ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | 978-1-7281-7605-5/20/$31.00 ©2021 IEEE | DOI: 10.1109/ICASSP39728.2021.9413853

COUNT SKETCH WITH ZERO CHECKING: EFFICIENT RECOVERY OF HEAVY
COMPONENTS

Guangiang Zhou

Zhi Tian

Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030, USA

ABSTRACT

The problem of recovering heavy components of a high-dimensional
vector from compressed data is of great interest in broad applica-
tions, such as feature extraction under scarce computing memory
and distributed learning under limited bandwidth. Recently, a com-
pression algorithm called count sketch has gained wide popularity
to recover heavy components in various fields. In this paper, we
carefully analyze count sketch and illustrate that its default recovery
method, namely median filtering, has a distinct error pattern of re-
porting false positives. To counteract this error pattern, we propose
a new scheme called zero checking which adopts a two-step recov-
ery approach to improve the probability of detecting false positives.
Our proposed technique builds on rigorous error analysis, which en-
ables us to optimize the selection of a key design parameter for max-
imum performance gain. The empirical results show that our scheme
achieves better recovery accuracy than median filtering and requires
less samples to accurately recover heavy components.

Index Terms— Count sketch, heavy components recovery, me-
dian filtering, zero checking, false positives

1. INTRODUCTION

In the era of big data, the dimensions of both learning models and
training data are growing at a staggering pace. Given limited re-
sources, direct processing of these high-dimensional signals is costly
and even impossible. Usually, these signals have to be compressed
into a low-dimensional form that makes the relevant tasks manage-
able. The tenet is that, the most important information of a high-
dimensional vector is typically encrypted in a few heavy components
that stand out in magnitude, while the remaining components carry
very little information. There is great enthusiasm from various fields
in studying the heavy components recovery problem, which is stated
as follows.

Assuming vector x € R? is composed of k < d heavy compo-
nents with prominent magnitudes and d — k non-heavy components
that are close to zero, we want to find a nonadaptive compressing
matrix A € R™*? such that the heavy components of x can be
recovered from Ax.

Linear compression has been extensively explored in several re-
search areas, including compressive sensing, data stream computing,
and combinatorial group testing [2]. In theory, all algorithms de-
signed to recover signals from linear samples could be applied to re-
cover heavy components. However, we impose two extra constraints
for practical concerns. First, the measurement matrix A should be
sparse since the time needed to compute Ax is proportional to the
number of nonzeros in A. This excludes some popular dense matri-
ces such as Gaussian matrices. Second, considering that the vector’s

This work was partly supported by the US NSF grants #1527396,
#1741338 and #1939553.

978-1-7281-7605-5/21/$31.00 ©2021 IEEE 5120

dimension could be in the order of millions, we enforce linear re-
covery to alleviate computational burden, thus excluding nonlinear
algorithms such as /; minimization.

Count sketch [1], which satisfies both constraints, has been
widely applied for heavy components recovery in a variety of ap-
plications such as distributed learning [3] and feature selection [4],
among others [5-7]. Despite extensive implementations in recent
years, the count sketch algorithm has rarely been examined or ques-
tioned. In this work, we carefully analyze count sketch and find that
its default recovery scheme, median filtering, has a strong tendency
to produce false positives, which refer to the type of recovery errors
that misidentify a non-heavy component as heavy. This issue often
causes the recovered signal to be useless and hence prompts prac-
titioners to use additional mechanisms to mitigate it. For example,
in the application of distributed learning, [3] keeps the top Pk el-
ements of the recovered vector and requests the original values of
these elements. As a result, the false positives would not increase
the recovery error as long as they are no more than (P — 1)k. How-
ever, without recognizing the specific error pattern of false positives,
the method implemented in [3] is more of an empirical amendment
than a theoretically-sound solution. Besides, such technique incurs
additional costs to the system and may not be applicable to a more
general setting where there is no access to the true values of the
compressed signal. In this paper, we first demonstrate the issue of
false positives specific to median filtering and then introduce zero
checking, a new recovery scheme that is designed to effectively
mitigate false positives via a two-step approach. We empirically
show that zero checking outperforms median filtering in terms of
lower overall error rate and lower sample requirement for successful
recovery. To the best of our knowledge, this work is the first one to
demonstrate the unique error pattern of median filtering and provide
comparable scheme to address such weakness.

