
Houston Journal of Mathematics
c© University of Houston

Volume , No. ,

A CANONICAL PARAMETERIZATION

OF PATHS IN Rn

L. C. HOEHN, L. G. OVERSTEEGEN, AND E. D. TYMCHATYN

Abstract. For sufficiently tame paths in Rn, Euclidean length provides a

canonical parametrization of a path by length. In this paper we provide such

a parametrization for all continuous paths. This parametrization is based on

an alternative notion of path length, which we call len. Like Euclidean path

length, len is invariant under isometries of Rn, is monotone with respect to

sub-paths, and for any two points in Rn the straight line segment between

them has minimal len length.

Unlike Euclidean path length, the len length of any path is defined (i.e.,

finite) and len is continuous relative to the uniform distance between paths.

We use this notion to obtain characterizations of those families of paths

which can be reparameterized to be equicontinuous or compact. Finally,

we use this parametrization to obtain a canonical homeomorphism between

certain families of arcs.

1. Introduction

A path in Rn is a continuous function γ from a closed interval [a, b] ⊂ R to Rn.

Given z1, z2 ∈ Rn, denote by z1z2 the straight line segment path t 7→ (1−t)z1+tz2,

t ∈ [0, 1].
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Given a path γ : [a, b] → Rn, the Euclidean path length of γ, denoted LE(γ),

is defined by the formula

LE(γ) = sup

{
n∑
i=1

|γ(xi−1)− γ(xi))| : a = x0 < x1 < · · · < xn = b, n ∈ Z+

}
∈ [0,∞],

where |z1 − z2| denotes the Euclidean distance between points z1, z2 ∈ Rn.

If a sequence of smooth paths γi converges to γ∞ in C1 (in the sense that the

paths γi and their derivatives γ′i converge uniformly to γ∞ and γ′∞, respectively),

then LE(γi) → LE(γ∞) and, hence, Euclidean path length provides a canonical

parameterization of this entire family. One of the main goals in this paper is to

extend such results to the topological category. For this reason we introduce a

new notion of path length which is defined for all paths and behaves well with

respect to uniform convergence of paths.

The Euclidean path length function L = LE satisfies the following basic prop-

erties for the path γ : [a, b]→ Rn:

(L1) If A ⊂ [a, b] is a closed subinterval, then L(γ�A) ≤ L(γ);

(L2) If c ∈ (a, b), then L(γ) = L(γ�[a,c]) + L(γ�[c,b]);

(L3) If Φ : Rn → Rn is an isometry, then L(Φ ◦ γ) = L(γ);

(L4) L(γ) = the supremum, taken over all partitions a = x0 < x1 < · · · <
xn = b of [a, b], of the values L(P ) where P is the polygonal path with

vertices γ(x0), . . . , γ(xn);

and moreover, we have

(L5) L(0e) = 1, where e = (1, 0, . . . , 0) ∈ Rn.

Conversely, any function L defined on the set of all paths which satisfies the

properties (L1) through (L5) must be equal to LE (and any function L which

satisfies the properties (L1) through (L4) must be a scalar multiple c ·LE of LE ,

where c = L(0e)). Indeed, one can use properties (L1), (L2), (L3), and (L5) to

show that L(ab) = b − a for any a, b ∈ R ⊂ Rn with a < b. Then by properties

(L2) and (L3) it follows that the length of any polygonal path is equal to the

sum of the (Euclidean) distances between consecutive vertices. We then conclude

by (L4) that L(γ) = LE(γ) for all paths γ.

There are a number of results in metric geometry pertaining to when a given

metric on a Euclidean space is equal to the Euclidean metric; [1], [3], and [8]

each survey a variety of such results. Much of this work is related to Hilbert’s

fourth problem. The length function introduced in this paper contributes to the

corresponding program for path length functions by illustrating that there are
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other length functions which have many properties in common with the Euclidean

length.

In light of the above discussion, to provide a genuinely different path length

function from the Euclidean length, one must give up at least one of the properties

(L1) through (L4). In Section 2, we define a path length function, called “len”,

such that L = len satisfies properties (L1), (L3), and (L4) (see Propositions

3.1(iii), 3.2(i), and 3.4 below), as well as the following weaker form of (L2) (see

Proposition 3.2(ii)):

(L2′) If c ∈ (a, b), then L(γ) ≤ L(γ�[a,c]) + L(γ�[c,b]);

Furthermore, this length function has the following additional properties not

enjoyed by the Euclidean length LE :

• len(γ) < 1 for any path γ;

• len is continuous as a function from the space of all maps [0, 1] → Rn
(with the uniform metric) to R.

• len is defined for any continuous function γ from a locally connected

continuum X to Rn;

Moreover, this length function can differentiate between paths whose Euclidean

lengths are infinite. For instance, if γ : [a, b] → Rn is a path and [c, d] is a

subinterval of [a, b] such that γ is non-constant on at least one component of

[a, b] r [c, d], then len(γ) > len(γ�[c,d]), even if both of these paths have infinite

Euclidean length.

A very similar function is developed by Cannon et. al. in [4], called the total

oscillation of a path. The most notable difference is that the total oscillation is

not invariant under isometries of Rn.

Another similar function is given by Morse in [9], called the µ-length, which is

defined for paths into any metric space1.

After establishing the above properties in Section 3, we use len in Section 4

to obtain a standard parameterization of all paths in Rn. This yields charac-

terizations of those families of paths which may be reparameterized so as to be

equicontinuous or compact, related to similar characterizations obtained by Sil-

verman in [12]. These results extend classical results on families of paths having

finite Euclidean length. In Section 5, we develop a second canonical parame-

terization of all paths in Rn with all of the above properties, and which also

1We are indebted to J. Keesling for pointing out this paper of Morse to us.
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commutes with a reversal of orientation of a path. This second parameteriza-

tion yields a canonical extension of a bijection between the endpoint sets of two

arcs to a homeomorphism between the two arcs. We use this notion to construct

homeomorphisms between certain families of pairwise disjoint arcs in Theorem

5.2.

The results of this paper are already seeing use in two other papers. In [11] it

was shown that any isotopy of a planar continuum can be extended to an isotopy

of the entire plane. Using Theorem 5.1, this result is extended in [6] to a more

general class of planar compacta. It was shown in [2] that any two points in a

closed topological disk D in the plane can be connected by a unique arc A in D

which has the property that any subarc of A which connects two points, neither

of which is an endpoint of A, has minimal (finite) Euclidean length among all

such arcs. In [7] this result is generalized to shortest paths (in the sense of len

length, and in the above Euclidean sense for proper subpaths) in the closure of any

homotopy class in an open connected subset of the plane with arbitrary boundary.

2. Definition of the function len

A generalized path is a continuous function γ : X → Rn, where X is a locally

connected metric continuum.

Given n ≥ 2, there is a length function lenn defined for generalized paths

X → Rn. In this section, to simplify the definition and arguments below, we

restrict our attention to the case n = 2, and give a definition of len = len2.

The case n > 2 proceeds similarly; the primary differences being that we cut by

(n − 1)-dimensional hyperplanes instead of lines (see below), and the parameter

t below varies through the upper half of the (n − 1)-dimensional sphere instead

of [0, 1] (which we use to parameterize the semi-circle {etπi : t ∈ [0, 1]}). We offer

some further details for the case n > 2 in section 2.1 below.

For notational convenience, we will identify R2 with C. The reader may find

it easier to work through this construction for an ordinary path γ : [a, b] → C
instead of a generalized path, on a first reading.

For j ∈ Z, let Sj denote the closed horizontal strip {a+ib : a ∈ R, b ∈ [j, j+1]}
in the plane C. Given x, t ∈ [0, 1], µ ∈ (0, 1], and j ∈ Z, let

Sx,t,µj = µetπi(Sj + ix).

