with a smaller weight
in the sum L*%#(v) than that of C' in L™"*(idp). In particular, this is so for
values of x,t, u for which the strips Sf’t’“ are wide and nearly vertical, and for
these values resulting difference between L®'*(idp) and L®%#(y) will be more
pronounced due to the small number of terms in these sums. Thus, with an
appropriate amount of oscillation, we obtain that len() < len(ido).

Now if we let A be a very small arc in O containing the point p and such that
len(id4) < len(idp) — len(), and let A’ = O \ A, then it follows that len(idp) >
len(id4) + len(id 4/).
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