The rest of the paper is organized as follows. Section 2 presents
the prior work of count sketch. Section 3 analyzes count sketch and
illustrates its false positive phenomenon. Section 4 proposes the new
recovery scheme of zero checking. Section 5 draws the conclusion.

2. COUNT SKETCH

Count sketch is usually depicted using the concepts of hash function
and hash table within the computer science community [1]. Alter-
natively, thanks to its linear nature, count sketch can be explained
using linear compression as follows.

2.1. Initialization

Count sketch seeks to collect ¢ parallel observations of the data vec-
tor x € R to enable recovery, with ¢ being an odd number. Concep-
tually, this process starts with generating ¢ random sampling matri-
ces A1,..., A, Each A; € RP*? constructs its columns indepen-

ICASSP 2021

Authorized licensed use limited to: George Mason University. Downloaded on July 09,2021 at 16:33:20 UTC from IEEE Xplore. Restrictions apply.

dently obeying the rules: 1) each column contains only one nonzero;
2) the single nonzero is randomly drawn from {1, -1} and is posi-
tioned at each row with equal probability 1/b. It is assumed that
Ay, ..., A are shared between the encoder and the decoder.

2.2. Encoding
Given data vector X = [21,...,24]", obtain y; € R via
yi=A;x j=1,...,t &)

Altogether ¢ sample vectors yi, . . .
sample sizem =t - b.

, ¥+ are acquired with a total

2.3. Decoding

Given sample vectors yi, ...
from each y; via

, ¥+, recover an estimated vector of x

' =Aly; j=1,...,t)

In total, ¢ independent estimated vectors x', ..., x" are avail-

able. To estimate data component x;, we extract the corresponding
estimate x from each x7 and form a set of ¢ estimates {z},...,zi},
which is referred to as the returned list for ; throughout. The final
estimate of x; is given by the median of its returned list, i.e.,

#; = Median{z;,...,z{} i=1,...,d. 3)
We refer to (3) as “median filtering” in this paper.
It is worth noting that both the encoding in (1) and decoding in
(2) and (3) are conducted by linear operations. Further, (2) and (3)
can be implemented by very simple hash functions because of the
highly sparse nature of samplers A ;.

3. ANALYSIS ON COUNT SKETCH

3.1. The failure probability of a single estimate

Combining (1) and (2), each x7 is obtained in effect by passing x
through a filtering matrix ®; € R4*%, i.e.,

X' =Aly; =ATA;x=®;x j=1,...,t)

In (4), the estimate of x; is given by the inner product between
P ;s i-th row vector (®;); and x. Based on the imposed structure
of A, several characteristics of (®;); can be drawn: 1) its i-th ele-
ment (which corresponds to z;) is 1; 2) each off-diagonal element is
nonzero with probability 1/b; 3) the nonzero off-diagonal elements
are independently drawn from {1, -1} with equal probability.

Although the nonzero off-diagonal elements of (®;); introduce
noise into the estimate 27, such noise is innocuous if all involved
data components in the inner product are non-heavy ones. This is
because non-heavy components have small magnitudes and tend to
cancel each other out due to the random signs of the nonzero off-
diagonal elements of (®;);. As a result, z] deviates very little from
x; and we consider it a “good estimate”.

On the other hand, if one or more interfering heavy components
are included in the inner product, then x tends to deviate greatly
from ;. In such case, we consider xf a bad estimate or recovery
failure/error. Note that a bad estimate is bigger or smaller than the
ground truth with equal probabilities. Given that each heavy compo-
nent corrupts the estimate with probability 1/b, the failure probabil-
ity of a single estimate is p = 1 — (1 — 1/b)* with k denoting the
number of heavy components in x.