If A ⊂ C, define ‖A‖t = diam(proj⊥t (A)), where proj⊥t denotes the orthogonal

projection of C onto the line {re(t+ 1
2 )πi : r ∈ R} and diam denotes the diameter

in the Euclidean metric. Note that the map which assigns to each t ∈ [0, 1] the
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line {re(t+ 1
2 )πi | r ∈ R} is bijective except on the set {0, 1} while this set has zero

measure in [0, 1]. Hence the integration used in the definition of len(γ) below is

not affected by this ambiguity.

Fix a generalized path γ : X → C. The following lemma will be used in the

definition of the function len below.

Lemma 2.1. For any (x, t, µ) ∈ [0, 1]× [0, 1]×(0, 1] and any ε > 0, there are only

finitely many components C of the sets γ−1(Sx,t,µj ) (j ∈ Z) with ‖γ(C)‖t ≥ ε.

Proof. We may assume that ε ≤ µ
2 . Suppose for a contradiction that there are

infinitely many distinct components {Cn}∞n=0 of the sets γ−1(Sx,t,µj ) (j ∈ Z) with

‖γ(C)‖t ≥ ε.
For each n let j(n) ∈ Z be the integer for which γ(Cn) ⊂ Sx,t,µj(n) , and let pn ∈ Cn

be such that d(γ(pn), ∂Sx,t,µj(n) ) = ε, where d denotes the Euclidean metric in Rn.

Observe that by local connectivity of X, for each n we have γ(∂Cn) ⊂ ∂Sx,t,µj(n) .

Let p ∈ X be an accumulation point of the set {pn}∞n=0, and let U be an open

neighborhood of p which is small enough so that diam(γ(U)) < ε. Then for any

n such that pn ∈ U , we have γ(U) ∩ ∂Sx,t,µj(n) = ∅, hence U ∩ ∂Cn = ∅, and so

U ∩ Cn is closed and open in U . It follows that U cannot be connected, which is

a contradiction since X is locally connected. �

Given x, t ∈ [0, 1] and µ ∈ (0, 1], let 〈Cx,t,µn 〉∞n=0 enumerate the collection of

all components of the sets γ−1(Sx,t,µj ) (j ∈ Z) which have non-degenerate image

under the map proj⊥t , ordered so that ‖γ(Cx,t,µn )‖t ≥ ‖γ(Cx,t,µn+1 )‖t for all n (this

is possible by Lemma 2.1).

Define

Lx,t,µ(γ) =
∞∑
n=0

‖γ(Cx,t,µn )‖t
2n

and define the length of γ by

len(γ) =

∫ 1

0

∫ 1

0

∫ 1

0

Lx,t,µ(γ) dx dt dµ.

Observe that if σ is any injective function of the non-negative integers to them-

selves, then

(∗)
∞∑
n=0

‖γ(Cx,t,µσ(n) )‖t
2n

≤ Lx,t,µ(γ).
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It remains to show that the function Lx,t,µ(γ) is in fact integrable, so that the

above definition of the function len makes sense. This is accomplished in Lemma

2.3 below.

Lemma 2.2. Let C be a component of γ−1(Sx,t,µj ) for some x, t, µ, j which has

non-degenerate image under the map proj⊥t , and let ε > 0. Then there exists a

subcontinuum D ⊂ C such that γ(D) ⊂ int(Sx,t,µj ) and ‖γ(D)‖t ≥ ‖γ(C)‖t − ε.

Proof. For the purposes of this argument, let us naturally identify R with the

rotated line {re(t+ 1
2 )πi : r ∈ R} which is the range of the map proj⊥t .

Let s1, s2 ∈ R be such that s1 < s2 and proj⊥t (γ(C)) = [s1, s2] (and hence

‖γ(C)‖t = s2 − s1). We may assume that ε < s2−s1
2 . Let S′ denote the narrower

(closed) strip (proj⊥t )−1([s1 + ε
2 , s2 − ε

2 ]) ⊂ int(Sx,t,µj ). Then C ∩ γ−1(S′) must

have a component D such that proj⊥t (γ(D)) = [s1 + ε
2 , s2 − ε

2 ] (see e.g. Theorem

5.2 of [10]). This D is as desired. �

A real-valued function f is lower semicontinuous if f−1((α,∞)) is open for

every α ∈ R. Note that a lower semicontinuous function is Borel, hence (Lebesgue)

integrable.

Lemma 2.3. For a fixed generalized path γ : X → C, put L(x, t, µ) = Lx,t,µ(γ).

Then the function L(x, t, µ) from [0, 1]×[0, 1]×(0, 1] to R is lower semicontinuous,

hence integrable.

Proof. Fix a number α ∈ R, and suppose Lx,t,µ(γ) > α. Choose N large enough

so that
∑N
n=0

‖γ(Cx,t,µn )‖t
2n > α.

For each n ∈ {0, 1, . . . , N} let j(n) be such that Cx,t,µn is a component of

γ−1(Sx,t,µj(n) ). Then, by Lemma 2.2, for each n we can find a proper subcontinuum

Dn ⊂ Cx,t,µn such that γ(Dn) is contained in the interior of Sx,t,µj(n) , and so that

N∑
n=0

‖γ(Dn)‖t
2n

> α.

Let ε1 > 0 be small enough so that if |x′ − x|, |t′ − t|, |µ′ − µ| < ε1, then

γ(Dn) ⊂ Sx
′,t′,µ′

j(n) for each n ∈ {0, 1, . . . , N}, and moreover

(1)
N∑
n=0

‖γ(Dn)‖t′
2n

> α.

For each pair of numbers n1 < n2 in {0, 1, . . . , N} with j(n1) = j(n2), find

an open set An1,n2
⊂ X such that Cx,t,µn1

⊂ An1,n2
⊂ An1,n2

⊂ X r Cx,t,µn2
and

∂An1,n2 ∩ γ−1(Sx,t,µj(n1)) = ∅; that is, γ(∂An1,n2) ∩ Sx,t,µj(n1) = ∅.
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Let 0 < ε2 < ε1 be small enough so that if |x′ − x|, |t′ − t|, |µ′ − µ| < ε2, then

γ(∂An1,n2)∩ Sx
′,t′,µ′

j(n1) = ∅ for every pair of numbers n1 < n2 in {0, 1, . . . , N} with

j(n1) = j(n2). Since ∂An1,n2
separates Dn1

from Dn2
in X, it follows that Dn1

and Dn2
are contained in distinct components of γ−1(Sx

′,t′,µ′

j(n1) ). Therefore, for

such x′, t′, µ′, by (∗) and (1) we have

Lx
′,t′,µ′(γ) ≥

N∑
n=0

‖γ(Dn)‖t′
2n

> α.

Thus, the set {(x, t, µ) : Lx,t,µ(γ) > α} is open in [0, 1]× [0, 1]× (0, 1], and so

L(x, t, µ) is a lower semicontinuous function. �

Thus the function len is well-defined. Observe that the set γ(Cx,t,µn ) is con-

tained in some strip Sx,t,µj having width µ, hence ‖γ(Cx,t,µn )‖t ≤ µ. It follows

that Lx,t,µ(γ) < 2µ, and therefore len(γ) < 1.

It can easily be seen that len(0x) → 1 as x → ∞, x ∈ R. It follows from

Propositions 3.1(iii) and 3.3 below that if γm : Xm → C, m ∈ N is a sequence of

generalized paths such that diam(γm(Xm)) → ∞ as m → ∞, then len(γm) → 1

as m→∞.

On the other hand, if we define γm : [0, 1] → C by γm(t) = e2πimt, then

len(γm)→ 1 as m→∞, even though diam(γm([0, 1])) = 2 for all m.

2.1. Definition of len in Rn for n ≥ 2. Let n ≥ 2 be fixed. In this section we

give an overview of the general definition of len = lenn.

Let Sn−1
+ denote the upper hemi-sphere of Sn−1; that is

Sn−1
+ = {〈t1, . . . , tn〉 ∈ Rn : t21 + · · ·+ t2n = 1 and tn ≥ 0},

equipped with the usual spherical measure m, normalized so that m(Sn−1
+ ) = 1.

