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Abstract

We develop a principal component analysis (PCA) for high frequency data. As in Northern fairy tales,
there are trolls waiting for the explorer. The first three trolls are market microstructure noise, asynchronous
sampling times, and edge effects in estimators. To get around these, a robust estimator of the spot covariance
matrix is developed based on the Smoothed TSRV (Mykland et al. (2019)). The fourth troll is how to pass from
estimated time-varying covariance matrix to PCA. Under finite dimensionality, we develop this methodology
through the estimation of realized spectral functions. Rates of convergence and central limit theory, as well as
an estimator of standard error, are established. The fifth troll is high dimension on top of high frequency, where
we also develop PCA. With the help of a new identity concerning the spot principal orthogonal complement,
the high-dimensional rates of convergence have been studied after eliminating several strong assumptions
in classical PCA. As an application, we show that our first principal component (PC) closely matches but
potentially outperforms the S&P 100 market index. From a statistical standpoint, the close match between
the first PC and the market index also corroborates this PCA procedure and the underlying S-TSRV matrix,
in the sense of Karl Popper.
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1 Introduction

In his will, Warren Buffett recommends that his wife should invest her inheritance in an index fund (Buffett

(2014, p. 20)). Many investors share this preference.

We shall argue that they may be better off by investing in a statistically estimated principal component (PC)

instead. The economic arguments for these two approaches are closely related (Section 1.2), and we corroborate

this with our empirical analysis in Sections 7.1-7.3. The main barrier to PC investing has so far been the quality

of the statistical estimates, both in terms of method, and in terms of data size. With the ever increasing frequency

of trading and liquidity of markets, the data are now available. This article is about getting the statistical method

right.

This is a paper about statistics, about principal component analysis (PCA) for data that are large in two

different ways. The dimension is large, and the frequency of the data is also very high. In our empirical example,

the dimension is 70-100, and the amount of data in each dimension is up to several observations per second,

for eleven years (2007-2017). In the asymptotic theory, the dimension may stay fixed or go to infinity, and the

sampling frequency in all cases becomes infinite.

The high frequency permits the precise construction of time varying eigenvalues and principal components.

We use a nonparametric Itô process model (which also permits leverage effect, see Section 2.1 for a precise

description). As a result, scientific problems can be investigated with much less statistical uncertainty. Also,

if eigenvalues and principal components form part of a measurement or an algorithm, high frequency estimates

permits rapid updating under unstable conditions. This methodology can be applied wherever high frequency data

can be found, such as in neuroscience, geoscience, climate recordings, wind measurements, turbulence, finance,

economics, and on the internet. The approach extends to factor analysis (see Sections 1.2-1.3 and 5).

This is also a paper about finance, which is our empirical application. Our findings are interesting in their

own right. The high precision and the rapid updating means that investment allocations are less likely to be

stale. We shall see in Section 7.1-7.3 that this is indeed the case.

The paper can therefore be read for its finance, or it can be read for its statistics, with finance as an incidental

choice of application.

The challenge posed by high frequency PCA is that it requires a most careful construction to give meaningful

answers. One cannot use common shortcuts, such as ignoring noise or asynchronicity, or throwing out data to

make the data set nicer, or replacing spot by integrated covariances. We find in Section 6 (Figure 6.2) and

Appendix G that eigenvalues and principal components may come out very wrong by making such shortcuts.
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A special feature of our data set is that it provides a particularly stern test for any PCA procedure, call it the

index test, as follows. Economic theory provides reasons to think that we know à priori what the first PC should

look like: it should be very close to the corresponding value weighted stock index, cf. the discussion in Section

1.2.

Our paper meets this challenge, and provides a carefully constructed high frequency PCA. We outline in

Section 1.3 what is technically new in this paper. As validation that our method is indeed highly accurate, we

shall see in our application that it enables us to draw highly precise and also long term conclusions about the

relationship between principal components and currently known financial factors (Section 7). In particular, it

passes the index test very well, to our knowledge better than any other known PCA procedure, see Figures 7.3-7.4

and our comments in Section 7.2. This match to the index also suggests that our procedure uses a particularly

well behaved covariance estimator in the form of the smoothed two-scale realized variance (S-TSRV, Section 1.3).

In the sense of Popper (1959), this match is the positive outcome of the test of a theoretical prediction. Since the

test is passed, it corroborates the accuracy of our PCA and S-TSRV methods.

The accuracy of our PCA may provide a firmer footing on which to “export” the index concept to markets

(such as commodities) where there is less theoretical basis for how to weigh index components. Indices currently

do exist in these cases, of course, but with less foundation than is the case for equities. Indices have substantial

social value.

We stand “on the shoulders of Giants”, and we start by reviewing the background for this problem (Sections

1.1-1.3).

1.1 PCA and Factor Analysis (in Statistics and Econometrics)

Principal component analysis (PCA) is a form of unsupervised learning (see, e.g., Hastie et al. (2009)). PCA was

pioneered by Pearson (1901) and Hotelling (1933), and further developed in a large statistical literature (see, e.g.,

Anderson (1958, 1963) and Mardia et al. (1979) for the classical theory).

PCA is frequently also appropriate for factor analysis: estimate the first few principal components, and these

are then also estimators of the main factors. This important insight originated in econometrics (Chamberlain

and Rothschild (1983), Connor and Korajczyk (1986) and Stock and Watson (1998, 2002); see also the survey in

Chapter 6 of Campbell et al. (1997)), and is a much simpler approach than the usual treatment of factor analysis

that can (at the time of writing) be found in most current books on multivariate statistics. It is notable that this

approximation relies on dimension going to infinity with the number of observations.
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The approach has since been generalized to time dependent systems, notably by Bai and Ng (2002), Fan et al.

(2013), Aı̈t-Sahalia and Xiu (2017), Kong (2017), Pelger (2019a), and other papers by the same authors. This is

an important thread in this paper, and we return to this below in Section 1.3.

For the present, we emphasize that this construction relies on an assumption that a finite number of common

factors dominate the system (they are “pervasive”, in contemporary parlance (Section 5)). This not only makes

the PCA and the factor analysis a good proxy for each other. It also means that the PCA and the factor

analysis avoid any nasty statistical inconsistencies. We note that the situation where inconsistencies do occur

has meanwhile also been a fruitful topic of research, in the form of random matrix theory (including Johnstone

(2001), and Tao (2012)).

1.2 PCA and Factor Analysis (in Finance and Economics)

It is widely agreed that financial markets can be described by a small number of factors. This goes back to the so-

called Capital Asset Pricing Model (Markowitz (1952, 1959), Sharpe (1964), Lintner (1965), Black (1972)), which

predicts that a single factor drives asset prices. It was later realized that prices may be driven by multiple factors.

Particularly well known (empirical) factors are those developed by Fama and French (1992, 2017) and Carhart

(1997). Meanwhile, theoretical multi-factor (and approximate multi-factor) models were developed starting with

Ross (1976) and Chamberlain and Rothschild (1983). There is a vast literature in this area. For literature reviews,

see, e.g., Campbell et al. (1997) and Cochrane (2005).

The literature on factor models are a main motivation for investing in index funds. Especially for the one

factor model, economic theory predicts that this factor becomes the value of the entire market, see, for example,

Cochrane (2005, Chapter 9). It is arguably a collective form of unsupervised learning. The literature cited in

Section 1.1, however, predicts that the same factor can be found by PCA. To quote Chamberlain and Rothschild

(1983, p. 1285): “Thus, principal component analysis [...] is an appropriate technique for finding an approximate

factor structure.” For multi-factor models, similar considerations apply. The question then arises: should one

find the factors empirically, as in Fama and French (1992) and their successors, or should one invest based on the

several main principal components? We shall look more closely at this question in Sections 7.1-7.3.

The one factor case is the basis of the “index test” of a PCA procedure: the first principal component (PC)

should be close to the stock index. In the multi-factor case, this would approximately remain the case in the

commonly assumed scenario where the index is the main factor driving asset returns.
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1.3 Time Varying and High Frequency PCA and Factor Analysis

We build on three pillars. In a seminal paper, Aı̈t-Sahalia and Xiu (2019) has developed high frequency PCA

with the elegant use of spectral functions. In an equally pioneering article, Fan et al. (2013) has developed the

POET method to parlay time discrete PCA into a factor analysis along the lines of Section 1.1, but, critically,

using sparsity to obtain the separation of the factor and residual part. A third pillar is the smoothed two-scale

realized variance (S-TSRV) as developed in Mykland et al. (2019).

Important other papers on high frequency PCA and factor analysis include, in particular, Aı̈t-Sahalia and

Xiu (2017), Kong (2017), and Pelger (2019a,b), but we shall not build on these directly. A main advantage of

the high frequency approach is that one avoids stationarity assumptions, which may be unrealistic in economic

or financial data. (Sections 3-4).

The main difficulty with the existing literature on high frequency PCA is that it does not permit the data to

be noisy or asynchronous (except Dai et al. (2019)). The effect of noise can be devastating (Zhang et al. (2005))

on variances and covariances, and we shall see that this is also the case for PCA. Noise leads to over-estimation

of eigenvalues, and the principal components do not come out correctly (Section 6.3, in particular Figure 6.2, and

Appendix G, both in this paper). Asynchonous times can also cause severe problems, especially when one tries

to sweep them under the carpet with pre-averaging (Mykland et al. (2019)).

In the current paper, we solve this problem by constructing a PCA for noisy high frequency data under irregular

trading (observation) times. This is done by estimating instantaneous eigenvalues and eigenvectors based on an

instantaneous version of the S-TSRV. To set standard errors, an observed asymptotic variance estimator (Mykland

and Zhang (2017)) emerges naturally under the same conditions. (Sections 3-4.)

We then proceed to design (in Section 5) a new estimation methodology for high dimensional spot covariance

and precision matrices through high frequency PCA, which can be regard as the realized version of POET from

Fan et al. (2013). The new methodology allows for time-varying volatility and for time-varying factor loadings. We

assume (i) conditional sparsity structure of the spot covariance matrix, and (ii) the pervasiveness of the common

factors. The estimation starts with the constrained least quadratic variation (CLQV) optimization subject to

canonical conditions. It is shown that the CLQV optimization is an asymptotic version of the constrained least

squares (CLS) optimization from Fan et al. (2013). The equivalence between CLQV and asymptotic CLS yields a

useful identity about the spot principal orthogonal complement, which completely frees us from the higher order

assumptions on common factor and idiosyncratic component in classical PCA (Section 5.2.1). The asymptotics

of the new methodology only relies on very basic assumptions about the spot factor loadings and the spot

idiosyncratic covariance matrix, in analogy with Assumptions 2(b) and 4(a) in Fan et al. (2013). Following the
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general approach of Bai and Ng (2002), a data-driven approach is proposed to consistently estimate the number

of common factors. As the building block of new methodology, the spot principal orthogonal complement is

obtained through the CLQV optimization for the spot covariance matrix, of which the convergence rate under

elementwise max norm is shown to be (∆Tn log d)
1/2

+d−1/2, where ∆Tn = [(K − J) ∆τ+
n ]

1/2
and log d = o (∆Tn)

as n, d → ∞. Finally, the estimator is obtained by thresholding the spot principal orthogonal complement, of

which the inversion matrix is a consistent estimator for the spot precision matrix under classical conditions.

In recent years, high frequency data has been connected to the high dimensional factor model while eliminating

the stationarity conditions in classical PCA. In particular, important extensions include allowing time-varying

volatilities in the log price processes (Aı̈t-Sahalia and Xiu (2017)), or allowing jumps in log price processes

(Pelger (2019a,b)), or allowing noisy and (mildly) asynchronous observations (i.e., Dai et al. (2019)). The existing

literature on high frequency data analyis conduct PCA on either the integrated covariance matrix
∫ T

0
ctdt, or the

averaged covariance matrix 1
T
∫ T

0
csds, where (ct)0≤t≤T denotes the process of spot covariance matrix and the

time horizon T is fixed. However, based on the Weyl’s theorem, the difference
∣∣∣λ̄(j) − λ(j)

t

∣∣∣ can be large, i.e., of

order Op (d) provided supt maxr,s

∣∣∣c(r,s)t

∣∣∣ < ∞, for any 1 ≤ j ≤ d and 0 ≤ t ≤ T when T is fixed, where d is the

cross-sectional dimension, and λ̄
(j)

and λ
(j)
t are the j−th eigenvalues of 1

T
∫ T

0
csds and ct, respectively. Also, the

cited papers either do not take account of microstucture, or they use pre-averaging without taking account of the

potentially misleading effects of irregular times (cf. Mykland et al. (2019, Section 2)). These are reasons why the

instantaneous behavior of the latent structures cannot be easily detected by existing techniques.

1.4 Organization and Notation

This paper is organized as follows. Section 2 sets up the model, and provides a more precise decomposition of the

smoothed TSRV estimator. Section 3 provides the estimator for the spot covariance matrix. Section 4 proposes

the estimators for the realized spectral functions and develops the asymptotic theory under finite dimensionality

assumption. Section 5 shows the connection between high frequency PCA and high dimensional factor models,

by estimating the high dimensional spot covariance and precision matrices using the realized POET. Section 6

and Appendix G reports the Monte Carlo evidence. Section 7 focuses on empirical work. All mathematical proofs

are collected in Appendix A-F.

We draw attention to the following notation, which is used throughout this paper. For a matrix A, we denote

its (i, j)-th element by A(i,j), its i-th row by (A)i,• and its j-th column by (A)•,j . We denote the largest and

smallest eigenvalue of matrix A by λmax (A) and λmin (A), respectively. We denote by ‖A‖ , ‖A‖1 , ‖A‖F , ‖A‖max

the spectral norm, L1-norm, Frobenius norm and elementwise max norm of matrix A, defined as ‖A‖ =
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λ1/2
max (AᵀA) , ‖A‖1 = maxj Σi

∣∣A(i,j)
∣∣ , ‖A‖F =tr1/2 (AᵀA) , ‖A‖max = maxi,j

∣∣A(i,j)
∣∣. If A is a vector, then

‖A‖ and ‖A‖F are equal to its Euclidean norm. For two sequences, we write xn � yn if xn = Op (yn) and

yn = Op (xn).

2 Basic Setup

2.1 The model

Assume that the process (Xt)0≤t≤T =
(
X

(1)
t , X

(2)
t , . . . , X

(d)
t

)
0≤t≤T

is a d−dimensional continuous semimartingale

(Itô processes) in the sense that

dXt = µtdt+ σtdWt

where Wt is Brownian motion; µt and σt are Itô processes which can be mutually dependent with W . This is

comparable to Definition 1 in Mykland and Zhang (2006), as well as Conditions 1-2 in Mykland et al. (2019).

We define the spot covariance process as follows:

ct = (σσᵀ)t , (2.1)

which belongs to the set of positive-semidefinite matrices for any 0 ≤ t ≤ T . If Xt is continuous, then its quadratic

variation [X,X]t =
∫ t

0
csds.

For the financial application, {Xt} is not observed and can be considered as latent efficient prices (in loga-

rithmic form). We assume that the observed process (observed log stock prices) Y =
(
Y (1), Y (2), . . . , Y (d)

)
is

contaminated by the market microstructure noise ε as follows:

Y
(r)

t
(r)
j

= X
(r)

t
(r)
j

+ ε
(r)

t
(r)
j

, for r = 1, 2, . . . , d.

For each process { Y (r)
t }, it is observed not continuously, but on the grid G(r) =

{
0 = t

(r)
0 < t

(r)
1 < · · · < t

(r)

n(r) = T
}
.

In this paper, the assumptions about the sampling times t
(r)
j and microstructure noise ε(r) follow from Conditions

1-4 in Mykland et al. (2019).

We also make the following assumption about the covariation between spot volatility processes as follows.

ASSUMPTION 1. (Assumption on Covariation of Spot Volatility Processes) Assume that for all pairs of (r1, s1)

and (r2, s2),
〈
c(r1,s1), c(r2,s2)

〉
t

are continuously differentiable and
〈
c(r1,s1), c(r2,s2)

〉′
t

are Itô processes in the sense

of Definition 1 in Mykland and Zhang (2006). Also assume that sup0≤t≤T ‖ct‖max <∞.
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Recall that eigenvalues are analytic functions of the corresponding covariance matrix so long as they have

multiplicity one (e.g., Tsing, Fan, and Verriest (1994, Proposition 4.1, p. 168). In this case, therefore, the

eigenvalues are also Itô processes, and they satisfy the statements of Assumption 1.

2.2 The Smoothed TSRV

In order to estimate the integrated covariance matrix 〈X,X〉t , we construct the smoothed TSRV estimator 〈̂X,X〉t
on a synchronous grid

{0 = τn,0 < τn,1 < · · · < τn,N = T } . (2.2)

Denote M
(r)
n,i = #

{
j : τn,i−1 < t

(r)
j ≤ τn,i

}
. We can set ∆τ+

n = maxi ∆τn,i and M−n = mini,rM
(r)
n,i . For the

structure of blocks, we assume Condition 3 in Mykland et al. (2019).

We also make two more assumptions in this paper for the simplicity of discussion.

ASSUMPTION 2. (Assumption on Averaged Noise) We suppose that there is stationarity enough to assure

Cov
(
ε̄
(s1)
i , ε̄

(s2)
i

)
= (M−n )

−1
ς(s1,s2) and supiVar

(
ε̄
(s1)
i ε̄

(s2)
i

)
= Op

(
(M−n )

−2
)
.

ASSUMPTION 3. (Assumption on Block Structure) Assume that ∆τ+
n � M−n /n, in which case the number

of blocks N = Nn is of exact order O (n/M−n ) .

For 0 ≤ t ≤ T and a pair (J,K), set

K ˜[
Ȳ (r), Ȳ (s)

](K)

t
=

1

2

b−K∑
i=1

+

N∗(t)−b∑
i=b−K+1

+
1

2

N∗(t)−K∑
i=N∗(t)−b+1

(Ȳ (r)
i+K − Ȳ

(r)
i

)(
Ȳ

(s)
i+K − Ȳ

(s)
i

)
,

where

N∗ (t) = max {1 ≤ i ≤ N : τn,i ≤ t} and b = K + J, (2.3)

and for 1 ≤ i ≤ N and 1 ≤ r ≤ d, the pre-averaged price is defined as:

Ȳ
(r)
i =

1

M
(r)
n,i

∑
τn,i−1<t

(r)
j ≤τn,i

Y
(r)

t
(r)
j

. (2.4)

We define J ˜[
Ȳ (r), Ȳ (s)

](J)

similarly by switching J and K.

The Smoothed-TSRV is defined as:

̂〈
X(r), X(s)

〉
t

=
1

(1− b/N) (K − J)

{
K ˜[

Ȳ (r), Ȳ (s)
](K)

t
− J ˜[

Ȳ (r), Ȳ (s)
](J)

t

}
.
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If we assume that K − J = Op

(
(N/M−n )

2/3
)
, as well as the other conditions to support the Central Limit

Theorem (CLT) in Theorem 5 and formula (39) of Mykland et al. (2019), we have the following expression:

̂〈
X(r), X(s)

〉
t

=

∫ t

0

c(r,s)u du+Op (an) , (2.5)

where c
(r,s)
t is the (r, s)−th element of ct, i.e., defined in (2.1), and where the sequence {an}n≥1 is defined as:

an =
[
(K − J) ∆τ+

n

] 1
2 . (2.6)

Moreover, under Assumptions 2 and 3, and assuming K − J = Op

(
(N/M−n )

2/3
)
, the estimation error has a

sharper representation as follows:

̂〈
X(r), X(s)

〉
t
−
∫ t

0

c(r,s)u du = M
(r,s)
t + ẽ

(r,s)
t − e(r,s)

0 , (2.7)

where the main martingale term can be expressed as:

M
(r,s)
t = M

X,(r,s)
t +M

ε,(r,s)
t + op (an) , (2.8)

and

M
X,(r,s)
t =

K−J−1∑
p=1

(
K − J − p
K − J

) N∗(t)∑
i=J+p+1

∆X(r)
τ i−p

∆X(s)
τ i

[2],

M
ε,(r,s)
t =

1

K − J

N∗(t)∑
i=K+1

(
ε̄
(r)
i−J − ε̄

(r)
i−K

)
ε̄
(s)
i [2],

while the edge effect terms e
(r,s)
0 and ẽ

(r,s)
t are of order Op

(
a2
n

)
, and can be further expressed as:

e
(r,s)
0 =

1

K − J

K∑
i=J+1

ε̄
(r)
i−J ε̄

(s)
i [2] +

K−J−1∑
p=1

K−J−p∑
i=1

(
K − J − p− i

K − J

)
∆X(r)

τJ+i
∆X(s)

τJ+i+p
[2]

+
K−J∑
i=1

(
K − J − i
K − J

)
∆X(r)

τJ+i
∆X(s)

τJ+i
+ op

(
a2
n

)
, (2.9)
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and

ẽ
(r,s)
t = − 1

K − J

K−1∑
i=J

ε̄
(r)
N∗(t)−i−J ε̄

(s)
N∗(t)−i[2]−

K−J−1∑
p=1

K−J−p∑
i=0

(
K − J − p− i

K − J

)
∆X(r)

τN∗(t)−i−p
∆X(s)

τN∗(t)−i
[2]

−
K−J∑
i=0

(
K − J − i
K − J

)
∆X(r)

τN∗(t)−i
∆X(s)

τN∗(t)−i
+ op

(
a2
n

)
. (2.10)

Proof. The proof of this expression is gathered in Appendix A. �

3 Estimator of Spot Covariance

Suppose that {∆Tn}n≥1 is a sequence of positive numbers satisfying

a−2
n ∆Tn →∞ and ∆Tn → 0 as n→∞. (3.1)

We define the estimator of spot volatility c
(r,s)
t as follows: for 1 ≤ r, s ≤ d,

ĉ
(r,s)
∆Tn,t

=
1

∆Tn

(
̂〈

X(r), X(s)
〉
t+∆Tn

− ̂〈
X(r), X(s)

〉
t

)
. (3.2)

Before stating consistency results, we introduce new quantities as follows:

c̄
(r,s)
∆Tn,t

=
1

∆Tn

∫ t+∆Tn

t

c(r,s)u du, β̄
(r,s)
∆Tn,t =

1

∆Tn

N∗(t+∆Tn)∑
i=N∗(t)+1

B̄
(r,s)
t+∆Tn,i

, and β̃
(r,s)

∆Tn,t =
1

∆Tn

N∗(t+∆Tn)∑
i=N∗(t)+1

B̃
(r,s)
i [2],

(3.3)

and

ϕ
(r1,r2,s1,s2)
∆Tn,t

=
(K − J) T

N

∫ t+∆Tn

t

c(r1,r2)
u c(s1,s2)

u dGn (u) [2][2]+2ς(r1,r2)ς(s1,s2)N
∗ (t+ ∆Tn)−N∗ (t)

(K − J)
2 (
M−n

)2 [2][2], (3.4)

where “[2]” denotes the summation by switching r and s, and “[2][2]” means the summation over four terms

where r1 can change place with s1 and r2 can change place with s2, and

B̄
(r,s)
l,i =

∫ τ i

τ i−1

(l − u) dc(r,s)u for l ≥ τ i,

B̃
(r,s)
i =

(
K−J−1∑
p=1

(
K − J − p
K − J

)
∆X(r)

τ i−p

)
∆X(s)

τ i
+

1

(K − J)

(
ε̄
(r)
i−J − ε̄

(r)
i−K

)
ε̄
(s)
i ,
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and

gi =
N

(K − J) T

K−J−1∑
p=1

(
K − J − p
K − J

)2

∆τ i−p and Gn (t) =
∑
τ i≤t

gi∆τ i.

where N∗ (·) is defined in (2.3).

