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Abstract

We develop a principal component analysis (PCA) for high frequency data. As in Northern fairy tales,
there are trolls waiting for the explorer. The first three trolls are market microstructure noise, asynchronous
sampling times, and edge effects in estimators. To get around these, a robust estimator of the spot covariance
matrix is developed based on the Smoothed TSRV (Mykland et al. (2019)). The fourth troll is how to pass from
estimated time-varying covariance matrix to PCA. Under finite dimensionality, we develop this methodology
through the estimation of realized spectral functions. Rates of convergence and central limit theory, as well as
an estimator of standard error, are established. The fifth troll is high dimension on top of high frequency, where
we also develop PCA. With the help of a new identity concerning the spot principal orthogonal complement,
the high-dimensional rates of convergence have been studied after eliminating several strong assumptions
in classical PCA. As an application, we show that our first principal component (PC) closely matches but
potentially outperforms the S&P 100 market index. From a statistical standpoint, the close match between
the first PC and the market index also corroborates this PCA procedure and the underlying S-TSRV matrix,
in the sense of Karl Popper.
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1 Introduction

In his will, Warren Buffett recommends that his wife should invest her inheritance in an index fund (Buffett
(2014, p. 20)). Many investors share this preference.

We shall argue that they may be better off by investing in a statistically estimated principal component (PC)
instead. The economic arguments for these two approaches are closely related (Section 1.2), and we corroborate
this with our empirical analysis in Sections 7.1-7.3. The main barrier to PC investing has so far been the quality
of the statistical estimates, both in terms of method, and in terms of data size. With the ever increasing frequency
of trading and liquidity of markets, the data are now available. This article is about getting the statistical method
right.

This is a paper about statistics, about principal component analysis (PCA) for data that are large in two
different ways. The dimension is large, and the frequency of the data is also very high. In our empirical example,
the dimension is 70-100, and the amount of data in each dimension is up to several observations per second,
for eleven years (2007-2017). In the asymptotic theory, the dimension may stay fixed or go to infinity, and the
sampling frequency in all cases becomes infinite.

The high frequency permits the precise construction of time varying eigenvalues and principal components.
We use a nonparametric Itd process model (which also permits leverage effect, see Section 2.1 for a precise
description). As a result, scientific problems can be investigated with much less statistical uncertainty. Also,
if eigenvalues and principal components form part of a measurement or an algorithm, high frequency estimates
permits rapid updating under unstable conditions. This methodology can be applied wherever high frequency data
can be found, such as in neuroscience, geoscience, climate recordings, wind measurements, turbulence, finance,
economics, and on the internet. The approach extends to factor analysis (see Sections 1.2-1.3 and 5).

This is also a paper about finance, which is our empirical application. Our findings are interesting in their
own right. The high precision and the rapid updating means that investment allocations are less likely to be
stale. We shall see in Section 7.1-7.3 that this is indeed the case.

The paper can therefore be read for its finance, or it can be read for its statistics, with finance as an incidental
choice of application.

The challenge posed by high frequency PCA is that it requires a most careful construction to give meaningful
answers. One cannot use common shortcuts, such as ignoring noise or asynchronicity, or throwing out data to
make the data set nicer, or replacing spot by integrated covariances. We find in Section 6 (Figure 6.2) and

Appendix G that eigenvalues and principal components may come out very wrong by making such shortcuts.



A special feature of our data set is that it provides a particularly stern test for any PCA procedure, call it the
indez test, as follows. Economic theory provides reasons to think that we know a priori what the first PC should
look like: it should be very close to the corresponding value weighted stock index, cf. the discussion in Section
1.2.

Our paper meets this challenge, and provides a carefully constructed high frequency PCA. We outline in
Section 1.3 what is technically new in this paper. As validation that our method is indeed highly accurate, we
shall see in our application that it enables us to draw highly precise and also long term conclusions about the
relationship between principal components and currently known financial factors (Section 7). In particular, it
passes the index test very well, to our knowledge better than any other known PCA procedure, see Figures 7.3-7.4
and our comments in Section 7.2. This match to the index also suggests that our procedure uses a particularly
well behaved covariance estimator in the form of the smoothed two-scale realized variance (S-TSRV, Section 1.3).
In the sense of Popper (1959), this match is the positive outcome of the test of a theoretical prediction. Since the
test is passed, it corroborates the accuracy of our PCA and S-TSRV methods.

The accuracy of our PCA may provide a firmer footing on which to “export” the index concept to markets
(such as commodities) where there is less theoretical basis for how to weigh index components. Indices currently
do exist in these cases, of course, but with less foundation than is the case for equities. Indices have substantial
social value.

We stand “on the shoulders of Giants”, and we start by reviewing the background for this problem (Sections

1.1-1.3).

1.1 PCA and Factor Analysis (in Statistics and Econometrics)

Principal component analysis (PCA) is a form of unsupervised learning (see, e.g., Hastie et al. (2009)). PCA was
pioneered by Pearson (1901) and Hotelling (1933), and further developed in a large statistical literature (see, e.g.,
Anderson (1958, 1963) and Mardia et al. (1979) for the classical theory).

PCA is frequently also appropriate for factor analysis: estimate the first few principal components, and these
are then also estimators of the main factors. This important insight originated in econometrics (Chamberlain
and Rothschild (1983), Connor and Korajczyk (1986) and Stock and Watson (1998, 2002); see also the survey in
Chapter 6 of Campbell et al. (1997)), and is a much simpler approach than the usual treatment of factor analysis
that can (at the time of writing) be found in most current books on multivariate statistics. It is notable that this

approximation relies on dimension going to infinity with the number of observations.



The approach has since been generalized to time dependent systems, notably by Bai and Ng (2002), Fan et al.
(2013), Ait-Sahalia and Xiu (2017), Kong (2017), Pelger (2019a), and other papers by the same authors. This is
an important thread in this paper, and we return to this below in Section 1.3.

For the present, we emphasize that this construction relies on an assumption that a finite number of common
factors dominate the system (they are “pervasive”, in contemporary parlance (Section 5)). This not only makes
the PCA and the factor analysis a good proxy for each other. It also means that the PCA and the factor
analysis avoid any nasty statistical inconsistencies. We note that the situation where inconsistencies do occur
has meanwhile also been a fruitful topic of research, in the form of random matrix theory (including Johnstone

(2001), and Tao (2012)).

1.2 PCA and Factor Analysis (in Finance and Economics)

It is widely agreed that financial markets can be described by a small number of factors. This goes back to the so-
called Capital Asset Pricing Model (Markowitz (1952, 1959), Sharpe (1964), Lintner (1965), Black (1972)), which
predicts that a single factor drives asset prices. It was later realized that prices may be driven by multiple factors.
Particularly well known (empirical) factors are those developed by Fama and French (1992, 2017) and Carhart
(1997). Meanwhile, theoretical multi-factor (and approximate multi-factor) models were developed starting with
Ross (1976) and Chamberlain and Rothschild (1983). There is a vast literature in this area. For literature reviews,
see, e.g., Campbell et al. (1997) and Cochrane (2005).

The literature on factor models are a main motivation for investing in index funds. Especially for the one
factor model, economic theory predicts that this factor becomes the value of the entire market, see, for example,
Cochrane (2005, Chapter 9). It is arguably a collective form of unsupervised learning. The literature cited in
Section 1.1, however, predicts that the same factor can be found by PCA. To quote Chamberlain and Rothschild
(1983, p. 1285): “Thus, principal component analysis [...] is an appropriate technique for finding an approximate
factor structure.” For multi-factor models, similar considerations apply. The question then arises: should one
find the factors empirically, as in Fama and French (1992) and their successors, or should one invest based on the
several main principal components? We shall look more closely at this question in Sections 7.1-7.3.

The one factor case is the basis of the “index test” of a PCA procedure: the first principal component (PC)
should be close to the stock index. In the multi-factor case, this would approximately remain the case in the

commonly assumed scenario where the index is the main factor driving asset returns.



1.3 Time Varying and High Frequency PCA and Factor Analysis

We build on three pillars. In a seminal paper, Ait-Sahalia and Xiu (2019) has developed high frequency PCA
with the elegant use of spectral functions. In an equally pioneering article, Fan et al. (2013) has developed the
POET method to parlay time discrete PCA into a factor analysis along the lines of Section 1.1, but, critically,
using sparsity to obtain the separation of the factor and residual part. A third pillar is the smoothed two-scale
realized variance (S-TSRV) as developed in Mykland et al. (2019).

Important other papers on high frequency PCA and factor analysis include, in particular, Ait-Sahalia and
Xiu (2017), Kong (2017), and Pelger (2019a,b), but we shall not build on these directly. A main advantage of
the high frequency approach is that one avoids stationarity assumptions, which may be unrealistic in economic
or financial data. (Sections 3-4).

The main difficulty with the existing literature on high frequency PCA is that it does not permit the data to
be noisy or asynchronous (except Dai et al. (2019)). The effect of noise can be devastating (Zhang et al. (2005))
on variances and covariances, and we shall see that this is also the case for PCA. Noise leads to over-estimation
of eigenvalues, and the principal components do not come out correctly (Section 6.3, in particular Figure 6.2, and
Appendix G, both in this paper). Asynchonous times can also cause severe problems, especially when one tries
to sweep them under the carpet with pre-averaging (Mykland et al. (2019)).

In the current paper, we solve this problem by constructing a PCA for noisy high frequency data under irregular
trading (observation) times. This is done by estimating instantaneous eigenvalues and eigenvectors based on an
instantaneous version of the S-TSRV. To set standard errors, an observed asymptotic variance estimator (Mykland
and Zhang (2017)) emerges naturally under the same conditions. (Sections 3-4.)

We then proceed to design (in Section 5) a new estimation methodology for high dimensional spot covariance
and precision matrices through high frequency PCA, which can be regard as the realized version of POET from
Fan et al. (2013). The new methodology allows for time-varying volatility and for time-varying factor loadings. We
assume (i) conditional sparsity structure of the spot covariance matrix, and (ii) the pervasiveness of the common
factors. The estimation starts with the constrained least quadratic variation (CLQV) optimization subject to
canonical conditions. It is shown that the CLQV optimization is an asymptotic version of the constrained least
squares (CLS) optimization from Fan et al. (2013). The equivalence between CLQV and asymptotic CLS yields a
useful identity about the spot principal orthogonal complement, which completely frees us from the higher order
assumptions on common factor and idiosyncratic component in classical PCA (Section 5.2.1). The asymptotics
of the new methodology only relies on very basic assumptions about the spot factor loadings and the spot

idiosyncratic covariance matrix, in analogy with Assumptions 2(b) and 4(a) in Fan et al. (2013). Following the



general approach of Bai and Ng (2002), a data-driven approach is proposed to consistently estimate the number
of common factors. As the building block of new methodology, the spot principal orthogonal complement is
obtained through the CLQV optimization for the spot covariance matrix, of which the convergence rate under
elementwise max norm is shown to be (AT, log cl)l/2 +d=1/2 where AT, = [(K — J) ATI]I/Q and logd = o (AT},)
as n,d — oo. Finally, the estimator is obtained by thresholding the spot principal orthogonal complement, of
which the inversion matrix is a consistent estimator for the spot precision matrix under classical conditions.

In recent years, high frequency data has been connected to the high dimensional factor model while eliminating
the stationarity conditions in classical PCA. In particular, important extensions include allowing time-varying
volatilities in the log price processes (Ait-Sahalia and Xiu (2017)), or allowing jumps in log price processes
(Pelger (2019a,b)), or allowing noisy and (mildly) asynchronous observations (i.e., Dai et al. (2019)). The existing
literature on high frequency data analyis conduct PCA on either the integrated covariance matrix fOT cidt, or the
averaged covariance matrix 7% fOT csds, where (ct)osth denotes the process of spot covariance matrix and the
5\(]’)

time horizon 7T is fixed. However, based on the Weyl’s theorem, the difference ‘ — )\gj )‘ can be large, i.e., of

cﬁ’”*s)‘ < oo, forany 1 < j<dand 0<t<7T when 7 is fixed, where d is the

cross-sectional dimension, and A9 and )\,Ej ) are the j—th eigenvalues of % fOT csds and ¢, respectively. Also, the

order O, (d) provided sup, max; s

cited papers either do not take account of microstucture, or they use pre-averaging without taking account of the
potentially misleading effects of irregular times (cf. Mykland et al. (2019, Section 2)). These are reasons why the

instantaneous behavior of the latent structures cannot be easily detected by existing techniques.

1.4 Organization and Notation

This paper is organized as follows. Section 2 sets up the model, and provides a more precise decomposition of the
smoothed TSRV estimator. Section 3 provides the estimator for the spot covariance matrix. Section 4 proposes
the estimators for the realized spectral functions and develops the asymptotic theory under finite dimensionality
assumption. Section 5 shows the connection between high frequency PCA and high dimensional factor models,
by estimating the high dimensional spot covariance and precision matrices using the realized POET. Section 6
and Appendix G reports the Monte Carlo evidence. Section 7 focuses on empirical work. All mathematical proofs
are collected in Appendix A-F.

We draw attention to the following notation, which is used throughout this paper. For a matrix A, we denote
its (4,7)-th element by A its i-th row by (A),, and its j-th column by (A), ;- We denote the largest and

smallest eigenvalue of matrix A by Amax (A) and Amin (A), respectively. We denote by ||A||, [[A]l;, |Allg . |A]l

max

the spectral norm, Lj;-norm, Frobenius norm and elementwise max norm of matrix A, defined as ||A] =



Ml (ATA), [[A]l, = max; %, |[AGD|[|A]p =t'/2 (ATA), A

max

= max; ; |[A(D)|. If A is a vector, then

max

|A|| and [|A|s are equal to its Euclidean norm. For two sequences, we write z, < y, if z, = O, (y,) and

Yn = Op (T5)-

2 Basic Setup

2.1 The model

Assume that the process (Xt )<, = (Xt(l), Xt(z), o ,Xt(d) is a d—dimensional continuous semimartingale

) 0<t<T
(Itd processes) in the sense that

dXt = /,Ltdt + O'tth

where W, is Brownian motion; p, and o, are Itd processes which can be mutually dependent with W. This is
comparable to Definition 1 in Mykland and Zhang (2006), as well as Conditions 1-2 in Mykland et al. (2019).

We define the spot covariance process as follows:
¢ = (o0T),, (2.1)

which belongs to the set of positive-semidefinite matrices for any 0 < ¢t < 7. If X, is continuous, then its quadratic
variation [X, X|, = fg csds.

For the financial application, {X,;} is not observed and can be considered as latent efficient prices (in loga-
rithmic form). We assume that the observed process (observed log stock prices) ¥ = (Y(l),Y(z), .. .,Y(d)) is
contaminated by the market microstructure noise € as follows:

() = A +€(T2), forr=1,2,....,d.
i j

(
t

For each process { Yt(r)}, it is observed not continuously, but on the grid G = {O = t(()r) < tY) << tg()> = T} .
In this paper, the assumptions about the sampling times t;r) and microstructure noise €™ follow from Conditions
1-4 in Mykland et al. (2019).