Let t ∈ Sn−1
+ . If A ⊂ Rn, define ‖A‖t = diam(proj⊥t (A)), where proj⊥t denotes

the orthogonal projection of Rn onto the line containing the unit vector t.

Consider the hyperplane Ht = {z ∈ Rn : z · t = 0}. Thus we use Sn−1
+ to

parameterize the collection of all (n − 1)-dimensional hyperplanes through the

origin, via the mapping t 7→ Ht. We remark that this mapping is one-to-one

except on the set {〈t1, . . . , tn〉 ∈ Sn−1
+ : tn = 0}, and this set has measure zero in

Sn−1
+ with respect to m.

Given j ∈ Z, let St
j denote the region between the two translates Ht + jt and

Ht + (j + 1)t of the hyperplane Ht. In other words,

St
j = {z + rt : z • t = 0 and j ≤ r ≤ j + 1}.
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Given x ∈ [0, 1], t ∈ Sn−1
+ , µ ∈ (0, 1], and j ∈ Z, let

Sx,t,µj = µ(St
j + xt).

Fix a generalized path γ : X → Rn. Given x ∈ [0, 1], t ∈ Sn−1
+ , and µ ∈ (0, 1],

let 〈Cx,t,µ` 〉∞
`=0

enumerate the collection of all components of the sets γ−1(Sx,t,µj )

(j ∈ Z) which have non-degenerate image under the map proj⊥t , ordered so that

‖γ(Cx,t,µ` )‖t ≥ ‖γ(Cx,t,µ`+1 )‖t for all `.

Define

Lx,t,µ(γ) =
∞∑
`=0

‖γ(Cx,t,µ` )‖t
2`

and define the length of γ by

len(γ) = lenn(γ) =

∫ 1

0

∫
Sn−1
+

∫ 1

0

Lx,t,µ(γ) dx dm dµ.

3. Properties of the function len

Let n ≥ 2 be fixed. All results in this section will be stated for len = lenn, but

for simplicity all proofs will be given only for the case n = 2.

The following basic properties follow immediately from the definition of the

function len.

Proposition 3.1. Let γ : X → Rn be a generalized path.

(i) len(γ) = 0 if and only if γ is a constant function.

(ii) If h : X → Y is a homeomorphism, then len(γ ◦ h) = len(γ).

(iii) If Φ : Rn → Rn is an isometry, then len(Φ ◦ γ) = len(γ).

For the next properties, we need to consider a more restricted class of locally

connected continua, namely dendrites. A dendrite is a locally connected contin-

uum which contains no simple closed curve. A characteristic feature of dendrites

is that they are hereditarily unicoherent ; that is, given any two intersecting sub-

continua A and B of a dendrite X, the intersection A∩B is connected. See Section

6 for examples to illustrate how these properties can fail when the domain of a

generalized path is not a dendrite.

Proposition 3.2. Let X be a dendrite, and let γ : X → Rn be a generalized path.

(i) If A is a subcontinuum of X, then len(γ�A) ≤ len(γ). Moreover, len(γ�A) =

len(γ) if and only if γ is constant on each component of X rA.

(ii) If A,B are subcontinua of X with A ∪B = X, then

len(γ) ≤ len(γ�A) + len(γ�B).
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Proof. We treat the case n = 2.

Fix x, t, µ, and for convenience denote Sx,t,µj and Cx,t,µn (defined as in Section

2) simply by Sj and Cn, respectively.

LetA ⊆ X be a subcontinuum. Given j ∈ Z and a component C of (γ�A)−1(Sj),

there exists some n such that C ⊆ Cn. Since Cn ∩A is connected (by hereditary

unicoherence), it follows that C = Cn ∩A.

Therefore there exists an injective function σ from the non-negative integers to

themselves such that 〈Cσ(n) ∩A〉
∞
n=0

enumerates the collection of all components

of the sets (γ�A)−1(Sx,t,µj ) (j ∈ Z) which have non-degenerate image under the

map proj⊥t , so that ‖γ(Cσ(n) ∩A)‖t ≥ ‖γ(Cσ(n+1) ∩A)‖t for all n. Then

Lx,t,µ(γ�A) =
∞∑
n=0

‖γ(Cσ(n) ∩A)‖t
2n

≤
∞∑
n=0

‖γ(Cσ(n))‖t
2n

≤ Lx,t,µ(γ) (by the observation (∗)).

Since this holds for all x, t, µ, we have established the first statement of (i).

For the second statement of (i), suppose γ is non-constant on some component

K of X r A. The intersection K ∩ A consists of a single point (see e.g. 10.9 and

10.24 of [10]). Let {p} = K ∩ A, and let q ∈ K be such that γ(p) 6= γ(q). There

is a positive measure set of parameters x, t, µ and an integer j ∈ Z for which

γ(q) ∈ int(Sx,t,µj ) and γ(p) /∈ Sx,t,µj . For such x, t, µ, j, there is a component of

γ−1(Sx,t,µj ) contained in K, which contributes positively to the sum Lx,t,µ(γ),

thereby making it larger than Lx,t,µ(γ�A). It follows that len(γ) > len(γ�A). The

converse implication is immediate.

Now suppose A,B ⊆ X are subcontinua with A ∪ B = X. As above, for any

j ∈ Z, each component of (γ�A)−1(Sj) (respectively (γ�B)−1(Sj)) has the form

Cn ∩A (respectively Cn ∩B) for some n.

Let 〈n(α)〉∞α=0 and 〈m(β)〉∞β=0 be the strictly increasing sequences of non-

negative integers such that 〈Cn(α) ∩A〉
∞
α=0

enumerates the collection of all com-

ponents of the sets (γ�A)−1(Sx,t,µj ) (j ∈ Z) which have non-degenerate image

under the map proj⊥t ◦ γ, and 〈Cm(β) ∩B〉
∞
β=0

enumerates the collection of all

components of the sets (γ�B)−1(Sx,t,µj ) (j ∈ Z) which have non-degenerate im-

age under the map proj⊥t ◦ γ. Note that these enumerations are not necessarily

ordered according to the sizes of the images under proj⊥t ◦ γ.



10 L. C. HOEHN, L. G. OVERSTEEGEN, AND E. D. TYMCHATYN

For any n, we clearly have ‖γ(Cn)‖t ≤ ‖γ(Cn∩A)‖t+‖γ(Cn∩B)‖t. Therefore

Lx,t,µ(γ) =
∞∑
n=0

‖γ(Cn)‖t
2n

≤
∞∑
n=0

‖γ(Cn ∩A)‖t
2n

+
∞∑
n=0

‖γ(Cn ∩B)‖t
2n

=
∞∑
α=0

‖γ(Cn(α) ∩A)‖t
2n(α)

+
∞∑
β=0

‖γ(Cm(β) ∩B)‖t
2m(β)

≤
∞∑
α=0

‖γ(Cn(α) ∩A)‖t
2α

+
∞∑
β=0

‖γ(Cm(β) ∩B)‖t
2β

(since α ≤ n(α), β ≤ m(β))

≤ Lx,t,µ(γ�A) + Lx,t,µ(γ�B) (by the observation (∗)).

Since this holds for all x, t, µ, we have established (ii). �

Proposition 3.3. Let z1, z2 ∈ Rn. If γ : X → Rn is any generalized path such

that z1, z2 ∈ γ(X), then len(z1z2) ≤ len(γ). Moreover, if γ(X) is not the straight

line segment joining z1 and z2, or if γ−1(w) is disconnected for some w on the

straight line segment between z1 and z2, then len(z1z2) < len(γ).