5121

3.2. The failure probability of median filtering

According to (3), median filtering fails when the median of the re-
turned list is bad, which must satisfy two conditions. First, at least
(t 4+ 1)/2 estimates in the returned list are bad. Second, the bad
estimates are tilted toward one side. For example, if 8 out of 9 es-
timates are bad but they are distributed symmetrically with respect
to the ground truth, then the median would still be a good estimate.
Denoting the number of bad estimates as Y and tracing down all
failed instances for each Y = i, our analysis yields the following
expression for the failure probability of median filtering:

L Y- syt g ()

Pmed = Z 2i 2

i=ttl

Pr{Y =i} (5

where Pr{Y =i} = (})p’(1 — p)*~". Note that (5) is with respect
to the recovery of one data component, heavy and non-heavy alike.

3.3. The false positive phenomenon

Since heavy and non-heavy components have the same failure proba-
bility (5) under median filtering, the ratio of recovery errors resulted
from these two categories would be asymptotically equal to the ratio
of their composition in the data vector. Since non-heavy components
dominantly outnumber the heavy ones (d—k vs. k), the vast majority
of recovery errors would be false positives.

4. COUNT SKETCH WITH ZERO CHECKING

4.1. Intuition and scheme

Knowing that false positives are the major source of recovery errors
under median filtering, it is helpful to introduce other mechanisms
that can spot false positives. Our idea builds on a key observation
that, for most false positives, their returned list tends to contain a
few good estimates even though the median is a bad one. We utilize
this distinct feature of false positives and propose a new recovery
mechanism called zero checking. For simplicity, here we assume
all non-heavy components are zeros, but the idea applies to general
settings where non-heavy components have negligible magnitudes
and hence can be rounded to zero.

The recovery process of zero checking is described as follows.
After obtaining the returned list of ¢ estimates as stated in Section
2.3, our scheme implements a two-step approach to determine the
best estimate:

Step 1: If the median of the returned list is zero or negligibly small,
then return it as the output. Otherwise, go to Step 2.

Step 2: If the returned list contains at least R zeros, then rule this
case as a false positive and return zero as the output. Otherwise,
return the median.

In the above scheme, Step 1 only declares negatives/non-heavy
components, while leaving all positives, true or false, for further
screening in Step 2. Using a detection threshold R, Step 2 decides
whether components that would have been identified as heavy by
median filtering are false positives or not. Here the detection thresh-
old R is a key parameter to ensure the success of zero checking.
In contrast to median filtering, which imposes the same error rate
for non-heavy and heavy components, zero checking obviously de-
creases error rate for non-heavy components by excluding a portion
of false positives. However, a natural concern is that the threshold-
ing operation in Step 2 might inadvertently misclassify some heavy

Authorized licensed use limited to: George Mason University. Downloaded on July 09,2021 at 16:33:20 UTC from IEEE Xplore. Restrictions apply.

components as false positives, thus increasing the overall error rate.
In the next section, we will address this concern and show how to
select the detection threshold R.

4.2. The guideline on selecting the detection threshold

Defining pnu(R) and pu(R) as the failure probabilities of non-heavy
and heavy components respectively, the average failure probability
under zero checking is given by

d

k

pzc(R) = d

When R > (t41)/2, zero checking reduces to median filtering,
for the median estimate is always returned in Step 2. As R decreases,
pau(R) declines but py(R) may go up. In order to guarantee that
pze(R) is no larger than ppeq in (5), the detection threshold R €
{0,...,(t + 1)/2} should make the following inequality hold:

(d—k) X (Pmed — Pxu(R)) > k X (pu(R) — Pmed) (7

where the difference between the left side and right side translates to
the performance gain achieved by zero checking over the baseline,
and the optimal R that maximizes this gap also equivalently leads to
the lowest pzc(R) in (6).

To determine the best R, it is necessary to derive the closed-form
of pau(R) and pu(R). Here pau(R) is directly obtained from (5) by
keeping only R terms, i.e.,

t > bl el (l)
J€[0,i— 5= U[5 i \J
PNH(R) = E 221' :

i=t—R+1

Pr{Y =i}. (8

The expression of py(R) is less obvious because it has two
sources: 1) the baseline failure probability ppeq; 2) the risk of the
returned list containing at least R zero estimates, which hinges on
Po, the probability for a single estimate of a heavy component to be
neutralized as zero. Since po is strongly dependent upon the magni-
tude diversity among heavy components, we will first elaborate such
dependency, and then give two upper bounds on py(R) under two
opposite extreme assumptions on the data diversity.