LEMMA 1. (Consistency and Optimal Convergence Rate of the Spot Volatility Estimator) Suppose that ∆Tn is

a sequence of positive numbers satisfying (3.1). Under Assumptions 1-3, for arbitrary ε > 0,

(i)
∥∥∥c̄(r,s)∆Tn,t

− c(r,s)t

∥∥∥
2

= Op

(
∆T

1/2
n

)
uniformly with respect to t, and consequently,

sup
t

∣∣∣c̄(r,s)∆Tn,t
− c(r,s)t

∣∣∣ = Op

(
∆T 1/2−ε

n

)
= op (1) .

More precisely, c̄
(r,s)
∆Tn,t

− c(r,s)t = β̄
(r,s)
∆Tn,t + op

(
∆T

1/2
n

)
.

(ii)
∥∥∥ĉ(r,s)∆Tn,t

− c̄(r,s)∆Tn,t

∥∥∥
2

= Op

(
∆T
−1/2
n an

)
uniformly with respect to t, and consequently,

sup
t

∣∣∣ĉ(r,s)∆Tn,t
− c̄(r,s)∆Tn,t

∣∣∣ = Op

(
∆T−1

n

(
∆Tna

2
n

)1/2−ε)
= op (1) .

More precisely, ĉ
(r,s)
∆Tn,t

− c̄(r,s)∆Tn,t
= β̃

(r,s)

∆Tn,t +Op

(
∆T−1

n

(
a4
n

)1/2−ε)
.

(iii) If we further assume that ∆Tn � an, then the spot volatility estimator reaches the optimal convergence

rate Op

(
a

1/2
n

)
, i.e.,

sup
t

∣∣∣ĉ(r,s)∆Tn,t
− c(r,s)t

∣∣∣ = Op

(
a1/2−ε
n

)
,

and more precisely, we have: ĉ
(r,s)
∆Tn,t

− c(r,s)t = β̄
(r,s)
∆Tn,t + β̃

(r,s)

∆Tn,t + op

(
a

1/2
n

)
.

Proof. The proof of this lemma is collected in Appendix B. �

If we further define

β
(r,s)
∆Tn,t

= ĉ
(r,s)
∆Tn,t

− c(r,s)t , (3.5)

then we state the second order behavior of β
(r,s)
∆Tn,t

in the following lemma.

LEMMA 2. (Second-order and Higher-order Behavior of Spot Volatility Estimator) Suppose that ∆Tn is a

sequence of positive numbers satisfying (3.1). Under Assumptions 1-3:

(i) If we further assume infn a
−1
n ∆Tn > 0, then β

(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

= Op (∆Tn) and for h ≥ 3, we have
h∏
l=1

β
(rl,sl)
∆Tn,t

=

Op

(
∆T

h/2
n

)
uniformly with respect to t.

(ii) If we further assume a−1
n ∆Tn → 0 as n → ∞, then β

(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

= Op
(
a2
n∆T−1

n

)
and for h ≥ 3, we

have
h∏
l=1

β
(rl,sl)
∆Tn,t

= Op

((
an∆T

−1/2
n

)h)
uniformly with respect to t.

10



(iii) If we further assume a−1
n ∆Tn → 0 as n→∞, we have

sup
t

∥∥∥∥E (β(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

|Ft
)
− 1

∆T 2
n

ϕ
(r1,r2,s1,s2)
∆Tn,t

∥∥∥∥
2

= Op
(
a4
n∆T−2

n

)
+ op (an) , (3.6)

and

sup
t

∥∥∥∥β(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

− 1

∆T 2
n

ϕ
(r1,r2,s1,s2)
∆Tn,t

∥∥∥∥
2

= Op
(
a2
n∆T−1

n

)
, (3.7)

where ϕ
(r1,r2,s1,s2)
∆Tn,t

is defined in (3.4).

Proof. The proof of (i) and (ii) in this lemma is similar to the proof of Lemma 1. The proof of (iii) is collected

in Appendix C. �

4 High Frequency PCA under Finite Dimensionality

When the dimension d is finite, principal component analysis using high frequency data may conveniently be based

on the estimation of integrals
∫ T

0
F (cs) ds of vector-valued spectral functions F = (F1, . . . , Fd). Specifically,

a spectral function F is defined on a subset of all positive semi-definite matrices, and it must satisfy that

F (X) = F (OᵀXO) for any positive semi-definite matrix X and any orthogonal and symmetric matrix O.

The concept of spectral function is well documented in Friedland (1981), and Aı̈t-Sahalia and Xiu (2019,

Section 2.5, pp. 291-292), to whom we refer for a review of the concept. It is central to the latter’s development

of PCA.

A main property of spectral functions F is that they can be decomposed as F = f ◦λ, where f is a symmetric

function on an open symmetric domain in R+
d , and λ (X) is the vector of all non-increasing eigenvalues of the

positive semi-definite matrix X (ibid). Building on Aı̈t-Sahalia and Xiu, we impose a continuity and growth

condition on f , as well as a condition that eigenvalue processes cannot cross each other (ibid., Assumptions 2-3,

p. 292). We make these assumptions by reference since they are best described in the context of ibid., Section

2.5. Recall that we also assume the dimensionality d be asymptotically finite throughout this section.

In order to estimate the integrated spectral function, we first create a new equidistant grid as follows:

Tn,i = i∆Tn, for 1 ≤ i ≤ B, such that ∆Tn satisfying (3.1) and B = T /∆Tn. (4.1)

Condition (3.1) is an initial choice and we will elaborate on the selection of ∆Tn in next subsection.
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We construct the estimator as follows:

V̂ (∆Tn, X;F ) =
B∑
i=1

F
(
ĉ∆Tn,Tn,i−1

)
∆Tn.

where ĉ∆Tn,Tn,i−1
is defined in (3.2). Note that the estimator can also be written as

V̂ (∆Tn, X;F ) =
B∑
i=1

f
(
λ̂Ti−1

)
∆Tn,

where λ̂Ti−1
= λ

(
ĉ∆Tn,Tn,i−1

)
and λ (X) is the vector of all non-increasing eigenvalues of the positive semi-definite

matrix X.

4.1 Selection of ∆Tn

In this subsection, we mainly discuss the selection of ∆Tn. We start from the decomposition of the estimation

error:

V̂ (∆Tn, X;F )−
∫ T

0

F (cs) ds =
B∑
i=1

[
F
(
ĉ∆Tn,Tn,i−1

)
− F

(
cTn,i−1

)]
∆Tn︸ ︷︷ ︸

Error due to spot volatilty estimator, RSpot

−
B∑
i=1

∫ Tn,i

Tn,i−1

[
F (cs)− F

(
cTn,i−1

)]
ds︸ ︷︷ ︸

Discretization error, RDiscrete

.

(4.2)

By Taylor expansion, for 1 ≤ m ≤ d, the m-th component of the vector-valued function F can be expanded as

follows:

Fm
(
ĉ∆Tn,Tn,i−1

)
− Fm

(
cTn,i−1

)
=

d∑
r1,s1=1

∂r1s1Fm
(
cTn,i−1

)
β

(r1,s1)
∆Tn,Tn,i−1

+
1

2

d∑
r1,s1,r2,s2=1

∂2
r1s1,r2s2Fm

(
cTn,i−1

)
β

(r1,s1)
∆Tn,Tn,i−1

β
(r2,s2)
∆Tn,Tn,i−1

+ Op

(∥∥∥β∆Tn,Tn,i−1

∥∥∥3
)
,
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Table 4.1: Error Size Comparison under Different Choices of ∆Tn

Types of Error

RDiscrete RSpot-V RSpot-B E
(
RSpot-B

)
− ϕBias

∆Tn
RExpansion

∆Tn → 0 and infn a
−1
n ∆Tn > 0 Op (∆Tn) Op (∆Tn) Op (∆Tn) op (∆Tn) Op

(
∆T 2

n

)
a−1
n ∆Tn → 0 and a

−3/2
n ∆Tn →∞ Op (∆Tn) Op (an) Op

(
a2
n∆T−1

n

)
Op
(
a4
n∆T−2

n

)
= op (an) Op

(
a3
n∆T−1

n

)
supn a

−3/2
n ∆Tn <∞ and a−2

n ∆Tn →∞ Op (∆Tn) Op (an) Op
(
a2
n∆T−1

n

)
Op
(
a4
n∆T−2

n

)
Op
(
a3
n∆T−1

n

)

∆Tn is defined in (4.1). The discretization error RDiscrete is defined in (4.2), the martingale term and bias term RSpot-V and RSpot-B and

the aggregated remainder term RExpansion are defined in (4.3), and E
(
RSpot-B

)
− ϕBias

∆Tn
is the bias term contributed by the edge effect in

covariance estimator and ϕBias
∆Tn

is defined in (4.4).

where β
(r,s)
∆Tn,Tn,i−1

is defined in (3.3), and consequently, RSpot could be further decomposed as follows:

RSpot = ∆Tn

B∑
i=1

[
d∑

r1,s1=1

∂r1s1Fm
(
cTn,i−1

)
β

(r1,s1)
∆Tn,Tn,i−1

]
︸ ︷︷ ︸
Main contributor of variance in RSpot, defined as RSpot-V

(4.3)

+ ∆Tn

B∑
i=1

[
1

2

d∑
r1,s1,r2,s2=1

∂2
r1s1,r2s2Fm

(
cTn,i−1

)
β

(r1,s1)
∆Tn,Tn,i−1

β
(r2,s2)
∆Tn,Tn,i−1

]
︸ ︷︷ ︸

Main contributor of bias in RSpot, defined as RSpot-B

+ Op

(
∆Tn

B∑
i=1

∥∥∥β∆Tn,Tn,i−1

∥∥∥3
)

︸ ︷︷ ︸
Aggregated remainder of Taylor expansion, defined as RExpansion

.

Because the second order term in RSpot will introduce a bias term into the estimation error, in order to achieve

CLT and optimal convergence rate, we need to consider bias correction. The selection of ∆Tn should make sure

not only the optimal convergence rate, but also the ease of estimation of the bias-correction term.

On the other hand, the edge effect (see (2.7) and (2.10)) in S-TSRV estimator can also contribute to the bias

term in RSpot, whose effect can be measured by E
(
RSpot-B

)
− ϕBias

∆Tn
, where ϕBias

∆Tn
is defined as:

ϕBias
∆Tn

=
1

∆Tn

B∑
i=1

[
1

2

d∑
r1,s1,r2,s2=1

∂2
r1s1,r2s2Fm

(
cTn,i−1

)
ϕ

(r1,r2,s1,s2)
∆Tn,Tn,i−1

]
, (4.4)

with ϕ
(r1,r2,s1,s2)
∆Tn,Tn,i−1

being defined in (3.4).
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By summarizing the results of Lemma 1 and 2, we show the comparison of three cases in Table 4.1. From

Table 4.1, we observe that in order to achieve the optimal convergence rate of RSpot-V, i.e., Op (an) , we need to

make sure supn a
−1
n ∆Tn <∞. Moreover, when supn a

−1
n ∆Tn <∞ and a−2

n ∆Tn →∞, the bias term RSpot-B has

the order of Op
(
a2
n∆T−1

n

)
, and at the same time, the bias caused by edge effect E

(
RSpot-B

)
−ϕBias

∆Tn
has the order

of Op
(
a4
n∆T−2

n

)
. In order to reduce the complexity in estimating the bias-correction term E

(
RSpot-B

)
, we also

require that E
(
RSpot-B

)
− ϕBias

∆Tn
have exactly smaller order than an, which implies that supn a

−1
n ∆Tn < ∞ and

a
−3/2
n ∆Tn →∞. However, when infn a

−1
n ∆Tn > 0 (a typical example is ∆Tn � an), the asymptotic variance term

will include the terms related to
〈
c(r1,s1), c(r2,s2)

〉′
t
, which will bring much greater complexity to the bias-correction

term and the AVAR estimator. Finally, we set the selection of ∆Tn as a−1
n ∆Tn → 0 and a

−3/2
n ∆Tn → ∞ as

n→∞.

Based on Table 4.1 and all above discussion, the rest of this paper will be organized as follows. We will first

state the consistency of V̂ (∆Tn, X;F ) with the assumption (3.1) and then show its second-order behavior under

the assumption a−1
n ∆Tn → 0 and a−2

n ∆Tn → ∞ as n → ∞. Finally, we propose the bias-corrected estimator,

i.e., Ṽ (∆Tn, X;F ) and show its consistency and central limit theorem under the assumption a−1
n ∆Tn → 0 and

a
−3/2
n ∆Tn →∞ as n→∞.

4.2 Consistency and Second-order Behavior of V̂ (∆Tn, X;F )

The consistency is stated as following lemma.

LEMMA 3. (Consistency of V̂ (∆Tn, X;F )) Suppose that ∆Tn is a sequence of positive real numbers satisfying

(3.1). Assume the dimensionality d to be asymptotically finite. For the basic settings of processes, we assume

Conditions 1-4 in Mykland et al. (2019), and Assumptions 1-3. For the spectral function F, make Assumption 2

of Aı̈t-Sahalia and Xiu (2019, Section 3.1, p. 292), cf. the beginning of (our) Section 4. Then we obtain:

V̂ (∆Tn, X;F )
p−→
∫ T

0

F (cs) ds.

Proof. From the results (i) and (ii) in Lemma 1, we obtain:

sup
1≤i≤B

∣∣∣ĉ(r,s)∆Tn,Ti
− c(r,s)Ti

∣∣∣ ≤ sup
1≤i≤B

∣∣∣c̄(r,s)∆Tn,Ti
− c(r,s)Ti

∣∣∣+ sup
1≤i≤B

∣∣∣ĉ(r,s)∆Tn,Ti
− c̄(r,s)∆Tn,Ti

∣∣∣ = op (1) ,

which implies that ĉ
(r,s)
∆Tn,Ti

p−→ c
(r,s)
Ti

. Then based on this fact, we can show the consistency by following the proof

of Theorem 1 in Aı̈t-Sahalia and Xiu (2019). �
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Next, we show the second-order behavior of V̂ (∆Tn, X;F ) in following theorem. We first define a quantity:

[
M (r1,s1),M (r2,s2)

](B)

t
=
∑
Tn,i≤t

(
M

(r1,s1)
Tn,i

−M (r1,s1)
Tn,i−1

)(
M

(r2,s2)
Tn,i

−M (r2,s2)
Tn,i−1

)
. (4.5)

THEOREM 1. (Second-order Behavior of V̂ (∆Tn, X;F )) Suppose that ∆Tn is a sequence of positive real

numbers satisfying a−1
n ∆Tn → 0 and a−2

n ∆Tn → ∞ as n → ∞. Assume the dimensionality d to be asymptot-

ically finite. For the basic settings of processes, we assume Conditions 1-4 in Mykland et al. (2019), as well

as Assumptions 1-3 (of the current paper). Moreover, assume the convergence rate of the Smoothed TSRV es-

timator is Op (an) , i.e., see (2.5) and a−2
n

[
M (r1,s1),M (r2,s2)

](B)

u

p−→ACOV
(
M (r1,s1),M (r2,s2)

)
u

for all u and

(r1, s1) , (r2, s2). For the spectral function F, make Assumption 2-3 of Aı̈t-Sahalia and Xiu (2019, Section 3.1, p.

292), cf. the beginning of (our) Section 4. Then we obtain:

a−2
n ∆Tn

(
V̂ (∆Tn, X;F )−

∫ T
0

F (cs) ds

)
p−→ ϕT ,

where

ϕT =
1

2

d∑
r1,s1,r2,s2=1

∫ T
0

∂2
r1s1,r2s2F (cu) dACOV

(
M (r1,s1),M (r2,s2)

)
u
.

Proof. The proof of this theorem is gathered in the Appendix D. �

PROPOSITION 1. We further assume that the grid (2.2) is equidistantly spaced, i.e., τ i = i∆τn with ∆τn =

T /N , and suppose that N (K − J)
−2

(M−n )
−2

= a2
nξ with positive constant ξ.Then following the result (iii) in

Lemma 2, and Theorem 1, we obtain:

ϕt =
1

2

d∑
r1,s1,r2,s2=1

∫ t

0

∂2
r1s1,r2s2F (cu)

(
1

3
c(r1,r2)
u c(s1,s2)

u [2][2] +
2ξ

T
ς(r1,r2)ς(s1,s2)[2][2]

)
du,

where “[2][2]” means the summation over four terms where r1 can change place with s1 and r2 can change place

with s2.

4.3 Bias Corrected Estimator

In this subsection, we assume all conditions in Theorem 1. Moreover, further assume a−1
n ∆Tn → 0 and

a
−3/2
n ∆Tn → ∞ as n → ∞. We further discuss implementation of the case of non-simple eigenvalues in Sec-

tion 6.1.
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We propose the bias corrected estimator as follows:

Ṽ (∆Tn, X;F ) = ∆Tn

B∑
i=1

[
F
(
ĉ∆Tn,Tn,i−1

)
− 1

2

d∑
r1,s1,r2,s2=1

∂2
r1s1,r2s2F

(
ĉ∆Tn,Tn,i−1

)
ϕ̂

(r1,r2,s1,s2)
∆Tn,Tn,i−1

]
, (4.6)

where ĉ
(r,s)
∆Tn,t

is defined in (3.2) and

ϕ̂
(r1,r2,s1,s2)
∆Tn,Tn,i−1

= φ̌
(r1,s1)

∆Tn,Tn,i−1
φ̌

(r2,s2)

∆Tn,Tn,i−1
. (4.7)

with

φ̌
(r,s)

∆Tn,Tn,i−1
=

1

2

(
ĉ
(r,s)
∆Tn/2,(i−1/2)∆Tn

− ĉ(r,s)∆Tn/2,(i−1)∆Tn

)
. (4.8)

We state the central limit theorem of the bias corrected estimator as follows.

THEOREM 2. (Central Limit Theorem of Bias Corrected Estimator) Make all assumptions in Theorem 1, and

further suppose a−1
n ∆Tn → 0 and a

−3/2
n ∆Tn →∞ as n→∞. Then we obtain:

a−1
n

(
Ṽ (∆Tn, X;F )−

∫ T
0

F (cs) ds

)
L−→WT ,

stably, where Wt is a continuous process defined on an extension of the original probability space, which condi-

tionally on F , is a continuous centered Gaussian martingale with its covariance matrix Σ given by:

Σ
(p,q)
t =

d∑
r1,s1,r2,s2=1

∫ t

0

∂r1s1Fp (cu) ∂r2s2Fq (cu) dACOV
(
M (r1,s1),M (r2,s2)

)
u
.

Proof. The proof of this theorem is gathered in Appendix E. �

If we further make the assumptions in Proposition 1, we have:

Σ
(p,q)
t =

d∑
r1,s1,r2,s2=1

∫ t

0

∂r1s1Fp (cu) ∂r2s2Fq (cu)

(
1

3
c(r1,r2)
u c(s1,s2)

u [2][2] +
2ξ

T
ς(r1,r2)ς(s1,s2)[2][2]

)
du.