Proposition 3.3 can be proved directly from the definition of the function len,

and we leave this to the reader. Note that it also follows that if in a path γ :

[0, 1]→ Rn we replace the subpath γ�[a,b] with the straight line segment γ(a)γ(b)

and if we denote the resulting path by γ∗, then len(γ∗) ≤ len(γ) with strict

inequality if γ�[a,b] is not a monotone parametrization of the straight line segment

γ(a)γ(b).

Next we consider C(X) = C(X,Rn), the set of all generalized paths X → Rn.

This is a metric space with the usual metric dsup(γ1, γ2) = supp∈X |γ1(p)−γ2(p)|.

Proposition 3.4. The function len : C(X)→ R is continuous.

Proof. We treat the case n = 2. Let γ0 be in C(X).

Suppose α < len(γ0) < β. We will prove that for small enough ξ > 0, if

γ ∈ C(X) with dsup(γ, γ0) < ξ, then α < len(γ0) < β.

A simple modification of the proof of Lemma 2.3 shows that for ξ > 0 small

enough, if dsup(γ, γ0) < ξ then len(γ) > α. Thus it remains to show len(γ) < β

for sufficiently small ξ > 0.
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Fix a countable dense set {qk}∞k=1 ⊂ X. Given k 6= l and j ∈ Z, let

Bjkl ={(x, t, µ) ∈ [0, 1]× [0, 1]× (0, 1] :

there is a continuum C ⊆ γ−1
0 (Sx,t,µj ) with qk, ql ∈ C and

for every such C we have γ0(C) ∩ ∂Sx,t,µj 6= ∅}

and let B =
⋃
k 6=l
j∈Z

Bjkl. It is easy to see that ([0, 1]× [0, 1]× (0, 1]) rBjkl is open,

and so B is Fσ, hence measurable.

Claim 3.4.1. B has measure zero.

Proof of Claim 3.4.1. Fix k 6= l and j ∈ Z. It will be convenient to change

variables from (x, t, µ) to (z, t, µ) so that for any fixed rotation angle t and transla-

tion parameter z, as the strip width µ shrinks, the j-th strip itself shrinks inwards,

nesting down on a line.

Given (x, t, µ) ∈ [0, 1] × [0, 1] × (0, 1], let z = µ(x + 1
2 + j) ∈ (−∞,∞), and

define Φ(x, t, µ) = (z, t, µ).

Observe that for (z, t, µ) in the image of Φ, Φ−1(z, t, µ) = ( zµ −
1
2 − j, t, µ).

Thus Φ(Bjkl) is contained in the set

B′ ={(z, t, µ) : there is a continuum C ⊆ γ−1
0 (T z,t,µ) with qk, ql ∈ C and

for every such C we have γ0(C) ∩ ∂T z,t,µ 6= ∅}

where T z,t,µ = µetπi(Sj + i( zµ −
1
2 − j)) = etπi(µ(Sj − 1

2 i− ji) + iz). Observe that

the strip T z,t,µ is centered about the line etπi(R + iz), and if µ′ < µ, then T z,t,µ
′

is contained in the interior of T z,t,µ. Thus for any fixed z, t, there can be at most

one µ for which (z, t, µ) ∈ B′. By Fubini’s theorem, this implies B′ has measure

zero. Since Φ(Bjkl) ⊆ B′, we have that Φ(Bjkl) has measure zero as well.

A straightforward calculation shows that Φ is a C1-diffeomorphism on [0, 1]×
[0, 1]× (0, 1] with Jacobian equal to µ. Thus by the change of variables theorem

[5, Theorem 2.47], the measure of Φ(Bjkl) is equal to∫∫∫
Bjkl

µdx dt dµ.

Since µ > 0 and Φ(Bjkl) has measure zero, it follows that Bjkl has measure zero

as well. Since B =
⋃
k 6=l
j∈Z

Bjkl, the Claim follows. �(Claim 3.4.1)
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Claim 3.4.2. Given (x0, t0, µ0) ∈ ([0, 1] × [0, 1] × (0, 1]) r B and ε > 0, there

exists δ > 0 and ξ0 > 0 such that if |x − x0| < δ, |t − t0| < δ, |µ − µ0| < δ, and

dsup(γ, γ0) < ξ0, then Lx,t,µ(γ) < Lx0,t0,µ0(γ0) + ε.

Proof of Claim 3.4.2. For j ∈ Z, let S′j denote the narrower (closed) strip

obtained from Sx0,t0,µ0

j by moving the boundary lines in towards the middle a

distance of ε
20 each.

Let 〈Cn〉∞n=0 enumerate the collection of all components of the sets γ−1
0 (Sx0,t0,µ0

j )

(j ∈ Z) which have non-degenerate image under the map proj⊥t , ordered so that

‖γ0(Cn)‖t0 ≥ ‖γ0(Cn+1)‖t0 for all n. For each n, let j(n) be the integer such

that γ0(Cn) ⊂ Sx0,t0,µ0

j(n) . By Lemma 2.1, there are only finitely many components

C0, . . . , CN such that γ0(Cn) meets the narrower strip S′j(n), for 0 ≤ n ≤ N .

Fix some n with 0 ≤ n ≤ N . Let U1, . . . , Ur be a finite cover of Cn∩γ−1
0 (S′j(n))

by connected open subsets of X whose closures are mapped by γ0 into the interior

of Sx0,t0,µ0

j(n) . Let k be such that qk ∈ U1, and for each 2 ≤ i ≤ r let l(i) be such

that ql(i) ∈ Ui. Then for each 2 ≤ i ≤ r, since (x0, t0, µ0) /∈ Bj(n)
k l(i) and Cn is a

continuum in γ−1
0 (Sx0,t0,µ0

j(n) ) containing qk and ql(i), there exists a continuum Ki

containing qk and ql(i) which is mapped by γ0 into the interior of the strip Sx0,t0,µ0

j(n) .

Let C ′n = U1 ∪
⋃

2≤i≤r(Ui ∪Ki). Then C ′n is a continuum which is mapped by γ0

into the interior of the strip Sx0,t0,µ0

j(n) and such that Cn ∩ γ−1
0 (S′j) ⊆ C ′n ⊂ Cn.

Having done this for each 0 ≤ n ≤ N , let δ > 0 be small enough and let

ξ0 > 0 be small enough so that if |x − x0| < δ, |t − t0| < δ, |µ − µ0| < δ, and

dsup(γ, γ0) < ξ0, then for each 0 ≤ n ≤ N we have:

(i) γ(C ′n) is contained in the interior of the strip Sx,t,µj(n) ,

(ii) ‖γ(C ′n)‖t < ‖γ0(C ′n)‖t0 + ε
4 , and

(iii) if A ⊂ X with γ0(A) contained in between two consecutive narrowed

strips S′j and S′j+1, then ‖γ(A)‖t < ε
8 .

Note that if 0 ≤ n ≤ N and if C is the component of γ−1(Sx,t,µj(n) ) containing

C ′n, then C consists of C ′n plus some part which γ0 maps in between S′j(n) and

S′j(n)−1, and some part which γ0 maps in between S′j(n) and S′j(n)+1. Therefore,

by (ii) and (iii) we have

‖γ(C)‖t < ‖γ0(C ′n)‖t0 + ε
4 + 2 · ε8 = ‖γ0(C ′n)‖t0 + ε

2 .
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Every other component C̃ of γ−1(Sx,t,µj ) satisfies ‖γ(C̃)‖t < ε
8 by (iii). It follows

that

Lx,t,µ(γ) <
N∑
n=0

‖γ0(C ′n)‖t0 + ε
2

2n
+

∞∑
n=N+1

ε/8

2n

<
N∑
n=0

‖γ0(C ′n)‖t0
2n

+ ε

≤ Lx0,t0,µ0(γ0) + ε.

�(Claim 3.4.2)

We are now ready to show that len(γ) < β for γ sufficiently close to γ0.