We also make the following assumption about the covariation between spot volatility processes as follows.

ASSUMPTION 1. (Assumption on Covariation of Spot Volatility Processes) Assume that for all pairs of (r1, $1)
and (rg, s2), <c(”’51), c(T2752)>t are continuously differentiable and <c(”’51)7 C(T2’82)>; are [t6 processes in the sense

of Definition 1 in Mykland and Zhang (2006). Also assume that supg<;<7 |/c|| < 00.

max



Recall that eigenvalues are analytic functions of the corresponding covariance matrix so long as they have
multiplicity one (e.g., Tsing, Fan, and Verriest (1994, Proposition 4.1, p. 168). In this case, therefore, the

eigenvalues are also [t6 processes, and they satisfy the statements of Assumption 1.

2.2 The Smoothed TSRV

-

In order to estimate the integrated covariance matrix (X, X), , we construct the smoothed TSRV estimator (X, X),
on a synchronous grid

{0=rpo<Tp1 < <Tpn=T}. (2.2)

Denote Mffl) = # {j CThie1 < t;r) < TM} We can set A7} = max; A7, ,; and M,, = min;, MT(LTZ) For the
structure of blocks, we assume Condition 3 in Mykland et al. (2019).

We also make two more assumptions in this paper for the simplicity of discussion.

ASSUMPTION 2. (Assumption on Averaged Noise) We suppose that there is stationarity enough to assure
COV(EZ(-SI),EES2)) = (M,j)i1 ¢(5152) and sup, Var (E(-Sl)él(-”)) =0, ((M_)%) .

7 n

ASSUMPTION 3. (Assumption on Block Structure) Assume that A7 =< M, /n, in which case the number
of blocks N = N,, is of exact order O (n/M,,).

For 0 <¢ < T and a pair (J, K), set

—_—~— (K) 1 b—K N*(t)_b N*(t)_K
vVir) Vs _ () () o (s) o (s)
KyOyol ={33+ > +5 > | (W n") (v -v9).
i=1  i=b—K+1 i=N*(t)—b+1
where
N*(t)=max{1<i<N:7,,; <t} and b= K+ J, (2.3)

and for 1 <i¢ < N and 1 <r < d, the pre-averaged price is defined as:

o) 1 (r)
Vil = M(T‘) Z Y;Eﬂ ’ (24)

r
% Tn,i71<t_§» >§Tn,i

—— _(J)

We define J[Y("), Y ()]  similarly by switching J and K.
The Smoothed-TSRYV is defined as:

™ x() 1 k7o 7o spm e
(XOXO), = e { KFOT], = ap070), L



If we assume that K — J = O, ((N/M;)WB) , as well as the other conditions to support the Central Limit

Theorem (CLT) in Theorem 5 and formula (39) of Mykland et al. (2019), we have the following expression:
. ¢
(X0, X)), :/ P+ 0, (an) . (2.5)
0
where cgm) is the (r, s) —th element of ¢, i.e., defined in (2.1), and where the sequence {a,},, is defined as:

1
2

= [(K —J)ATy] (2.6)

Moreover, under Assumptions 2 and 3, and assuming K — J = O, ((N /M, )2/ 3) , the estimation error has a

sharper representation as follows:
. t
(X0, X)), — / gy = MTD 4809 — e, (2.7)
0

where the main martingale term can be expressed as:

Mt(r,s) :MtX7(T75)+Mt€7(T’S)+Op (an)v (28)
and
K—J—1 N* (1)
s K—J-
uECD — ( p) S Ax AXO[),
p=1 i=J+p+1
N*(t)
e P N CUBE ML)
i=K+1

while the edge effect terms egr’s) and e(r *) are of order O, ( ) and can be further expressed as:

1 K ™) (&) K—J-1K—-J—p K—J—p—
(rys) _(r) —(s r s
0 = g L e Y (S axg) axg)p
i=J+1 p=1 =1
K—-J
K—-J r s 2
+ : <I(—J> AX7('J)+1AX7('J+1 —+ 0p (an) , (29)



= K J-1KJ=p /0 g o
s(rs) =(r) =(s) —J = r :
€ = g 2 il - ( Ja—i ) AXT) L AXE) 2]
i=J p=1 =0
K—J
K—-J- R 9
o Z ( K—J > AXTN*(t) 7AX7(-]\2*(1) i + OP( ) : (2'10)
i=0
Proof. The proof of this expression is gathered in Appendix A. [
3 Estimator of Spot Covariance
Suppose that {AT,},, is a sequence of positive numbers satisfying
a, AT, — oo and AT,, — 0 as n — co. (3.1)
We define the estimator of spot volatility ctr’s) as follows: for 1 < r,s < d,
A(r s) o 1 7/\ TN v(s
£ = g ((XTLXO),p — (XCT X)), 52
Before stating consistency results, we introduce new quantities as follows:
(e 1 t+AT, s (r.s) 1 N*(t+ATy) _ rs) 1 N*(t+ATy) o
CX’T:,t = AT {9 du, Bar, 1= AT Z Bf#Z?Tn,m and 5AT N Z Bi(r’ )[Q]a
n ot " =N (t)+1 ™ i=N*(t)+1
(3.3)

and

71,72,51,8 K_J t+ATn N* t ATn —N* t
W(A”iljnzt’ 1,52) _ (7)7—/ Cgm,rz)cgshsz)dGn (u) [2] [2]+2§(7‘1,T2)§(81,82) ( + 2) 2( )[2][2}7 (34)
' (K — J) (M_)

where “[2]” denotes the summation by switching r and s, and “[2][2]” means the summation over four terms

where 71 can change place with s; and r3 can change place with s3, and

Bl(;’s) = / (I —w) del™) for | > 7,

K—J-1
H(rs) K—J— p (r) (s) 1 =(r) =(7) =(s)
S (Z ( )AX”P AT R ) (27 =)



and

9= K= JT > (K = p) ATi—p and G (1) = ), gilhrs.

T <t

where N* (+) is defined in (2.3).

LEMMA 1. (Consistency and Optimal Convergence Rate of the Spot Volatility Estimator) Suppose that AT, is

a sequence of positive numbers satisfying (3.1). Under Assumptions 1-3, for arbitrary € > 0,

(i) e, =)

=0, (AT,%/2> uniformly with respect to t, and consequently,

sup i) , = i)

-0, (AT;/H) =0, (1).

More precisely, EXLE)“ - c§’”’s> B(AT;,)L ++0p (ATT}/z)

(i) A(hT)t _(A7’1f3,t

=0, (ATn 1/2 an> uniformly with respect to t, and consequently,

sup

A(rys _(r,s 1/2—
C(AT & C(AT) t‘ = ( (ATn n) E) =o0p(1).

More precisely, CX;) - E(gqf) .= ﬂ(;; L +0, (AT (a )1/2 6) '

(i11) If we further assume that AT, < a,, then the spot volatility estimator reaches the optimal convergence

rate O, (a,l/Q), i.e.,
=0 (a}/Q_E) )

and more precisely, we have: ég’jfr)“t (rs) — 5X;:,t + ﬂX;) ¢+ 0p ( 1/2) .

sup ‘C(ATT) i

Proof. The proof of this lemma is collected in Appendix B. O

If we further define
B =) e, (3.5)

then we state the second order behavior of 6(&;3 , in the following lemma.

LEMMA 2. (Second-order and Higher-order Behavior of Spot Volatility Estimator) Suppose that AT, is a
sequence of positive numbers satisfying (3.1). Under Assumptions 1-3:

(i) If we further assume inf, a,;, ' AT, > 0, then BX}’;?BX}S? = 0, (AT,) and for h > 3, we have lﬁl 5(A”T:ZZ =
O, (AT#Q) uniformly with respect to t.

(zz) If we further assume a,*AT, — 0 as n — oo, then ﬁX}’Slt (AT;:? = 0, (a2AT; ') and for h > 3, we

have H B(A”T’g’t = ((anATn_l/z) > uniformly with respect to t.

10



(iii) If we further assume a; AT, — 0 asn — oo, we have

1,8 2,8 1 T1,72,51,8 _
sgp ’E (6(A%F’n,lt)ﬁ(A?F“,2t)|ft) - WW(A;“”; v = Op (aiATn 2) +0p (an), (3.6)
n 2
and
71,8 79,59 1 T1,72,51,8 _
sup ‘ B(ATmlt)B(A;n,zt) - ATQ SO(A;“,L,Qt ' 2) = OP (arzLATn 1) 9 (37)
t n 2

where <p(AT1T7:ft’Sl’S2) is defined in (3.4).

Proof. The proof of (i) and (ii) in this lemma is similar to the proof of Lemma 1. The proof of (iii) is collected

in Appendix C. [0

4 High Frequency PCA under Finite Dimensionality

When the dimension d is finite, principal component analysis using high frequency data may conveniently be based
on the estimation of integrals fOTF (cs) ds of vector-valued spectral functions F' = (Fi,...,Fy). Specifically,
a spectral function F is defined on a subset of all positive semi-definite matrices, and it must satisfy that
F (X)=F(0OTXO) for any positive semi-definite matrix X and any orthogonal and symmetric matrix O.

The concept of spectral function is well documented in Friedland (1981), and Ait-Sahalia and Xiu (2019,
Section 2.5, pp. 291-292), to whom we refer for a review of the concept. It is central to the latter’s development
of PCA.

A main property of spectral functions F' is that they can be decomposed as F' = f o\, where f is a symmetric
function on an open symmetric domain in ]Rj, and A (X) is the vector of all non-increasing eigenvalues of the
positive semi-definite matrix X (ibid). Building on Ait-Sahalia and Xiu, we impose a continuity and growth
condition on f, as well as a condition that eigenvalue processes cannot cross each other (ibid., Assumptions 2-3,
p- 292). We make these assumptions by reference since they are best described in the context of ibid., Section
2.5. Recall that we also assume the dimensionality d be asymptotically finite throughout this section.

In order to estimate the integrated spectral function, we first create a new equidistant grid as follows:
Ty, = iAT,, for 1 <i< B, such that AT, satisfying (3.1) and B = T/AT,. (4.1)

Condition (3.1) is an initial choice and we will elaborate on the selection of AT, in next subsection.

11



We construct the estimator as follows:

B
V (AT, X;F) =Y F(éar, 1., ) AT,.

i=1

where éar, 1, ,_, is defined in (3.2). Note that the estimator can also be written as

ji—1
B

V(AT X5 F) =3 f (Ari, ) AT,

=1

where /A\Ti_1 =A (éATn,Tn,,,z_l) and A (X) is the vector of all non-increasing eigenvalues of the positive semi-definite

matrix X.

4.1 Selection of AT,

In this subsection, we mainly discuss the selection of AT,. We start from the decomposition of the estimation

error:

R T B B Tns
V(ATH,X;F)—/O F(es)ds = Y [F(éar,r...,) —F(CTn)Fl)]ATn—Z/ [F(cs) = F(cr,, )] ds.

i=1 Tn,i1

Error due to spot volatilty estimator, RSpot Discretization error, RDiscrete

(4.2)

By Taylor expansion, for 1 < m < d, the m-th component of the vector-valued function F' can be expanded as

follows:
d
Fp, (éATn:Tn,ifl) - Fn (CTVL,ifl) = Z 8T181Fm (CTn,i—l) X%IQ,LS,IY)"”J,l
T’1781:1

d
2 (r1,81) (r2,82)
§ z : 87"18177”252Fm (CTn,ifl) ATn,Tn,i—1 P AT, Th i1

T1,81,72,52=1
3)
b

+ Op (HﬂATn,Tn,il

—

12



Table 4.1: Error Size Comparison under Different Choices of AT,

Types of Error

RDiscrete RSpot-V RSpot—B E (RSpot-B) _ wglrlaf RExpansion
ATy, — 0 and inf, an 'AT, >0 O, (AT,)  Op (AT,) Op (AT,) op (AT},) 0, (AT2)
SIA AZEYN A 2 AT AATT2) = 3 AT
an AT, — 0 and a, Tn w00 Op(ATy) Oyp (an) Op (az AT, Op (an ATy, op (an) Op (al ATy,

sup,, a;S/QATn < oo and ap2AT, = 0o Op (ATy) Op (an) Op (a%AT;l) Op (G%AT;2> Op <a3 AT;l)

AT, is defined in (4.1). The discretization error RP'5¢™**® is defined in (4.2), the martingale term and bias term RSP°"V and RSP°*"B and
the aggregated remainder term RFXP27Sion are defined in (4.3), and E (RSDOt"B) — gaii%z/ is the bias term contributed by the edge effect in

covariance estimator and Lpii%i is defined in (4.4).

where ﬁ(AT’;j’Tn ., is defined in (3.3), and consequently, RSPt could be further decomposed as follows:

B d
RO = ATHZ Z Ory s, Fin (CTn,i—l) X’if’,:,li)“n,i,l (4.3)
=1 Lri,s1=1

Main contributor of variance in RSPot  defined as RSPot-V

B 1 d
2 (r1,81) (r2,82)
+AT”§ : 5 § : a7“151’7‘2521:’7" (cTn,ifl) ATy, T, i—17 ATn, T, i1
=1

T1,81,72,52=1

Main contributor of bias in RSPt defined as RSpot-B

3

B
+ O, | AT, Z HIBATn,Tn,i—l
i=1

Aggregated remainder of Taylor expansion, defined as RExpansion

Because the second order term in RSPt will introduce a bias term into the estimation error, in order to achieve
CLT and optimal convergence rate, we need to consider bias correction. The selection of AT;, should make sure
not only the optimal convergence rate, but also the ease of estimation of the bias-correction term.

On the other hand, the edge effect (see (2.7) and (2.10)) in S-TSRV estimator can also contribute to the bias

term in RP°", whose effect can be measured by E (RSPo"B) — oRias where oR12% is defined as:

1 B 1 d

Bias __ 2 (71,72,51,52)

PAT, = AT, Z 5 Z 87“13117"252Fm (CanFl) PAT, Tnio1 | (44)
" i=1 T1,81,72,52=1

with X572 **) being defined in (3.4).
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By summarizing the results of Lemma 1 and 2, we show the comparison of three cases in Table 4.1. From
Table 4.1, we observe that in order to achieve the optimal convergence rate of RSP°*V i, O, (an) , we need to
make sure sup,, a,, 'AT,, < co. Moreover, when sup,, a., !AT,, < oo and a,, 2AT,, — oo, the bias term RSP°*B has
the order of O, (a2 AT, "), and at the same time, the bias caused by edge effect E (R5P°"B) —oRi% has the order
of Op (af AT, ?) . In order to reduce the complexity in estimating the bias-correction term E (RSP°*B) = we also
require that F (RSpOt‘B) — wgi%i have exactly smaller order than a,,, which implies that sup,, a,, *AT,, < oo and
an 3/ QATTL — oo. However, when inf,, a, !AT,, > 0 (a typical example is AT}, < a,,), the asymptotic variance term
will include the terms related to <c(’"1731), c(r2:52) >; , which will bring much greater complexity to the bias-correction
term and the AVAR estimator. Finally, we set the selection of AT, as a, AT, — 0 and aﬁg/ 2ATn — o0 as
n — oo.