REMARK 1. (Estimator of AVAR) Following the idea of development of the bias-correction term, we propose

the AVAR estimator as follows:

ÂV AR (∆Tn, X;F )
(p,q)

= ∆T 2
n

B∑
i=1

[
d∑

r1,s1,r2,s2=1

∂r1s1Fp
(
ĉ∆Tn,Tn,i−1

)
∂r2s2Fq

(
ĉ∆Tn,Tn,i−1

)
ϕ̂

(r1,r2,s1,s2)
∆Tn,Tn,i−1

]
,
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where ϕ̂
(r1,r2,s1,s2)
∆Tn,Tn,i−1

is defined in (4.7).

5 Estimation of High Dimensional Spot Covariance PCA and Preci-

sion Matrices

The nonparametric framework of high frequency PCA allows the factor models to have time-varying factor

loadings, and also frees the high order assumptions concerning the common factor and idiosyncratic component.

In this section, we first provide the detailed model specification and then propose the new estimation methodology

for the high dimensional spot covariance and precision matrices, which can be regard as the realized version of

POET in Fan et al. (2013).

5.1 Factor model with time-varying factor loadings

The log-price process Xt =
(
X

(1)
t , X

(2)
t , . . . , X

(d)
t

)
of d stocks is generated from a factor model:

dXt = BtdFt + dZt, (5.1)

where Ft =
(
F

(1)
t ,F

(2)
t , . . . ,F

(q)
t

)
is a q × 1 vector process, representing a set of unknown and time-varying

common factors, Bt is a d× q matrix process of time-varying factor loadings and Zt =
(
Z

(1)
t , Z

(2)
t , . . . , Z

(d)
t

)
is a

d× 1 vector process of idiosyncratic noise components, satisfying

〈F, Z〉t = 0 for all t. (5.2)

We should mention that the number of common factors q ∈ N+ is assumed to be fixed and asymptotically finite

over time interval [0, T ].

It is straightforward to see that if X,F,B and Z are continuous Itô semimartingales, then

d 〈X,X〉t = Btd 〈F,F〉t B
ᵀ
t + d 〈Z,Z〉t . (5.3)

Recall the definition ct = 〈X,X〉′t. If we further define cFt = 〈F,F〉′t and st = 〈Z,Z〉′t , it is obvious that for

0 ≤ t ≤ T , we have:

ct = Btc
F
t Bᵀ

t + st. (5.4)
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To assure the asymptotic consistency between PCA and factor analysis, the existing PCA literature concerning

high dimensional factor model opts to assume that d→∞ and that the eigenvalues corresponding to the common

factors are spiked, i.e., of order Op (d), while the eigenvalues corresponding to the idiosyncratic component are

assumed to be bounded with respect to d, i.e., see Bai and Ng (2002) and Fan et al. (2013). Note that if the

eigenvalue corresponding to a common factor is diverging as d→∞, this factor is called pervasive. It is easy to

see that if all common factors are pervasive, the decomposition (5.3) is asymptotically identifiable.

Because the common factors are unknown, it is necessary to normalize Bt and Ft using the following canonical

condition:

ASSUMPTION 4. (Canonical Condition) For all 0 ≤ t ≤ T , we assume that:

d 〈F,F〉t = Iqdt and Bᵀ
tBt is diagonal.

Under the canonical Assumption 4, it is natural to study the matrix BtB
ᵀ
t . Set this matrix to have eigenvalues

{l(j)t }1≤j≤q (in non-ascending order) and corresponding eigenvectors {g(j)
t }1≤j≤q.

Then the asymptotic consistency between PCA and factor analysis can be rigorously stated in the form of the

following proposition.

PROPOSITION 2. Assume that for all 0 ≤ t ≤ T , all eigenvalues of the q × q matrix d−1Bᵀ
tBt are distinct

and bounded away from 0 and ∞ as d → ∞. Then under Assumption 4, if
{
λ

(j)
t

}
1≤j≤q

are the eigenvalues

of ct in a non-ascending order and
{
γ

(j)
t

}
1≤j≤q

are their corresponding eigenvectors, we have for 1 ≤ j ≤ q:

lim infd→∞

∥∥∥b̃(j)
t

∥∥∥2

/d > 0 and

∣∣∣λ(j)
t − l

(j)
t

∣∣∣ ≤ ‖st‖ ,∥∥∥γ(j)
t − g

(j)
t

∥∥∥ = O
(
d−1 ‖st‖

)
and for j > q, ∣∣∣λ(j)

t

∣∣∣ ≤ ‖st‖ .
Proof. This proposition follows from the proofs of the Propositions 1 and 2 in Fan et al. (2013), which is a

direct application of Weyl’s theorem and sin (θ) theorem (Davis and Kahan (1970)). �

Based on the result of Proposition 2, we know that the asymptotic consistency between PCA and factor

analysis is assured by the pervasiveness assumption of common factors and boundedness assumption for the

eigenvalues corresponding to the idiosyncratic components.
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To assure the boundedness assumption of ‖st‖, the existing literature usually pre-specifies one of several simple

structures on st, for example, the strict diagonal structure in Fan et al. (2008), the sparsity structure in Fan et al.

(2011, 2013, 2016b), and the block diagonal structure in Fan et al. (2016a). For factor models with unknown

factors, the sparsity structure can be handled by the principal orthogonal complement thresholding estimator

(POET) as in Fan et al. (2013), while the block-diagonal structure can be treated by the block-diagonalization of

principal orthogonal complement based on the Global Industrial Classification Standard (GICS) code. The latter

approach was used in Aı̈t-Sahalia and Xiu (2017).

In this paper, we adopt the sparsity structure for st, which is measured by

md = sup
0≤t≤T

max
1≤i≤d

∑
1≤j≤d

∣∣∣s(i,j)
t

∣∣∣ν for some ν ∈ (0, 1) ,

and for ν = 0, define md = supt maxi
∑
j I
(
s

(i,j)
t 6= 0

)
. This measure is widely used in existing literature, i.e.,

Bickel and Levina (2008) and Cai and Liu (2011). As pointed out by Fan et al. (2013), when the diagonal

elements of st are bounded and md = o (d), then the consistency in Proposition 2 can be achieved because

‖st‖ ≤ ‖st‖1 = O (md).

5.2 Realized POET

The estimation of large covariance and related precision (inverse covariance) matrices is important in financial

econometrics research. For example, the estimation performance of the covariance matrix for a factor model

is naturally connected to the risk management problem in portfolio allocation (Fan et al. (2012)). Moreover,

estimating the idiosyncratic covariance matrix and related precision (inverse covariance) matrix is the prerequisite

for testing the asset pricing model (Sentana (2009) and Fan et al. (2013)).

Because of the time-varying feature of the volatility processes, it is here necessary to develop the estimation

methodology for the spot covariance and precision matrices in high dimensionality. Since the new methodology

is based on the thresholding of the spot principal orthogonal complement, which could be regard as the real-

ized version of POET in Fan et al. (2013), we call the new estimator realized principal orthogonal complement

thresholding estimator (realized POET).

A new feature of of realized POET is that the precision matrices of ct and st can also be consistently estimated.
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5.2.1 Constrained least quadratic variation method

Let λ
(1)
t ≥ λ

(2)
t ≥ · · · ≥ λ

(d)
t be the eigenvalues of the spot covariance matrix ct, and for 1 ≤ i ≤ d, γ

(i)
t is the

eigenvector corresponding to λ
(i)
t . Then by spectral decomposition, it is straightforward to see that ct could be

further decomposed as:

ct =

q∑
i=1

λ
(i)
t γ

(i)
t

(
γ

(i)
t

)ᵀ
+ Rt,

where Rt =
∑d
i=q+1 λ

(i)
t γ

(i)
t

(
γ

(i)
t

)ᵀ
is the spot principal orthogonal complement.

It is natural to see that under Assumption 4, we have for 0 ≤ t ≤ T :

BtB
ᵀ
t =

q∑
i=1

λ
(i)
t γ

(i)
t

(
γ

(i)
t

)ᵀ
and st = Rt. (5.5)

This approach to estimation is equivalent to a constrained least quadratic variations (CLQV) optimization:

(Bt) = arg min
Bt∈Rd×q

tr 〈Z,Z〉′t ,

subject to the canonical condition (Assumption 4). The solution of the spot factor loading Bt in this CLQV

optimization problem can be further expressed as:

Bt = ΓtΛ
1/2
t , (5.6)

where Λt =Diag
(
λ

(1)
t , λ

(2)
t , . . . , λ

(q)
t

)
and Γt =

(
γ

(1)
t , γ

(2)
t , . . . , γ

(q)
t

)
for 0 ≤ t ≤ T . It is easy to check that the

decompositions (5.6) and (5.5)-(5.4) are equivelent under Assumption 4.

Recall that tr〈Z,Z〉t =
∑d
i=1

〈
Z(i), Z(i)

〉
t
, which implies that this CLQV method is a partial analogy (not

an exact equivalence) to the constrained least squares (CLS) method in Subsection 2.3 of Fan et al. (2013). The

difference is that the CLQV method can recover neither the factors (i.e., dFt term) nor the residuals (i.e., dZt

term), while the CLS method can obtain both of them innately. The absence of residuals is a barrier to estimating

the standard error of ŝt, which is required in some entry-dependent thresholding approaches.

Although the residuals dZt cannot be recovered directly in the CLQV method, the optimization result Rt can

be regard as the asymptotic least square estimator of st given Bt = ΓtΛ
1/2
t . This can be briefly shown as follows.

Suppose that dXt and Bt are observed, based on the equation (5.1), the OLS solution of dFt could be expressed

as: d̂F
LS

t = (Bᵀ
tBt)

−1
Bᵀ
t dXt and consequently d̂Z

LS

t = PBt
dXt where PA is the projection matrix on A defined
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as

PA := Id −A (AᵀA)
−1

Aᵀ, (5.7)

with Id denoting the d−dimensional identity matrix. Then if we assume that Cov(dXt) = ctdt and Cov
(
d̂Z

LS

t

)
=

sLS
t dt, it is straightforward to see that the spot covariance of residual has the following expression:

sLS
t = PBt

ctP
ᵀ
Bt
. (5.8)

Finally, given Bt = ΓtΛ
1/2
t , it is straightforward to see that

sLS
t = ct −BtB

ᵀ
t , (5.9)

which follows from the fact that PBtBt = 0 and Bᵀ
t (ct −BtB

ᵀ
t ) = (ct −BtB

ᵀ
t ) Bt = 0.

5.2.2 Estimators and convergence rates

First of all, we shall make some technical assumptions. In contrast to Bai and Ng (2002) (see Assumption A

and C(2,4,5)) and Fan et al. (2013) (see Assumption 2(c) and Assumptions 4(b) and 4(c)), there is no need to

make assumptions about the higher-order behaviors of the common factor and the idiosyncratic component in

our theory development. With the help of identities (5.8)-(5.9), we only impose some very basic assumptions on

the spot factor loadings Bᵀ
t and the spot idiosyncratic covariance matrix st, by following the Assumptions 2(b)

and 4(a) in Fan et al. (2013).

ASSUMPTION 5. We denote the columns of Bᵀ
t as b

(1)
t ,b

(2)
t , . . . ,b

(d)
t . We assume that there exists C0 > 0

such that for all d ≥ 1, 0 ≤ t ≤ T and for all i ≤ d,

∥∥∥b(i)
t

∥∥∥
max

< C0.

There are constants ϑ1, ϑ2 > 0 such that λmin (st) > ϑ1 and ‖st‖1 < ϑ2 almost surely for all 0 ≤ t ≤ T . �

We denote that spot covariance estimator for ct by ĉt, i.e., ĉt =
{
ĉ
(r,s)
∆Tn,t

}
1≤r,s≤d

which is defined in (3.2).

Moreover, we set ∆Tn � an where an is defined in (2.6), which implies that the spot covariance matrix estimator

ĉt reaches the optimal convergence rate Op

(
a

1/2
n

)
, based on the results of Lemma 1.

For some k ≤ d, we define

B̂k,t = Γ̂k,tΛ̂
1/2
k,t , (5.10)
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where Λ̂k,t =Diag
(
λ̂

(1)

t , λ̂
(2)

t , . . . , λ̂
(k)

t

)
, Γ̂k,t =

(
γ̂

(1)
t , γ̂

(2)
t , . . . , γ̂

(k)
t

)
and λ̂

(i)

t is the i−th largest eigenvalue of ĉt,

and γ̂
(i)
t is the corresponding eigenvector.

The estimator of the number of factors q at time t is defined as:

q̂t = arg min
1≤k≤qmax

{
d−1tr

(
ĉt − B̂k,tB̂

ᵀ
k,t

)
+ kG (∆Tn, d)

}
, (5.11)

where qmax is a pre-specified upper bound, and G (∆Tn, d) is a penalty function such that

G (∆Tn, d)→ 0 and
(

(∆Tn log d)
1/2

+ d−1
)−1

G (∆Tn, d)→∞ as n, d→∞. (5.12)

In analogy with the similar idea of Theorem 2 in Bai and Ng (2002), we obtain the following result.

THEOREM 3. Define ĉt =
{
ĉ
(r,s)
∆Tn,t

}
1≤r,s≤d

with ∆Tn � an and an is defined in (2.6). For basic settings about

the observations, we assume Conditions 1-4 in Mykland et al. (2019), and Assumptions 1-3 (in the current paper).

Suppose the assumptions in Proposition 2 and Assumption 5 hold. Assume that log d = o
(
∆T−1

n

)
as n→∞ and

d→∞. Let the estimator be defined as in (5.11) and the penalty function satisfing (5.12), then we have:

P (q̂t = q)→ 1.

Proof. The proofs of Theorems 3-5 are in Appendix F. �

Based on the above theorem, we define the penalty function as follows:

G (∆Tn, d) = κ
(

(∆Tn log d)
1/2

+ d−1
)1−ε0

for constants κ > 0 and 0 < ε0 < 1. The estimator for spot factor loading Bt is defined as:

B̂q̂t,t = Γ̂q̂t,tΛ̂
1/2
q̂t,t
, (5.13)

which is based on the definition (5.10). Then we could define the estimator of spot principal orthogonal comple-

ment as follows:

ŝq̂t,t = ĉt − B̂q̂t,tB̂
ᵀ
q̂t,t
, (5.14)

which is equivalent to the expression ŝq̂t,t =
∑d
i=q̂t+1 λ̂

(i)

t γ̂
(i)
t

(
γ̂

(i)
t

)ᵀ
. Before introducing the main theorems, we
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first define the quantity:

ωn = (∆Tn log d)
1/2

+ d−1/2.

THEOREM 4. Assume all the conditions in Theorem 3. Then we obtain:

‖ĉt − ct‖max = Op

(
(∆Tn log d)

1/2
)
,

and

∥∥∥B̂q̂t,tB̂
ᵀ
q̂t,t
−BtB

ᵀ
t

∥∥∥
max

= Op (ωn) ,

‖ŝq̂t,t − st‖max = Op (ωn) .

Proof. The proofs of Theorems 3-5 are in Appendix F. �

Now we apply the adaptive thresholding on ŝq̂t,t. Denote the thresholding estimator by ŝ∗q̂t,t, defined as follows:

ŝ∗q̂t,t ,


ŝ

(i,j)
q̂t,t

, i = j,

φij

(
ŝ

(i,j)
q̂t,t

)
, i 6= j,

where φij is the adaptive thresholding rule, for z ∈ R,

φij (z) = 0 when |z| ≤ χij , otherwise
∣∣φij (z)− z

∣∣ ≤ χij .
Examples of the adaptive thresholding rule include the hard thresholding φij (z) = zI

(
|z| ≥ χij

)
, soft threshold-

ing, SCAD and the adaptive lasso, see Rothman et al. (2009) and Fan et al. (2016b). Because of the absence of

residuals, the standard error estimator of ŝ
(i,j)
q̂t,t

cannot be easily obtained. Thus, in contrast to the choice of χij

in Fan et al. (2013), the thresholding parameter are set to be elementwise constant, i.e., defined as:

χij = Cωn, (5.15)

with a sufficiently large C > 0.

Based on the result in Theorem 4, we obtain the following proposition.

PROPOSITION 3. Assume all conditions in Theorem 3. Then for a sufficiently large C > 0 in thresholding
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parameter (5.15), the realized POET estimator satisfies:

∥∥ŝ∗q̂t,t − st
∥∥ = Op

(
ω1−ν
n md

)
.

If ω1−ν
n md = op (1) , then the eigenvalues of ŝ∗q̂t,t are all bounded away from 0 with probability approaching 1, and

∥∥∥(ŝ∗q̂t,t)−1 − s−1
t

∥∥∥ = Op
(
ω1−ν
n md

)
.

Proof. The proof of this proposition follows directly from the similar discussions in the proof of Theorem 5 of

Fan et al. (2013). �

Next, define the spot covariance matrix estimator based on the realized POET as follows:

ĉ∗q̂t,t := B̂q̂t,tB̂
ᵀ
q̂t,t

+ ŝ∗q̂t,t.

We then consider the estimation performance of the precision matrix based on
(
ĉ∗q̂t,t

)−1

. The theoretical devel-

opment is based on the Sherman-Morrison-Woodbury formula, i.e.,

(
ĉ∗q̂t,t

)−1
=
(
ŝ∗q̂t,t

)−1 −
(
ŝ∗q̂t,t

)−1
B̂q̂t,t

(
Iq̂t + B̂ᵀ

q̂t,t

(
ŝ∗q̂t,t

)−1
B̂q̂t,t

)−1

B̂ᵀ
q̂t,t

(
ŝ∗q̂t,t

)−1
.

We show that the convergence rate for the estimator of the precision matrix is as follows.

THEOREM 5. Assume all conditions in Theorem 3, as well as ω1−ν
n md = op (1) , then for a sufficiently large

C > 0 in thresholding parameter (5.15),
(
ĉ∗q̂t,t

)−1

is non-singular with probability approaching 1, and

∥∥∥(ĉ∗q̂t,t)−1 − c−1
t

∥∥∥ = Op
(
ω1−ν
n md

)
.

Proof. The proofs of Theorems 3-5 are in Appendix F. �

6 Monte Carlo Evidence

In this section, we use Monte Carlo simulation to show the numerical validity of our methodology. We will take the

estimation of eigenvalues as an example, where the eigenvalues are allowed to be non-simple. Further simulation

results are presented in Appendix G.
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6.1 Bias corrected estimator for non-simple eigenvalues

Suppose the eigenvalues of a d−dimensional positive semi-definite matrix X satisfy:

λ(1) (X) = · · · = λ(g1) (X) > λ(g1+1) (X) = · · · = λ(g2) (X) > · · ·λ(gr−1) (X) > λ(gr−1+1) (X) = λ(gr) (X) ≥ 0,

where gr = d, and r is the number of distinct eigenvalues. We would like to estimate:

∫ T
0

Fλ (cs) ds,

where

Fλ (·) =

 1

g1

g1∑
j=1

λ(j) (·) , 1

g2 − g1

g2∑
j=g1+1

λ(j) (·) , . . . , 1

gr − gr−1

gr∑
j=gr−1+1

λ(j) (·)

ᵀ

.

We can also write Fλ (·) using its components: Fλp (·) with p = 1, 2, . . . , r. Without loss of generality, we set

g0 = 0.

Following from the similar calculations in Corollary 1 and related proof in Aı̈t-Sahalia and Xiu (2019), for

1 ≤ p ≤ r, we know that the consistent estimator is:

V̂
(
∆Tn, X;Fλp

)
= ∆Tn

B∑
i=1

 1

gp − gp−1

gp∑
h=gp−1+1

λ̂
(h)

∆Tn,Ti−1

 ,

and the bias-corrected estimator can be expressed as:

Ṽ
(
∆Tn, X;Fλp

)
= ∆Tn

B∑
i=1

{
1

gp − gp−1

gp∑
h=gp−1+1

[
λ̂

(h)

∆Tn,Ti−1
(6.1)

−
(
Ô∆Tn,Ti−1

)
h,•

φ̌∆Tn,Ti−1

(
λ̂

(h)

∆Tn,Ti−1
Id − ĉ∆Tn,Ti−1

)+

φ̌∆Tn,Ti−1

(
Ô∆Tn,Ti−1

)ᵀ
h,•

]}
,

where λ̂
(h)

∆Tn,Ti−1
= λ(h)

(
ĉ∆Tn,Ti−1

)
(the h -th largest eigenvalue of matrix ĉ∆Tn,Ti−1), Ô∆Tn,Ti−1 is the orthogonal

matrix such that

Ô∆Tn,Ti−1
ĉ∆Tn,Ti−1

Ô∆Tn,Ti−1
= Diag

(
λ
(
ĉ∆Tn,Ti−1

))
,

φ̌∆Tn,Ti−1
=
{
φ̌

(r,s)

∆Tn,Ti−1

}
1≤r,s≤d

defined in (4.8), Id is the d-dimensional identity matrix and the superscript “+”

denotes the Moore-Penrose inverse of a real matrix.