Recalling that Lx,t,µ(γ0) < 2µ ≤ 2, choose a step function ψ = 2−
∑k
i=0 ci χAi ,

where the Ai ⊂ [0, 1]× [0, 1]× (0, 1] are pairwise disjoint compact sets and χAi is

the characteristic function of the set Ai, with

Lx,t,µ(γ0) ≤ ψ(x, t, µ) for all x, t, µ

and ∫ 1

0

∫ 1

0

∫ 1

0

ψ(x, t, µ) dx dt dµ < β.

Let η = β −
∫ 1

0

∫ 1

0

∫ 1

0
ψ dx dt dµ > 0. By Claim 3.4.1, we can find a compact set

Ω ⊂ ([0, 1]× [0, 1]× (0, 1]) rB of measure ≥ 1− η
4 .

Using Claim 3.4.2 and compactness of the sets Ai ∩ Ω, we can find ξi small

enough so that if dsup(γ, γ0) < ξi, then Lx,t,µ(γ) < ψ(x, t, µ) + η
4 for all (x, t, µ) ∈

Ai ∩ Ω. Letting ξ = mini ξi, it follows that if dsup(γ, γ0) < ξ, then

len(γ) =

∫ 1

0

∫ 1

0

∫ 1

0

Lx,t,µ(γ) dx dt dµ

≤
∫∫∫

Ω

Lx,t,µ(γ) dx dt dµ+ 2 · η4

≤
∫∫∫

Ω

(
ψ(x, t, µ) + η

4

)
dx dt dµ+ 2 · η4

≤ (β − η) + η
4 + 2 · η4

< β.

�
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It follows from Proposition 3.4 that for any path γ0 : [0, 1]→ Rn and any ε > 0,

there exists δ > 0 such that if dsup(γ, γ0) < δ, then |len(γ�[0,t])− len(γ0�[0,t])| < ε

for all t ∈ [0, 1].

To see this, note that by Proposition 3.4, for any t0 ∈ [0, 1], there is a small

open interval J0 around t0 and δ0 > 0 small enough such that if dsup(γ, γ0) < δ0,

then |len(γ�[0,t])− len(γ0�[0,t0])| < ε
2 for any t ∈ J0. Take a finite cover of [0, 1] by

such intervals J0 and take δ to be the minimum of the corresponding numbers δ0.

Suppose dsup(γ, γ0) < δ. Given any t ∈ [0, 1], take one of the intervals J0 from

the cover such that t ∈ J0. Then we have

|len(γ�[0,t])− len(γ0�[0,t])| ≤ |len(γ�[0,t])− len(γ0�[0,t0])|+ |len(γ0�[0,t])− len(γ0�[0,t0])|

<
ε

2
+
ε

2
= ε.

A consequence of Proposition 3.4 is that for a path γ : [a, b] → Rn, len(γ) is

small if and only if diam(γ([a, b])) is small. This will suffice for our purposes, but

in fact one can argue from the definition of len = lenn that there are constants

c1(n), c2(n) > 0 such that:

(∗∗): If γ : [a, b]→ Rn is a path with diam(γ([a, b])) ≤ 1
2 , then

c1(n) · diam(γ([a, b])) ≤ lenn(γ) ≤ c2(n) · diam(γ([a, b])).

4. Parameterization by len

Let n ≥ 2 be fixed. As before, all results in this section will be stated for

len = lenn, and proofs will be given for the case n = 2.

In this section, we work with C[0, 1] = C([0, 1],Rn), the set of all paths γ :

[0, 1]→ Rn. This is a metric space with the usual metric dsup(γ1, γ2) = supt∈[0,1] |γ1(t)−
γ2(t)|.

Definition 1. Given two paths γ1, γ2 : [0, 1] → Rn, we say that γ2 is a repa-

rameterization of γ1 if there are non-decreasing onto maps m1,m2 : [0, 1]→ [0, 1]

such that γi is constant on each fiber m−1
i (s), s ∈ [0, 1], for both i = 1, 2, and

γ1 ◦m−1
1 = γ2 ◦m−1

2 . In this case, we write γ1 ≈ γ2.

Thus γ1 ≈ γ2 if they both parameterize the same path, with the same ori-

entation, where we disregard any constant sections. Note that if γ1 ≈ γ2, then

len(γ1) = len(γ2). It is easy to see that ≈ is an equivalence relation on C[0, 1].

Denote by [γ] the equivalence class of γ with respect to ≈.
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Let Π denote the collection of all equivalence classes [γ]. We define a metric ρ

on Π as follows:

ρ([γ1], [γ2]) = inf{ sup
t∈[0,1]

|λ1(t)− λ2(t)| : λ1 ∈ [γ1], λ2 ∈ [γ2]}.

In fact, by reparameterizing, this can be expressed as ρ([γ1], [γ2]) = inf{supt∈[0,1] |λ1(t)−
γ2(t)| : λ1 ∈ [γ1]}. It is easy to show that ρ is a metric, and that the resultant

metric topology on Π coincides with the quotient topology induced from C[0, 1].

One can deduce from Propositions 3.2(i) and 3.4 that given a path γ : [0, 1]→
Rn, the function [0, 1] → [0, 1) defined by t 7→ len(γ�[0,t]) is continuous and non-

decreasing. As a result, we can make the following definition:

Definition 2. The standard parameterization γ̃ : [0, 1] → Rn of γ, also called

the parameterization of γ by len, is defined as follows. If γ is constant, then

γ̃ = γ. Otherwise, given s ∈ [0, 1], γ̃(s) = γ(t), where t ∈ [0, 1] is such that

len(γ�[0,t]) = s · len(γ).

Note that this value t may not be unique, but by Proposition 3.2(i), the point

γ(t) is uniquely determined by s. One can easily check that γ̃ is a path (i.e. is a

continuous function), γ̃ ≈ γ, and len(γ̃�[0,s]) = s·len(γ) for any s ∈ [0, 1]. However,

note that in general len(γ̃�[s1,s2]) 6= (s2 − s1)len(γ) when 0 < s1 < s2 ≤ 1.

For the Euclidean path length, such a parameterization is only available for

rectifiable paths, i.e. those paths with finite Euclidean length.

Observe that the standard parameterization is unique within each equivalence

class of paths, in the sense that if γ1 ≈ γ2, then γ̃1 = γ̃2.

Consider the standard parameterization as a function Π→ C[0, 1] which maps

each class [γ] to the unique standard parameterization γ̃ ∈ [γ]. Denote by Π̃ the

range of this function; that is, Π̃ is the set of all standard parameterizations of

paths [0, 1]→ Rn.

Theorem 4.1. Π̃ is a closed subset of C[0, 1], and the function [γ] 7→ γ̃ is a

homeomorphism from Π to Π̃.

Proof. Suppose γ ∈ C[0, 1] r Π̃, which means that len(γ�[0,s]) 6= s · len(γ) for

some s ∈ [0, 1]. Then for all λ ∈ C[0, 1] which are uniformly close to γ, we have

that λ�[0,s] is uniformly close to γ�[0,s] as well, hence by Proposition 3.4 we have

that len(λ) and len(λ�[0,s]) are close to len(γ) and len(γ�[0,s]), respectively. It

follows that len(λ�[0,s]) 6= s · len(λ) if λ is sufficiently close to γ, hence λ /∈ Π̃.

Thus C[0, 1] r Π̃ is open, and so Π̃ is closed.
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It is clear that [γ] 7→ γ̃ is one-to-one, and that the inverse of this map is

continuous, by definition of the metric ρ on Π (indeed the map γ̃ 7→ [γ̃] is Lipschitz

continuous with constant 1).

To see that [γ] 7→ γ̃ is continuous, suppose [γi] is a sequence in Π converging

to [γ∞] ∈ Π (in the metric ρ on Π). By changing representatives if necessary, we

may assume that γi → γ∞ uniformly. By Proposition 3.4 (and the statements

immediately after), it follows that for every ε > 0 there exists n0 such that for all

i ≥ n0 and all t ∈ [0, 1], |len(γi�[0,t])− len(γ∞�[0,t])| < ε.