Based on Table 4.1 and all above discussion, the rest of this paper will be organized as follows. We will first
state the consistency of V (AT, X; F) with the assumption (3.1) and then show its second-order behavior under
the assumption a,, *AT,, — 0 and a,2AT,, — oo as n — oco. Finally, we propose the bias-corrected estimator,
ie, V (AT, X; F) and show its consistency and central limit theorem under the assumption a, AT, — 0 and

—3/2
ang/ AT, — oo as n — 0o.

4.2 Consistency and Second-order Behavior of V (AT, X; F)

The consistency is stated as following lemma.

LEMMA 3. (Consistency of 1% (AT,, X; F)) Suppose that AT,, is a sequence of positive real numbers satisfying
(3.1). Assume the dimensionality d to be asymptotically finite. For the basic settings of processes, we assume
Conditions 1-4 in Mykland et al. (2019), and Assumptions 1-3. For the spectral function F, make Assumption 2
of Ait-Sahalia and Xiu (2019, Section 3.1, p. 292), cf. the beginning of (our) Section 4. Then we obtain:

.
V(Aﬂ;,X;F)-ﬂ+j/ F (c,) ds.
0

Proof. From the results (i) and (ii) in Lemma 1, we obtain:

sup ég’;) T_—cgf,’s) < sup ‘E
1<i<B e ¢ 1<i<B

(r;s) (r:s)

rs A(7s) _(r,s)
AT, T; — °T;

CAT,, T, — CAT,,T;| = OP (1) ;

+ sup
1<i<B

A(7,8) p (r,s)

which implies that ¢x7" 7. — ¢y, Then based on this fact, we can show the consistency by following the proof

of Theorem 1 in Ait-Sahalia and Xiu (2019). O
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Next, we show the second-order behavior of V (AT,, X; F) in following theorem. We first define a quantity:

B

Mrsy) M(TZ&)}
¢

3 () (i )
T, i<t

THEOREM 1. (Second-order Behavior of V(ATn,X;F)) Suppose that AT, is a sequence of positive real
numbers satisfying a, *AT, — 0 and a,2AT, — 0o as n — oo. Assume the dimensionality d to be asymptot-
ically finite. For the basic settings of processes, we assume Conditions 1-4 in Mykland et al. (2019), as well
as Assumptions 1-3 (of the current paper). Moreover, assume the convergence rate of the Smoothed TSRV es-

timator is Op (ay), i.e., see (2.5) and a,, [M(”’sl) M2 §2)](B)

L5 ACOV(M s M(252)) - for all u and
(r1,81), (72, s2). For the spectral function F, make Assumption 2-3 of Ait-Sahalia and Xiu (2019, Section 3.1, p.

292), cf. the beginning of (our) Section 4. Then we obtain:
R T
a2AT, | V (AT, X; F) —/ F(cs)ds | 2 o,
0

where

or=3 [ s e ac0V (a0, )

7"1,91 r27$2 1

u

Proof. The proof of this theorem is gathered in the Appendix D. [

PROPOSITION 1. We further assume that the grid (2.2) is equidistantly spaced, i.e., T; = iAT, with AT, =
T/N, and suppose that N (K —.J) > (M;)_Q = aZ¢ with positive constant &.Then following the result (iii) in

Lemma 2, and Theorem 1, we obtain:
1 1 i) (ons 2 () e s
Pt = 3 Z / S (cu) (30&71772)0551762)[2][2] 4 ?gg(nnz)c(shsz)p} [2]> du,
r1,81,72,52=1

where “[2][2]” means the summation over four terms where r1 can change place with s; and ro can change place

with so.

4.3 Bias Corrected Estimator

In this subsection, we assume all conditions in Theorem 1. Moreover, further assume a, AT, — 0 and
an® ’AT, — 0o as n — oo. We further discuss implementation of the case of non-simple eigenvalues in Sec-

tion 6.1.

15



We propose the bias corrected estimator as follows:

B d
1 71,772,581 ,¢
V (ATmX F Z CATn,Tn,i—l) - 5 Z 83151 T'QSQF (éATn,Tn,i—l) Sb(Afn?i‘n;ii) s (4'6)

71,81,72,52=1

where C(A’T) + is defined in (3.2) and

~(r1,r2,81,8 (r1,81) (r2,s2)
(A,}n 72Tn17 21) ('ZSA;ann i— l(z)A; QTn i—1" (47)
with
T,s) 1 A(T,5) A(r s)
¢ATMTM 17 9 ( CAT, /2,(i—1/2)AT, — CAT,/2,(i—1)AT, ) : (4.8)

We state the central limit theorem of the bias corrected estimator as follows.

THEOREM 2. (Central Limit Theorem of Bias Corrected Estimator) Make all assumptions in Theorem 1, and

further suppose a,;* AT, — 0 and a;?’/QATn — 00 as n — co. Then we obtain:

.
a;’ (V(ATn,X;F) —/ F(cs)ds> W,
0

stably, where Wy is a continuous process defined on an extension of the original probability space, which condi-

tionally on F, is a continuous centered Gaussian martingale with its covariance matricz % given by:

£ = / D1 Fy (€0) Oros Fy (c2) AACOV (Mo A (r202))

u
T1,S1,T2,S2 1

Proof. The proof of this theorem is gathered in Appendix E. O

If we further make the assumptions in Proposition 1, we have:

1 2
ZEP’Q) _ Z / Oy 51 Fp (€4) Orysy Fy (cu) (301&7“1,7”2)05;91,&)[2] [2] + 7§§(7"17T2)§(317S2)[2][2}> du.

T1,81,72,52=1

REMARK 1. (Estimator of AVAR) Following the idea of development of the bias-correction term, we propose

the AVAR estimator as follows:

d
AVAR (ATm X; F (p.a) AT2 Z [ Z anlep (éATn,Tn,i—l) aT282F (CATan i 1) wx;“:?Tillszl)} ’

71,81,72,52=1
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where @X}?T:I:i) is defined in (4.7).

5 Estimation of High Dimensional Spot Covariance PCA and Preci-
sion Matrices

The nonparametric framework of high frequency PCA allows the factor models to have time-varying factor
loadings, and also frees the high order assumptions concerning the common factor and idiosyncratic component.
In this section, we first provide the detailed model specification and then propose the new estimation methodology
for the high dimensional spot covariance and precision matrices, which can be regard as the realized version of

POET in Fan et al. (2013).

5.1 Factor model with time-varying factor loadings

The log-price process X; = (Xt(l), Xt(Z), . ,Xt(d)) of d stocks is generated from a factor model:

dXy = Byd¥F, + dZy, (5.1)
where F; = (Fgl),Fg), . ,ng)) is a ¢ x 1 vector process, representing a set of unknown and time-varying
common factors, B; is a d X ¢ matrix process of time-varying factor loadings and Z; = (Zt(l), Zt(z)7 e Zt(d)) is a

d x 1 vector process of idiosyncratic noise components, satisfying

(F,Z), =0 for all . (5.2)

We should mention that the number of common factors ¢ € NT is assumed to be fixed and asymptotically finite
over time interval [0, 7.

It is straightforward to see that if X, F, B and Z are continuous It6 semimartingales, then

d(X,X), = B;d(F,F),B] +d(Z, 2),. (5.3)

!/
t?

Recall the definition ¢; = (X, X)). If we further define ¢f = (F,F); and s; = (Z,Z);, it is obvious that for
0 <t <T, we have:

Ct = BtCtFB;r + S¢. (54)
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To assure the asymptotic consistency between PCA and factor analysis, the existing PCA literature concerning
high dimensional factor model opts to assume that d — oo and that the eigenvalues corresponding to the common
factors are spiked, i.e., of order O, (d), while the eigenvalues corresponding to the idiosyncratic component are
assumed to be bounded with respect to d, i.e., see Bai and Ng (2002) and Fan et al. (2013). Note that if the
eigenvalue corresponding to a common factor is diverging as d — oo, this factor is called pervasive. It is easy to
see that if all common factors are pervasive, the decomposition (5.3) is asymptotically identifiable.

Because the common factors are unknown, it is necessary to normalize B; and F; using the following canonical

condition:

ASSUMPTION 4. (Canonical Condition) For all 0 <t < T, we assume that:
d(F,F), = I,dt and B{B; is diagonal.

Under the canonical Assumption 4, it is natural to study the matrix B;B]. Set this matrix to have eigenvalues
{ [l(tj )}195,1 (in non-ascending order) and corresponding eigenvectors {ggj )}1§qu.
Then the asymptotic consistency between PCA and factor analysis can be rigorously stated in the form of the

following proposition.

PROPOSITION 2. Assume that for all 0 < t < T, all eigenvalues of the q x ¢ matriz d~*B] By are distinct

and bounded away from 0 and co as d — oo. Then under Assumption 4, if {)\Ej)}1<'< are the eigenvalues
<j<q

of ¢; in a non-ascending order and {’yij)} are their corresponding eigenvectors, we have for 1 < j < q:
1<j<q
]2
lim inf o0 ‘ bﬁ”” /d>0 and
=) < sl
& =a?| = 0@ Is)
and for j > q,
M| < Jsell.

Proof. This proposition follows from the proofs of the Propositions 1 and 2 in Fan et al. (2013), which is a
direct application of Weyl’s theorem and sin (6) theorem (Davis and Kahan (1970)). O

Based on the result of Proposition 2, we know that the asymptotic consistency between PCA and factor
analysis is assured by the pervasiveness assumption of common factors and boundedness assumption for the

eigenvalues corresponding to the idiosyncratic components.
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To assure the boundedness assumption of ||s||, the existing literature usually pre-specifies one of several simple
structures on s;, for example, the strict diagonal structure in Fan et al. (2008), the sparsity structure in Fan et al.
(2011, 2013, 2016b), and the block diagonal structure in Fan et al. (2016a). For factor models with unknown
factors, the sparsity structure can be handled by the principal orthogonal complement thresholding estimator
(POET) as in Fan et al. (2013), while the block-diagonal structure can be treated by the block-diagonalization of
principal orthogonal complement based on the Global Industrial Classification Standard (GICS) code. The latter
approach was used in Alt-Sahalia and Xiu (2017).

In this paper, we adopt the sparsity structure for s;, which is measured by

mg = Sup max ‘sgi’j)‘ for some v € (0,1),
0<t<T 1<i<d 155<d

and for v = 0, define my = sup, max; Zj I (sgi’j ) #* O) . This measure is widely used in existing literature, i.e.,

Bickel and Levina (2008) and Cai and Liu (2011). As pointed out by Fan et al. (2013), when the diagonal

elements of s; are bounded and my = o(d), then the consistency in Proposition 2 can be achieved because

[Isell < llsell, = O (ma).

5.2 Realized POET

The estimation of large covariance and related precision (inverse covariance) matrices is important in financial
econometrics research. For example, the estimation performance of the covariance matrix for a factor model
is naturally connected to the risk management problem in portfolio allocation (Fan et al. (2012)). Moreover,
estimating the idiosyncratic covariance matrix and related precision (inverse covariance) matrix is the prerequisite
for testing the asset pricing model (Sentana (2009) and Fan et al. (2013)).

Because of the time-varying feature of the volatility processes, it is here necessary to develop the estimation
methodology for the spot covariance and precision matrices in high dimensionality. Since the new methodology
is based on the thresholding of the spot principal orthogonal complement, which could be regard as the real-
ized version of POET in Fan et al. (2013), we call the new estimator realized principal orthogonal complement
thresholding estimator (realized POET).

A new feature of of realized POET is that the precision matrices of ¢; and s; can also be consistently estimated.
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5.2.1 Constrained least quadratic variation method

Let A,El) > )\152) > e > /\Ed) be the eigenvalues of the spot covariance matrix ¢;, and for 1 < i < d, ygi) is the
eigenvector corresponding to )\Ei). Then by spectral decomposition, it is straightforward to see that ¢; could be

further decomposed as:

q
i) _( D\T
o= YA () R
i=1

. . N\ T
where R; = Z?:,I_H )\E’)'yf) (yﬁ”) is the spot principal orthogonal complement.

It is natural to see that under Assumption 4, we have for 0 <¢ < 7T
4 . . N\ T
B,B] = > A" (57)" and s, = Ry. (5.5)
i=1
This approach to estimation is equivalent to a constrained least quadratic variations (CLQV) optimization:

(B;) = argmin tr (7, Z);,
B:cRdxa

subject to the canonical condition (Assumption 4). The solution of the spot factor loading B; in this CLQV

optimization problem can be further expressed as:
Bt == I‘tA%/2, (56)

where Ay :Diag()\gl),)\f), .. .,A,@) and T'; = (’ygl),'ygz), e ,'yg(I)) for 0 <t < 7. It is easy to check that the
decompositions (5.6) and (5.5)-(5.4) are equivelent under Assumption 4.

Recall that tr(Z, Z), = Zle <Z(i), Z(i)>t, which implies that this CLQV method is a partial analogy (not
an exact equivalence) to the constrained least squares (CLS) method in Subsection 2.3 of Fan et al. (2013). The
difference is that the CLQV method can recover neither the factors (i.e., dF; term) nor the residuals (i.e., dZ;
term), while the CLS method can obtain both of them innately. The absence of residuals is a barrier to estimating
the standard error of §;, which is required in some entry-dependent thresholding approaches.

Although the residuals dZ; cannot be recovered directly in the CLQV method, the optimization result R; can
be regard as the asymptotic least square estimator of s; given B, = I‘tAi /2 This can be briefly shown as follows.
Suppose that dX; and B; are observed, based on the equation (5.1), the OLS solution of dF; could be expressed

LS _ LS
as: dF, = (B]B,;)” ' BJdX, and consequently dZ, = Pg,dX, where P4 is the projection matrix on A defined
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as

Pa:=I;—A(ATA) "AT, (5.7)

LS
with I; denoting the d—dimensional identity matrix. Then if we assume that Cov(dX;) = ¢;dt and Cov (dZ + ) =

skSdt, it is straightforward to see that the spot covariance of residual has the following expression:

sy® = Pg,¢,Pf . (5.8)
Finally, given B, = Il"tAt1 / 2, it is straightforward to see that

siS = ¢, — BB, (5.9)
which follows from the fact that Pg,B; = 0 and B] (¢; — B;B]) = (¢; — B;B]) B; = 0.