Moreover, for 1 ≤ p ≤ r, the estimator for the asymptotic variance of Ṽ
(
∆Tn, X;Fλp

)
can be expressed as:
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ÂV AR
(
∆Tn, X;Fλp

)
= ∆T 2

n

B∑
i=1

Ψ̂
(p)
∆Tn,Ti−1

, (6.2)

where

Ψ̂
(p)
∆Tn,Ti−1

=
1

(gp − gp−1)
2

gp∑
v=gp−1+1

(
ϑ(v)

)2

with ϑ being the vector of diagnal elements in the matrix Ô∆Tn,Ti−1
φ̌∆Tn,Ti−1

Ôᵀ
∆Tn,Ti−1

, i.e., for 1 ≤ v ≤ d,

ϑ(v) =
(
Ô∆Tn,Ti−1

φ̌∆Tn,Ti−1
Ôᵀ

∆Tn,Ti−1

)(v,v)

.

On the other hand, we denote the non-overlapping estimator which is proposed by Aı̈t-Sahalia and Xiu (2019)

(i.e., see (ii) in Corollary 1) by θ̂
(
kn,∆n, F

λ
p

)
, where we set ∆n = ∆τn and kn to be the closest divisors of

[T /∆τn] to 1
2∆τ

−1/2
n

√
log (d) with d is the dimension of X. Moreover, we can construct the AVAR estimator of(̂

kn,∆n, F
λ
p

)
in two ways. The first way is based on formula (16) of Aı̈t-Sahalia and Xiu (2019), by plugging in

the estimators λ̂Ti . The second way is to construct the “observed AVAR” by formula (6.2). These are used in

Figure G.1 and Tables G.1-G.3 in Appendix G.

6.2 Simulation settings

Following the factor model defined in (5.1) and (5.2), we further define:

dF
(j)
t = µjdt+ σ

(j)
t dW(j)

t and dZ
(i)
t = νtdB(i)

t ,

where i = 1, 2, ..., d and j = 1, 2, ..., q.

In this simulation, the first component of F is set as the market factor. Thus, its factor loadings B•,1 are

positive. Therefore, we simulate the factor loading in the following scheme:

dB
(i,j)
t =


κ̃1

(
θ̃i1 −B

(i,j)
t

)
dt+ ξ̃1

√
B

(i,j)
t dB̃(i,j)

t if j = 1,

κ̃j

(
θ̃ij −B

(i,j)
t

)
dt+ ξ̃jdB̃

(i,j)
t if j ≥ 2.

The correlation matrix of dW is defined as ρF. The volatility processes of F and Z are simulated as follows:

d
(
σ

(j)
t

)2

= κj

(
θj −

(
σ

(j)
t

)2
)
dt+ ηjσ

(j)
t dW̃(j)

t and dν2
t = κ

(
θ − ν2

t

)
dt+ ηνtdB̄t
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where the correlation between dW(j) and dW̃(j) is ρj .

For comparison purposes, all parameters in the simulation are set to be the same as Table 1 in Aı̈t-Sahalia

and Xiu (2019), except that θ = 0.06 and η = 0.3.

The processes are sampled at an equidistant grid with ∆tn = 1 second. And the observed processes are

contaminated by microstructure noise:

Ytj = Xtj + εtj ,

where εtj are i.i.d. d−dimensional random vectors, sampled from Nd (0,Σε) , with Σε = ΦΦᵀ and Φ =

(Φ1,Φ2, . . . ,Φd)
ᵀ
. Note that Φ1,Φ2, . . . ,Φd are i.i.d. random variables from N

(
0, (0.0005)

2
)
. It is worth to

mention that we purposely set the size of noise to be very small.

The time horizon in the simulation experiment is set as: T = 1 week (assume 1 week consists of 5 trading

days). We assume that a trading day consists of 6.5 hours of trading.

6.3 Simulation results

We apply the realized PCA procedure with both θ̂
(
kn,∆n, F

λ
p

)
and Ṽ

(
∆Tn, X;Fλp

)
. We first examine the effect

of market microstructure noise in the estimation of integrated eigenvalues by estimator θ̂
(
kn,∆n, F

λ
p

)
. The

examination is conducted under different combinations of stocks number and sampling frequency. The number

of stocks d = 5, 10, 20, 30 and 50, while the sampling frequency is set in three scenarios:

1. ∆τn = 5 seconds and ∆Tn = 2000∆τn, with K = 20, J = 10.

2. ∆τn = 15 seconds and ∆Tn = 500∆τn, with K = 10, J = 5.

3. ∆τn = 1 minute and ∆Tn = 160∆τn, with K = 4, J = 2.

Second, we show the estimation performance of Ṽ
(
∆Tn, X;Fλp

)
with noisy observations, under the same

settings of stock number and sampling frequency. Third, the performance of standard error estimators are also

examined.

Overall, the simulation results show that, in the presence of microstructure noise, θ̂
(
kn,∆n, F

λ
p

)
becomes

inconsistent. More specifically, θ̂
(
kn,∆n, F

λ
p

)
tends to over-estimate the eigenvalues. In particular, the higher

the sampling frequency (smaller ∆n), the larger the estimation bias; while the larger the number of stocks (higher

d), the larger the estimation bias. Furthermore, the estimation bias seems to be greater for larger eigenvalues

(smaller p). Detailed results are summarized in the tables in Appendix G.

In Figure 6.1, we show the finite sample RMSE of the first integrated eigenvalue estimates, i.e., Ṽ
(
∆Tn, X;Fλp

)
with p = 1. It is obvious that the RMSE value increases as the pre-averaging window ∆τn increases.. Moreover,
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it is evident that the increment of cross-sectional dimension d can magnify the absolute value of the differences

in the RMSE values corresponding to different choices of ∆τn.
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Figure 6.1: Finite sample root mean squared error (RMSE) of Integrated Largest Eigenvalue Estimates based on the

Smoothed TSRV, i.e., Ṽ
(
∆Tn, X;Fλ1

)
, with 1000 simulation trials and ∆τn = 5, 15, 60 seconds, d = 5, 10, 20, 30, 50. Note

that “Delta Tau” in the plot denoting ∆τn, which is the pre-averaging window of the Smoothed TSRV.
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Figure 6.2: Signature Plot for the Estimates of Integrated Largest Eigenvalue in Logarithmic Scale. “Estimator 1” (red

solid curve) denotes the estimates Ṽ
(
∆Tn, X;Fλ1

)
, and the sampling interval in the plot corresponds to the length of

the pre-averaging window ∆τn. “Estimator 2” (lightblue dots) denotes the estimates θ̂
(
kn,∆n, F

λ
1

)
computed with the

different sampling intervals and different sampling starting points. The plot suggests that microstructure noise induces
substantially more bias and variability on eigenvalue estimators than on regular volatility estimators. The y-axis is on the
log scale.

Figure 6.2 uses d = 50. For any fixed sampling interval ∆n, one can (sub-)sample the data with varying

starting point (e.g. starting from 9:01am, or 9:02am, etc). Each light-blue circle in the graph represents an
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estimated θ̂
(
kn,∆n, F

λ
1

)
based on a particular subsample. As seen in Figure 6.2, Ṽ stays reasonably close to the

true value even as the sampling interval shrinks to below 15 seconds. On the other hand, θ̂ displays positive bias

as sampling interval dips below 1 minute. If one chooses to sample more sparsely (say, once every 3 minutes or

longer), θ̂ based on a particular (sub-)sample displays greater estimation uncertainty. The distributional behavior

of the bias-corrected estimate Ṽ is validated, see the histograms in Appendix G. We emphasize that the invention

of θ̂
(
kn,∆n, F

λ
1

)
remains a seminal contribution to high dimensional analysis with high-frequency data. In applied

work, the authors have selected sparse samling intervals.

7 Empirical Study

7.1 Realized Eigenvalues and Principal Components

As an empirical study, we implement the high frequency PCA on the intraday returns of the S&P 100 Index

(OEX) constituents. The stock prices are extracted from the Trade and Quote (TAQ) database of the New York

Stock Exchange (NYSE). As illustrated by Figure 3 of Aı̈t-Sahalia and Xiu (2019), it is easy to see that starting

from 2007, more than 75% of trading intervals are less than 5 seconds. We collect the intraday stock prices of 70

most actively traded stocks among the S&P 100 Index constituents, between 9:45 a.m. EST and 4:00 p.m. EST

of each trading day, ranging from January 2007 to December 2017 (2769 trading days in total).

We estimate the integrated eigenvalues and -vectors in nine intervals of 2500 seconds each, for every trading

day, for a total of 2769 x 9 = 24921 realizations over eleven years.∗ We show the percentages of the total variation

explained by principal components corresponding to the first four eigenvalues in Figure 7.1. The graph shows

that the first principal component (PC1) explains about half (46.7 %) of the variation in the data. We shall

assume all 70 eigenvalues are distinct. At least for the first eigenvalue, this is borne out by Figure 7.1.

To compare investment strategies, we estimate the realized principal components (realized PCs) corresponding

to the first five eigenvalues using the S-TSRV. The hth realized PC is an estimate of
∫ t

0
(γ

(h)
s− )ᵀdXs, where γ

(h)
s

is the d-dimensional (d=70) hth eigenvector at time s, cf. Section 3.4 of Aı̈t-Sahalia and Xiu (2019). With the

following construction, the realized PCs become the log profit or loss (P/L) of an actual trading strategy.

To achieve this, the realized hth principal component is estimated as follows:

B∑
i=1

log
(

1 +
(
γ̂

(h)
∆Tn,Ti−1

)ᵀ
rTi

)
(7.1)

∗The estimators are as defined in Section 4. The tuning parameters are taken to be ∆n = ∆τn = 5 seconds and ∆Tn =
500∆τn,K = 100, J = 1.
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where rTi
is a column vector with jth element r

(j)
Ti

= (S
(j)
Ti
− S(j)

Ti−1
)/S

(j)
Ti−1

. These are the returns on the stocks

S(j), j = 1, · · · , d. The quantity (7.1) is therefore a log P/L on a strategy that invests a fraction

δ
(h)
i−1 =

d∑
j=1

γ̂
(h,j)
∆Tn,Ti−1

(7.2)

of the accumulated wealth wTi−1
in stocks in the period from Ti−1 to Ti, and keeps a fraction 1 − δ(h)

i−1 in cash.

Specifically, the strategy holds wTi−1
γ̂

(h,j)
∆Tn,Ti−1

/S
(j)
Ti−1

units of stock S(j) in this time period. For simplicity, we

take interest rates on cash to be zero; this was nearly the case for most of the time period under consideration.

Figure 7.1: Percentage of the Total Variation Explained by Principal Components, specifically the 1st to 4th eigenvalues of
the S&P 100 index constituents during January 2007 - December 2017. The values are rolling means over nine estimation
periods of 2500 seconds.

We use the estimate S
(j)
Ti

= exp(ȲN∗(Ti)), where Ȳi and N∗ (t) are defined in (2.4) and (2.3), respectively, and

γ̂
(h)
∆Tn,Ti−1

is the eigenvector corresponding to the hth largest eigenvalue of ĉ∆Tn,Ti−1
=
{
ĉ
(r,s)
∆Tn,Ti−1

}
1≤r,s≤d

(as

defined in formula (3.2), with the normalizations described in Section 7.2 and 7.3. We have chosen to use r
(j)
Ti

instead of
(
Ȳ

(j)
N∗(Ti)

− Ȳ (j)
N∗(Ti−1)

)
(log returns) since the former give rise to a feasible trading strategy, whereas

log prices cannot be traded. By Itô’s formula, the two are approximations to each other. †

†Note that under continuity the trading weights should be the same for our PCA and for a PCA conducted on the original scale.
This is because the Itô correction does not alter the quadratic variation. Jumps would make a difference, and this remains to be
explored, but for this paper we take the view that it is more robust to carry out the PCA on the log scale, even if one wishes the
tradable PC. Also, when estimating eigenvalues and -vectors which are actually used as forecasts for near future time periods, it may
furthermore not be desirable to include a large jump that has already occurred in the near past.
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7.2 The Index and the First Principal Component

The First Principal Component is special, in that it is natural to compare it to the value weighted index, in our

case the S&P 100, for the reasons discussed in the Introduction. It is also special because the sum of the elements

in first eigenvector (the weights given to the stocks) is away from zero, whereas the eigenvectors corresponding to

the smaller eigenvalues have sums that follow a (somewhat skewed) bell shaped curve with mode around zero, see

Figure 7.2. For the first principal component to try to mimic the index, it seems natural to standardize the first

eigenvector to have sum equal to one. The reason for this is that requiring δ
(1)
i−1 = 1 in (7.2) makes the investment

strategy self-financing with no holdings in cash. This is analogous to the strategy of holding the index through

futures or via an ETF which tracks the index.
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Figure 7.2: Distribution over time of the sums of the elements in the eigenvector. The next several eigenvectors have
distributions that resemble the one for the second eigenvector. The element sums in the first eigenvector are always positive
with the three smallest values being 0.74, 0.77, and 0.81 in (a), whereas the element sums in second (and later) eigenvectors
may be positive or negative.

With this choice of standardization, the first PC does indeed resemble the index, as documented in Figure 7.3.

In fact, from the blue curve in Figure 7.3, it looks like the first principal component may actually outperform the

S&P 100 index. This is tantalizing, and one can speculate that the faster updating of the principal component

(relative to the index) is an advantage in a crisis. To construct portfolio weights for Figure 7.3, we use a rolling

mean of the (70-dimensional) eigenvectors from the most recent nine periods of 2500 second. Recall that there

are nine such periods between 9:45 am and 4 pm. In other words, the portfolio weights are updated nine time

every 24 hours. (The overnight period has the same weight as the first period of the following trading day.) The

purpose of rolling means is twofold: On the one hand, it reduces idiosyncratic statistical error in each estimated
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eigenvector. On the other hand, it reduces transaction cost by turning over only about 1/9th of the portfolio

every 2500 seconds. The choice of nine rather than, say, eight or ten, is based on the pragmatic advantages of

following the daily cycle, and is also supported by acf plot in the left panel Figure 7.5. This figure also shows the

idiosyncratic error at lag zero.

Figure 7.3: Plot of PC1 and log(OEF) as proxy for log(S&P100). Both are standardized to have value zero at the
beginning of 2007. PC1 is constructed as described in the text in Sections 7.1-7.2. The green and red curves are also PC1,
but incorporate a cost of 2 and 4 basis points (bp) of the value of each sales transaction. The graph corroborates the close
relationship between, on the one hand, the STSRV covariance matrix and the resulting PCA, and, on the other hand, the
economic arguments behind the value weighted index. This is a main empirical finding of this paper.

If transaction costs are larger than those used in the graph, it would be natural to update the portfolio less

often, or to use a rolling mean over a longer period. As an experiment in this direction, we study the PC1

portfolio that is based on weekly (45 periods) rolling mean eigenvectors in Figure 7.4. With 20 basis points of

transaction cost at each sale, the weekly PC1 portfolio again gets close to the S&P 100 index. An interesting

finding is that for the PC1 portfolio without cost, the loss in going from daily to weekly rolling portfolio weights

is small compared to the potential impact of transaction cost. Meanwhile, given the high-frequency data that

goes into estimators, we have very high precision for the estimated weekly rolling portfolio weights, see, e.g. the

discussion of negative weights at the end of this section. For a given level of cost, there may be an optimal choice

of this tuning parameters.

The idea that the first PC is close to the index has been around for some time (and forms the basis of our

“index test”), but this degree of closeness has not been shown. Avellaneda and Lee (2010) concludes that the

PC underperforms the index. The closest previous finding is that of Pelger (2019a,b), who concludes that the
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first PC and the index have “total correlation” equal to one. This is an important result, but total correlation is

a measure of aggregated local behavior, and need not correspond to the very long term match demonstrated in

Figure 7.3.

Figure 7.4: Plot of PC1 and log(OEF) as proxy for log(S&P100). Both are standardized to have value zero at the
beginning of 2007. The weights from weekly rolling are equal weights from the proceeding 45 periods (9 periods per day
x 5 days). The orange curve is PC1 without transaction cost. The green and red curves are also PC1, but incorporate a
cost of 10 and 20 basis points (bp) of the value of each sales transaction.

We report standard financial measures of portfolio performance in Table 7.1. The weekly rolling PC1 seems

to have reasonable performance in terms of risk adjusted return (Sharpe, Sortino ratios). By rolling weekly, we

can keep the daily turnover to 11.2%. It is an open question how long we can extend the rolling window without

sacrificing financial gain.

Table 7.1: Basic Financial Measures

S&P 100 PC1 daily rolling PC1 weekly rolling

annual returns 5.3% 12.5% 11.1%
cumulative returns 58.8% 138.0% 122.2%

annual volatility 15.6% 24.3% 23.2%
Sharpe ratio 34.0% 51.4% 47.8%
Sortino ratio 42.9% 59.2% 61.0%

daily turnover 0 58.3% 11.2%
maximum drawdown 56.2% 65.3% 65.5%

alpha 0 0 0
beta 1 1.44 1.40

Annual returns are based on (7.1) with no transaction cost. Cumulative returns (without transaction cost) and maximum drawdowns

are over the entire 11 years from 2007 to 2017. Risk-free rate is assumed to be zero. Volatilities were computed using the S-TSRV.

For the computation of alpha and beta, S&P 100 is used as market proxy and monthly returns have been used in the regression. For

all the three series, the maximum drawdown occurred at market close on 5 March, 2009.
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We emphasize that there are a number of issues to be explored, and this is not a definitive study of relationship

between the index and the first principal component. In the case where the asset returns have only one factor, the

theoretical prediction would be that the PC should closely match the one factor (going back to Chamberlain and

Rothschild (1983), and as discussed in Sections 1.1-1.3) and therefore (by CAPM) the index. In the multi-factor

environment, similar behavior may be related to the dominance of the index factor in stock prices, cf. Figure 7.1,

but we leave further theory development for another paper. Meanwhile, the empirics is quite compelling. This is

the “index test” discussed in the Introduction.

Finally, we turn to some additional technical details involved in constructing the principal components. First

of all, recall that the sign of the eigenvectors is arbitrary. If γ is an eigenvector, then so is − γ. For PC1, the

natural solution is to require that δ
(1)
i−1 =

∑d
j=1 γ̂

(1,j)
∆Tn,Ti−1

be positive. We impose this on all nine eigenvectors

from each day. To obtain a self financing trading strategy, however, the requirement that δ
(1)
i−1 = 1 is imposed on

the relevant rolling means of 9 or 45 periods.
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Figure 7.5: Diagnostics for PC1. (a) Autocorrelation plot of the sums of the first eigenvector without using the rolling
mean. It is clear that there is substantial idiosyncratic variance. There is also a period of 9, corresponding to the daily
cycle. The same phenomenon applies to the first and higher order eigenvalues. The phenomenon disappears by using the
rolling mean. (b) Distribution over time of log(ni), as defined in (7.3), for the case of the rolling first eigenvector.

.
There is a potential worry that the principal component method produces substantial negative (short) positions

in some stock. This is potentially a major difference with the value weighted index. For PC1, however, these

negative positions are quite minor. If we define the negative fraction of the first eigenvector as

ni =
d∑
j=1

(
γ̂

(1,j)
∆Tn,Ti−1

)−
/

d∑
j=1

γ̂
(1,j)
∆Tn,Ti−1

where x− = max(−x, 0), (7.3)
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where γ̂
(1)
∆Tn,Ti−1

is the 9-period (daily) rolling first eigenvector. We find that the mean of ni is 0.011, the 95th

percentile is 0.067. The histogram of log(ni) is given in Figure 7.5. The maximum over the eleven years is 0.538.

For comparison, without the rolling mean, the maximum is 1480.94. Also for comparison, for the similar 45

period (weekly) rolling mean eigenvectors, the mean negative part is is 0.0012, the 95th percentile is 0.0053, and

the maximum over 11 years is 0.0778. Note that it is always a possibility to build limits on the negative part into

the portfolio selection.

7.3 Other Principal Components

For the higher order eigenvectors, it is not natural to standardize in the same way as for PC1. The sums δ
(h)
i

(from equation (7.2)) of the eigenvectors straddles zero, as evidenced for δ
(2)
i in the right panel of Figure 7.2,

meaning that the corresponding trading strategies in (7.1) are naturally market neutral. This is desirable since

PC1 is meant to mimic the market index. The time series of higher order PCs are shown in Figure 7.6.

Figure 7.6: Time series of PC2-PC5.

.

There remains the problem of choosing a sign for the higher order eigenvectors, since from the PCA this sign

is arbitrary. We have here chosen to require that the sign of γ̂
(h)
∆Tn,Ti−1

(the hth eigenvector for time period Ti)

be chosen so that this eigenvector is as close as possible to eigenvector at Ti−1. This is the so-called “continuity

method” which guarantees that the hth eigenvector rotates no more than π/2 (clockwise or counter-clockwise)

from one period to the next. Specifically, proceed as follows.
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ALGORITHM 1. Choice of sign of eigenvectors for h ≥ 2

assign sign(γ̂
(h)
∆Tn,Ti

) so that sign{(γ̂(h)
∆Tn,Ti

)ᵀγ̂
(h)
∆Tn,Ti−1

} ≥ 0. (7.4)

The sign requirement follows from the geometric interpretation of the dot product. In this case we require

the cosine of the angle between γ̂
(h)
∆Tn,Ti−1

and γ̂
(h)
∆Tn,Ti

is nonnegative. The δ
(2)
i in Figure 7.2 (b) is based on

Algorithm 1. If we had instead chosen the (arbitrarily signed) raw output from statistical package R, Figure 7.2

(b) would have been more spread out.

As we have seen in Section 7.2, there are two sets of choices that have to be made about the eigenvectors.