Fix ε > 0. Let δ > 0 be small enough so that for all i ≥ 1 and all t1, t2 ∈ [0, 1],

if |len(γi�[0,t1]) − len(γi�[0,t2])| < δ then diam(γi([t1, t2])) < ε
2 . Let n0 be large

enough so that for all i ≥ n0 and t ∈ [0, t], |len(γi�[0,t]) − len(γ∞�[0,t])| < δ
2 and

|γi(t)− γ∞(t)| < ε
2 .

Given s ∈ [0, 1] and i ≥ n0, let ti, t∞ ∈ [0, 1] be such that len(γi�[0,ti]) =

s · len(γi) and len(γ∞�[0,t∞]) = s · len(γ∞), so that γ̃i(s) = γi(ti) and γ̃∞(s) =

γ∞(t∞). We have

|len(γi�[0,ti])− len(γi�[0,t∞])| ≤ |len(γi�[0,ti])− len(γ∞�[0,t∞])|+ |len(γ∞�[0,t∞])− len(γi�[0,t∞])|
= |s · len(γi)− s · len(γ∞)|+ |len(γ∞�[0,t∞])− len(γi�[0,t∞])|

≤ s · δ
2

+
δ

2
≤ δ.

By the definition of δ, it follows that diam(γi([ti, t∞])) < ε
2 . This implies

|γ̃i(s)− γ̃∞(s)| = |γi(ti)− γ∞(t∞)|
≤ |γi(ti)− γi(t∞)|+ |γi(t∞)− γ∞(t∞)|

≤ ε

2
+
ε

2
= ε.

Thus γ̃i → γ̃∞ uniformly. Therefore, [γ] 7→ γ̃ is continuous. �

Given a family F ⊆ Π, define F̃ = {γ̃ : [γ] ∈ F}.

Corollary 4.2. A set F ⊆ Π is closed (respectively, compact) if and only if F̃ is

a closed (respectively, compact) subset of C[0, 1].

A classical result from metric geometry (see e.g. [3]) is that if L > 0 and

〈γm〉∞m=1 is a sequence of paths in a bounded set, with Euclidean path lengths

≤ L, and if γ̃m : [0, 1] → Rn is the parameterization of γm by Euclidean path

length (with domain linearly rescaled to [0, 1]), then the sequence 〈γ̃m〉∞m=1 has

a subsequence which converges uniformly to a path of finite Euclidean length.
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This reparameterization is necessary, as standard examples show (consider e.g.

γm : [0, 1]→ [0, 1] defined by γm(s) = sm).

We will now prove a version of this result for the function len, where the uniform

bound on length assumption is replaced by a weaker restriction on the number

of long sections of the paths. Moreover, we prove that this condition is in fact a

characterization of those families of paths which can be parameterized so as to be

equicontinuous. A similar result is proved in [12] using Morse’s length function.

Theorem 4.3. Let F ⊆ Π. Suppose that

(†): for each ε > 0, there is a positive integer N such that

for every [γ] ∈ F , there is no collection of more than N pairwise

disjoint subintervals of [0, 1] whose images under γ have diameters

≥ ε.
Then the family F̃ = {γ̃ : [γ] ∈ F} is equicontinuous.

Conversely, if an equicontinuous family can be formed by choosing parameter-

izations of all the paths in F , then F satisfies the property (†).

Proof. We treat the case n = 2. As usual, we identify R2 with C.

Fix ε > 0. Let N ≥ 1 be such that for every γ with [γ] ∈ F , there is no

collection of more than N pairwise disjoint subintervals of [0, 1] whose images

under γ have diameters ≥ ε
16 . Let δ = ε2

2N+7·N .

Suppose for a contradiction that for some [γ] ∈ F there exist 0 ≤ s1 < s2 ≤ 1

with s2 − s1 < δ and ρ(γ̃(s1), γ̃(s2)) ≥ ε. Note that

len(γ̃�[0,s2]) = s2 · len(γ)

< s1 · len(γ) + δ · len(γ)

< len(γ̃�[0,s1]) + δ.

Let t0 ∈ [0, 1] be such that the line {ret0πi : r ∈ R} is orthogonal to the segment

γ̃(s1)γ̃(s2). Define W ⊂ [0, 1]× [0, 1]× (0, 1] by

W = [0, 1]× [t0 − 1
4 , t0 + 1

4 ]× [ ε8 ,
ε
4 ],

where the interval [t0 − 1
4 , t0 + 1

4 ] should be considered reduced mod 1 (i.e. it

represents the set of all t ∈ [0, 1] such that one of |t − t0|, |t − (t0 − 1)|, or

|t − (t0 + 1)| is ≤ 1
4 ). Note that for any (x, t, µ) ∈ W , any strip Sx,t,µj (j ∈ Z)

covers less than half of the line segment γ̃(s1)γ̃(s2).

Consider a fixed x, t, µ ∈W . Let C0, . . . , CN and D0, . . . , DN be the first N+1

components of (γ̃�[0,s1])
−1(Sx,t,µj ) and (γ̃�[0,s2])

−1(Sx,t,µj ) (j ∈ Z), respectively,

ordered so that ‖γ̃(Ci)‖t ≥ ‖γ̃(Ci+1)‖t and ‖γ̃(Di)‖t ≥ ‖γ̃(Di+1)‖t for each
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i = 0, 1, . . . , N − 1. So
∑N
i=0

‖γ̃(Ci)‖t
2i and

∑N
i=0

‖γ̃(Di)‖t
2i are the first N + 1 terms

of the sums Lx,t,µ(γ̃�[0,s1]) and Lx,t,µ(γ̃�[0,s2]), respectively.

Note that

(1) ‖γ̃(Di)‖t ≥ ‖γ̃(Ci)‖t for each i = 0, 1, . . . , N.

Moreover, there is some j ∈ {0, 1, . . . , N − 1} such that Dj ⊂ (s1, s2) and

‖γ̃(Dj)‖t = µ. Since such a component is absent in the list C0, . . . , CN , we

have ‖γ̃(Di+1)‖t ≥ ‖γ̃(Ci)‖t for each i = j, . . . , N − 1.

Now ‖γ̃(Dj)‖t = µ ≥ ε
8 , and ‖γ̃(DN )‖t < ε

16 by choice of N , so there must be

some i between j and N − 1 such that ‖γ̃(Di)‖t > ‖γ̃(Di+1)‖t + ε
8N . Hence

(2) ‖γ̃(Di)‖t > ‖γ̃(Ci)‖t +
ε

8N
.

It follows from (1) and (2) that

Lx,t,µ(γ̃�[0,s2]) > Lx,t,µ(γ̃�[0,s1]) +
ε/8N

2i

> Lx,t,µ(γ̃�[0,s1]) +
ε/8N

2N

= Lx,t,µ(γ̃�[0,s1]) +
ε

2N+3 ·N

Noting that the measure of W is 1 · 1
2 · (

ε
4 −

ε
8 ) = ε

16 , it follows that

len(γ̃�[0,s2]) ≥ len(γ̃�[0,s1]) +
ε

2N+3 ·N
· ε

16
= len(γ̃�[0,s1]) + δ.

But this contradicts the assumption that s2 − s1 < δ.

Thus for every [γ] ∈ F , if 0 ≤ s1 < s2 ≤ 1 with s2−s1 < δ, then ρ(γ̃(s1), γ̃(s2)) <

ε.

For the converse, suppose there is some ε > 0 such that for any positive integer

N , there exists a path γN with [γN ] ∈ F and a collection of N disjoint subintervals

of [0, 1] whose images under γN have diameters ≥ ε. Note that at least one of

these subintervals must have width ≤ 1
N ; denote it by JN .