5.2.2 Estimators and convergence rates

First of all, we shall make some technical assumptions. In contrast to Bai and Ng (2002) (see Assumption A
and C(2,4,5)) and Fan et al. (2013) (see Assumption 2(c) and Assumptions 4(b) and 4(c)), there is no need to
make assumptions about the higher-order behaviors of the common factor and the idiosyncratic component in
our theory development. With the help of identities (5.8)-(5.9), we only impose some very basic assumptions on
the spot factor loadings B] and the spot idiosyncratic covariance matrix s;, by following the Assumptions 2(b)

and 4(a) in Fan et al. (2013).

ASSUMPTION 5. We denote the columns of B] as bgl),bg), e ,bgd). We assume that there exists Cp > 0

such that for all d > 1,0 < ¢ < 7T and for all 7 < d,

[of?

< Cp.

max

There are constants 91,92 > 0 such that Ay (s¢) > U1 and ||s¢]|; < Y2 almost surely for all 0 <t < 7. O

A(T7S)

We denote that spot covariance estimator for ¢; by é&, i.e., & = {CATM which is defined in (3.2).

}1§r,s§d
Moreover, we set AT,, < a,, where a,, is defined in (2.6), which implies that the spot covariance matrix estimator
¢; reaches the optimal convergence rate O, (a}/ 2), based on the results of Lemma 1.

For some k < d, we define

Bkt = f‘k tA}C{tQ, (510)



« ~(1) ¢ < (k . < (i
where Ay ¢ :Diag()\il), )\152), ceey )\E )) s T = (&ﬁ” %2), . ,&E’“)) and )\i ) is the i—th largest eigenvalue of ¢,

and &E“ is the corresponding eigenvector.

The estimator of the number of factors g at time t is defined as:

G; = arg min {d_ltr (ét — Bk‘,tP’;,t) + kG (AT, d)} , (5.11)

1<k<gmax

where gmax 18 a pre-specified upper bound, and G (AT,,d) is a penalty function such that
-1
G (AT,,d) — 0 and ((ATn log al)l/2 + d*1> G (AT,,d) — oo as n,d — co. (5.12)

In analogy with the similar idea of Theorem 2 in Bai and Ng (2002), we obtain the following result.

THEOREM 3. Define ¢; = {égﬁzt with AT, < a,, and a,, is defined in (2.6). For basic settings about

}1§r,s§d
the observations, we assume Conditions 1-4 in Mykland et al. (2019), and Assumptions 1-3 (in the current paper).
Suppose the assumptions in Proposition 2 and Assumption 5 hold. Assume that logd = o (ATn_l) asn — oo and

d — oo. Let the estimator be defined as in (5.11) and the penalty function satisfing (5.12), then we have:
P(g=q) — 1.

Proof. The proofs of Theorems 3-5 are in Appendix F. 0

Based on the above theorem, we define the penalty function as follows:
1/2 1 1—¢g
G (AT, d) = » ((ATn logd)/? +d )
for constants s> > 0 and 0 < g9 < 1. The estimator for spot factor loading B; is defined as:

Bﬁt,t = f‘@t’t A (15,/27&7 (513)
which is based on the definition (5.10). Then we could define the estimator of spot principal orthogonal comple-

ment as follows:

~

Sq,t = Ct — Bqt,thI“t, (5.14)
NOW? SN T
which is equivalent to the expression 84, ; = Z?: Got1 )\il)%l) (%”) . Before introducing the main theorems, we
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first define the quantity:
wn = (AT, logd)"/? +d~1/2.

THEOREM 4. Assume all the conditions in Theorem 3. Then we obtain:
e = tllax = Op (ATulogd)'/?).

and

I
Q
iS]
B
e

R. RT  _ T
HBqt,tht,t BtBt‘

max

18t = Stllmax = Op (wn)-

Proof. The proofs of Theorems 3-5 are in Appendix F. [J

Now we apply the adaptive thresholding on §g, ;. Denote the thresholding estimator by 87 ;, defined as follows:

where ¢,; is the adaptive thresholding rule, for z € R,
¢;j (2) =0 when 2] < x;;, otherwise |¢ij (z) — 2| < Xij-

Examples of the adaptive thresholding rule include the hard thresholding ¢,; (2) = zI (|z| > Xl-j), soft threshold-

ing, SCAD and the adaptive lasso, see Rothman et al. (2009) and Fan et al. (2016b). Because of the absence of

residuals, the standard error estimator of §é’tjt) cannot be easily obtained. Thus, in contrast to the choice of x;;

in Fan et al. (2013), the thresholding parameter are set to be elementwise constant, i.e., defined as:

with a sufficiently large C' > 0.

Based on the result in Theorem 4, we obtain the following proposition.

PROPOSITION 3. Assume all conditions in Theorem 3. Then for a sufficiently large C' > 0 in thresholding
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parameter (5.15), the realized POET estimator satisfies:

A~k 1—-v
St n md) :

—sif[ =0y (w

Ifwt="mg = o0, (1) , then the eigenvalues of 85, .+ are all bounded away from 0 with probability approaching 1, and

Proof. The proof of this proposition follows directly from the similar discussions in the proof of Theorem 5 of

Gs,t

(85,0 =7t = 0p (@l ma).

Fan et al. (2013). O

Next, define the spot covariance matrix estimator based on the realized POET as follows:

A ._R. BT a*
Cout = B‘Jt’tB@tﬂf + S, t-

-1
We then consider the estimation performance of the precision matrix based on (é;t> . The theoretical devel-

opment is based on the Sherman-Morrison-Woodbury formula, i.e.,

~

N —1 ~ —1 ~ —1 A ~ —1 A - ~ —1
(CZut) = (SZt,t) - (S;;mt) B‘itvt (H‘jt + Bth,t (Sgt,t) B‘jtvt) Bgt,t (SZut) .

We show that the convergence rate for the estimator of the precision matrix is as follows.

THEOREM 5. Assume all conditions in Theorem 3, as well as wi™"mg = o, (1) , then for a sufficiently large

C > 0 in thresholding parameter (5.15), (é:‘imt) is non-singular with probability approaching 1, and
JUREN —
@)™ =] = 0p (whma)
Proof. The proofs of Theorems 3-5 are in Appendix F. [J

6 Monte Carlo Evidence

In this section, we use Monte Carlo simulation to show the numerical validity of our methodology. We will take the
estimation of eigenvalues as an example, where the eigenvalues are allowed to be non-simple. Further simulation

results are presented in Appendix G.
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6.1 Bias corrected estimator for non-simple eigenvalues

Suppose the eigenvalues of a d—dimensional positive semi-definite matrix X satisfy:
A (X)=---= A1) (X) > Alg1+1D) (X)=-- = A\(92) (X) > oo \(gr-1) (X) > Algr—1+1) (X) = Alor) (X) >0,
where g, = d, and r is the number of distinct eigenvalues. We would like to estimate:

-
/ F (¢cy) ds,
0

where

g1 g T
13 . 1 .
- Z A9 (), Z A9 ( Z AW ()
gt Jj=1 92 N 91 j=g1+1 g 9= 1 j=gr—1+1
We can also write F* (-) using its components: sz‘ (1) with p = 1,2,...,r. Without loss of generality, we set
go =0.

Following from the similar calculations in Corollary 1 and related proof in Ait-Sahalia and Xiu (2019), for

1 < p <r, we know that the consistent estimator is:

9p

Z 5‘(Ahj)“,,L,Ti,l ’

V (AT,, X; F)) = AT, Z
i=1 =gp-1+1

gpl

and the bias-corrected estimator can be expressed as:

9p
V (AT, X;F)) = AT, Z{ - 3 le}ml (6.1)

Pl h=g, 141

A (h) . A T
- (OATH,TH)}L OaT, 11, ()‘AT 15 ld — ¢ar, T, 1) Sar, 10 4 (OATH,TH)}“} }7

~(h ~
where /\(A%MTF1 =\ (éar,,r,_,) (the h -th largest eigenvalue of matrix éar,,1,_,), Oar, 1,_, is the orthogonal
matrix such that

Oar, 1, éar, 7, ,Oar, 7,_, = Diag (A (éar,.1_y))

(r:5)

) AT, Ti s {¢ AT, Ts 1 defined in (4.8), I; is the d-dimensional identity matrix and the superscript “+”

} 1<r,s<d
denotes the Moore-Penrose inverse of a real matrix.

Moreover, for 1 < p < r, the estimator for the asymptotic variance of V (AT s X F;‘) can be expressed as:
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(6.2)

i1

B
AVAR (AT, X; F)) = AT2 Y W),
=1

where
9p

! (o)

() _
\IIATn,Ti—l - 2

(gp - gpfl) U:gp71+1

with 9 being the vector of diagnal elements in the matrix Oar, 1,_, ar T;lOALTnATi,p ie., for 1 <wv <d,

nydi

(v) A ! AT ()
v :(OATn,Ti—l¢ATH,T1-_1OAT”,T,;_1)

On the other hand, we denote the non-overlapping estimator which is proposed by Ait-Sahalia and Xiu (2019)
(i.e., see (ii) in Corollary 1) by é(kzn,A,L,FIf‘), where we set A,, = Ar, and k, to be the closest divisors of
[T/AT,] to 3AT, 2, flog (d) with d is the dimension of X. Moreover, we can construct the AVAR estimator of
“(kn, A, Flf‘) in two ways. The first way is based on formula (16) of Ait-Sahalia and Xiu (2019), by plugging in

the estimators Az,. The second way is to construct the “observed AVAR” by formula (6.2). These are used in

Figure G.1 and Tables G.1-G.3 in Appendix G.

6.2 Simulation settings

Following the factor model defined in (5.1) and (5.2), we further define:
dFY) = pdt + 0P dW? and dz" = v,dBLY,

where i =1,2,...,dand j =1,2,...,q.
In this simulation, the first component of F is set as the market factor. Thus, its factor loadings B, ; are

positive. Therefore, we simulate the factor loading in the following scheme:

) F (00 = BE) de+ & /BEVaB) i =1,
dB{") =
R (éij - Bgm) dt + &;aB{"" it j > 2.

The correlation matrix of dJV is defined as p¥. The volatility processes of F and Z are simulated as follows:

AN\ 2 AN 2 . - _
a(o?) =x; (aj ~ (o) > dt + n;o AV and dv? = k (6 — v2) dt +n,dB,
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where the correlation between dW() and dW\W is p;.

For comparison purposes, all parameters in the simulation are set to be the same as Table 1 in Ait-Sahalia
and Xiu (2019), except that 8 = 0.06 and n = 0.3.

The processes are sampled at an equidistant grid with At¢, = 1 second. And the observed processes are
contaminated by microstructure noise:

Y, = Xy, + ey,

where €;, are ii.d. d—dimensional random vectors, sampled from Ny (0,X¢), with 3¢ = ®®T and & =
(®1,Ps,...,84)T. Note that &y, P,,..., P, are i.i.d. random variables from N (0, (0.0005)2) . It is worth to
mention that we purposely set the size of noise to be very small.

The time horizon in the simulation experiment is set as: 7 = 1 week (assume 1 week consists of 5 trading

days). We assume that a trading day consists of 6.5 hours of trading.

6.3 Simulation results

We apply the realized PCA procedure with both 6 (kzn, An, sz‘) and V (AT,L, X; F;‘) We first examine the effect
of market microstructure noise in the estimation of integrated eigenvalues by estimator @(kn,An,Fp)‘). The
examination is conducted under different combinations of stocks number and sampling frequency. The number
of stocks d = 5,10, 20,30 and 50, while the sampling frequency is set in three scenarios:

1. A1, =5 seconds and AT,, = 2000A7,,, with K =20, J = 10.

2. At, = 15 seconds and AT,, = 500AT,,, with K = 10,J = 5.

3. A1, = 1 minute and AT,, = 160AT,,, with K =4,J = 2.

Second, we show the estimation performance of V (AT, X ; F') with noisy observations, under the same
settings of stock number and sampling frequency. Third, the performance of standard error estimators are also
examined.

Overall, the simulation results show that, in the presence of microstructure noise, @(kn,An,F;‘) becomes
inconsistent. More specifically, 9(kn, AmF,;\) tends to over-estimate the eigenvalues. In particular, the higher
the sampling frequency (smaller A,,), the larger the estimation bias; while the larger the number of stocks (higher
d), the larger the estimation bias. Furthermore, the estimation bias seems to be greater for larger eigenvalues
(smaller p). Detailed results are summarized in the tables in Appendix G.

In Figure 6.1, we show the finite sample RMSE of the first integrated eigenvalue estimates, i.e., 1%4 (ATn, X; sz‘)

with p = 1. It is obvious that the RMSE value increases as the pre-averaging window AT, increases.. Moreover,

27



it is evident that the increment of cross-sectional dimension d can magnify the absolute value of the differences

in the RMSE values corresponding to different choices of At,,.
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Figure 6.1: Finite sample root mean squared error (RMSE) of Integrated Largest Eigenvalue Estimates based on the

Smoothed TSRV, i.e., V (ATn, X; Ff‘), with 1000 simulation trials and A7, = 5,15, 60 seconds, d = 5, 10, 20, 30, 50. Note
that “Delta Tau” in the plot denoting AT, which is the pre-averaging window of the Smoothed TSRV.
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Figure 6.2: Signature Plot for the Estimates of Integrated Largest Eigenvalue in Logarithmic Scale. “Estimator 1”7 (red
solid curve) denotes the estimates Vv (ATn,X ;FIA), and the sampling interval in the plot corresponds to the length of

the pre-averaging window Ar,. “Estimator 2” (lightblue dots) denotes the estimates 0 (kn, Ay, Ff‘) computed with the
different sampling intervals and different sampling starting points. The plot suggests that microstructure noise induces
substantially more bias and variability on eigenvalue estimators than on reqular volatility estimators. The y-axis is on the
log scale.

Figure 6.2 uses d = 50. For any fixed sampling interval A,, one can (sub-)sample the data with varying

starting point (e.g. starting from 9:0lam, or 9:02am, etc). Each light-blue circle in the graph represents an
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estimated 6 (Kn, Ap, F7) based on a particular subsample. As seen in Figure 6.2, V stays reasonably close to the
true value even as the sampling interval shrinks to below 15 seconds. On the other hand, 0 displays positive bias
as sampling interval dips below 1 minute. If one chooses to sample more sparsely (say, once every 3 minutes or
longer), 6 based on a particular (sub-)sample displays greater estimation uncertainty. The distributional behavior
of the bias-corrected estimate V is validated, see the histograms in Appendix G. We emphasize that the invention
of (k:n, A, F 1’\) remains a seminal contribution to high dimensional analysis with high-frequency data. In applied

work, the authors have selected sparse samling intervals.