Recall that an estimate is the sum of randomly-signed interfer-
ing heavy components and the target heavy component. When the
magnitudes of involved components are not identical, it is very un-
likely for the estimate to be neutralized. To illustrate this point, we
calculate p(s) = (f) (1/b)*(1 — 1/b)*~*, the probability of an esti-
mate being corrupted by s heavy components. Since the estimate can
only be neutralized with one or more interfering heavy components,
the inequality holds: po < >~ ., p(s). If there is no heavy com-
ponent sharing the same magnitude as the target heavy component,
then po < > ., p(s). Since p(s) is an exponentially decreasing
function of s, po is stringently upper-bounded given different mag-
nitudes. Moreover, the expression of > ., p(s) could still be mas-
sively overestimated, because the s + 1 involved magnitudes may
not add up to zero regardless of the sign combination, e.g., {2, 3, 4}.
In addition, given a set of favorable magnitudes, the feasible sign
combination is usually unique; for example, given set {2, 4, 6}, if 2
is the target heavy component, then the interfering components have
to be 4 and -6 out of the four possible sign combinations, suggesting
a tighter bound of po < >~ ., p(s)/4.

Considering the above reasoning, it is clear that po reaches max-
imum when the magnitudes of involved components are identical.
Building on this observation, we can further conclude that py(R)
achieves its universal upper bound only when all heavy components

share the same magnitude, which corresponds to the first extreme
assumption of no data diversity. We call this scenario the worst case
and our analysis yields the following closed-form of py(R) in the
worst case:

t—1

>-r ()
21

M- L0

pui(R) = -Pr{Y =i}+

' . ©)
Zje[o,i—ﬂJ UIR,i] (;)

2

21'

-Pr{Y =i}.

= t«gl

Compared to the worst case with no data diversity, an ideal case
is considered where all heavy components have different magni-
tudes. In the ideal case, po is upper-bounded by (1—(1—1/b)* —k-
(1/b) - (1 — 1/b)¥~1) /4 as discussed. Adding two aforementioned
failure sources together, we can upper-bound py(R) in the ideal case
as

t
Pi2(R) < Prmed + <R> X P (10)

Depending on which assumption is used, we can plug either (9)
or (10), together with (8), into (7) to obtain the effective range for R.
Moreover, the optimal R can be selected by minimizing psc(R) in
(6). Note that we do not claim that either the worst case or the ideal
case is a practical scenario. Our intention of hypothesizing these two
cases is to assess how much zero checking can outperform median
filtering in both the least favorable and the most favorable settings.

4.3. Experimental validation

This section investigates the empirical performance of zero checking
compared to the median filtering baseline. The task is to recover all
k heavy components of a data vector x € R? under the count sketch
regime with m = ¢ - b samples. Throughout, the setting parameters
are fixed to be d = 10000, k = 50,b = 250. We first compute the
optimal detection threshold R in (6) and the corresponding failure
probability p,c(R) under both scenarios, shown in Figure 1 and Fig-
ure 2 respectively. As baseline, the threshold for median filtering is
(t+ 1)/2 as discussed and its failure probability iS ppeq in (5).

Figure 1 shows that the optimal threshold of zero checking is
consistently lower by a small margin than the baseline in the worst
case, whereas a much lower threshold, approximately half of the
baseline’s threshold, is allowed in the ideal case. Accordingly, Fig-
ure 2 shows that, in theory, zero checking can always outperform
median filtering in terms of error rate, with marginal performance
gain in the worst case and significant advantage in the ideal case.

Next we apply the obtained thresholds in Figure 1 to test the
actual performance of zero checking under both scenarios. For the
worst case, the data vector is generated by inserting £ = 50 nonze-
ros into a 10000-dimensional all-zero vector, each nonzero having
a random sign and a fixed magnitude. The only difference for the
ideal case is that the magnitudes of nonzero elements are drawn from
{1, ...,50} without replacement. We run 1000 Monte Carlo exper-
iments under both scenarios. The average recovery errors for zero
checking and median filtering match their theoretical failure proba-
bilities in Figure 2 very well, and we omit these curves for lack of
space. Another relevant metric is the likelihood of successful recov-
ery on the whole data vector. The successful recovery rates of zero
checking under the worst case and the ideal case are plotted in Figure
3 and Figure 4 respectively.