Algorithm 1 provides a systematic approach to choosing sign. It remains to choose the size of the eigenvectors.

Once again, our approach for the first eigenvector (set δ
(1)
i = 1 seems inappropriate for h > 1, as the natural choice

of a market neutral trading strategy may be to start with approximately zero dollars, and then approximately

balance short and long positions. This would be consistent with Figure 7.2 (b). Specifically, for δ
(2)
i , the mean

over time is 0.72 while the standard deviation is 1.93.

We have here chosen the approach in the literature of requiring that ||γ̂(h)
∆Tn,Ti−1

||2 = 1 for h ≥ 2, cf. Aı̈t-Sahalia

and Xiu (2019, 2017) and Dai, Lu, and Xiu (2019). The latter papers also use this approach for h = 1.

An alternative would be to standardize the eigenvectors so that the corresponding PCs would have constant

volatility. This is an appealing principle. This is not the case, however, for either the S&P 100, or for the PC1

that we have constructed above. For the moment, we conclude that the choice of this normalization is an open

problem, and we hope to pursue this in a later paper.
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A Decomposition of the Smoothed TSRV Estimator

We only show the case when r = s and 0 ≤ t ≤ T . The proof for other cases (i.e., 1 ≤ r, s ≤ d) will be similar.

Recall the definition of the S-TSRV as follows:

〈̂X,X〉t =
1

(1− b/N) (K − J)

{
K
[̃
Ȳ , Ȳ

](K)

t
− J

[̃
Ȳ , Ȳ

](J)

t

}
,

where for a pair (J,K), and N∗ (t) defined in (2.3), we set

K
[̃
Ȳ , Ȳ

](K)

t
=

1

2

J∑
i=1

(
Ȳi+K − Ȳi

)2
+

N∗(t)−b∑
i=J+1

(
Ȳi+K − Ȳi

)2
+

1

2

N∗(t)−K∑
i=N∗(t)−b+1

(
Ȳi+K − Ȳi

)2
with

b = K + J.

We define J
[̃
Ȳ , Ȳ

](J)

t
similarly by switching J and K.

Recall the results of Theorem 1, Proposition 1 and Theorem 3 in Mykland et al. (2019), if we assume that
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∆τ+
n → 0,M−n →∞ and K − J →∞ as n→∞, we have the following expression:

〈̂X,X〉t =
1

K − J

1

2

N∗(t)−b∑
i=1

+

N∗(t)−K∑
i=J+1

(Xτ i+K−1
−Xτ i

)2 − 1

2

N∗(t)−b∑
i=1

+

N∗(t)−J∑
i=K+1

(Xτ i+J−1
−Xτ i

)2
︸ ︷︷ ︸

Signal Part

− 2

K − J

N∗(t)−K∑
i=1

−1

2

b−K∑
i=1

−1

2

N∗(t)−K∑
i=N∗(t)−b+1

 ε̄iε̄i+K +
2

K − J

N∗(t)−J∑
i=1

−1

2

b−J∑
i=1

−1

2

N∗(t)−J∑
i=N∗(t)−b+1

 ε̄iε̄i+J︸ ︷︷ ︸
Noise U-Statistics

+Op

((
∆τ+

n +
(
M−n

)−1
) 1

2

)
. (A.1)

A. 1 Edge Part of Noise U-Statistics

According to formula (A.1), we know that the main martingale part for the noise U-Statistics of the estimator

〈̂X,X〉t is:

− 2

K − J

N∗(t)−K∑
i=1

ε̄iε̄i+K +
2

K − J

N∗(t)−J∑
i=1

ε̄iε̄i+J ,

and its edge part is:

1

K − J

b−K∑
i=1

+

N∗(t)−K∑
i=N∗(t)−b+1

 ε̄iε̄i+K −
1

K − J

b−J∑
i=1

+

N∗(t)−J∑
i=N∗(t)−b+1

 ε̄iε̄i+J

=
1

K − J

 b∑
i=K+1

+

N∗(t)∑
i=N∗(t)−J+1

 ε̄i−K ε̄i −
1

K − J

 b∑
i=J+1

+

N∗(t)∑
i=N∗(t)−K+1

 ε̄i−J ε̄i

= − 1

K − J

K∑
i=J+1

ε̄i−J ε̄i −
1

K − J

N∗(t)−J∑
i=N∗(t)−K+1

ε̄i−J ε̄i

+
1

K − J

b∑
i=K+1

(ε̄i−K − ε̄i−J) ε̄i +
1

K − J

N∗(t)∑
i=N∗(t)−J+1

(ε̄i−K − ε̄i−J) ε̄i︸ ︷︷ ︸
(I)

,

where

(I) = Op

(
J1/2

(K − J)M−n

)
= op

((
M−n

)−1
)
,

and

− 1

K − J

K∑
i=J+1

ε̄i−J ε̄i −
1

K − J

N∗(t)−J∑
i=N∗(t)−K+1

ε̄i−J ε̄i = Op

(
(K − J)

−1/2 (
M−n

)−1
)
.

2



If we let

K − J = Op

((
N/M−n

)2/3)
,

then (K − J)
−1/2

(M−n )
−1

= Op

(
N−1/3 (M−n )

−2/3
)
. Comparing to the order of the edge term discussed in

Proposition 1 of Mykland et al. (2019), for example, of order Op

(
J1/2

(
∆τ+

n + (M−n )
−1
)1/2

(∆τ+
n )

1/2
)

=

Op

(
N−1 +N−1/2 (M−n )

−1/2
)
, we know that

N−1/3 (M−n )
−2/3

N−1
=

(
N

M−n

) 2
3

→∞,

N−1/3 (M−n )
−2/3

N−1/2
(
M−n

)−1/2
=

(
N

M−n

) 1
6

→∞.

Thus, we know that for the edge effect in noise U-statistics, the part that really matters for the AVAR estimator

is

− 1

K − J

K∑
i=J+1

ε̄i−J ε̄i −
1

K − J

N∗(t)−J∑
i=N∗(t)−K+1

ε̄i−J ε̄i.

It is worth to mention that because the rate of convergence of the estimator is Op

(
N−1/6 (M−n )

−1/3
)
, which is

equivalent to the order Op

(
[(K − J) ∆τ+

n ]
1
2

)
under the Assumption 3. Then without loss of generality, denote

Op

(
N−1/6 (M−n )

−1/3
)

by Op (an) , then we have:

− 1

K − J

K∑
i=J+1

ε̄i−J ε̄i −
1

K − J

N∗(t)−J∑
i=N∗(t)−K+1

ε̄i−J ε̄i = Op
(
a2
n

)
.

In the next section, we are going to find the edge term in the signal part which has the order Op
(
a2
n

)
.
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A. 2 Further Decomposition of Signal Part

Based on the definition of the signal part in formula (A.1), we obtain for 〈̂X,X〉t that

1

2

N∗(t)−b∑
i=1

+

N∗(t)−K∑
i=J+1

(Xτ i+K−1
−Xτ i

)2 − 1

2

N∗(t)−b∑
i=1

+

N∗(t)−J∑
i=K+1

(Xτ i+J−1
−Xτ i

)2
=

1

2

2

N∗(t)−K∑
i=1

−
J∑
i=1

−
N∗(t)−K∑

i=N∗(t)−b+1

(Xτ i+K−1
−Xτ i

)2 − 1

2

2

N∗(t)−J∑
i=1

−
K∑
i=1

−
N∗(t)−J∑

i=N∗(t)−b+1

(Xτ i+J−1
−Xτ i

)2
=

N∗(t)−(K−J)−1∑
i=J

(
Xτ i+K−J

−Xτ i

)2
︸ ︷︷ ︸

(Sum of Squared Terms)

+
1

2

K∑
i=J+1

(
Xτ i+J−1

−Xτ i

)2 − 1

2

2J−1∑
i=J

(
Xτ i+K−J

−Xτ i

)2
︸ ︷︷ ︸

(II)

−1

2

N∗(t)−(K−J)−1∑
i=N∗(t)−K

(
Xτ i+K−J

−Xτ i

)2 − 1

2

N∗(t)−J∑
i=N∗(t)−K+1

(
Xτ i+J−1

−Xτ i

)2
︸ ︷︷ ︸

(III)

+

N∗(t)−b∑
i=1

+

N∗(t)−K∑
i=J+1

(Xτ i+K−1
−Xτ i+J−1

) (
Xτ i+J−1

−Xτ i

)
︸ ︷︷ ︸

(IV)

,

where

(II) + (III) = Op
(
J (K − J) ∆τ+

n

)
,

(IV) = Op
(
J (K − J) ∆τ+

n

)
.

Moreover, the main part of the squared terms can be decomposed as follows:

N∗(t)−1−(K−J)∑
i=J

(
Xi+(K−J) −Xi

)2
= R

X(2)

t +R
X(1,1)

t − CX(2)

t − CX(1,1)

t , (A.2)

where

R
X(2)

t = (K − J)

N∗(t)∑
i=J+1

∆X2
τ i
,

R
X(1,1)

t = 2
K−J−1∑
p=1

(K − J − p)
N∗(t)∑

i=J+p+1

∆Xτ i−p∆Xτ i ,

4



and

C
X(2)

t =
K−J−1∑
i=1

(K − J − i) ∆X2
τJ+i

+
K−J−1∑
i=0

(K − J − i) ∆X2
τN∗(t)−i

,

C
X(1,1)

t = 2
K−J−1∑
p=1

K−J−p∑
i=1

(K − J − p− i) ∆XτJ+i
∆XτJ+i+p

+ 2
K−J−1∑
p=1

K−J−p∑
i=0

(K − J − p− i) ∆XτN∗(t)−i−p
∆XτN∗(t)−i

.

Observe that C
X(2)

t = Op

(
(K − J)

2
∆τ+

n

)
and C

X(1,1)

t = Op

(
(K − J)

2
∆τ+

n

)
.

If we let K − J = Op

(
(N/M−n )

2/3
)
, then based on all of above calculations, we obtain:

Signal Part in formula (A.1) =

N∗(t)∑
i=J+1

∆X2
τ i

+ 2
K−J−1∑
p=1

(
K − J − p
K − J

) N∗(t)∑
i=J+p+1

∆Xτ i−p
∆Xτ i

− 1

K − J

(
C
X(2)

t + C
X(1,1)

t

)
+ op

(
a2
n

)
.

B Proof of Lemma 1

Based on formulae (2.7), (3.2) and (3.3), the estimation error of ĉ
(r,s)
∆Tn,t

can be separated into two parts:

c̄
(r,s)
∆Tn,t

− c(r,s)t =
1

∆Tn

∫ t+∆Tn

t

(t+ ∆Tn − u) dc(r1,s1)
u ,

ĉ
(r,s)
∆Tn,t

− c̄(r,s)∆Tn,t
=

1

∆Tn

(
M

(r,s)
t+∆Tn

−M (r,s)
t

)
+

1

∆Tn

(
ẽ

(r,s)
t+∆Tn

− ẽ(r,s)
t

)
. (B.1)

By Lemma 1 and 4 of Mykland and Zhang (2006), we know that
∥∥∥c̄(r,s)∆Tn,t

− c(r,s)t

∥∥∥2

2
= Op (∆Tn) , then for ε > 0,

sup
t

∣∣∣c̄(r,s)∆Tn,t
− c(r,s)t

∣∣∣ = Op

(
∆T 1/2−ε

n

)
.

Because ∆τ+
n = op

(
a2
n

)
and a2

n = op (∆Tn) , we have:

1

∆Tn

∫ t+∆Tn

t

(t+ ∆Tn − u) dc(r1,s1)
u

= β̄
(r,s)
∆Tn,t +

1

∆Tn

∫ t+∆Tn

τN∗(t+∆Tn)

(t+ ∆Tn − u) dc(r1,s1)
u − 1

∆Tn

∫ t

τN∗(t)

(t+ ∆Tn − u) dc(r1,s1)
u

= β̄
(r,s)
∆Tn,t +Op

(
∆T−1

n

(
∆τ+

n

)3/2−ε)
+Op

((
∆τ+

n

)1/2−ε)
= β̄

(r,s)
∆Tn,t + op

(
(K − J)

−3/2+ε
∆T−1

n (∆Tn)
3/2−ε

)
+ op

(
(K − J)

−1/2+ε
(∆Tn)

1/2−ε
)

= β̄
(r,s)
∆Tn,t + op

(
∆T 1/2

n

)
.
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Moreover, by Definition (2.8), we have 1
∆Tn

(
M

(r,s)
t+∆Tn

−M (r,s)
t

)
= β̃

(r,s)

∆Tn,t and
∥∥∥M (r,s)

t+∆Tn
−M (r,s)

t

∥∥∥2

2
= Op

(
a2
n∆Tn

)
.

Thus,

sup
t

∣∣∣∣ 1

∆Tn

(
M

(r,s)
t+∆Tn

−M (r,s)
t

)∣∣∣∣ = Op

(
∆T−1

n

(
a2
n∆Tn

)1/2−ε)
.

Finally, we have supt

∣∣∣ 1
∆Tn

(
ẽ

(r,s)
t+∆Tn

− ẽ(r,s)
t

)∣∣∣ = Op

(
∆T−1

n

(
a4
n

)1/2−ε)
= op

(
∆T−1

n

(
a2
n∆Tn

)1/2)
. Thus the

asymptotic representation of the estimation error is as follows:

sup
t

∣∣∣c̄(r,s)∆Tn,t
− c(r,s)t

∣∣∣ = Op

(
∆T 1/2−ε

n

)
, (B.2)

sup
t

∣∣∣ĉ(r,s)∆Tn,t
− c̄(r,s)∆Tn,t

∣∣∣ = Op

(
∆T−1

n

(
a2
n∆Tn

)1/2−ε)
.

By (B.2), we have:

sup
t

∣∣∣ĉ(r,s)∆Tn,t
− c(r,s)t

∣∣∣ = Op

(
∆T 1/2−ε

n

)
+Op

(
∆T−1

n

(
a2
n∆Tn

)1/2−ε)
,

and it is obvious that if ∆Tn satisfies (3.1), then

sup
t

∣∣∣ĉ(r,s)∆Tn,t
− c(r,s)t

∣∣∣ = op (1) .

C Proof of Lemma 2

Recall the formulas (2.7), (3.2) and (3.3), the estimation error of ĉ
(r,s)
∆Tn,t

can be expressed as:

ĉ
(r,s)
∆Tn,t

− c(r,s)t = c̄
(r,s)
∆Tn,t

− c(r,s)t︸ ︷︷ ︸
Op

(
∆T

1/2
n

)
+

1

∆Tn

(
M

(r,s)
t+∆Tn

−M (r,s)
t

)
+

1

∆Tn

(
ẽ

(r,s)
t+∆Tn

− ẽ(r,s)
t

)
︸ ︷︷ ︸

Op(a2
n∆T−1

n )

. (C.1)

Recall that 1
∆Tn

(
M

(r,s)
t+∆Tn

−M (r,s)
t

)
= β̃

(r,s)

∆Tn,t, and by definition (3.3), we know that

β
(r,s)
∆Tn,t

= β̃
(r,s)

∆Tn,t + c̄
(r,s)
∆Tn,t

− c(r,s)t +
1

∆Tn

(
ẽ

(r,s)
t+∆Tn

− ẽ(r,s)
t

)
, (C.2)

and thus

E
(
β

(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

|Ft
)

= E
(
β̃

(r1,s1)

∆Tn,t β̃
(r2,s2)

∆Tn,t |Ft
)

+Op (∆Tn) +Op
(
a4
n∆T−2

n

)
,
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uniformly with respect to t. Therefore, if a−1
n ∆Tn → 0 as n→∞, we have ∆Tn = op (an) and then

E
(
β

(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

|Ft
)

= E
(
β̃

(r1,s1)

∆Tn,t β̃
(r2,s2)

∆Tn,t |Ft
)

+Op
(
a4
n∆T−2

n

)
+ op (an) . (C.3)

Recall the decomposition (C.2), and by the Cauchy-Swartz inequality, we have:

∥∥∥β(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

− β̃
(r1,s1)

∆Tn,t β̃
(r2,s2)

∆Tn,t

∥∥∥
2

= Op

(
∆T−3/2

n a3
n

)
,

and when a−1
n ∆Tn → 0 as n→∞, ∆T

−3/2
n a3

n = op
(
∆T−1

n a2
n

)
, thus,

β
(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

= β̃
(r1,s1)

∆Tn,t β̃
(r2,s2)

∆Tn,t + op
(
∆T−1

n a2
n

)
, (C.4)

uniformly with respect to t.

By the Minkowski inequality, we have

∥∥∥∥β(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

− 1

∆T 2
n

ϕ
(r1,r2,s1,s2)
∆Tn,t

∥∥∥∥
2

≤
∥∥∥β(r1,s1)

∆Tn,t
β

(r2,s2)
∆Tn,t

− E
(
β

(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

|Ft
)∥∥∥

2
+

∥∥∥∥E (β(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

|Ft
)
− 1

∆T 2
n

ϕ
(r1,r2,s1,s2)
∆Tn,t

∥∥∥∥
2

.

C. 1 Bound of
∥∥∥β(r1,s1)

∆Tn,t
β

(r2,s2)
∆Tn,t

− E
(
β

(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

|Ft
)∥∥∥

2

For the simplicity of discussion, set B
(r,s)
i = B̃

(r,s)
i [2], then

β̃
(r,s)

∆Tn,t =
1

∆Tn

N∗(t+∆Tn)∑
i=N∗(t)+1

B
(r,s)
i , (C.5)

and

β̃
(r1,s1)

∆Tn,t β̃
(r2,s2)

∆Tn,t =
1

∆T 2
n

N∗(t+∆Tn)∑
i=N∗(t)+1

B
(r1,s1)
t+∆Tn,i

B
(r2,s2)
t+∆Tn,i

+
1

∆T 2
n

N∗(t+∆Tn)∑
i=N∗(t)+2

i−N∗(t)−1∑
l=1

B
(r1,s1)
t+∆Tn,i−l

B
(r2,s2)
t+∆Tn,i

[2], (C.6)

where [2] denotes the summation by switching (r1, s1) and (r2, s2).
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Assume γ ∈ (α, 2α). Recall the decomposition (C.2), (C.4), (C.5) and (C.6), we know that

∥∥∥β(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

− E
(
β

(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

|Ft
)∥∥∥

2

has the same order as:

π1 =
1

∆T 2
n

N∗(t+∆Tn)∑
i=N∗(t)+2

i−N∗(t)−1∑
l=1

B
(r1,s1)
t+∆Tn,i−l

B
(r2,s2)
t+∆Tn,i

[2].

In what follows, we prove ‖π1‖2 = Op
(
a2
n∆T−1

n

)
. Note that

E
[
π2

1|Ft
]

=
1

∆T 4
n

E


N∗(t+∆Tn)∑
i=N∗(t)+2

i−N∗(t)−1∑
l=1

B
(r1,s1)
t+∆Tn,i−l

B
(r2,s2)
t+∆Tn,i

[2]

2

|Ft


=

1

∆T 4
n

N∗(t+∆Tn)∑
i=N∗(t)+2

E


i−N∗(t)−1∑

l=1

B
(r1,s1)
t+∆Tn,i−l

2 (
B

(r2,s2)
t+∆Tn,i

)2

[2]|Ft


=

1

∆T 4
n

N∗(t+∆Tn)∑
i=N∗(t)+2

i−N∗(t)−1∑
l=1

E

[(
B

(r1,s1)
t+∆Tn,i−l

)2 (
B

(r2,s2)
t+∆Tn,i

)2

|Ft
]

[2], (C.7)

where

E

[(
B

(r1,s1)
t+∆Tn,i−l

)2 (
B

(r2,s2)
t+∆Tn,i

)2

|Ft
]

= Op

((K − J)
(
∆τ+

n

)2
+

1

(K − J)
2 (
M−n

)2
)2
 . (C.8)

Substituting (C.8) into (C.7), we obtain:

E
[
π2

1|Ft
]

= Op

 1

∆T 4
n

(N∗ (t+ ∆Tn)−N∗ (t))
2

(
(K − J)

(
∆τ+

n

)2
+

1

(K − J)
2 (
M−n

)2
)2
 ,

and if we make Assumption 3, then

1

∆T 4
n

(N∗ (t+ ∆Tn)−N∗ (t))
2

(
(K − J)

(
∆τ+

n

)2
+

1

(K − J)
2 (
M−n

)2
)2

∼ ∆T−2
n

(
(K − J) ∆τ+

n +
N

(K − J)
2 (
M−n

)2
)2

∼ a4
n∆T−2

n ,
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and we have E
[
π2

1|Ft
]

= Op
(
a4
n∆T−2

n

)
uniformly with respect to t. Finally we obtain:

sup
t

∥∥∥β(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

− E
(
β

(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

|Ft
)∥∥∥

2
= Op

(
a2
n∆T−1

n

)
.