7 Empirical Study

7.1 Realized Eigenvalues and Principal Components

As an empirical study, we implement the high frequency PCA on the intraday returns of the S&P 100 Index
(OEX) constituents. The stock prices are extracted from the Trade and Quote (TAQ) database of the New York
Stock Exchange (NYSE). As illustrated by Figure 3 of Ait-Sahalia and Xiu (2019), it is easy to see that starting
from 2007, more than 75% of trading intervals are less than 5 seconds. We collect the intraday stock prices of 70
most actively traded stocks among the S&P 100 Index constituents, between 9:45 a.m. EST and 4:00 p.m. EST
of each trading day, ranging from January 2007 to December 2017 (2769 trading days in total).

We estimate the integrated eigenvalues and -vectors in nine intervals of 2500 seconds each, for every trading
day, for a total of 2769 x 9 = 24921 realizations over eleven years.* We show the percentages of the total variation
explained by principal components corresponding to the first four eigenvalues in Figure 7.1. The graph shows
that the first principal component (PC1) explains about half (46.7 %) of the variation in the data. We shall
assume all 70 eigenvalues are distinct. At least for the first eigenvalue, this is borne out by Figure 7.1.

To compare investment strategies, we estimate the realized principal components (realized PCs) corresponding
to the first five eigenvalues using the S-TSRV. The h'" realized PC is an estimate of fot ('ygh_'))TdXs, where vgh)
is the d-dimensional (d=70) h'" eigenvector at time s, cf. Section 3.4 of Ait-Sahalia and Xiu (2019). With the
following construction, the realized PCs become the log profit or loss (P/L) of an actual trading strategy.

To achieve this, the realized ht" principal component is estimated as follows:

XB: log (1 + (ﬁ%n,Ti,l)T rn) (7.1)
=1

*The estimators are as defined in Section 4. The tuning parameters are taken to be A, = Ar, = 5 seconds and AT, =
500AT,, K = 100, J = 1.
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where 77, is a column vector with j'! element r%) = (S%) - S%)_l)/Sq({)_l These are the returns on the stocks

SU), j=1,---,d. The quantity (7.1) is therefore a log P/L on a strategy that invests a fraction

d
h ~(h,j
55’—)1 = ’Y(M“Jn),Ti_l (7.2)
j=1

of the accumulated wealth wr, , in stocks in the period from T;_; to T;, and keeps a fraction 1 — 61(-}1)1 in cash.

—1

Specifically, the strategy holds wTFﬂXZ{L)’TFI / Sg? )7 units of stock S) in this time period. For simplicity, we

1

take interest rates on cash to be zero; this was nearly the case for most of the time period under consideration.
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Figure 7.1: Percentage of the Total Variation Explained by Principal Components, specifically the 15¢ to 4" eigenvalues of
the S&P 100 index constituents during January 2007 - December 2017. The values are rolling means over nine estimation
periods of 2500 seconds.

We use the estimate S% ) = exp(Yn+(1;)), where Y; and N* (t) are defined in (2.4) and (2.3), respectively, and

~ (R) A(7:5)

. . . th . ~ _
YaT, 1,_, 1s the eigenvector corresponding to the h'" largest eigenvalue of éar, 7, , = {c ATLTo (as

defined in formula (3.2), with the normalizations described in Section 7.2 and 7.3. We have chosen to use r% )

}1§T,s§d

instead of (Y]E;*)(Ti) — Y]E,j*)(Tiil)) (log returns) since the former give rise to a feasible trading strategy, whereas

log prices cannot be traded. By Ito’s formula, the two are approximations to each other.

TNote that under continuity the trading weights should be the same for our PCA and for a PCA conducted on the original scale.
This is because the It6 correction does not alter the quadratic variation. Jumps would make a difference, and this remains to be
explored, but for this paper we take the view that it is more robust to carry out the PCA on the log scale, even if one wishes the
tradable PC. Also, when estimating eigenvalues and -vectors which are actually used as forecasts for near future time periods, it may
furthermore not be desirable to include a large jump that has already occurred in the near past.
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7.2 The Index and the First Principal Component

The First Principal Component is special, in that it is natural to compare it to the value weighted index, in our
case the S&P 100, for the reasons discussed in the Introduction. It is also special because the sum of the elements
in first eigenvector (the weights given to the stocks) is away from zero, whereas the eigenvectors corresponding to
the smaller eigenvalues have sums that follow a (somewhat skewed) bell shaped curve with mode around zero, see
Figure 7.2. For the first principal component to try to mimic the index, it seems natural to standardize the first
eigenvector to have sum equal to one. The reason for this is that requiring (5591 = 1in (7.2) makes the investment
strategy self-financing with no holdings in cash. This is analogous to the strategy of holding the index through

futures or via an ETF which tracks the index.
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Figure 7.2: Distribution over time of the sums of the elements in the eigenvector. The next several eigenvectors have
distributions that resemble the one for the second eigenvector. The element sums in the first eigenvector are always positive
with the three smallest values being 0.74, 0.77, and 0.81 in (a), whereas the element sums in second (and later) eigenvectors
may be positive or negative.

With this choice of standardization, the first PC does indeed resemble the index, as documented in Figure 7.3.
In fact, from the blue curve in Figure 7.3, it looks like the first principal component may actually outperform the
S&P 100 index. This is tantalizing, and one can speculate that the faster updating of the principal component
(relative to the index) is an advantage in a crisis. To construct portfolio weights for Figure 7.3, we use a rolling
mean of the (70-dimensional) eigenvectors from the most recent nine periods of 2500 second. Recall that there
are nine such periods between 9:45 am and 4 pm. In other words, the portfolio weights are updated nine time
every 24 hours. (The overnight period has the same weight as the first period of the following trading day.) The

purpose of rolling means is twofold: On the one hand, it reduces idiosyncratic statistical error in each estimated
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eigenvector. On the other hand, it reduces transaction cost by turning over only about 1/9th of the portfolio
every 2500 seconds. The choice of nine rather than, say, eight or ten, is based on the pragmatic advantages of
following the daily cycle, and is also supported by acf plot in the left panel Figure 7.5. This figure also shows the

idiosyncratic error at lag zero.
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Figure 7.3: Plot of PC1 and log(OEF) as proxy for log(S&P100). Both are standardized to have value zero at the
beginning of 2007. PC1 is constructed as described in the text in Sections 7.1-7.2. The green and red curves are also PC1,
but incorporate a cost of 2 and 4 basis points (bp) of the value of each sales transaction. The graph corroborates the close
relationship between, on the one hand, the STSRV covariance matrix and the resulting PCA, and, on the other hand, the
economic arguments behind the value weighted index. This is a main empirical finding of this paper.

If transaction costs are larger than those used in the graph, it would be natural to update the portfolio less
often, or to use a rolling mean over a longer period. As an experiment in this direction, we study the PC1
portfolio that is based on weekly (45 periods) rolling mean eigenvectors in Figure 7.4. With 20 basis points of
transaction cost at each sale, the weekly PC1 portfolio again gets close to the S&P 100 index. An interesting
finding is that for the PC1 portfolio without cost, the loss in going from daily to weekly rolling portfolio weights
is small compared to the potential impact of transaction cost. Meanwhile, given the high-frequency data that
goes into estimators, we have very high precision for the estimated weekly rolling portfolio weights, see, e.g. the
discussion of negative weights at the end of this section. For a given level of cost, there may be an optimal choice
of this tuning parameters.

The idea that the first PC is close to the index has been around for some time (and forms the basis of our
“index test”), but this degree of closeness has not been shown. Avellaneda and Lee (2010) concludes that the

PC underperforms the index. The closest previous finding is that of Pelger (2019a,b), who concludes that the

32



first PC and the index have “total correlation” equal to one. This is an important result, but total correlation is

a measure of aggregated local behavior, and need not correspond to the very long term match demonstrated in

Figure 7.3.
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Figure 7.4: Plot of PC1 and log(OEF) as proxy for log(S&P100). Both are standardized to have value zero at the
beginning of 2007. The weights from weekly rolling are equal weights from the proceeding 45 periods (9 periods per day
x 5 days). The orange curve is PC1 without transaction cost. The green and red curves are also PC1, but incorporate a

cost of 10 and 20 basis points (bp) of the value of each sales transaction.

We report standard financial measures of portfolio performance in Table 7.1. The weekly rolling PC1 seems
to have reasonable performance in terms of risk adjusted return (Sharpe, Sortino ratios). By rolling weekly, we

can keep the daily turnover to 11.2%. It is an open question how long we can extend the rolling window without

sacrificing financial gain.

Table 7.1: Basic Financial Measures

S&P 100 PC1 daily rolling PC1 weekly rolling
annual returns 5.3% 12.5% 11.1%
cumulative returns 58.8% 138.0% 122.2%
annual volatility 15.6% 24.3% 23.2%
Sharpe ratio 34.0% 51.4% 47.8%
Sortino ratio 42.9% 59.2% 61.0%
daily turnover 0 58.3% 11.2%
maximum drawdown 56.2% 65.3% 65.5%
alpha 0 0 0
beta 1 1.44 1.40

Annual returns are based on (7.1) with no transaction cost. Cumulative returns (without transaction cost) and maximum drawdowns
are over the entire 11 years from 2007 to 2017. Risk-free rate is assumed to be zero. Volatilities were computed using the S-TSRV.
For the computation of alpha and beta, S&P 100 is used as market proxy and monthly returns have been used in the regression. For

all the three series, the maximum drawdown occurred at market close on 5 March, 2009.
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We emphasize that there are a number of issues to be explored, and this is not a definitive study of relationship
between the index and the first principal component. In the case where the asset returns have only one factor, the
theoretical prediction would be that the PC should closely match the one factor (going back to Chamberlain and
Rothschild (1983), and as discussed in Sections 1.1-1.3) and therefore (by CAPM) the index. In the multi-factor
environment, similar behavior may be related to the dominance of the index factor in stock prices, cf. Figure 7.1,
but we leave further theory development for another paper. Meanwhile, the empirics is quite compelling. This is
the “index test” discussed in the Introduction.

Finally, we turn to some additional technical details involved in constructing the principal components. First
of all, recall that the sign of the eigenvectors is arbitrary. If - is an eigenvector, then so is — . For PC1, the
natural solution is to require that 51(-1_)1 = 2?21 '“y(Al%lTiil be positive. We impose this on all nine eigenvectors

from each day. To obtain a self financing trading strategy, however, the requirement that 521_)1 =1 is imposed on

the relevant rolling means of 9 or 45 periods.
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Figure 7.5: Diagnostics for PC1. (a) Autocorrelation plot of the sums of the first eigenvector without using the rolling
mean. It is clear that there is substantial idiosyncratic variance. There is also a period of 9, corresponding to the daily
cycle. The same phenomenon applies to the first and higher order eigenvalues. The phenomenon disappears by using the
rolling mean. (b) Distribution over time of log(n;), as defined in (7.3), for the case of the rolling first eigenvector.

There is a potential worry that the principal component method produces substantial negative (short) positions
in some stock. This is potentially a major difference with the value weighted index. For PC1, however, these
negative positions are quite minor. If we define the negative fraction of the first eigenvector as

d

d — .
n; = Z (ﬁ(AliQ’TFJ / 'Ay(Al%?’Tiil where 7 = max(—z,0), (7.3)
j=1 j=1
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where 'I(Al%“n,TI_l is the 9-period (daily) rolling first eigenvector. We find that the mean of n; is 0.011, the 95th
percentile is 0.067. The histogram of log(n;) is given in Figure 7.5. The maximum over the eleven years is 0.538.
For comparison, without the rolling mean, the maximum is 1480.94. Also for comparison, for the similar 45
period (weekly) rolling mean eigenvectors, the mean negative part is is 0.0012, the 95th percentile is 0.0053, and
the maximum over 11 years is 0.0778. Note that it is always a possibility to build limits on the negative part into

the portfolio selection.

7.3 Other Principal Components

For the higher order eigenvectors, it is not natural to standardize in the same way as for PC1. The sums 5§h)
(from equation (7.2)) of the eigenvectors straddles zero, as evidenced for 5§2) in the right panel of Figure 7.2,
meaning that the corresponding trading strategies in (7.1) are naturally market neutral. This is desirable since

PC1 is meant to mimic the market index. The time series of higher order PCs are shown in Figure 7.6.
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Figure 7.6: Time series of PC2-PC5.

There remains the problem of choosing a sign for the higher order eigenvectors, since from the PCA this sign
is arbitrary. We have here chosen to require that the sign of ﬁ(Ah%n T, (the h'h eigenvector for time period T;)
be chosen so that this eigenvector is as close as possible to eigenvector at T; ;. This is the so-called “continuity

method” which guarantees that the h'® eigenvector rotates no more than m/2 (clockwise or counter-clockwise)

from one period to the next. Specifically, proceed as follows.
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ALGORITHM 1. CHOICE OF SIGN OF EIGENVECTORS FOR h > 2

. (h . (h ~(h
assign 51gn('y(A:)FmTL_) so that Slgn{(V(A%mT,-)T'V(AC)F,“TFl} > 0. (7.4)

The sign requirement follows from the geometric interpretation of the dot product. In this case we require
the cosine of the angle between 'AV(Ah%n,Ti,l and ﬁ/(Ah%mTi is nonnegative. The 552) in Figure 7.2 (b) is based on
Algorithm 1. If we had instead chosen the (arbitrarily signed) raw output from statistical package R, Figure 7.2
(b) would have been more spread out.

As we have seen in Section 7.2, there are two sets of choices that have to be made about the eigenvectors.
Algorithm 1 provides a systematic approach to choosing sign. It remains to choose the size of the eigenvectors.
Once again, our approach for the first eigenvector (set 51(1) = 1 seems inappropriate for h > 1, as the natural choice
of a market neutral trading strategy may be to start with approximately zero dollars, and then approximately
balance short and long positions. This would be consistent with Figure 7.2 (b). Specifically, for 552), the mean
over time is 0.72 while the standard deviation is 1.93.

We have here chosen the approach in the literature of requiring that H’AV(AhZ)Fn,T,:_l |l2 = 1for h > 2, cf. Ait-Sahalia
and Xiu (2019, 2017) and Dai, Lu, and Xiu (2019). The latter papers also use this approach for h = 1.

An alternative would be to standardize the eigenvectors so that the corresponding PCs would have constant
volatility. This is an appealing principle. This is not the case, however, for either the S&P 100, or for the PC1
that we have constructed above. For the moment, we conclude that the choice of this normalization is an open

problem, and we hope to pursue this in a later paper.
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Appendices

References in equation numbers and in citations
bibliography

to this supplement are included with the main body of the paper.

A Decomposition of the Smoothed TSRV Estimator

We only show the case when r = s and 0 < ¢t < 7. The proof for other cases (i.e.,, 1 < r;s < d) will be similar.

Recall the definition of the S-TSRV as follows:

X, X - K[¥.7), 7.7,
E. = mae (T —IEL)
where for a pair (J, K), and N* (¢) defined in (2.3), we set
/'\,/ (K) J N*(t)_b 9 1 N*(t)—K )
K[Y Z K — Y Z (Yiex = Yi)" + 5 Z (Yisx = ;)

i=1 i=J+1 i=N*(t)—b+1

with
b=K+ J.