Let s ∈ [0, 1] be an accumulation point of the centers of the intervals JN ,

N = 1, 2, 3, . . .. Then for any δ > 0, there is some N such that JN ⊂ (s −
δ, s + δ), and hence γN ((s− δ, s + δ)) has diameter ≥ ε. Thus we cannot choose

parameterizations of the paths in F to obtain an equicontinuous family. �
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Theorem 4.3 implies in particular that if it is possible to parameterize the paths

of a family F to obtain an equicontinuous family, then the standard parameteri-

zation will accomplish this.

Theorem 4.4. Let F ⊆ Π. Then F is compact if and only if the following two

properties are satisfied:

(1) the set {γ(0) : [γ] ∈ F} is bounded; and

(2) F satisfies the property (†) (from Theorem 4.3).

In particular, if F satisfies properties (1) and (2), then the closure of F̃ in

C[0, 1] is compact.

Proof. By the Arzelà-Ascoli theorem [5, Theorem 4.43], the closure of F̃ is

compact if and only if F̃ is equicontinuous and pointwise bounded, i.e. for every

t ∈ [0, 1] the set {γ̃(t) : γ̃ ∈ F̃} is bounded. By Theorem 4.3, equicontinuity of F̃
is equivalent to F satisfying the property (†). Moreover, in the presence of (†),
the condition (1) is clearly equivalent to F̃ being pointwise bounded.

Finally, by Theorem 4.1, F is compact if and only if the closure of F̃ is compact.

�

5. Midpoint parameterization

One drawback to the standard parameterization of a path, introduced in the

previous section, is that it does not commute with reversal of orientation of a path.

That is, if we define r : [0, 1]→ [0, 1] by r(t) = 1− t, then for a non-constant path

γ, the standard parameterization of γ ◦ r is not the same as γ̃ ◦ r.
In this section we introduce a second parameterization of a path and consider

some applications, including a way to canonically define a homeomorphism be-

tween two arcs (or even between two families of arcs) once the endpoints have

been assigned.

Definition 3. Given a path γ, the midpoint parameterization γ∗ : [0, 1] → C is

defined as follows. Let m ∈ (0, 1) be such that len(γ�[0,m]) = len(γ�[m,1]) = L.

Define γ1, γ2 : [0, 1]→ C by γ(t) = γ1(m−mt) and γ2(t) = γ(m+ (1−m)t), and

consider their standard parameterizations γ̃1, γ̃2 : [0, 1]→ C. Then

γ∗(t) =

{
γ̃1(1− 2t) if 0 ≤ t ≤ 1

2

γ̃2(2t− 1) if 1
2 < t ≤ 1

Observe that γ∗ ◦ r = (γ ◦ r)∗.
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As with the standard parameterization, the midpoint parameterization is unique

within each equivalence class of paths, in the sense that if γ1 ≈ γ2, then γ∗1 = γ∗2 .

We leave it to the reader to see that the following analogue of Theorem

4.1 also holds (where the standard parameterization is replaced by the mid-

point paramterization). We denote by Π∗ the set of all midpoint parameteri-

zations of paths [0, 1] → Rn. Recall that the topology on Π is given by the

metric ρ and that Π∗ is a subspace of C[0, 1] = C([0, 1],Rn) with the metric

dsup(γ1, γ2) = supt∈[0,1] |γ1(t)− γ2(t)|.

Theorem 5.1. Π∗ is a closed subset of C[0, 1], and the function [γ] 7→ γ∗ is a

homeomorphism from Π to Π∗.

An arc is a space A which is homeomorphic to the interval [0, 1]. By a

parametrization of an arc A we mean a homeomorphism γ : [0, 1]→ A.

Given two arcs A1 and A2, and a bijection f between their endpoint sets, we

can extend f to a canonical homeomorphism F : A1 → A2 as follows. Choose

a parameterization γ1 of A1, and a parameterization γ2 of A2 such that γ2(0) =

f(γ1(0)) and γ2(1) = f(γ1(1)). Then given x ∈ A1, define F (x) = γ∗2 ((γ∗1 )−1(x)).

Observe that F is independent of the choice of orientation of γ1, since γ∗1 ◦ r =

(γ1 ◦ r)∗ and γ∗2 ◦ r = (γ2 ◦ r)∗ (hence the word “canonical”).

In the next result, we show that this canonical homeomorphism has some useful

convergence properties.

The following definition is inspired by the concept of a lamination, which ap-

pears in dynamics (see e.g. [13]) and plane topology (see e.g. [11]). In those

contexts one defines a space X by starting with a smaller “base” space, which we

call B(X) here, then adding a family of arcs with endpoints attached to B(X),

with disjoint interiors and which converge nicely to each other.

Definition 4. A laminated space is a space X ⊂ Rn together with a closed (in

X) subspace B(X) and a collection A(X) of arcs in X, such that:

(1) X = B(X) ∪
⋃
A(X);

(2) each arc in A(X) has endpoints in B(X), but is otherwise disjoint from

B(X);

(3) any two distinct arcs in A(X) meet at most in one common endpoint;

(4) given a sequence 〈Ai〉∞i=1 of arcs in A(X):

(a) if diamAi → 0, then the set of accumulation points in Rn of
⋃
iAi is

disjoint from X rB(X);
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(b) otherwise, there is an arc A∞ ∈ A(X), a subsequence 〈Aij 〉∞j=1 and

homeomorphisms hj : A∞ → Aij such that dsup(hj , idA∞) → 0 as

j →∞.

Note that the conclusion in condition (4)(b) is equivalent to the statement that

A∞∪
⋃
j Aij is homeomorphic to the product of [0, 1] and the convergent sequence

{0} ∪ { 1
n : n = 1, 2, . . .}.

Theorem 5.2. Let X and Y be laminated spaces, and let f : B(X)→ B(Y ) be a

continuous function. Suppose f maps the endpoints of any arc in A(X) onto the

set of endpoints of some arc in A(Y ). Then there exists a continuous extension

F : X → Y of f which is one-to-one on each arc in A(X).

Moreover, if additionally f is a homeomorphism and f−1 maps the endpoints

of any arc in A(Y ) to the endpoints of some arc in A(X), then F is a homeo-

morphism.

Proof. Let P = {[γ] : γ parameterizes some arc in A(X)} ⊂ Π and Q = {[λ] : λ

parameterizes some arc in A(Y )} ⊂ Π. Define the function g : P → Q by

g([γ]) = [λ] if f(γ(0)) = λ(0) and f(γ(1)) = λ(1).

Claim 5.2.1. g is continuous.

Proof of Claim 5.2.1. Suppose that 〈[γi]〉∞i=1 is a sequence of elements of P
converging to [γ∞] ∈ P. By continuity of f , limi→∞ f(γi(0)) = f(γ∞(0)) and

limi→∞ f(γi(1)) = f(γ∞(1)), and it follows from property (4) (for Y ) that limi→∞ g([γi]) =

g([γ∞]). �(Claim 5.2.1)

Define F : X → Y as follows. Given A ∈ A(X), choose γ parameterizing

A. Let γ∗ be the midpoint parameterization of γ, and let λ∗ be the midpoint

parameterization of g([γ]). Now for each x ∈ A, define F (x) = λ∗((γ∗)−1(x)).

Observe that the definition of F on an arc A ∈ A(X) does not depend on the

choice of orientation of the parameterization γ of A, because γ∗ ◦ r = (γ ◦ r)∗,
λ∗ ◦ r = (λ ◦ r)∗, and g([γ ◦ r]) = [λ ◦ r]. Thus F is well-defined on each arc A.

Moreover, if x ∈ E(A(X)), then F (x) = f(x). Thus F is well-defined on X (since

two arcs in A(X) meet at most in an endpoint), and extends f . It is also clear

that F is one-to-one on any arc in A(X) since γ∗ and λ∗ are homeomorphisms.

Claim 5.2.2. F is continuous.

Proof of Claim 5.2.2. Suppose 〈xi〉∞i=1 is a sequence in X converging to x∞ ∈
X. We will show that f(xi)→ f(x∞). By continuity of f and closedness of B(X)
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in X, we may assume that the points xi belong to X r B(X). For each i, let

Ai ∈ A(X) be the arc containing xi, and let Qi = F (Ai) ∈ A(Y ).