C. 2 Bound of
∥∥∥E (β(r1,s1)

∆Tn,t
β

(r2,s2)
∆Tn,t

|Ft
)
− 1

∆T 2
n
ϕ

(r1,r2,s1,s2)
∆Tn,t

∥∥∥
2

First find the conditional expectation of β̃
(r1,s1)

∆Tn,t β̃
(r2,s2)

∆Tn,t as follows:

E
(
β̃

(r1,s1)

∆Tn,t β̃
(r2,s2)

∆Tn,t |Ft
)

=
1

∆T 2
n

N∗(t+∆Tn)∑
i=N∗(t)+1

E
(
B

(r1,s1)
t+∆Tn,i

B
(r2,s2)
t+∆Tn,i

|Ft
)
,

where

E
(
B

(r1,s1)
t+∆Tn,i

B
(r2,s2)
t+∆Tn,i

|Ft
)

=

[
K−J−1∑
p=1

(
K − J − p
K − J

)2 ∫ τ i−p

τ i−p−1

c(r1,r2)
u du

]∫ τ i

τ i−1

c(s1,s2)
u du[2][2]+

2ς(r1,r2)ς(s1,s2)

(K − J)
2 (
M−n

)2 [2][2].

(C.9)

Finally, by formula (C.3), it is easy to see that

∥∥∥∥E (β(r1,s1)
∆Tn,t

β
(r2,s2)
∆Tn,t

|Ft
)
− 1

∆T 2
n

ϕ
(r1,r2,s1,s2)
∆Tn,t

∥∥∥∥
2

≤
∥∥∥E (β(r1,s1)

∆Tn,t
β

(r2,s2)
∆Tn,t

|Ft
)
− E

(
β̃

(r1,s1)

∆Tn,t β̃
(r2,s2)

∆Tn,t |Ft
)∥∥∥

2
+

∥∥∥∥E (β̃(r1,s1)

∆Tn,t β̃
(r2,s2)

∆Tn,t |Ft
)
− 1

∆T 2
n

ϕ
(r1,r2,s1,s2)
∆Tn,t

∥∥∥∥
2

= Op
(
a4
n∆T−2

n

)
+ op (an) ,

uniformly with respect to t, because supt

∥∥∥E (β̃(r1,s1)

∆Tn,t β̃
(r2,s2)

∆Tn,t |Ft
)
− 1

∆T 2
n
ϕ

(r1,r2,s1,s2)
∆Tn,t

∥∥∥
2

= Op
(
a8
n∆T−3

n

)
= op (an)

by comparing (C.3), (C.9) and (3.4).

D Proof of Theorem 1

The estimation error can be decomposed as follows: for 1 ≤ m ≤ d,

V̂ (∆Tn, X;Fm)−
∫ T

0

Fm (cs) ds− a2
n∆T−1

n ϕ
(m)
T = RExpansion +RSpot-V +RBias −RDiscrete, (D.1)

9



where RDiscrete is defined in (4.2), RSpot-V and RSpot-B is defined in (4.3), and

RExpansion = ∆Tn

B∑
i=1

(
Fm
(
ĉ∆Tn,Tn,i−1

)
− Fm

(
cTn,i−1

)
−

d∑
r1,s1=1

∂r1s1Fm
(
cTn,i−1

)
β

(r1,s1)
∆Tn,Tn,i−1

−1

2

d∑
r1,s1,r2,s2=1

∂2
r1s1,r2s2Fm

(
cTn,i−1

)
β

(r1,s1)
∆Tn,Tn,i−1

β
(r2,s2)
∆Tn,Tn,i−1

)
, (D.2)

RBias = RSpot-B − a2
n∆T−1

n ϕ
(m)
T .

First of all, it is straightforward to see that

RDiscrete = Op (∆Tn) . (D.3)

Next, because the symmetric function f is C3 on D (g1, g2, . . . , gr) , we obtain:

RExpansion = Op

(
∆Tn

B∑
i=1

(∥∥∥β∆Tn,Tn,i−1

∥∥∥3
))

.

By result (ii) of Lemma 2, we know that
∥∥∥β∆Tn,Tn,i−1

∥∥∥3

= Op

(
a3
n∆T

−3/2
n

)
and consequently, when a−2

n ∆Tn →∞,

RExpansion = Op
(
a3
n∆T−1

n

)
= op (an) . (D.4)

Thirdly, by result (ii) of Lemma 2, it is easy to see that

RSpot-V = Op (an) . (D.5)

Lastly, we calculate the order of RBias, which could be defined as:

RBias = RSpot-B − a2
n∆T−1

n ϕ
(m)
T = RBias-I +RBias-II +RBias-III, (D.6)

with

ϑ
(r1,r2,s1,s2)
Ti−1

= RSpot-B − a2
n∆T−1

n ϕ
(m)
n,B,T = β

(r1,s1)
∆Tn,Ti−1

β
(r2,s2)
∆Tn,Ti−1

− β̃
(r1,s1)

∆Tn,Ti−1
β̃

(r2,s2)

∆Tn,Ti−1
,

and

ϕ
(m)
n,B,T = a−2

n

∫ T
0

1

2

d∑
r1,s1,r2,s2=1

∂2
r1s1,r2s2Fm (cu) d

[
M (r1,s1),M (r2,s2)

](B)

u
,

10



and

RBias-I = ∆Tn

B∑
i=1

[
1

2

d∑
r1,s1,r2,s2=1

∂2
r1s1,r2s2Fm

(
cTn,i−1

) (
ϑ

(r1,r2,s1,s2)
Ti−1

− E
(
ϑ

(r1,r2,s1,s2)
Ti−1

|FTi−1

))]
,

RBias-II = ∆Tn

B∑
i=1

[
1

2

d∑
r1,s1,r2,s2=1

∂2
r1s1,r2s2Fm

(
cTn,i−1

)
E
(
ϑ

(r1,r2,s1,s2)
Ti−1

|FTi−1

)]
,

RBias-III = a2
n∆T−1

n ϕ
(m)
n,B,T − a

2
n∆T−1

n ϕ
(m)
T .

By formula (3.7) of result (iii) in Lemma 2, we know that supi

∥∥∥ϑ(r1,r2,s1,s2)
Ti−1

− E
(
ϑ

(r1,r2,s1,s2)
Ti−1

|FTi−1

)∥∥∥
2

=

Op
(
a2
n∆T−1

n

)
, and because a−2

n ∆Tn →∞,

∥∥RBias-I
∥∥

2
= Op

(
a2
n∆T−1/2

n

)
= op (an) . (D.7)

Then by formula (3.6) of result (iii) in Lemma 2, we know that supi

∥∥∥E (ϑ(r1,r2,s1,s2)
Ti−1

|FTi−1

)∥∥∥
2

= Op
(
a4
n∆T−2

n

)
+

op (an) , and therefore ∥∥RBias-II
∥∥

2
= Op

(
a4
n∆T−2

n

)
+ op (an) . (D.8)

Note that a−2
n

[
M (r1,s1),M (r2,s2)

](B)

u

p−→ACOV
(
M (r1,s1),M (r2,s2)

)
u

for all u and (r1, s1) , (r2, s2) , we obtain

ϕ
(m)
n,B,T

p−→ ϕ
(m)
T and thus,

RBias-III = op
(
a2
n∆T−1

n

)
. (D.9)

Finally, by substituting (D.3)-(D.9) into (D.1), we obtain:

a−2
n ∆Tn

(
V̂ (∆Tn, X;Fm)−

∫ T
0

Fm (cs) ds

)
− ϕ(m)

T = op (1) .

E Proof of Theorem 2

Before the proof, we introduce notations as follows:

ψ
(r,s)
i = c̄

(r,s)
∆Tn/2,(i−1/2)∆Tn

− c̄(r,s)∆Tn/2,(i−1)∆Tn
,

β̆
(r,s)

∆Tn,t = ĉ
(r,s)
∆Tn,t

− c̄(r,s)∆Tn,t
, (E.1)

11



where c̄
(r,s)
∆Tn,t

is defined in (3.3). We also define:

ϕ̄
(r1,r2,s1,s2)
∆Tn,Tn,i−1

=
1

4
β̆

(r1,s1)

∆Tn/2,(i−1)∆Tn
β̆

(r2,s2)

∆Tn/2,(i−1)∆Tn
+

1

4
β̆

(r1,s1)

∆Tn/2,(i−1/2)∆Tn
β̆

(r2,s2)

∆Tn/2,(i−1/2)∆Tn
. (E.2)

Moreover, recall the definition (3.3), we have:

β̆
(r,s)

∆Tn,t = β̃
(r,s)

∆Tn,t +
1

∆Tn

(
ẽ

(r,s)
t+∆Tn

− ẽ(r,s)
t

)
=

1

∆Tn

(
M

(r,s)
t+∆Tn

−M (r,s)
t

)
+

1

∆Tn

(
ẽ

(r,s)
t+∆Tn

− ẽ(r,s)
t

)
.

Note that the estimation error could be decomposed as follows: for 1 ≤ m ≤ d,

Ṽ (∆Tn, X;Fm)−
∫ T

0

Fm (cs) ds = RExpansion +RSpot-V +RAdjusted-Bias −RDiscrete, (E.3)

where RDiscrete is defined in (4.2), RSpot-V is defined in (4.3), RExpansion is defined in (D.2) and

RAdjusted-Bias = RAdjusted-Bias-I +RAdjusted-Bias-II +RAdjusted-Bias-III +RAdjusted-Bias-IV, (E.4)

with

RAdjusted-Bias-I = ∆Tn

B∑
i=1

1

2

d∑
r1,s1,r2,s2=1

[
∂2
r1s1,r2s2

Fm
(
cTn,i−1

)
− ∂2

r1s1,r2s2
Fm

(
ĉ∆Tn,Tn,i−1

)]
β

(r1,s1)
∆Tn,Tn,i−1

β
(r2,s2)
∆Tn,Tn,i−1

 ,
RAdjusted-Bias-II = ∆Tn

B∑
i=1

1

2

d∑
r1,s1,r2,s2=1

∂2
r1s1,r2s2

Fm
(
ĉ∆Tn,Tn,i−1

)(
β

(r1,s1)
∆Tn,Tn,i−1

β
(r2,s2)
∆Tn,Tn,i−1

− β̆(r1,s1)
∆Tn,(i−1)∆Tn

β̆
(r2,s2)
∆Tn,(i−1)∆Tn

) ,
RAdjusted-Bias-III = ∆Tn

B∑
i=1

1

2

d∑
r1,s1,r2,s2=1

∂2
r1s1,r2s2

Fm
(
ĉ∆Tn,Tn,i−1

) [
φ̆

(r1,r2,s1,s2)
Tn,i−1

− E
(
φ̆

(r1,r2,s1,s2)
Tn,i−1

|FTn,i−1

)] ,
RAdjusted-Bias-IV = ∆Tn

B∑
i=1

1

2

d∑
r1,s1,r2,s2=1

∂2
r1s1,r2s2

Fm
(
ĉ∆Tn,Tn,i−1

)
E
(
φ̆

(r1,r2,s1,s2)
Tn,i−1

|FTn,i−1

) ,
where β

(r1,s1)
∆Tn,Tn,i−1

is defined in (3.3),

φ̆
(r1,r2,s1,s2)

Ti−1
= β̆

(r1,s1)

∆Tn,(i−1)∆Tn
β̆

(r2,s2)

∆Tn,(i−1)∆Tn
− ϕ̂(r1,r2,s1,s2)

∆Tn,Tn,i−1
,

and β̆
(r1,s1)

∆Tn,(i−1)∆Tn
is defined in (E.1).

If we assume a−1
n ∆Tn → 0 and a

−3/2
n ∆Tn →∞ as n→∞, then following from the results (D.3)-(D.5) in the

12



proof of Theorem 1, we obtain:

RDiscrete = Op (∆Tn) = op (an) ,

RSpot-V = Op (an) ,

RExpansion = Op
(
a3
n∆T−1

n

)
= op (an) . (E.5)

For RAdjusted-Bias-I, because the symmetric function f is C3 on D (g1, g2, . . . , gr) , then we know that ∂2
r1s1,r2s2Fm

is in C1, and thus,

sup
i

∥∥∂2
r1s1,r2s2Fm

(
cTn,i−1

)
− ∂2

r1s1,r2s2Fm
(
ĉ∆Tn,Tn,i−1

)∥∥
2

= Op

(
sup
i

∥∥ĉ∆Tn,Tn,i−1
− cTn,i−1

∥∥
2

)
= Op

(
an∆T−1/2

n

)
.

Recall the result (ii) of Lemma 2, we have supi

∥∥∥β(r1,s1)
∆Tn,Tn,i−1

β
(r2,s2)
∆Tn,Tn,i−1

∥∥∥
2

= Op
(
a2
n∆T−1

n

)
, and therefore

∥∥RAdjusted-Bias-I
∥∥

2
= Op

(
a3
n∆T−1

n

)
= op (an) . (E.6)

For RAdjusted-Bias-II, because

β
(r1,s1)
∆Tn,(i−1)∆Tn

β
(r2,s2)
∆Tn,(i−1)∆Tn

− β̆
(r1,s1)

∆Tn,(i−1)∆Tn
β̆

(r2,s2)

∆Tn,(i−1)∆Tn

= β̆
(r1,s1)

∆Tn,(i−1)∆Tn

(
c̄
(r2,s2)
∆Tn,(i−1)∆Tn

− c(r2,s2)
(i−1)∆Tn

)
[2] +

(
c̄
(r1,s1)
∆Tn,(i−1)∆Tn

− c(r1,s1)
(i−1)∆Tn

)(
c̄
(r2,s2)
∆Tn,(i−1)∆Tn

− c(r2,s2)
(i−1)∆Tn

)
,

where it is obvious that

sup
i
E
[
β̆

(r1,s1)

∆Tn,(i−1)∆Tn

(
c̄
(r2,s2)
∆Tn,(i−1)∆Tn

− c(r2,s2)
(i−1)∆Tn

)
[2]|FTn,i−1

]
= op (an) ,

and by Lemma 1, supi

∥∥∥c̄(r,s)∆Tn,(i−1)∆Tn
− c(r,s)(i−1)∆Tn

∥∥∥
2

= Op

(
∆T

1/2
n

)
and supi

∥∥∥β̆(r,s)

∆Tn,(i−1)∆Tn

∥∥∥
2

= Op

(
an∆T

−1/2
n

)
,

and thus, we obtain:

RAdjusted-Bias-II = Op

(
an∆T 1/2

n

)
+Op (∆Tn) = op (an) . (E.7)

For RAdjusted-Bias-III and RAdjusted-Bias-IV, we first decompose φ̆
(r1,r2,s1,s2)

Tn,i−1
as follows:

φ̆
(r1,r2,s1,s2)

Ti−1
=
(
β̆

(r1,s1)

∆Tn,(i−1)∆Tn
β̆

(r2,s2)

∆Tn,(i−1)∆Tn
− ϕ̄(r1,r2,s1,s2)

∆Tn,Tn,i−1

)
+
(
ϕ̄

(r1,r2,s1,s2)
∆Tn,Tn,i−1

− ϕ̂(r1,r2,s1,s2)
∆Tn,Tn,i−1

)
,
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where ϕ̄
(r1,r2,s1,s2)
∆Tn,Tn,i−1

is defined in (E.2), and it is straightforward to obtain:

β̆
(r1,s1)

∆Tn,(i−1)∆Tn
β̆

(r2,s2)

∆Tn,(i−1)∆Tn
− ϕ̄(r1,r2,s1,s2)

∆Tn,Tn,i−1

=
1

∆T 2
n

(
M

(r1,s1)
i∆Tn

−M (r1,s1)
(i−1/2)∆Tn

)(
M

(r2,s2)
(i−1/2)∆Tn

−M (r2,s2)
(i−1)∆Tn

)
[2]

+
2

∆T 2
n

(
M

(r1,s1)
i∆Tn

−M (r1,s1)
(i−1/2)∆Tn

)(
ẽ

(r2,s2)
(i−1/2)∆Tn

− ẽ(r2,s2)
(i−1)∆Tn

)
[2]

+
1

∆T 2
n

(
ẽ

(r1,s1)
i∆Tn

− ẽ(r1,s1)
(i−1/2)∆Tn

)(
ẽ

(r2,s2)
(i−1/2)∆Tn

− ẽ(r2,s2)
(i−1)∆Tn

)
[2],

and

ϕ̂
(r1,r2,s1,s2)
∆Tn,Tn,i−1

− ϕ̄(r1,r2,s1,s2)
∆Tn,Tn,i−1

=
1

4
ψ

(r1,s1)
i ψ

(r2,s2)
i − 1

4
β̆

(r1,s1)

∆Tn/2,(i−1/2)∆Tn
β̆

(r2,s2)

∆Tn/2,(i−1)∆Tn
[2]

+
1

4

(
β̆

(r1,s1)

∆Tn/2,(i−1/2)∆Tn
− β̆

(r1,s1)

∆Tn/2,(i−1)∆Tn

)
ψ

(r2,s2)
i [2],

where ψ
(r1,s1)
i is defined in (E.1).

Because we can further simplify ψ
(r,s)
i as follows:

ψ
(r,s)
i =

∫ i∆Tn

(i−1/2)∆Tn

(
Tn,i − u
∆Tn/2

)
dc(r,s)u +

∫ (i−1/2)∆Tn

(i−1)∆Tn

(
u− Tn,i−1

∆Tn/2

)
dc(r,s)u ,

then we know that supi

∥∥∥ψ(r,s)
i

∥∥∥
2

= Op

(
∆T

1/2
n

)
. By Lemma 1, we know that sup1≤i≤2B

∥∥∥β̆(r1,s1)

∆Tn/2,i∆Tn/2

∥∥∥
2

=

Op

(
an∆T

−1/2
n

)
, sup1≤i≤2B

∥∥∥∆T−1
n

(
M

(r1,s1)
i∆Tn/2

−M (r1,s1)
(i−1)∆Tn/2

)∥∥∥
2

= Op

(
an∆T

−1/2
n

)
and

sup1≤i≤2B

∥∥∥∆T−1
n

(
ẽ

(r2,s2)
i∆Tn/2

− ẽ(r2,s2)
(i−1)∆Tn/2

)∥∥∥
2

= Op
(
a2
n∆T−1

n

)
, which implies that

sup
i

∥∥∥φ̆(r1,r2,s1,s2)

Tn,i−1
− E

(
φ̆

(r1,r2,s1,s2)

Tn,i−1
|FTn,i−1

)∥∥∥
2

= Op
(
a2
n∆T−1

n

)
,

and because a−1
n ∆Tn → 0 and a

−3/2
n ∆Tn →∞ as n→∞, we have:

sup
i

∣∣∣E (φ̆(r1,r2,s1,s2)

Tn,i−1
|FTn,i−1

)∣∣∣ = Op (∆Tn) +Op
(
a4
n∆T−2

n

)
= op (an) .

Finally, we obtain:

RAdjusted-Bias-III = Op

(
a2
n∆T−1/2

n

)
= op (an) , (E.8)

RAdjusted-Bias-IV = op (an) . (E.9)
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Plugging (E.6)-(E.9) into (E.4), we obtain:

RAdjusted-Bias = op (an) . (E.10)

Plugging (E.5) and (E.10) into (E.3), we finally obtain:

Ṽ (∆Tn, X;Fm)−
∫ T

0

Fm (cs) ds = RSpot-V + op (an) = Op (an) .

Recall the definition of RSpot-V in (4.3), and β
(r,s)
∆Tn,Tn,i−1

and β̃
(r,s)

∆Tn,Tn,i−1
in (3.5) and (3.3), and by Lemma 1, we

have the following decomposition:

β
(r,s)
∆Tn,Tn,i−1

= c̄
(r,s)
∆Tn,Tn,i−1

− c(r,s)Tn,i−1︸ ︷︷ ︸
Op

(
∆T

1/2
n

)
+

1

∆Tn

(
M

(r,s)
Tn,i
−M (r,s)

Tn,i−1

)
︸ ︷︷ ︸

β̃
(r,s)
∆Tn,Tn,i−1

+
1

∆Tn

(
ẽ

(r,s)
Tn,i
− ẽ(r,s)

Tn,i−1

)
︸ ︷︷ ︸

Op(a2
n∆T−1

n )

. (E.11)

Therefore, we obtain:

RSpot-V −∆Tn

B∑
i=1

[
d∑

r1,s1=1

∂r1s1Fm
(
cTn,i−1

)
β̃

(r,s)

∆Tn,Tn,i−1

]
= Op (∆Tn) +Op

(
a2
n∆T−1/2

n

)
= op (an) ,

and finally, the estimation error of the bias corrected estimator could be expressed as:

Ṽ (∆Tn, X;Fm)−
∫ T

0

Fm (cs) ds = R̃Spot-V + op (an) .

with

R̃Spot-V =
B∑
i=1

[
d∑

r1,s1=1

∂r1s1Fm
(
cTn,i−1

) (
M

(r,s)
Tn,i
−M (r,s)

Tn,i−1

)]
.

If we define
[
M (r1,s1),M (r2,s2)

](B)

t
as (4.5), then we know that the (p, q)-th element of the covariance matrix Σ̃n

of Ṽ (∆Tn, X;F )−
∫ T

0
F (cs) ds can be expressed as follows:

Σ̃(p,q)
n =

d∑
r1,s1,r2,s2=1

∫ T
0

∂r1s1Fp (cu) ∂r2s2Fq (cu) d
[
M (r1,s1),M (r2,s2)

](B)

u
.

Note that a−2
n Σ̃

(p,q)
n

p−→ Σ(p,q), the theorem got proved.
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F Proof of Theorems 3, 4 and 5

Before the proof of the main theorems, we first show some preliminary lemmas. As in Assumption 5, we denote

the columns of Bᵀ
t as b

(1)
t ,b

(2)
t , . . . ,b

(d)
t . We also denote the columns of Bt as b̃

(1)
t , b̃

(2)
t , . . . , b̃

(q)
t .