——(J)
We define J [Y, Y] ., similarly by switching J and K.

Recall the results of Theorem 1, Proposition 1 and Theorem 3 in Mykland et al. (2019), if we assume that



ATF — 0, M, — oo and K — J — 0o as n — oo, we have the following expression:

1 ! N*(t)—=b N*(t)—K ] N*(#)=b  N*(t)—J
2 2
L1 >l SlR ICSUNEE S Y b SED Sl IS
i=1 i=J+1 i=1 i=K+1 ]
Signal Part
9 N*(t)—-K lbiK 1 N*(t)—-K 9 N*(t)—J 1)57] 1 N*(t)—J
7| X 32Xz X JEwmstp—z| X 33 X |EEw
i=1 i=1 i=N*(t)—b+1 i=1 i=1 i=N*(t)—b+1
Noise U-Statistics
1
+0, ((Arjg + (Mn—)_l) 2) . (A1)

A.1 Edge Part of Noise U-Statistics

According to formula (A.1), we know that the main martingale part for the noise U-Statistics of the estimator

5 N*(t)—K 9 N*(t)—J
“K_—J ZZ:; €€i1Kk t+ K_J ; €i€itJ,
and its edge part is:
1 b— N*(t)—-K 1 b—J N*(t)—J
7 ZJr. Z €i€i+K*K_J Z+, Z €i€itJ
i=1 i=N*(t)—b+1 =1  {=N*(t)—b+1
1 b N*(t) 1 b N*(t)
- K_J Z +4 Z Ei—KEifK_J z Jr. Z €i-JE
i=K+1 i=N*(t)—J+1 i=J+1 i=N*(t)—K+1
1 K 1 N*(t)—J
= TK_J Z € JE — K—J Z € JE€;
i=J+1 i=N*(t)—K+1
1 b 1 N*(t)
il Y @k —Es)E+ X7 Y @k —&G-))e,
i=K+1 i=N*(t)—J+1
€))
where
Ji/? -1
N=0,(—2 ) =o0 ( M7 ) ,
and
K N*(t)—J

1
K 2

i=J+1

>

o 1
€i—J€ — 7> 1
9T T
i=N=*(t)—K+1

iati = Op (K =) 77% (M,

)



If we let
im0, (731, 7).

n

then (K — J)fl/2 (M’)71 = 0p (N*1/3 (M,j)fz/g) . Comparing to the order of the edge term discussed in
_1\ /2
Proposition 1 of Mykland et al. (2019), for example, of order O, (J1/2 (ATI + (M) 1) (ATI)1/2> =

0, <N‘1 + N71/2 (Mn_)il/Q) , we know that

N-Y3 (M) N\?
N1 -\ ) T
NS (M) (NN
T2\ ) T
N2 (My) B

Thus, we know that for the edge effect in noise U-statistics, the part that really matters for the AVAR estimator

is

1 K ) N*($)—J
- Z €i—J€ — 7> Z €;—JEj.
K=J.5 K=J i=N*(t)— K+1

It is worth to mention that because the rate of convergence of the estimator is O, (N_l/G (Mn_)fl/g) , which is
1
equivalent to the order O, ([(K —J) AT} 2) under the Assumption 3. Then without loss of generality, denote

O, (N_l/6 (M;)71/3> by O, (ay), then we have:

. K . N*(t)—J
_K —J Z €i_J€E — ﬁ Z €i_JE = Op ((Li) .
i=J+1 i=N*(t)—K+1

In the next section, we are going to find the edge term in the signal part which has the order O, (ai) .



A. 2 Further Decomposition of Signal Part

—

Based on the definition of the signal part in formula (A.1), we obtain for (X, X), that

N*(t)—=b N*(t)—K N*(t)—=b N*(t)—J

1 2 1 2
5 o+ Y | K — X)) - 5 o+ > | Kl - X2)
=1 i=J+1 =1 i=K+1
1 N*t)—-K  J N*(t)—K 1 N*#t)-J K N*(t)—J
2
= 5 2 Z - - (XTi+K—1 7X7'i) - 5 2 Z - - (XTH—J—l -
i=1 i=1  i=N*(t)—b+1 i=1 i=1  i=N*(t)—b+1
N*()—(K—J)—1 , 1 & , 122 )
= Z (XTiJrK—J _XTi) +§ Z (XTi+171 _XTi) - 5 Z (XTiJrK—J _XTi)
i=J i=J+1 i=J
(Sum of Squared Terms) (I1)
1 N*(t)—(K—-J)—1 1 N*(t)—J
2 2
D) Z (XTi+K—J a X”) D) Z (XT'iJrJfl - Xﬁ)
i=N*(t)—K i=N*(t)—K+1

(111)
N*(#)—b N*(#)—K

+ Z + Z (XTiJrK—l - XT'H»J—l) (XTi+J—1 - X‘ri)a
i=1 i=J+1

)

where

(I + (1) = O, (J (K —J)Ar}),
o

IV) = O, (J(K—-J)AT)).

n

Moreover, the main part of the squared terms can be decomposed as follows:

N*(#)—1—(K—J)
S (s - X) = B 4 RO e e,

i=J
where
N™(t)
Ry® = (K-J) ) AXZ,
i=J+1
K—J-1 N*(t)
RO = 2 3 (K-J-p) > AX, AX.,
p=1 i=J+p+1



and

. K—J-1 K-J-1
C;® = > (K-J-i)AX?, + Z (K—J—i)AX2
i=1 i=
. K—J—-1K—J—p K—J-1K—J—p
i =2 3 N (K- J-p- ) AKX, AX, 42 Y Y (K- J—p— ) AKX AKX
p=1 =1 p=1 1=0

X, _

Observe that C; @ = 0, (( ) and C, =0, ((K —J)? AT:;) .

Ifwelet K —J =0, ((N/M 2/3) then based on all of above calculations, we obtain:

K_J=1 g g N*(t)
Signal Part in formula (A.1) = Z AXZ +2 Z < p) Z AX,, AX:,
i=J+1 i=J+p+1
_ 1 X(2) X(1,1) 2
K—J(C + C; )—I—op(an).

B Proof of Lemma 1

Based on formulae (2.7), (3.2) and (3.3), the estimation error of éX;ﬁt can be separated into two parts:

1 t+AT,
A(7, _(r,s 7,8 r,s 1 (r,s) ~(r,5)
&) -k, = AT (M,LA’T M) bl - ). o)
(r,s) (r,s) 2

By Lemma 1 and 4 of Mykland and Zhang (2006), we know that HCAT =G = 0, (AT,), then for ¢ > 0,

_(r,5) (r,9)
S‘zp CAT,t — Gt

=0, (ATQ/H) .

Because At} = o0, (a2) and a2 = o, (AT,), we have:

1 t+AT,
/ (t + AT, — u) delsV

AT,
() 1 [1FAT ey L[ -
E 6&;7” / (t + AT — U) dC‘ 71,81 / (t T ATn _ u) dcurl,sl
ATy Jrvam AT, ).

= (r e) ) 10, ( —1 (Arjg)?’/z_a) +0, ((AT:)1/2—E)
= BRr o+ op (K = ) AT AT ) o, (=) 24 (AT )

= B(AT;) ¢t 0p (AT;/Q) .



s s T 2
Moreover, by Definition (2.8), we have (Mt(i’z)T - Mt(r’s)) = 5(AT) , and HMt(:kA)T — M| = O, (a2AT,).
™ n o n )

Thus,

1 S —
SUp | 7o (Mt(l’Z)Tn - Mt(’“’s))’ =0, (AT;l (a2AT,)"? 5) .

Finally, we have sup, n

- (ég:sA)Tn — égr’s))‘ = 0, (ATn’1 (a4)1/27€) = op (ATrjl (a%ATn)l/Q) . Thus the

asymptotic representation of the estimation error is as follows:

sup = Oy (ATi/ 275) , (B.2)
Slip é(AT;)t - E(AT;,)L,t = 0Op (ATn_l (aiATn)l/PE) :

By (B.2), we have:

(D) (7,5)
CAT,t — Ct

=0, (AT%/ H) +0, (AT; ! (aiATn)l/Q_E) )

sup
t
and it is obvious that if AT, satisfies (3.1), then

sup ‘C(XT)t — | =0, (1).

C Proof of Lemma 2

Recall the formulas (2.7), (3.2) and (3.3), the estimation error of ég’;:yt can be expressed as:

~(r,s r,8 _(r,s r,8 1 r,8 7,8 1 ~(r,s ~(r,s
C(ATZ,t - Cg )= C(ATz,t - Cg )+7ATn (Mt(JrA)Tn - Mt( )> + AT, <65+A)Tn - e§ )) : (C.1)
—_———
0, (aT?) 0y (a2 AT

Recall that 2 (M9 — (™) = B(T’S) , and by definition (3.3), we know that
AT, t+AT, t AT, t

7,8 ~(r,s) _(r,s 8 1 ~(7r,s ~(r,s
(ATZ,t =Bar,t+ C(ATZ,t - Cz(: ) + AT <e§+A)Tn - eg )) ) (C.2)
n

and thus

71,51 72,52 ~(r1,81) 5(r2,82) _
E (885885021 7) = B (BRi ) BRzl 17 + 0y (AT.) + 0, (a3AT;2)



uniformly with respect to t. Therefore, if a, 'AT,, — 0 as n — oo, we have AT, = o, (a,) and then
B (83 8| F B E) + 0, (al AT, .3
Bar, ¥ Baz, 7 |1 Ft) = IBAT,L,t Bar, ¢ |Ft) +0Op (an AT, ?) + 0p (an) - (C.3)
Recall the decomposition (C.2), and by the Cauchy-Swartz inequality, we have:

(7”1731) (r2,s2) (r1,81) % (r2,82)
BAT, ¢ BAT, ¥ — Bar., tﬂAT 4

= OP <AT;3/2ai) ’
2
and when a; AT, — 0 as n — 0o, AT, *?a® = 0, (AT a2) , thus,
6 (r1,51) n(r2,82) ﬁ(rl Sl)ﬁ(h ,52) +o (AT_l 2 C4
AT, t PAT, t ATyt PAT, t n an) ) ( . )

uniformly with respect to .

By the Minkowski inequality, we have

6(7"1781)5(7"2782) _ L (ri,rasi.s2)

AT, .t PAT,, AT,,
t t AT% t )
1,8 T9,8 71,8 9,8 1,8 2,8 1 71,792,581,
< oo - B (st st |, + |2 (PG pam) - grelin
n 2
1,8 (r ,52) 1,8 72,8
C.1 Bound of 80885 — & (80 sGs\m) |
For the simplicity of discussion, set B\"*) = B{"*)[2], then
- | VAT
s (r,s)
Bare=zy 2. B (C.5)
i=N*(t)+1
and
) 1 N*(t+ATy) 1 N*(t+ATy,) [i—N*(t)—1
7"151 7“252 71,8 72,8 71,8 72,8
ﬁATn,t 5ATn,t = AT2 Z Bt(+1A71“,)L,zB§+2A72“,)L,Z+AT2 Z Z Bt(+1A71“,)L,i7l B15+2A’12“ z[ ] (C 6)
T G=N*(t)+ T Gi=N*(t)+2

where [2] denotes the summation by switching (r, s1) and (rq, s2).



Assume v € (a, 2a). Recall the decomposition (C.2), (C.4), (C.5) and (C.6), we know that

‘ 2

(et e ety

has the same order as:
| VAT [i-NT($)-1
R S (I S P
" i=N*(t)+2 =1
In what follows, we prove ||71]l, = O, (a2AT, ') . Note that
. N*(t4+ATp) [i—N*(t)—1 2
E[rilF] = zmE || 2 > BERH o | BERE 2| R
n i=N*(t)+2
| AT = N*(£)—1 2 |
~ ATH Z E BETAS%LH (Bzgfi%n, ) [2]]F
=N (t)+2 =1
| VAT =N (1)~ )
- XX P (Bl ) () 17 (1)
i=N*(t)+2 =
where
2
E [(Bfrz# o) (B) m] =0, | (K -7 (ar)*+ ) | )
" "’ (K —J)" (M)
Substituting (C.8) into (C.7), we obtain:
2
E[m|R] =0 ! (N* (t+ AT,) — N* (8))* | (K —J) (m*)2 + =
"\ AT (K - J) (M)
and if we make Assumption 3, then
1 1 ?
2
——— (N* (t + AT,)) = N* () | (K — J) (AT})” +
ATy ‘ (&2 (K —J)* (M7)?

2
N
~ AT2| (K —J)Art + 2)
( ( 2 (M)

~ alAT 2,



and we have E [7}|F;] = O, (a4 AT, ?) uniformly with respect to ¢. Finally we obtain:
(T1,51 T2,S2 _E (7‘1,81) (7‘2,82) ]_- _ O 2AT_1
SUp PAT, ¢ PAT, ¢ BAT, ¥ BaT i 1Tt ) ||, = O (an AT )

‘ 2

C. 2 Bound ofHE<ﬁ£§,’jl (A’?:?” ) AT?SOX;:?{SLSZ)

First find the conditional expectation of ﬂ(AnT’Slt) ﬂ(ATQT’Szt) as follows:
( ( | VAT
(ﬂA”};,lt ﬂA%ﬁt |]:t) = AT?2 Z E (BES-IAS’JI") th(-TfAS%l z| t)
M G=N*(t)+1

where

K 1 2 ) )
st o, K—J-p Time T s 2¢(rir2) c(s1,52)
B (BLRE BUEH R = lZ < >/ o Z)d“]/ e a2l 77 () 0
Ti—p— Ti—1 — n

p=1 i—p—1
(C.9)

Finally, by formula (C.3), it is easy to see that

71,81 T9,8 1 (r1,r2,81,82)
HE( (ATn t) (A2T 2t)|‘7:t) - ATQ‘»OA;“n,Qt b

2

1,8 r2,82) 1 2,81,
7|, +H (Bary Baz17) = sy
n

IN

("'1731) (r2,82) (r1,81) %(r2,82)
HE (/BATW, t FAT, ¢ |-7:t - 5ATn,t BATn,t

= 0, (an AT, ) + 0y (an),

2

(r1,81) %(r2,82) T1,7'2,81,8 —
(BAT t 5A2T 2t |]:t) ATz SD(AlT 2;5 2 ) =0p (aiATn 3) = op (an)

uniformly with respect to ¢, because sup,

by comparing (C.3), (C.9) and (3.4).