5122

Authorized licensed use limited to: George Mason University. Downloaded on July 09,2021 at 16:33:20 UTC from IEEE Xplore. Restrictions apply.

12 T T T T T T T T T
—+—— median filtering
—6— ZC-worst-case
10 ZC-ideal-case -

2 4 6 8 10 12 14 16 18 20 22

Fig. 1. The optimal threshold R of zero checking.

100 T T T T T T T T T

—+— median filtering

—&— ZC-worst-case
ZC-ideal-case

<
%
T

failure probability
=l
S

100

Fig. 2. The average failure probability.

In the worst case, although the performance gain of zero check-
ing is not as impressive, it is still beneficial. For example, when
t = 11, zero checking has a recovery rate improvement of over
40%. In the ideal case, the advantage of zero checking over median
filtering is significant. To reach 90% successful recovery rate, zero
checking saves almost half of the samples required by the baseline
(9 vs. 17).

In practice, the level of diversity among heavy components gen-
erally lies between the two discussed cases, suggesting that the per-
formance gain should also be between the two. If there is no prior
knowledge about the data vector, we can always adopt the surefire
approach of using the conservative detection threshold that matches
the worst case. However, if we want to achieve more aggressive
improvement beyond the bare minimum, it is necessary to know the
distribution of the data vector and to exploit the diversity of the heavy
components.

5. CONCLUSION

In this paper we have carefully examined the count sketch algorithm
when applied to recover heavy components. We found that the de-
fault recovery method, median filtering, has a distinct feature of pro-
ducing false positives. To overcome this error pattern, we propose a

100

90

80

70

60

50

40

30

percentage of successful recovery

20
—+— median filtering
—©— zero checking

I
2 4 6 8 10 12 14 16 18 20 22

100 - oo —o—0_—9
90+ o g
80 f ‘
70f
60
50
40

30

20)
—+— median filtering
10+ —&— zero checking

0 Pl L L = - L L L L L |

2 4 6 8 10 12 14 16 18 20 22

percentage of successful recovery

Fig. 4. Successful recovery rate in the ideal case.

new recovery mechanism, zero checking, that effectively suppresses
false positives by applying an optimal detection threshold to maxi-
mize overall recovery accuracy. The empirical results show that zero
checking outperforms the baseline even in the worst-case scenario.
The proposed scheme holds great promise for applications with prior
information on the distribution of data vector and a high level of data
diversity.

6. REFERENCES

[1] M. Charikar, K. Chen, and M. Farach-Colton, “Finding fre-
quent items in data streams.” Proc. of the 29th ICALP, pp.
693-703, 2002.

[2] A. Gilbert, et al, “Sparse recovery using sparse matrices.” Pro-
ceedings of the IEEE, 98(6): 937-947, 2010.

[3] N.Ivkin, et al, “Communication-efficient distributed SGD with
sketching.” Advances in Neural Information Processing Sys-
tems, 2019, pp. 13144-13154.

[4] A. Aghazadeh, R. Spring, et al, “MISSION: Ultra large-scale
feature selection using count-sketches.” International Confer-
ence on Machine Learning, 2018, pp. 80-88.

5123

Authorized licensed use limited to: George Mason University. Downloaded on July 09,2021 at 16:33:20 UTC from IEEE Xplore. Restrictions apply.

[5] K. Tai, et al, “Sketching linear classifiers over data streams.”
Proceedings of the 2018 International Conference on Manage-
ment of Data, pp. 7157-772. ACM, 2018.

[6] J. Jiang, et al, “SketchML: Accelerating distributed machine
learning with data sketches.” Proceedings of the 2018 Inter-
national Conference on Management of Data, pp. 1269—-1284.
ACM, 2018.

[7] R. Spring, A. Kyrillidis, et al, “Compressing gradient optimiz-
ers via count-sketches.” International Conference on Machine
Learning, 2019.

5124

Authorized licensed use limited to: George Mason University. Downloaded on July 09,2021 at 16:33:20 UTC from IEEE Xplore. Restrictions apply.

		2021-04-29T04:30:43-0400
	Preflight Ticket Signature