LEMMA 4. If we define ĉt =
{
ĉ
(r,s)
∆Tn,t

}
1≤r,s≤d

with ∆Tn � an and an is defined in (2.6). For basic settings

about the observations, we assume Conditions 1-4 in Mykland et al. (2019), and Assumptions 1-3. Then the

elementwise max norm of the estimation error has the rate ‖ĉt − ct‖max = Op

(
(∆Tn log d)

1
2

)
.

Proof. Based on the results of Lemma 1 and 2, we can conclude that there exists positive constants C1 and

C2, such that for all 1 ≤ r, s ≤ d, and any x > 0,

P
(∣∣∣ĉ(r,s)t − c(r,s)t

∣∣∣ > x
)
≤ C1 exp

(
−C2x

2

∆Tn

)
. (F.1)

The detailed proof follows from the similar discussion in the proof of Lemma A.1 in Fan et al. (2016a). Because

of the fact that

{‖ĉt − ct‖max > x} =
⋃
r,s

{∣∣∣ĉ(r,s)t − c(r,s)t

∣∣∣ > x
}
,

it follows from the Bonferroni inequality that we can easily obtain the convergence rate, using the similar technique

in Lemma A.2 (iv) of Fan et al. (2016a). �

Next, we show the q−th largest eigenvalue of the spot covariance matrix estimator diverges with respect to d,

where q is the number of common factors.

LEMMA 5. Denote the q−th largest eigenvalue of ĉt by λ̂
(q)

t . Assume log d = o
(
∆T−1

n

)
, where ∆Tn follows the

definition in Lemma 4. Then λ̂
(q)

t > C3d with probability approaching 1 for some constant C3 > 0.

Proof. First of all, by Proposition 2 and its assumptions, it is easy to see that the q−th largest eigenvalue of

ct, denoted by λ
(q)
t , satisfies that, for some C ′3 > 0,

λ
(q)
t ≥

∥∥∥b̃(q)
t

∥∥∥2

−
∣∣∣∣λ(q)
t −

∥∥∥b̃(q)
t

∥∥∥2
∣∣∣∣ ≥ C ′3d− ‖st‖ ≥ (C ′32

)
d,

when d is large enough. This is because ‖st‖ is bounded with respect to d. Next, by Weyl’s theorem, we just

need to show that ‖ĉt − ct‖ = op (d). Because of the fact that ‖A‖ ≤ d ‖A‖max for d× d matrix A, and based on

the result of Lemma 4, we obtain:

‖ĉt − ct‖ ≤ d ‖ĉt − ct‖max = Op

(
d (∆Tn log d)

1
2

)
= op (d) ,
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which follows from the assumption log d = o
(
∆T−1

n

)
. This proves the lemma. �

Next, we complete the proof of Theorem 3.

Proof of Theorem 3. Define

Kn,d = (∆Tn log d)
1/2

+ d−1,

and

V
(
k, B̂k,t

)
= d−1tr

(
ĉt − B̂k,tB̂

ᵀ
k,t

)
,

PC
(
k, B̂k,t

)
= V

(
k, B̂k,t

)
+ kG (∆Tn, d) ,

where B̂k,t is as in Definition (5.13). Similarly, we define Λ̂k,t =Diag
(
λ̂

(1)

t , λ̂
(2)

t , . . . , λ̂
(k)

t

)
and Γ̂k,t =

(
γ̂

(1)
t , γ̂

(2)
t , . . . , γ̂

(k)
t

)
,

where λ̂
(i)

t is the i−th largest eigenvalue of ĉt, and γ̂
(i)
t is the corresponding eigenvector.

Observe that:

PC
(
k, B̂k,t

)
− PC

(
q, B̂q,t

)
= V

(
k, B̂k,t

)
− V

(
q, B̂q,t

)
+ (k − q)G (∆Tn, d) , (F.2)

where

V
(
k, B̂k,t

)
− V

(
q, B̂q,t

)
= d−1tr

(
B̂q,tB̂

ᵀ
q,t − B̂k,tB̂

ᵀ
k,t

)
.

We first show that P
(
PC
(
k, B̂k,t

)
< PC

(
q, B̂q,t

))
→ 0 for k < q. Because tr

(
B̂q,tB̂

ᵀ
q,t

)
=tr
(
B̂ᵀ
q,tB̂q,t

)
, we

have for C3 > 0,

tr
(
B̂q,tB̂

ᵀ
q,t − B̂k,tB̂

ᵀ
k,t

)
= tr

(
Λ̂q,t

)
− tr

(
Λ̂k,t

)
=

q∑
i=k+1

λ̂
(i)

t ≥ λ̂
(q)

t > C3d,

with probability approaching 1, which follows from the result of Lemma 5. It is then easy to see that

V
(
k, B̂k,t

)
− V

(
q, B̂q,t

)
> C3 > 0, (F.3)

with probability approaching 1. Moreover, because k ≤ qmax and (k − q)G (∆Tn, d)→ 0, the statement is proved

for k < q.

Second, we show P
(
PC
(
k, B̂k,t

)
< PC

(
q, B̂q,t

))
→ 0 for k > q. Because V

(
k, B̂k,t

)
− V

(
q, B̂q,t

)
=
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−d−1
∑k
i=q+1 λ̂

(i)

t , we have:

∣∣∣V (k, B̂k,t

)
− V

(
q, B̂q,t

)∣∣∣ ≤ d−1
k∑

i=q+1

∣∣∣λ̂(i)

t − λ
(i)
t

∣∣∣+ d−1
k∑

i=q+1

λ
(i)
t ,

where the first term on the right hand side can be bounded by Weyl’s theorem and the fact that ‖A‖ ≤ d ‖A‖max

for a d× d matrix A :

d−1
k∑

i=q+1

∣∣∣λ̂(i)

t − λ
(i)
t

∣∣∣ ≤ d−1 (k − q) ‖ĉt − ct‖ ≤ 2qmax ‖ĉt − ct‖max ,

while the second term can be bounded similarly using Weyl’s theorem:

d−1
k∑

i=q+1

λ
(i)
t ≤ d−1 (k − q)λ(q+1)

t ≤ d−1qmax ‖st‖ .

Based on the result of Lemma 4, and Assumption 5, we know that ‖st‖ ≤ ‖st‖1 < ϑ2, and consequently

V
(
q, B̂q,t

)
− V

(
k, B̂k,t

)
= Op (Kn,d) .

for q < k < qmax. From the assumption that K−1
n,dG (∆Tn, d)→∞, and noting that

P
(
PC
(
k, B̂k,t

)
< PC

(
q, B̂q,t

))
= P

(
V
(
q, B̂q,t

)
− V

(
k, B̂k,t

)
> (k − q)G (∆Tn, d)

)
,

we can conclude that for q < k < qmax, P
(
PC
(
k, B̂k,t

)
< PC

(
q, B̂q,t

))
→ 0. �

F. 1 Results by conditioning on q̂t = q

In view of Theorem 3, all the subsequent results and related proofs will be conditioning on

q̂t = q.

Without loss of generality, from now on, we omit the subscript q̂t is the notation, for example, denote B̂q̂t,t, Γ̂q̂t,t, Λ̂q̂t,t, ŝ
∗
q̂t,t

and ĉ∗q̂t,t by B̂t, Γ̂t, Λ̂t, ŝ
∗
t and ĉ∗t , respectively.

Following definition (5.10), we denote the columns of B̂ᵀ
t as b̂

(1)
t , b̂

(2)
t , . . . , b̂

(d)
t . Thus, B̂ᵀ

t =
(
b̂

(1)
t , b̂

(2)
t , . . . , b̂

(d)
t

)
.
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Also recall that Bᵀ
t =

(
b

(1)
t ,b

(2)
t , . . . ,b

(d)
t

)
. Define a transition matrix

Ht = Λ̂
−1/2
t Γ̂ᵀ

tΓtΛ
1/2
t , (F.4)

and recall the definition of the projection matrix PA in formula (5.7). Define

Vt = Γ̂tΓ̂
ᵀ
t , (F.5)

and note that B̂ᵀ
t = Λ̂

1/2
t Γ̂ᵀ

t . Consequently we have:

PB̂t
= Id − B̂tΛ̂

−1
t B̂ᵀ

t = Id −Vt. (F.6)

LEMMA 6. We have the following identities:

(i)

ŝt − st = PB̂t
(ĉt − ct) Pᵀ

B̂t
+ PB̂t

(
BtB

ᵀ
t − B̂tB̂

ᵀ
t

)
Pᵀ

B̂t
− stV

ᵀ
t −Vtst + VtstV

ᵀ
t , (F.7)

(ii)

B̂ᵀ
t −HtB

ᵀ
t = Λ̂

−1/2
t Γ̂ᵀ

t [(ĉt − ct) + stV
ᵀ
t + Vtst −VtstV

ᵀ
t ] , and (F.8)

(iii)

HtH
ᵀ
t − Iq̂t = Λ̂

−1/2
t Γ̂ᵀ

t [VtstV
ᵀ
t − stV

ᵀ
t −Vtst − (ĉt − ct)] Γ̂tΛ̂−1/2

t . (F.9)

Proof. (i) In view of the identities and related derivation of (5.8) and (5.9), we have the following fact:

ŝt = PB̂t
ĉtP

ᵀ
B̂t
. (F.10)

This equality can be further decomposed based on (F.6) and ct = BtB
ᵀ
t + st, as follows:

ŝt = PB̂t
(ĉt − ct) Pᵀ

B̂t
+ PB̂t

(BtB
ᵀ
t ) Pᵀ

B̂t
+ PB̂t

stP
ᵀ
B̂t
. (F.11)

In the above equation, the second term on the right hand side can be simplified as:

PB̂t
(BtB

ᵀ
t ) Pᵀ

B̂t
= PB̂t

(
BtB

ᵀ
t − B̂tB̂

ᵀ
t

)
Pᵀ

B̂t
, (F.12)
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because of the fact that PB̂t
B̂t = 0, while the third term can be further decomposed as:

PB̂t
stP

ᵀ
B̂t

= (Id −Vt) st (Id −Vt)
ᵀ

= st − stV
ᵀ
t −Vtst + VtstV

ᵀ
t , (F.13)

using formula (F.6). Combing (F.10)-(F.13), we obtain (F.7).

(ii) Recalling the definitions B̂ᵀ
t = Λ̂

1/2
t Γ̂ᵀ

t , Bᵀ
t = Λ

1/2
t Γᵀ

t , as well as (F.4), we have:

B̂ᵀ
t −HtB

ᵀ
t = Λ̂

1/2
t Γ̂ᵀ

t − Λ̂
−1/2
t Γ̂ᵀ

t (ΓtΛtΓ
ᵀ
t )

= Λ̂
1/2
t Γ̂ᵀ

t − Λ̂
−1/2
t Γ̂ᵀ

tBtB
ᵀ
t

= Λ̂
1/2
t Γ̂ᵀ

t − Λ̂
−1/2
t Γ̂ᵀ

t (ct − ĉt + ĉt − ŝt + ŝt − st)

= Λ̂
1/2
t Γ̂ᵀ

t + Λ̂
−1/2
t Γ̂ᵀ

t (ĉt − ct)− Λ̂
−1/2
t Γ̂ᵀ

t (̂st − st)− Λ̂
−1/2
t Γ̂ᵀ

t (ĉt − ŝt) , (F.14)

where, in view of ĉt− ŝt = B̂tB̂
ᵀ
t = Γ̂tΛ̂tΓ̂

ᵀ
t and Γ̂ᵀ

t Γ̂t = Iq, we have Λ̂
−1/2
t Γ̂ᵀ

t (ĉt − ŝt) = Λ̂
1/2
t Γ̂ᵀ

t . We then obtain:

B̂ᵀ
t −HtB

ᵀ
t = Λ̂

−1/2
t Γ̂ᵀ

t (ĉt − ct)− Λ̂
−1/2
t Γ̂ᵀ

t (̂st − st) . (F.15)

On the other hand, observing that PB̂t
= PΓ̂t

and PBt
= PΓt

, then substituting (F.7) into (F.15), we obtain

(F.8), based on the fact that Γ̂ᵀ
tPΓ̂t

= PΓ̂t
Γ̂t = 0.

(iii) Based on a similar derivation as (F.14), and recalling the definition (F.4), we obtain:

HtH
ᵀ
t − Iq̂t = Λ̂

−1/2
t Γ̂ᵀ

t (ct − ĉt) Γ̂tΛ̂
−1/2
t + Λ̂

−1/2
t Γ̂ᵀ

t (̂st − st) Γ̂tΛ̂
−1/2
t . (F.16)

Then substituting (F.7) into (F.16), we obtain (F.9) by using the similar techniques as in (ii). �

Recall the definition B̂ᵀ
t =

(
b̂

(1)
t , b̂

(2)
t , . . . , b̂

(d)
t

)
, whereby b̂

(i)
t =

(
B̂ᵀ
t

)
•,i

. The i−th column of B̂ᵀ
t −HtB

ᵀ
t

can then be expressed as
(
B̂ᵀ
t −HtB

ᵀ
t

)
•,i

= b̂
(i)
t −Htb

(i)
t . Further define:

št = VtstV
ᵀ
t − stV

ᵀ
t −Vtst. (F.17)

Also define ej to be the row vector for which the j−th element equals 1, and the others equal zero. Then for any

matrix A, its i−th row can be expressed as (A)i,• = eiA, while its j−th column has the form (A)•,j = Aeᵀ
j . We

then have the following preliminary lemma.
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LEMMA 7. We have the following results:

(i)

‖št‖ ≤ 3 ‖st‖ , (F.18)

(ii)

max
1≤i≤d

∥∥∥b̂(i)
t −Htb

(i)
t

∥∥∥ = Op

(
‖ĉt − ct‖max + d−1/2 ‖st‖

)
, and (F.19)

(iii)

‖HtH
ᵀ
t − Iq̂t‖ = Op

(
‖ĉt − ct‖max + d−1 ‖st‖

)
. (F.20)

Proof. (i) Recalling the definition (F.17), and by the properties of the spectral norm, we obtain:

‖št‖ ≤ ‖Vt‖2 ‖st‖+ 2 ‖Vt‖ ‖st‖ = 3 ‖st‖ ,

since ‖Vt‖ = ‖Vᵀ
t ‖ = 1.

(ii) Because b̂
(i)
t −Htb

(i)
t is the i−th column of B̂ᵀ

t −HtB
ᵀ
t , then by identity (F.8), we have:

max
1≤i≤d

∥∥∥b̂(i)
t −Htb

(i)
t

∥∥∥ ≤ max
1≤i≤d

∥∥∥Λ̂−1/2
t Γ̂ᵀ

t (ĉt − ct) eᵀ
i

∥∥∥+ max
1≤i≤d

∥∥∥Λ̂−1/2
t Γ̂ᵀ

t šte
ᵀ
i

∥∥∥ . (F.21)

The first term on the right hand side of (F.21) can bounded as follows. Since the Cauchy-Schwarz inequality

assures ‖Ax‖ ≤ ‖A‖F ‖x‖ for a matrix A and a vector x, we obtain:

∥∥∥Λ̂−1/2
t Γ̂ᵀ

t (ĉt − ct) eᵀ
i

∥∥∥ ≤
∥∥∥Λ̂−1/2

t Γ̂ᵀ
t

∥∥∥
F
‖(ĉt − ct) eᵀ

i ‖

=
∥∥∥Λ̂−1/2

t

∥∥∥
F
‖(ĉt − ct) eᵀ

i ‖

≤
∥∥∥∥(d−1Λ̂t

)−1/2
∥∥∥∥

F

‖ĉt − ct‖max

in view of the facts that
∥∥∥Λ̂−1/2

t Γ̂ᵀ
t

∥∥∥
F

=

(∑q
l=1

(
λ̂

(l)

t

)−1
)1/2

and ‖A‖ ≤ √pq ‖A‖max for a matrix A of dimension

p × q. Based on the result of Lemma 5, we know that there exists some C3 > 0 such that

∥∥∥∥(d−1Λ̂t

)−1/2
∥∥∥∥

F

≤

q1/2C
−1/2
3 , and consequently, we obtain that:

max
1≤i≤d

∥∥∥Λ̂−1/2
t Γ̂ᵀ

t (ĉt − ct) eᵀ
i

∥∥∥ ≤ q1/2C
−1/2
3 ‖ĉt − ct‖max ,

with probability approaching 1.
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For the second term on the right hand side of (F.21), we have:

∥∥∥Λ̂−1/2
t Γ̂ᵀ

t šte
ᵀ
i

∥∥∥ ≤ d−1/2

∥∥∥∥(d−1Λ̂t

)−1/2
∥∥∥∥ ∥∥∥Γ̂ᵀ

t

∥∥∥ ‖št‖ ‖eᵀ
i ‖ .

Since ‖eᵀ
i ‖ =

∥∥∥Γ̂ᵀ
t

∥∥∥ = 1, and by Lemma 5, we have

∥∥∥∥(d−1Λ̂t

)−1/2
∥∥∥∥ ≤ C

−1/2
3 with probability approaching 1.

Also recall the result in (i) to obtain:

max
1≤i≤d

∥∥∥Λ̂−1/2
t Γ̂ᵀ

t šte
ᵀ
i

∥∥∥ ≤ 3C
−1/2
3 d−1/2 ‖st‖ .

Therefore, we obtain (F.19).

(iii) Conditioning on q̂t = q. Recall the identity (F.9), by triangle inequality, we obtain:

‖HtH
ᵀ
t − Iq‖ ≤

∥∥∥Λ̂−1/2
t Γ̂ᵀ

t štΓ̂tΛ̂
−1/2
t

∥∥∥+
∥∥∥Λ̂−1/2

t Γ̂ᵀ
t (ĉt − ct) Γ̂tΛ̂

−1/2
t

∥∥∥ ,
where the first term on the right hand side can be bounded as follows:

∥∥∥Λ̂−1/2
t Γ̂ᵀ

t štΓ̂tΛ̂
−1/2
t

∥∥∥ ≤ ∥∥∥Λ̂−1/2
t

∥∥∥2

‖št‖ ≤ 3C−1
3 d−1 ‖st‖ ,

with probability approaching 1, while the second term on the right hand side has the following bound:

∥∥∥Λ̂−1/2
t Γ̂ᵀ

t (ĉt − ct) Γ̂tΛ̂
−1/2
t

∥∥∥ ≤ ∥∥∥Λ̂−1/2
t

∥∥∥2

‖ĉt − ct‖ ≤ C−1
3 d−1 ‖ĉt − ct‖ ≤ C−1

3 ‖ĉt − ct‖max ,

where the last inequalities is based on the fact that ‖A‖ ≤ d ‖A‖max for a d × d matrix A. Finally the result

(F.20) is proved. �

Proof of Theorem 4. Recall that B̂ᵀ
t =

(
b̂

(1)
t , b̂

(2)
t , . . . , b̂

(d)
t

)
, and hence the (i, j)−th element of B̂tB̂

ᵀ
t can

be expressed as
(
b̂

(i)
t

)ᵀ
b̂

(j)
t . Consequently, the (i, j)−th element of B̂tB̂

ᵀ
t −BtB

ᵀ
t is

(
b̂

(i)
t

)ᵀ
b̂

(j)
t −

(
b

(i)
t

)ᵀ
b

(j)
t .

By definition (F.4), we obtain the following identity:

(
b̂

(i)
t

)ᵀ
b̂

(j)
t −

(
b

(i)
t

)ᵀ
b

(j)
t =

(
b̂

(i)
t −Htb

(i)
t

)ᵀ (
b̂

(j)
t −Htb

(j)
t

)
+
(
b̂

(i)
t −Htb

(i)
t

)ᵀ
Htb

(j)
t

+
(
Htb

(i)
t

)ᵀ (
b̂

(j)
t −Htb

(j)
t

)
+
(
b

(i)
t

)ᵀ
(Hᵀ

tHt − Iq) b
(j)
t .
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By triangular inequality, we have:

∥∥∥B̂tB̂
ᵀ
t −BtB

ᵀ
t

∥∥∥
max

= max
1≤i,j≤d

∣∣∣(b̂
(i)
t

)ᵀ
b̂

(j)
t −

(
b

(i)
t

)ᵀ
b

(j)
t

∣∣∣
≤

(
max

1≤i≤d

∥∥∥b̂(i)
t −Htb

(i)
t

∥∥∥)2

+ 2 max
1≤i,j≤d

∥∥∥b̂(i)
t −Htb

(i)
t

∥∥∥ ∥∥∥Htb
(j)
t

∥∥∥+

(
max

1≤i≤d

∥∥∥b(i)
t

∥∥∥)2

‖Hᵀ
tHt − Iq‖ .

Then based on the Assumptions 4 and 5, we know that

max
1≤i≤d

∥∥∥Htb
(i)
t

∥∥∥ = Op (1) and max
1≤i≤d

∥∥∥b(i)
t

∥∥∥ = Op (1) .

On the other hand, based on the result (iii) in Lemma 7, and following the similar discussion of the proof for

Lemma 11 (b) in Fan et al. (2013), by conditioning on q̂t = q, we obtain:

Hᵀ
tHt − Iq = Op

(
‖ĉt − ct‖max + d−1 ‖st‖

)
.