D Proof of Theorem 1

The estimation error can be decomposed as follows: for 1 < m < d,

T
7% (ATn,X, Fm) _ / Fm (Cs) ds — G;?LATn_lg{)glﬂ) — RExpansion + RSpot—V T RBias _ RDlscrete’ (Dl)
0



where RPIserete g defined in (4.2), RSP°"Y and RSPOUB is defined in (4.3), and

RExpansion  _ AT, Z (Fm (éATn7Tn‘i71) — Fm T i 1 Z arlle T, i— 1) (AT;"’nS,}Z)"n,Fl

i=1 r1,51=1
d
_1 82 F ( ) (r1,51) (r2,52) (D 2)
2 ris1,raset m \CTn i1 ATy Ty, i—1 7 ATy Ty -1 |0 ’
T1,81,72,52=1

RBiss = RSpotB _ 2 AT w(m).
First of all, it is straightforward to see that
RPBerete — O (AT,) . (D.3)
Next, because the symmetric function f is C* on D (g1, go,. .., gr), We obtain:
3)) |

3 )
=0, (aiAT{ 3/ 2) and consequently, when a,, 2AT;, — oo,

B
RExpansion _ Op (ATn Z <HﬁATan,i1
=1

By result (ii) of Lemma 2, we know that HﬂAT',uTn,i—l
RExpansion — (aiAT,L_l) =op (an). (D.4)

Thirdly, by result (ii) of Lemma 2, it is easy to see that
RV = 0, (a,). (D.5)

Lastly, we calculate the order of RP$ which could be defined as:

RBias _ pSpot-B _ a%AT 1 (m) — RBiesl | pBiasIl | pBias-IIl (D.6)
with
(r1,m2,81,82) __ pSpot-B 1, (m) (r1,s1) (7“2752) (ri,s1) - 5(r2,s2)
ﬂ,n L = R”P° — a, AT QOn BT — /BATﬂ,yTi—l AT, T; /BATW,T7 1BATn Ti—1>
and

(m) T , 1B
Apr=a® [ 5 X GmaFale)d[Mone o) T

u
T1,81,72,52=1

10



and

i=1 T1,81,72,52=1
B d
Bias-II  __ § : E : 2 (r1,72,51,82)
R - AT’” Y 8T151,T282Fm (cTn,ifl) E (/lgTi,l |‘7:Ti—1) )

r1,81,72,52=1

B d
i 1 71,72,81,8 71,72,81,8
RBMS_I = AT"Z [2 Z 83151,T282Fm (CTn,ifl) (195751:12’ Bes) E (19(7“:12’ " 2)|fTi1)>] ’
1
2

i=1

RBiasIIl GELATJ:LSOTB)»,T _ aiATn‘lw(Tm)«

By formula (3.7) of result (iii) in Lemma 2, we know that sup,

(r1,72,51,82) (r1,72,81,52) _
ﬂTi_l —-F 19T7¢_1 |‘FT7‘,—1 5

O, (a2AT; '), and because a,,? AT, — oo,
||RBiaS_IH2 =0y (aiATn_l/Q) = 0Op (an) - (D.7)

Then by formula (3.6) of result (iii) in Lemma 2, we know that sup,

B (o 1P )|, = O (ahat?)+
op (ay) , and therefore

| RPN, = Op (ah AT, %) + 0p (an) - (D.8)

(B)

Note that a;2 [M (150 M(r2:52)]

(m) (m

0BT RN s ) and thus,

LACOV(M(”’“),M(”’S?))u for all w and (ry,s;),(r2,52), we obtain

RBIL — o (a2 AT (D.9)

n n

Finally, by substituting (D.3)-(D.9) into (D.1), we obtain:

T
a;L?ATn (‘7 (AT,, X; F,) — / F, (cs) ds) — 90(77_'1) =0,(1).
0

E Proof of Theorem 2

Before the proof, we introduce notations as follows:

(ris)  _  =(ms) ~(r,s)
v, = CaAT,/2,(i-1/2)AT, ~ AT, /2,(i-1)AT,>
2 (r5) A(r,s _(r,s
Bar,: = C(ATZ,t - c(ATn),ta (E.1)

11



where EX’;:’t is defined in (3.3). We also define:

_(r1,r2,81,8 1 2 (r1,51) o (r2,s2) 1 2 (r1,81) 2 (12,82)
W(A%n?Tnlz—zl) = zﬁATn/z(i_l)ATnﬁATﬂ/2a(i_1)ATn + zﬂATﬂ/27(i_1/2)ATTL/BATTL/27(7:_1/2)ATIL. (E2)

Moreover, recall the definition (3.3), we have:
2 (r,s) %(7;s) 1 ~(r,s ~(r,s 1 T, r,s 1 ~(r,s ~(r,s
Bar,t = Bar, ¢+ AT (€§+A)Tn —éf )> = AT (Mt(+A)Tn - M| )) T AT (€E+A)Tn —é )> :
Note that the estimation error could be decomposed as follows: for 1 < m < d,
~ T . . . .
1% (ATn,X, Fm) _ / Fm (cs) ds = RExpansmn 4 RSpot—V + RAdJusted—Blas _ ]{Dlscrctc7 (Eg)
0

where RPICrete g defined in (4.2), RSP°"V is defined in (4.3), REXPansion ig defined in (D.2) and

Adjusted-Bias Adjusted-Bias-I Adjusted-Bias-II Adjusted-Bias-II1 Adjusted-Bias-IV
R jus 1as — R Jjus l1as: _"_ R Jus l1as: _"_ R Jjus l1as: + R jus’ 1a8s: , (E.4)
with
Z 1 - (r1,51) (r2,52)
Adjusted-Bias-I _ 2 2 PN 1,51 72,52
R - AT”Z 9 Z [6T151,T282Fm (CTn,z‘—l) = Oy sq,rysp Fm <CATn7Tn,,i—1>] ﬁATn,Tn,i_lﬁATn,Tn’i_l )
=1 r1,81,72,52=1
CR (rs) (a2 (r1,51) (r2.52)
Adjusted-Bias-II _ 2 ~ 71,51 72,82 H(r1,81 H(r2,s2
R = AT Z 5 Z 05 151,080 Fm (CATan,i—l) (ﬁATn,Tw,J_lfBAT,,,,TnJ_l - 5ATn,(Fl)ATnﬁL\.Tn,(iq)ATn
i=1 T1,81,72,52=1
Bl ¢ ( ) ( )
Adjusted-Bias-1I1 _ 2 A v (r1,72,81,82 v (r1,72,51,82
R = AT |5 Y PP (Caram, ) [P - B (05 )] |
i=1 T1,81,72,52=1
3 _1 d ( )
Adjusted-Bias-IV _ 2 s v (r1,72,81,82
R = Al Z 5 Z BT181,T282F”” (CATnﬁTn,i—1> E <¢Tn,i,1 |]:Tn,,i,1) »
i=1 T1,81,72,52=1

where ,BX}’S}%H ., is defined in (3.3),

v (r1,ra,s1,82)  p(r1,s1) o (r2,52)  (r1,m2,51,52)
b7, = BAT, (i-1)AT, BAT, (i—1) AT, — PAT, Tory >
2 (r1,51) . .
and Bar, (i—1)ar, s defined in (E.1).

If we assume a,,'AT,, — 0 and an®? AT, — 00 as n — 0o, then following from the results (D.3)-(D.5) in the

12

|



proof of Theorem 1, we obtain:

RDiscrete Op (ATn) =0p (an) s
R =0, (),
RExpansion  _ 0, (aiATn—l) = op (ay) . (E.5)
For RAdiusted-Biasl hecause the symmetric function f is C on D (g1, g2, . ., gr) , then we know that 02 , .., Fm

is in C!, and thus,

Sup (|07, ¢, rpss Fm (c1 1) = 0215, rasy P (Car, 1 1) ||, = Op (sgp [ — ||2) ~0, (anAT;1/2) .
K 1

(r1,s1) (ra2,s2)
AT Tn,i—1 7 AT Thji-1 ||

Recall the result (ii) of Lemma 2, we have sup;

=0, (a2AT, '), and therefore

HRAdjusted—Bias—I||2 =0, (AT = 0, (an). (E.6)
For RAdjusted-Bias-H’ because
(r1,51) (r2,82) ﬂ(rl’sl) B (r2,52)
AT, ,(i—1)AT, 7 AT, ,(i—1)AT, ATy, (i—1)AT, P ATy, (i—1)AT,
o 2(r1,51) _(r2,82) (ra,82) _(r1,81) (r $1) (r2,s2) (r2,s2)
= Bam,,(i-1)AT, ( A;n?(z AT, _C(ii1)2ATn) 2] + (CA;‘H,l(i—l)AT (211)1AT ) ( AQTH,Q(Z 1)AT, _c(ii1)2ATn>7

where it is obvious that

T1,51) 72,8 72,8
supE {BA; l(z 1)AT, ( (A;mz()l 1)AT, - C&iﬁijﬂﬂ) [2]|-7:Tn,1:—1} = 0p (a/n)a

_ (
and by Lemma 1, sup; C(AT’;Z,(i_l)AT E: Si)AT H =0, (AT$/2> and sup; ﬁ;; (—1)aT, || = Op (anAT 1/2>
and thus, we obtain:
pAdsted Bl 0 (0, AT)2) + 0, (AT,) = 0p (an) (E.7)
For RAdiusted-Bias-IIl 5y q pAdjusted-Bias-IV ' we first decompose rj)(TT 1T21%2) S follows:
v (r1,r2,81,82) (r1,51) (r2,52) _(r1,r2,81, _(r1,72,81,8 o (r1,72,81,8
b = (Bl ar, Bars tenar, — 085 ) + (sl - olara))

13



where @X}’:zﬁl;ﬁ) is defined in (E.2), and it is straightforward to obtain:

2 (r1,81) 2 (r2,82) _(r1,r2,81,8
Bati (i—1)a, Bar, (i-var, — PRT )
1 (r1.51) (r1.51) (r2,52) (2,52)
= AT?2 (Manl o M(iq/lg)ATn) (M(iil/QZ)ATn - M(iil)zATn> [2]
2 (71,81) (r1,81) ~(72,52) ~(72,52)
+AT2 (MigTi - M(itls/Z)ATn) (e(sz/Z)ATn - e(Lf)ATn) 2]

+

1 ~(r1,81) ~(r1,81) ~(r2,82) ~(r2,52)
ATQ (eiAlTnl _ 6(1;11}2)AT",> (e(iilj2)ATn - 6(1;31)2AT"> [2],

and

o (71,81) 2 (r2,52)

~\T1,72,51,82 — 372,81, 1 71,51 5 1
(r1,m2,81,82) _ —(r1,72,81,82) __ ng s )wl(ra s2) ZBATH/Z,(i—l/Z)ATn6ATn/2>(i—1)ATn [2}

ATy, Th i—1 ATy, Tni—1

o (11,51) 2 (r1,81) (r2,82)

1
+ (BATn/2,(i71/2)ATn - 5ATH/2,(i71)ATn) ¥; 2],

where 1\"*") is defined in (E.1).

Because we can further simplify wgr,s) as follows:

ATy o (i—1/2)ATy, . )
¢(.T75) = /Z (Tnvl u) dcgr,s) +/ ' (u Tn,zl) dcg-7s)7
' (i—=1/2)AT, AT, /2 (i—1)AT, AT, /2

ql)l(r,s)
—1/2 _ 71,8 71,8 —1/2
Op (anATn / ) » SUP1<i<2B HATn ! (Mz‘(AlTnl/)2 - M((iq)lA)Tn/z) H2 =0p (anATn / ) and

L (r1,51) B
Bar, )21, /2 , =

then we know that sup;, =0, (AT$/2> . By Lemma 1, we know that sup;<;<sp
5 <i<

~(72,52) ~(12,52)

SUPj<;<op HAT;1 (ean/Q - e(i_l)ATn/Q) H2 = O, (a2AT, "), which implies that

v (r1,r2,81,82) v (r1,72,51,82)
¢Tn.i—1 -F ¢Tn,i71 |‘7:T

n,i—1

) =0 (A7),

sup
i

_ —3/2
and because a;, *AT,, — 0 and a, / AT, — oo as n — 00, we have:

v (r1,m2,51,52)

sup | (67, %" | Fr 1) | = 0 (AT) + 0y (a1AT52) = 0, (a).

Finally, we obtain:

RAdjusted Bias L _ (aiAT,fl/2> =0, (an), (E.8)

RAdjusted-Bias- IV () (E.9)

14



Plugging (E.6)-(E.9) into (E.4), we obtain:
RAdjusted—Bias =0, (an) . (EIO)
Plugging (E.5) and (E.10) into (E.3), we finally obtain:
B T
V (AT, X;Fp) — / Fp (cs)ds = RSPV 0, (a,) = O, (ay) .
0

Recall the definition of RSP°*V in (4.3), and ﬁ(AT’;Z,Tn ., and B(AT;}“Tn.i—l in (3.5) and (3.3), and by Lemma 1, we

have the following decomposition:

1 1 /. -
X;T)“Tn’iil = EX;-,)L,T"’I'71 - C’(Iz;zi)fl + AT (M§:’i) - M’I(—::j)fl) + AT (e’(lzzsl) - 6,(11"12',51')—1) : (E'll)
n n
O, (AT,,ILW) B(ATTS:T . Op(a?,LAT;l)

Therefore, we obtain:

B d
RSPOFY AT, Z Z Orys: Fm (cTn,ifl) BX;Z,Tn,i,l

i=1 7‘1751:1

=0, (AT,) + O, (aiATn—l/?) = 0, (an),

and finally, the estimation error of the bias corrected estimator could be expressed as:
~ T ~
V(ATnaX§Fm) _/ Fp, (Cs)dSZRspOt_V+0P (a'n)
0

with

B d
RSV = 37 [ > O P (ery) (ME) ~ Méi’i)l)] -

i=1 Lri,s1=1

(B)
t

If we define [M(”’Sl), M(””SZ)] as (4.5), then we know that the (p, ¢)-th element of the covariance matrix ¥,

of V (AT, X; F) — fOTF (¢s) ds can be expressed as follows:

- d T (B)
E%pH) = Z / 87'181}7‘P (Cu) 6T282Fq (Cu) d [M<T1’Sl)a M(T2VS2):| .
0

u
71,81,72,52=1

Note that a;ﬁ]ﬁth) L5 »®9_ the theorem got proved.
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F Proof of Theorems 3, 4 and 5
Before the proof of the main theorems, we first show some preliminary lemmas. As in Assumption 5, we denote
the columns of B] as bgl), b§2), e 7b§d). We also denote the columns of B; as B§1), B§2)7 cee BEQ).

LEMMA 4. If we define ¢ = {é(AT:/th with AT,, < ay, and a,, is defined in (2.6). For basic settings

}1§r,s§d
about the observations, we assume Conditions 1-4 in Mykland et al. (2019), and Assumptions 1-3. Then the

elementwise max norm of the estimation error has the rate ||¢; — ct||,,.. = Op ((ATn log d)%) .