If diam(Ai) → 0, then by property (4) x∞ is a point in B(X). For each i, let

x′i be an endpoint of Ai. Then x′i → x∞, so by continuity of f , f(x′i) → f(x∞).

Thus both endpoints of the arcs Qi converge to f(x∞), so again by (4) (for Y )

we have diam(Qi)→ 0, and so f(xi)→ f(x∞).

Otherwise, by property (4) we may assume (by taking a subsequence of xi),

that there exists an arc A∞ ∈ A(X) and homeomorphisms hi : A∞ → Ai such

that dsup(hi, idA∞) → 0. Let Q∞ = F (A∞) ∈ A(Y ). For each n ∈ N ∪ {∞},
let γn parameterize An, and let g([γn]) = [λn], so that λn parameterizes Qn.

We may assume (by choosing appropriate orientations) that γi(0) → γ∞(0) and

γi(1)→ γ∞(1). Then [γi]→ [γ∞], and by continuity of g, [λi]→ [λ∞].

By Theorem 5.1, we have γ∗i → γ∗∞ and λ∗i → λ∗∞ uniformly. For each n ∈
N ∪ {∞}, let tn ∈ [0, 1] be such that γn(tn) = xn. Then by uniform convergence

and continuity, ti → t∞, and λ∗i (ti)→ λ∗∞(t∞). Thus

F (xi) = λ∗i ((γ
∗
i )−1(xi)) = λ∗i (ti)→ λ∗∞(t∞) = F (x∞)

as needed. �(Claim 5.2.2)

If, in addition, f is a homeomorphism and f−1 also maps the endpoints of any

arc in A(Y ) to the endpoints of some arc in A(X), then f−1 extends in the same

way to a continuous function Y → X which is the inverse of F . Thus F is a

homeomorphism. �

For a fixed laminated space X ⊂ Rn, let

M = {(Y, f) : Y ⊂ Rn is a bounded laminated space, and

f : B(X)→ B(Y ) satisfies the hypotheses of Theorem 5.2}.

Theorem 5.2 affords an operator Θ from M to the set Cb(X,Rn) of bounded

continuous functions from X into Rn, where if F = Θ(Y, f) then F (X) ⊂ Y and

F �B(X) = f .

We next prove that this operator is continuous, in the sense that if Y1 and Y2

are nearby laminated spaces, and if f1 : B(X)→ B(Y1) and f2 : B(X)→ B(Y2)

are close functions as in Theorem 5.2, then the extensions F1 : X → Y1 and

F2 : X → Y2 are close as well. To make this precise, we define a metric d on M

below. Let (Y1, f1), (Y2, f2) ∈M .

First, given A ∈ A(X), let γ be a parameterization of A, and for i = 1, 2,

let λi parameterize the corresponding arc in A(Yi) with λi(0) = fi(γ(0)) and
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λi(1) = fi(γ(1)). Define sA(f1, f2) = ρ([λ1], [λ2]). Clearly sA(f1, f2) does not

depend on the choice of parameterizations γ, λ1, and λ2.

Now define

d ((Y1, f1), (Y2, f2)) = dsup(f1, f2) + sup{sA(f1, f2) : A ∈ A(X)}.

It is straightforward to verify that d is a metric on M . On Cb(X,Rn), we use the

metric dsup.

Theorem 5.3. Let X ⊂ Rn be a laminated space, and let M be as defined above.

The operator Θ : M → Cb(X,Rn) given by Theorem 5.2 is continuous. Moreover,

Θ(X, idB(X)) = idX .

Proof. Let (Y0, f0) ∈M , and let F0 = Θ(Y0, f0) ∈ Cb(X,Rn). Let ε > 0.

Since Y0 is bounded, by the definition of a laminated space, the set {[λ] : λ

parameterizes an arc Q0 ∈ A(Y0) with diam(Q0) ≥ ε
2} is compact in Π. Therefore,

by Theorem 5.1, there exists δ > 0 such that if λ0 parameterizes an arc in A(Y0)

of diameter ≥ ε
2 and if λ is any path with ρ([λ0], [λ]) < δ, then dsup(λ∗0, λ

∗) < ε.

We may assume that δ ≤ ε
2 .

Observe that if diam(λ([0, 1])) < ε
2 and ρ([λ0], [λ]) < ε

2 , then every point in

the range of λ0 is within ε of each point in the range of λ, hence dsup(λ∗0, λ
∗) < ε

as well. Thus in fact for any arc Q0 ∈ A(Y0), if λ0 parameterizes Q0 and if λ is

any path with ρ([λ0], [λ]) < δ, then dsup(λ∗0, λ
∗) < ε.

Let (Y, f) ∈M with d((Y0, f0), (Y, f)) < δ, and let F = Θ(Y, f).

Clearly, by definition of d, for any point x ∈ B(X) we have |f1(x)−f2(x)| < ε.

Thus to confirm dsup(F1, F2) < ε, we need only consider points in
⋃
A(X).

Let A ∈ A(X), let γ parameterize A, and let λ0 and λ parameterize the corre-

sponding arcsQ0 ∈ A(Y0) andQ ∈ A(Y ) with λ0(0) = f0(γ(0)), λ0(1) = f0(γ(1)),

λ(0) = f(γ(0)), and λ(1) = f(γ(1)). By definition of d, we have ρ([λ0], [λ]) < δ,

hence by the choice of δ, dsup(λ∗0, λ
∗) < ε. Moreover, by the definition of F and F0

from Theorem 5.2, dsup(F0�A, F �A) = dsup(λ∗0, λ
∗). Thus since A was arbitrary,

we have dsup(F0, F ) < ε.

The second part of this Theorem is clear from the definition of Θ. �

6. Generalized paths

To see that the assumption that X is a dendrite in Proposition 3.2 is necessary,

consider the identity function idD on the unit disk D ⊂ C with boundary circle

S1. It is not difficult to see that len(idD) < len(idS1).

Moreover, consider the embedding O of the circle S1 depicted in Figure 1. Let

γ : [0, 1] → O be a path which goes exactly once around the circle O, starting
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Figure 1. A particular embedding of the circle in the plane.

and ending at the indicated point p, and otherwise one-to-one. We claim that

len(γ) < len(idO), which can be argued as follows:

Given a strip Sx,t,µj containing the point p, the component C of O ∩ Sx,t,µj

containing p corresponds to two components [0, c] and [d, 1] of γ−1(Sx,t,µj ). For

nearly horizontal strips (i.e. for t values close to 0 or 1) the sets proj⊥t (γ([0, c]))

and proj⊥t (γ([d, 1])) may overlap; however, because of the oscillation up and down

on the left and right sides of the circle O, for such parameters x, t, µ there are

many other components of [0, 1]∩γ−1(Sx,t,µj ) and of O∩Sx,t,µj (j ∈ Z) with large

projections, hence the weighted sums Lx,t,µ(idO) and Lx,t,µ(γ) will differ only very

slightly. For all other values of x, t, µ, the sets proj⊥t (γ([0, c])) and proj⊥t (γ([d, 1]))

share only the point proj⊥t (p), and one of them will be added with a smaller weight

in the sum Lx,t,µ(γ) than that of C in Lx,t,µ(idO). In particular, this is so for

values of x, t, µ for which the strips Sx,t,µj are wide and nearly vertical, and for

these values resulting difference between Lx,t,µ(idO) and Lx,t,µ(γ) will be more

pronounced due to the small number of terms in these sums. Thus, with an

appropriate amount of oscillation, we obtain that len(γ) < len(idO).

Now if we let A be a very small arc in O containing the point p and such that

len(idA) < len(idO)− len(γ), and let A′ = O rA, then it follows that len(idO) >

len(idA) + len(idA′).
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