Finally, recall result (ii) in Lemma 7 to obtain:

∥∥∥B̂tB̂
ᵀ
t −BtB

ᵀ
t

∥∥∥
max

= Op

(
‖ĉt − ct‖max + d−1/2 ‖st‖

)
.

On the other hand, because of the identity ĉt − ct = B̂tB̂
ᵀ
t −BtB

ᵀ
t + ŝt − st, we obtain:

‖ŝt − st‖max ≤ ‖ĉt − ct‖max +
∥∥∥B̂tB̂

ᵀ
t −BtB

ᵀ
t

∥∥∥
max

= Op

(
‖ĉt − ct‖max + d−1/2 ‖st‖

)
.

Based on the result of Lemma 4 and noting that ‖st‖ ≤ ‖st‖1 < ϑ2 by Assumption 5, the theorem is proved. �

Before the proof of the convergence rateof the precision matrix estimator, we first introduce some preliminary

results, which are parallel to Lemmae 14 and 15 in Fan et al. (2013). Define

Φt = B̂ᵀ
t −HtB

ᵀ
t . (F.22)

LEMMA 8. Assume that ω1−ν
n md = o (1) , then with probability approaching 1, there exists some C4 > 0 such

that
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(i) ‖Φt‖2F = Op
(
dω2

n

)
,

(ii)
∥∥∥B̂ᵀ

t (̂s∗t )
−1

B̂t −HtB
ᵀ
t

(
s−1
t

)
BtH

ᵀ
t

∥∥∥ = Op
(
dω1−ν

n md

)
,

(iii) λmin

(
Iq + HtB

ᵀ
t

(
s−1
t

)
BtH

ᵀ
t

)
≥ C4d,

(iv) λmin

(
Iq + B̂ᵀ

t (̂s∗t )
−1

B̂t

)
≥ C4d,

(v) λmin

(
Iq + Bᵀ

t s
−1
t Bt

)
≥ C4d, and

(vi) λmin

(
(HtH

ᵀ
t )
−1

+Bᵀ
t s
−1
t Bt

)
≥ C4d.

Proof. We condition on q̂t = q. Recall that b̂
(i)
t −Htb

(i)
t is the i−th column of B̂ᵀ

t −HtB
ᵀ
t . Then, by the

result (ii) of Lemma 7, it is easy to verify (i). Result (i) implies result (ii) by following the similar proof of Lemma

14 in Fan et al. (2013). By the result (iii) of Lemma 7, following the similar proof in Lemma 15(a) of Fan et al.

(2013), we obtain (iii). The result (iv) follows from (ii) and (iii). The results (v) and (vi) follows from a similar

argument as Lemma 15(a) of Fan et al. (2013) and based on result (iii) of Lemma 7. �

Proof of Theorem 5. Define c̃∗t = BtH
ᵀ
tHtB

ᵀ
t + st, and also define

Gt =
(
Iq + B̂ᵀ

t (̂s∗t )
−1

B̂t

)−1

,

G̃t =
(
Iq + HtB

ᵀ
t

(
s−1
t

)
BtH

ᵀ
t

)−1
,

then we know that
∥∥∥(ĉ∗t )

−1 − (c̃∗t )
−1
∥∥∥ ≤∑6

i=1 Li, where

L1 =
∥∥∥(̂s∗t )

−1 − s−1
t

∥∥∥ ,
L2 =

∥∥∥[(̂s∗t )−1 − s−1
t

]
B̂tGtB̂

ᵀ
t

[
(̂s∗t )

−1 − s−1
t

]∥∥∥ ,
L3 = 2

∥∥∥[(̂s∗t )−1 − s−1
t

]
B̂tGtB̂

ᵀ
t s
−1
t

∥∥∥ ,
L4 =

∥∥∥s−1
t BtH

ᵀ
t

(
G̃t −Gt

)
HtB

ᵀ
t s
−1
t

∥∥∥ ,
L5 =

∥∥s−1
t Φᵀ

tGtΦts
−1
t

∥∥ , and

L6 = 2
∥∥s−1
t Φᵀ

tGtHtB
ᵀ
t s
−1
t

∥∥ .
First of all, L1 is bounded by the result of Proposition 3. By result (iv) of Lemma 8, we have: ‖Gt‖ = Op

(
d−1

)
,

which implies that L3 = Op (L1) and L2 = op (L1) . By the result (i) of Lemma 8, we know that L6 = Op (ωn)

and L5 = op (ωn) . Following from result (iii) of Lemma 8, we have:
∥∥∥G̃t

∥∥∥ = Op
(
d−1

)
. Then note that

∥∥∥G̃t −Gt

∥∥∥ =
∥∥∥G̃t

(
G̃−1
t −G−1

t

)
Gt

∥∥∥ ≤ Op (d−2
) ∥∥∥B̂ᵀ

t (̂s∗t )
−1

B̂t −HtB
ᵀ
t

(
s−1
t

)
BtH

ᵀ
t

∥∥∥ = Op
(
d−1ω1−ν

n md

)
,
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based on result (ii) of Lemma 8. Therefore,

‖L4‖ ≤
∥∥s−1
t BtH

ᵀ
t

∥∥2
∥∥∥G̃t −Gt

∥∥∥ = Op
(
ω1−ν
n md

)
.

On the other hand, by applying the Sherman-Morrison-Woodbury formula again for (c̃∗t )
−1

and (ct)
−1
, and based

on the results (v) and (vi) in Lemma 8, we obtain:

∥∥∥(c̃∗t )
−1 − (ct)

−1
∥∥∥ = op

(
ω1−ν
n md

)
,

which follows from the similar argument in the proof of subsection C.4.2 of Fan et al. (2013). Finally, by the

triangular inequality we obtain:

∥∥∥(ĉ∗t )
−1 − c−1

t

∥∥∥ ≤ ∥∥∥(ĉ∗t )
−1 − (c̃∗t )

−1
∥∥∥+

∥∥∥(c̃∗t )
−1 − (ct)

−1
∥∥∥ = Op

(
ω1−ν
n md

)
.

The theorem is thus proved. �

G More Detailed Simulation Results

G. 1 Simulation Comparison under Different Scenarios In the following, we present more

detailed simulation results in the three scenarios described in Section 6.3, where ∆τn = 5, 15, and 60 seconds,

respectively.

25



Table G.1 Simulation Results: Comparison when ∆τn = 5 seconds

θ̂
(
kn,∆n, Fλp

)
without noise θ̂

(
kn,∆n, Fλp

)
with noise Ṽ

(
∆Tn, X;Fλp

)
# Stock True Bias Stdev SE1 SE2 Corr Bias Stdev SE1 SE2 Corr Bias Stdev SE2

p = 1

5 0.3852 -0.0003 0.0039 0.003687 0.003815 0.99 2.6566 1.8238 0.029434 0.034323 1.00 -0.0012 0.0193 0.021074
10 0.6729 -0.0007 0.0065 0.006474 0.006771 0.99 5.3605 2.5434 0.058816 0.068704 1.00 0.0025 0.0340 0.036826
20 1.2709 -0.0019 0.0116 0.012252 0.012855 0.99 10.7234 3.6999 0.117462 0.137289 1.00 -0.0015 0.0634 0.070293
30 1.8818 -0.0031 0.0186 0.018141 0.019073 0.99 15.7908 4.3937 0.173089 0.202844 1.00 -0.0052 0.0892 0.101588
50 3.0549 -0.0057 0.0295 0.029685 0.031543 0.99 26.5113 5.7413 0.292705 0.340136 0.99 -0.0032 0.1415 0.167715

p = 2

5 0.1134 0.0033 0.0032 0.001138 0.001182 0.98 0.2006 0.1093 0.003015 0.002985 0.99 0.0005 0.0079 0.006412
10 0.1735 0.0010 0.0037 0.001741 0.001917 0.93 0.4322 0.1674 0.005845 0.005824 0.99 0.0003 0.0104 0.009882
20 0.2807 -0.0047 0.0075 0.002790 0.003239 0.89 0.9268 0.2483 0.011683 0.011653 0.99 0.0001 0.0155 0.016167
30 0.3909 -0.0093 0.0108 0.003884 0.004548 0.78 1.4306 0.3307 0.017620 0.017623 0.99 0.0004 0.0224 0.022509
50 0.6083 -0.0220 0.0198 0.006080 0.007433 0.90 2.3871 0.4639 0.029237 0.029266 0.99 -0.0006 0.0336 0.035443

p = 3

5 0.0732 0.0075 0.0045 0.000811 0.000732 0.55 0.0314 0.0209 0.001021 0.000991 0.95 0.0033 0.0085 0.004184
10 0.1028 0.0086 0.0075 0.001196 0.001171 0.51 0.0626 0.0394 0.001639 0.001714 0.97 0.0004 0.0114 0.006005
20 0.1676 -0.0058 0.0066 0.001875 0.001954 0.50 0.1036 0.0633 0.002733 0.003006 0.95 -0.0023 0.0122 0.009736
30 0.2335 -0.0187 0.0087 0.002508 0.002707 0.44 0.1447 0.0823 0.003796 0.004267 0.94 -0.0015 0.0163 0.013438
50 0.3725 -0.0468 0.0200 0.004003 0.004402 0.57 0.2201 0.1148 0.006128 0.007013 0.72 -0.0017 0.0242 0.021385

p = 4

5 0.0600 -0.0053 0.0021 0.000392 0.000304 0.46 0.0014 0.0041 0.000436 0.000356 0.78 -0.0020 0.0033 0.002033
10 0.0599 -0.0012 0.0009 0.000261 0.000193 0.45 0.0044 0.0024 0.000279 0.000224 0.59 -0.0002 0.0017 0.001203
20 0.0601 0.0007 0.0003 0.000223 0.000152 0.42 0.0055 0.0017 0.000234 0.000176 0.34 0.0000 0.0008 0.000843
30 0.0601 0.0011 0.0005 0.000231 0.000138 0.20 0.0059 0.0015 0.000230 0.000160 0.17 -0.0001 0.0006 0.000711
50 0.0600 0.0016 0.0007 0.000273 0.000132 0.20 0.0061 0.0012 0.000262 0.000153 0.32 -0.0001 0.0005 0.000596

Notes. This table reports the summary statistics for the estimation of the four integrated eigenvalues, i.e., for p = 1, 2, 3 and 4,
∫ T
0 Fλp (cs)ds denotes the integrated

p-th largest eigenvalue. The Monte Carlo simulation consists of 1000 trials and ∆τn = 5 seconds. The Column “True” denotes the average of true integrated

eigenvalue; Column “Bias” denotes the mean of estimation error; Column “Stdev” denotes the standard deviation of the estimation error. “SE1” denotes the mean

of the standard error estimators by plugging λ̂Ti
’s into formula (16) of Corollary 1 in Aı̈t-Sahalia and Xiu (2019). “SE2” denotes the mean of the standard error

estimators constructed as formula (6.2). “Corr” denotes the correlation coefficient between the standard error estimators generated from the columns “SE1” and

“SE2”.
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Table G.2 Simulation Results: Comparison when ∆τn = 15 seconds

θ̂
(
kn,∆n, Fλp

)
without noise θ̂

(
kn,∆n, Fλp

)
with noise Ṽ

(
∆Tn, X;Fλp

)
# Stock True Bias Stdev SE1 SE2 Corr Bias Stdev SE1 SE2 Corr Bias Stdev SE2

p = 1

5 0.3852 -0.0007 0.0065 0.006496 0.006802 0.98 0.7520 0.5949 0.019426 0.022131 1.00 -0.0010 0.0242 0.025175
10 0.6729 -0.0018 0.0121 0.011519 0.011806 0.99 1.4618 0.8399 0.037315 0.041411 0.99 0.0031 0.0423 0.043862
20 1.2709 -0.0058 0.0206 0.021698 0.022332 0.98 2.8525 1.2350 0.072194 0.081170 0.99 -0.0019 0.0781 0.082760
30 1.8818 -0.0127 0.0323 0.032587 0.035693 0.98 4.1342 1.4673 0.107679 0.124500 0.98 -0.0036 0.1103 0.122126
50 3.0549 -0.0217 0.0533 0.052890 0.057982 0.97 6.9353 1.9426 0.178620 0.207900 0.99 0.0014 0.1725 0.201230

p = 2

5 0.1134 0.0066 0.0051 0.002112 0.002129 0.80 0.1798 0.1041 0.005038 0.004772 0.96 0.0027 0.0102 0.007795
10 0.1735 0.0062 0.0084 0.003428 0.003456 0.40 0.4112 0.1632 0.010310 0.009165 0.82 0.0021 0.0142 0.012365
20 0.2807 -0.0068 0.0134 0.005301 0.005906 0.65 0.9077 0.2426 0.020833 0.018657 0.92 -0.0015 0.0713 0.020381
30 0.3909 -0.0237 0.0281 0.007970 0.009260 0.35 1.4196 0.3279 0.032759 0.029675 0.69 0.0010 0.0297 0.028373
50 0.6083 -0.0502 0.0438 0.011955 0.014655 0.69 2.3867 0.4606 0.053909 0.049252 0.83 0.0011 0.0463 0.044385

p = 3

5 0.0732 0.0109 0.0056 0.001520 0.001263 0.51 0.0339 0.0191 0.001862 0.001700 0.89 0.0059 0.0098 0.004916
10 0.1028 0.0246 0.0125 0.002647 0.002094 0.11 0.0718 0.0361 0.003258 0.002977 0.47 0.0046 0.0155 0.007449
20 0.1676 0.0065 0.0145 0.004122 0.003599 0.26 0.1102 0.0614 0.005234 0.005342 0.86 -0.0024 0.0765 0.012203
30 0.2335 -0.0088 0.0255 0.006974 0.005647 0.17 0.1547 0.0832 0.008124 0.008391 0.43 -0.0048 0.0257 0.016794
50 0.3725 -0.0824 0.0273 0.009965 0.008835 0.24 0.2247 0.1203 0.012383 0.013463 0.54 -0.0086 0.0365 0.026863

p = 4

5 0.0600 -0.0085 0.0025 0.000662 0.000475 0.66 -0.0011 0.0042 0.000753 0.000566 0.65 -0.0047 0.0039 0.002175
10 0.0599 -0.0040 0.0014 0.000492 0.000297 0.28 0.0023 0.0024 0.000547 0.000353 0.22 -0.0012 0.0022 0.001337
20 0.0601 0.0003 0.0005 0.000471 0.000256 0.25 0.0047 0.0015 0.000488 0.000298 0.30 0.0000 0.0020 0.001002
30 0.0601 0.0016 0.0008 0.000549 0.000260 0.21 0.0047 0.0012 0.000564 0.000300 0.19 -0.0001 0.0009 0.000884
50 0.0600 0.0033 0.0011 0.000610 0.000253 0.26 0.0054 0.0010 0.000608 0.000289 0.20 -0.0001 0.0007 0.000784

Notes. This table reports the summary statistics for the estimation of the four integrated eigenvalues, i.e., for p = 1, 2, 3 and 4,
∫ T
0 Fλp (cs)ds denotes the integrated

p-th largest eigenvalue. The Monte Carlo simulation consists of 1000 trials and ∆τn = 15 seconds. The Column “True” denotes the average of true integrated

eigenvalue; Column “Bias” denotes the mean of estimation error; Column “Stdev” denotes the standard deviation of the estimation error. “SE1” denotes the mean

of the standard error estimators by plugging λ̂Ti
’s into formula (16) of Corollary 1 in Aı̈t-Sahalia and Xiu (2019). “SE2” denotes the mean of the standard error

estimators constructed as formula (6.2). “Corr” denotes the correlation coefficient between the standard error estimators generated from the columns “SE1” and

“SE2”.
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Table G.3 Simulation Results: Comparison when ∆τn = 60 seconds

θ̂
(
kn,∆n, Fλp

)
without noise θ̂

(
kn,∆n, Fλp

)
with noise Ṽ

(
∆Tn, X;Fλp

)
# Stock True Bias Stdev SE1 SE2 Corr Bias Stdev SE1 SE2 Corr Bias Stdev SE2

p = 1

5 0.3852 -0.0013 0.0138 0.013781 0.013942 0.98 0.1163 0.1231 0.018269 0.019019 0.93 -0.0064 0.0297 0.028149
10 0.6729 -0.0060 0.0237 0.024039 0.024801 0.97 0.1726 0.1588 0.030962 0.033499 0.93 -0.0063 0.0528 0.049096
20 1.2709 -0.0288 0.0506 0.048097 0.054901 0.81 0.2789 0.2192 0.061616 0.072925 0.73 -0.0232 0.0958 0.092862
30 1.8818 -0.0508 0.0731 0.070762 0.081311 0.82 0.3434 0.2659 0.089415 0.106247 0.42 -0.0265 0.1376 0.135494
50 3.0549 -0.0884 0.1161 0.114829 0.132814 0.63 0.5290 0.3634 0.143709 0.173954 0.58 -0.0468 0.2118 0.222117

p = 2

5 0.1134 0.0230 0.0102 0.005183 0.004297 0.78 0.1112 0.0633 0.008725 0.006612 0.71 0.0016 0.0143 0.008652
10 0.1735 0.0242 0.0142 0.008241 0.007443 0.58 0.2484 0.1109 0.016760 0.012952 0.76 -0.0016 0.0226 0.013644
20 0.2807 0.0492 0.0398 0.019092 0.015997 0.22 0.5815 0.1655 0.039424 0.028149 0.48 -0.0044 0.0292 0.022589
30 0.3909 0.0140 0.0574 0.026514 0.023128 0.23 0.8892 0.2181 0.059747 0.042254 0.25 -0.0062 0.0412 0.031709
50 0.6083 -0.0653 0.1147 0.041530 0.037052 0.22 1.5007 0.2930 0.098119 0.070033 0.32 -0.0130 0.0674 0.049727

p = 3

5 0.0732 0.0183 0.0080 0.003574 0.002217 0.38 0.0395 0.0144 0.004345 0.002816 0.56 0.0063 0.0133 0.005426
10 0.1028 0.0536 0.0177 0.006855 0.004349 0.26 0.0955 0.0279 0.008068 0.005694 0.45 0.0043 0.0421 0.008299
20 0.1676 0.1700 0.0482 0.018870 0.009664 0.13 0.2460 0.0494 0.020026 0.012483 0.28 -0.0077 0.0317 0.013656
30 0.2335 0.1978 0.0703 0.028505 0.014294 0.14 0.3159 0.1245 0.031813 0.018627 0.05 -0.0140 0.0400 0.018715
50 0.3725 0.1667 0.1250 0.046640 0.023284 0.07 0.4305 0.1185 0.047476 0.030606 0.27 -0.0205 0.0589 0.029121

p = 4

5 0.0600 -0.0212 0.0036 0.001171 0.000617 0.30 -0.0148 0.0045 0.001350 0.000733 0.40 -0.0061 0.0048 0.002362
10 0.0599 -0.0106 0.0022 0.001035 0.000515 0.37 -0.0043 0.0026 0.001172 0.000607 0.19 -0.0019 0.0058 0.001488
20 0.0601 -0.0113 0.0019 0.001276 0.000488 0.22 -0.0071 0.0020 0.001383 0.000565 0.16 -0.0006 0.0018 0.001123
30 0.0601 -0.0061 0.0018 0.001478 0.000503 0.08 -0.0034 0.0040 0.001543 0.000574 0.08 -0.0005 0.0013 0.000995
50 0.0600 -0.0004 0.0022 0.001678 0.000518 0.08 -0.0002 0.0014 0.001641 0.000583 0.17 -0.0006 0.0009 0.000884

This table reports the summary statistics for the estimation of the four integrated eigenvalues, i.e., for p = 1, 2, 3 and 4,
∫ T
0 Fλp (cs)ds denotes the integrated p-th largest

eigenvalue. The Monte Carlo simulation consists of 1000 trials and ∆τn = 60 seconds. The Column “True” denotes the average of true integrated eigenvalue; Column

“Bias” denotes the mean of estimation error; Column “Stdev” denotes the standard deviation of the estimation error. “SE1” denotes the mean of the standard error

estimators by plugging λ̂Ti
’s into formula (16) of Corollary 1 in Aı̈t-Sahalia and Xiu (2019). “SE2” denotes the mean of the standard error estimators constructed as

formula (6.2). “Corr” denotes the correlation coefficient between the standard error estimators generated from the columns “SE1” and “SE2”.
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Figure G.1 Finite Sample Distributions of Standardized Statistics
Notes. This figure reports the histogram of the 1000 trials simulation for estimating the four integrated eigenvalues with ∆τn = 5 seconds

for 30 stocks over 1 week. The solid blue lines are the standard normal density; the histograms with bars of red dashed border are the

distributions of the estimates before bias correction; the gray histograms are the distributions of the estimates after bias correction.

G.2 Distributional performance of the bias-corrected estimator

To validate the asymptotic behavior of the bias corrected estimator, the finite sample distribution of the

standardized statistics for d = 30 stocks are reported in Figure G.1 where ∆τn = 15 seconds. Note that the

standardized statistics are calculated by the following formulas:

Ṽ
(
∆Tn, X;Fλp

)
−
∫ T

0
Fλp (cs) ds

ÂV AR
(
∆Tn, X;Fλp

) 1
2

,

for the standardized statistics of bias-corrected estimator, while

V̂
(
∆Tn, X;Fλp

)
−
∫ T

0
Fλp (cs) ds

ÂV AR
(
∆Tn, X;Fλp

) 1
2

,

for the standardized statistics of the estimator before bias correction.
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