Proof. Based on the results of Lemma 1 and 2, we can conclude that there exists positive constants C7 and

C5, such that for all 1 < r,s < d, and any = > 0,

P

The detailed proof follows from the similar discussion in the proof of Lemma A.1 in Fan et al. (2016a). Because

>x},

it follows from the Bonferroni inequality that we can easily obtain the convergence rate, using the similar technique

égr,s) _ Cgr,s)

2
> x) < Chrexp (—i? ) . (F.1)

of the fact that

égr,s) - Cgr,s)

(e = ella > 23 = U]
7,8

in Lemma A.2 (iv) of Fan et al. (2016a). O
Next, we show the g—th largest eigenvalue of the spot covariance matrix estimator diverges with respect to d,

where ¢ is the number of common factors.

LEMMA 5. Denote the g—th largest eigenvalue of ¢; by XEQ). Assume logd = o (ATn*l) , where AT, follows the

definition in Lemma 4. Then }iQ) > Csd with probability approaching 1 for some constant C5 > 0.

Proof. First of all, by Proposition 2 and its assumptions, it is easy to see that the g—th largest eigenvalue of

¢, denoted by )\,Eq), satisfies that, for some C% > 0,
~ 2 - 2 Cl
N = ||| - ‘Aﬁ” ~|p?] ’z Chd — [lsi]) > (23) d,

when d is large enough. This is because [|s¢]| is bounded with respect to d. Next, by Weyl’s theorem, we just

need to show that [|é, — ¢;|| = op (d). Because of the fact that ||A| < d| A for d x d matrix A, and based on

max

the result of Lemma 4, we obtain:

& = etll < d e = el = Op (4 (AT log d)*) = 0, (d),

max

16



which follows from the assumption logd = o (AT, *). This proves the lemma. [
Next, we complete the proof of Theorem 3.
Proof of Theorem 3. Define
Kn.a= (AT, logd)"* +d ",

and

Y% (k,BM) = d 't (ét — Bktﬁzt) )

PC (k,f’:k,t) - v(k,Bk,t)+kg(Ade)7

N - “(1) « «(k .
where By, ¢ is as in Definition (5.13). Similarly, we define Ay, ; =Diag ()\El), /\52), cey /\,E )) andI'y ; = (&,E” %2)’ -
where 5\52) is the i—th largest eigenvalue of ¢, and '?gi) is the corresponding eigenvector.
Observe that:
PC (kBri) = PC (0.By0) =V (k. Bis) =V (4. Bg1) + (k= 0) G (AT, d), (F.2)

where
% (k’, Bk:}t) -V (q, Bqﬁt) = d_ltI' (Bq7tB;,t - Bk,tBLt) .

A

We first show that P (PC (k,Bk.yt) < PC (q,Bq,t)) — 0 for k < ¢q. Because tr( q,tB;,t) :tr(]AB;th,t) , we

have for C5 > 0,

with probability approaching 1, which follows from the result of Lemma 5. It is then easy to see that
V(k,Bri) =V (2.B4) > G5 >0, (F.3)

with probability approaching 1. Moreover, because k < gmax and (k — q) G (AT, d) — 0, the statement is proved
for k < q.
Second, we show P (PC (k,]:%k,t> <PC (q, Bq}t)) — 0 for k£ > q. Because V (k,Bk’t) -V (q,Bq’t) =

17
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7d71 Zf=q+1 j\ii), we have:

k . ) k )
< d—l Z 5\51) . )\gz) +d_1 Z )\Ez)7
1=q+1 i=q+1

‘v (k Bk,t) —y (q, BW)

where the first term on the right hand side can be bounded by Weyl’s theorem and the fact that ||A] < d|A]|

max

for a d x d matrix A :

k
_ L (@) i - A .
a3 AT A <7 = @) e = el < 2 16— 1l e

1=q+1

while the second term can be bounded similarly using Weyl’s theorem:
d-! AZ AD < d (k= ) AT < d g [Ise| -
Based on the result of Lemma 4, and Assumption 5, we know that ||s;|| < ||s¢||; < ¥2, and consequently
V(0.B40) =V (K Bri) = 0p (Kna)-
for ¢ < k < @max- From the assumption that IC;,ZQ' (AT,,,d) — oo, and noting that

P (PC (k, Bk,t) <PC (%qut

N—

) =P (v (q,qut) —V (k,Bm) >(k-q)G (ATn,d)) :
we can conclude that for ¢ < k < gmax, P (PC (k, Ekt) < PC (q,qutD — 0.0

F.1 Results by conditioning on ¢ = ¢

In view of Theorem 3, all the subsequent results and related proofs will be conditioning on

Without loss of generality, from now on, we omit the subscript ¢; is the notation, for example, denote tht, f‘qt,n Agt,85, 4
and ¢7, , by By, T, Ay, 8 and &, respectively.

Following definition (5.10), we denote the columns of B as Bil), 13752), ce f)gd). Thus, B] = (Bgl), B£2)7 ce Bﬁd)) .
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Also recall that B] = (bﬁl), b§2), e bgd)) . Define a transition matrix
H, = A, "/*ITT,A}?,

and recall the definition of the projection matrix P4 in formula (5.7). Define

and note that BY = A} / T7. Consequently we have:
Py =1, —BA;'B] =1, - V..

LEMMA 6. We have the following identities:
(1)
8 — s =Py, (& — ¢)PL + Py, (Bth - Et]“ag) PL —s,V] — Vis, + Vis, V7,
(ii)
Bl - H,B] = A;l/Qf‘tT [(ét — ct) + 8¢ V] + Vs — Vs, V]|, and
(iii)
T A—L/27T T T p i A—1/2
Hth — Hét = At Ft [VtStVt - StVt - VtSt - (Ct — Ct)} FtAt .

Proof. (i) In view of the identities and related derivation of (5.8) and (5.9), we have the following fact:

§ = PBtétPngt'
This equality can be further decomposed based on (F.6) and ¢; = B:B] + s;, as follows:
8 =Pp, (& — ) P1T§t +Pg, (B:B]) P]T%t + PB,,StP]Tgt-
In the above equation, the second term on the right hand side can be simplified as:

Pg, (BB]) Py =Py, (Bth ~B,BT ) Pl

t
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because of the fact that PBt]A3t = 0, while the third term can be further decomposed as:

P]§ StPI

Sttg, (Ia — Vi) st (Ia — V)T

= St — stVtT — VtSt + VtStV;r, (Fl?))

using formula (F.6). Combing (F.10)-(F.13), we obtain (F.7).
(i) Recalling the definitions B = Asz‘z, B] = A,%/2I‘tT7 as well as (F.4), we have:

Bl —H,B] = A[I7—A; V207 (ThATY)

= Aiﬂfl - Afl/zfl (¢t — ¢4 ¢ — 8 +8; —s¢)

= APIT+AVPET (¢ — ) — ATVPET (80 —s0) — ATVPET (¢ - 80), (F.14)

where, in view of ¢; —§; = ]:D»tf’:tT = ft[xtfg and f‘gf‘t = I,, we have At_lﬂf‘z (é: — &) = Aimf‘g We then obtain:

Bl —H,BJ = A, 2TT (¢, — ) — A YPET (8 — ). (F.15)

On the other hand, observing that Py = Py and Pg, = Pr,, then substituting (F.7) into (F.15), we obtain
(F.8), based on the fact that f‘tTPft = Pftft =0.

(iii) Based on a similar derivation as (F.14), and recalling the definition (F.4), we obtain:
HtH;r — I[qf = At_l/zf‘g (Ct — ét) ftA;l/Q + At—l/Qf‘g- (ét - St) f‘tAt—l/2' (F16)

Then substituting (F.7) into (F.16), we obtain (F.9) by using the similar techniques as in (ii). O
Recall the definition B] = (Bgl), B,Ez), . ,Bgd)) , whereby Biz) = (EI) . The i—th column of B} — H;B]

[ X3

can then be expressed as (BI — HtBtT) = 5" — H;b{". Further define:

(X
ét = VtStVJ — stVtT — VtSt. (Fl?)

Also define e; to be the row vector for which the j—th element equals 1, and the others equal zero. Then for any

matrix A, its i—th row can be expressed as (A), , = e;A, while its j—th column has the form (A), ; = Ae]. We

then have the following preliminary lemma.
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LEMMA 7. We have the following results:
(1)
[18:] < 31Isell , (F.18)

(i)

NONE (7)
mas [|B{Y — H,b

= Oy (et = €l + 72 i) and (F.19)

(iii)

[HHT —1g,[| = Op (e — +d7 Isell) - (F.20)

Ct ”max

Proof. (i) Recalling the definition (F.17), and by the properties of the spectral norm, we obtain:
g 2
[8ell < [IVell™ [Isell + 2 [[Vell Isell = 3 [Isell ,

since ||V = [|[V]] = 1.
(ii) Because b{”) — H;b\" is the i—th column of B] — H,;BJ, then by identity (F.8), we have:

max HBEZ) — thﬁ“
1<i<d

A—1/28T /A
< max HAt /2PT (¢t —cr)e]
1<i<d

+ max ”A;I/Qf‘zéte{“ . (F.21)
1<i<d

The first term on the right hand side of (F.21) can bounded as follows. Since the Cauchy-Schwarz inequality

assures ||Ax|| < ||A|lg [x]| for a matrix A and a vector x, we obtain:

|A7 PR @ —eoel|| < |[ASYPET|| N —coel
A—1/2 ~
= |[Ac| e — el
L\ "2 .
< H(d At) €2 = Ctllmax
F

R A e =1y 172
in view of the facts that HA;1/2I‘tT HF = (2?1 ()\El)) ) and [|A|l < /pq ||A|| .y for a matrix A of dimension

max
W\ —1/2
p X q. Based on the result of Lemma 5, we know that there exists some C5 > 0 such that (d‘lAt)

-
2cy /2 and consequently, we obtain that:

max ’

T —1/22 ~ —1/2 14
e A7 @ - el | < a1 7205 o - i

with probability approaching 1.
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For the second term on the right hand side of (F.21), we have:

HA;1/2ftT5teiTH < d-1/?

N2 el
(&)™ ez s gern.

" L\ 12 _
Since |le]|| = HI‘;H = 1, and by Lemma 5, we have (d_lAt> H < C4 /2 With probability approaching 1.

Also recall the result in (i) to obtain:

max HA 1/2 I75.eT H < 30_1/2 V2,
1<i<d

Therefore, we obtain (F.19).

(iii) Conditioning on ¢; = q. Recall the identity (F.9), by triangle inequality, we obtain:

JELH] -1, < | A7 PRI DA | 4 | ASVPET (6 - ) BAT

)

where the first term on the right hand side can be bounded as follows:
HA I/QI\T I\ A 1/2H < HA—l/QH ||St|| < 303 ld 1 HStH
with probability approaching 1, while the second term on the right hand side has the following bound:

~ _ A N A A ~ _ 2 ~ — — ~ — ~
|ATPET e = e oA < A2 e = el < €71 e -l < 5 e — el

max ?

where the last inequalities is based on the fact that ||A| < d||A]| for a d x d matrix A. Finally the result

max

(F.20) is proved. O

Proof of Theorem 4. Recall that P)LT = (Bﬁ”, 6(2) B(d)) and hence the (7, j) —th element of B «B] can
A GNT A (G ;
be expressed as (bgl)) bgj). Consequently, the (i, j) —th element of B, B —B;B] is (b(l)) ( )
By definition (F.4), we obtain the following identity:
() B — (") b = (B —mb) (Y — Hb) + (B — Hb(") " Hb

+(mp?) (69 —HbP) + (b)) (EIH, ~1,)b.
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By triangular inequality, we have:

HBtB{ - BtBtT‘

max

AN T ~ (s NT (s
=  max )(b,@) bgfb(bﬁ”) b?)‘
1<i,j<d

2
(%) T _
+ (o) veare .

IN

(max Hf)gl) — thgi)

2
> +2 max HBS)—thS)
1<i<d

1<id,j<d

ol

Then based on the Assumptions 4 and 5, we know that

max Hth,Ei)
1<i<d

=0, (1) and Jax, Hbgi) H =0,(1).

On the other hand, based on the result (iii) in Lemma 7, and following the similar discussion of the proof for

Lemma 11 (b) in Fan et al. (2013), by conditioning on §; = ¢, we obtain:

HIHt*Hq:Op (Hét* +d71||StH).

Ct ||max

Finally, recall result (i) in Lemma 7 to obtain:

’BtBtT B BtBtTH =0 (Hét = Ctllpae A7 ||St||) '

On the other hand, because of the identity & — ¢; = Etﬁg — B;B] +8; — s, we obtain:

A

18 = Stlwe < 116 = ille + || BB — B/B]

max

O (It~ el + 472 511

Based on the result of Lemma 4 and noting that ||s;|| < ||s¢||; < Y2 by Assumption 5, the theorem is proved. O
Before the proof of the convergence rateof the precision matrix estimator, we first introduce some preliminary

results, which are parallel to Lemmae 14 and 15 in Fan et al. (2013). Define
&, = Bl — H,B]. (F.22)

LEMMA 8. Assume that w:=™"mg = o(1), then with probability approaching 1, there exists some Cy > 0 such

that

23



(i) @)% = O, (du?)

(ii) | BY (57) 7" By — HUB] (s7') BH]|| = O, (dwlma)
(ii1) Amin (I + H:BJ (s;1) B;HJ) > Cud,

(i9) Amin (Hq + BT (8 Bt) > Cyd,

(v) Amin (I + B]s; 'B;) > Cud, and

(vi) Amin ((HthT)‘1 +Btht_1Bt) > COyd.

Proof. We condition on §; = ¢q. Recall that BEZ) — thf) is the i—th column of ]A3tT — H;B]. Then, by the

result (ii) of Lemma 7, it is easy to verify (i). Result (i) implies result (ii) by following the similar proof of Lemma

14 in Fan et al. (2013). By the result (iii) of Lemma 7, following the similar proof in Lemma 15(a) of Fan et al.

(2013), we obtain (iii). The result (iv) follows from (ii) and (iii). The results (v) and (vi) follows from a similar

argument as Lemma 15(a) of Fan et al. (2013) and based on result (iii) of Lemma 7. O

Proof of Theorem 5. Define ¢ = B;H/H;B] + s;, and also define

~ ~ 0\ 1
G = (L,+BIGE)'B)

Gy

then we know that ‘ (&)t - (62‘)71” < Z?:l L;, where

L = |67 =st,

L = |67 —s| BiaBT &)
Ly — QH{(éf)_lfst_l] B,G,BTs;
Ly = |s;'BH] (ét - Gt) H,B]s; "
Ls = |s;'®]G®;s;'||,and

Lg = 2|s;'® G,H,Bs; .

(I, + H,B] (s; ') B;H])

-1
_ s }

1

)

b

)

First of all, Ly is bounded by the result of Proposition 3. By result (iv) of Lemma 8, we have: ||Gy|| = O, (d7!),

which implies that Ls = O, (L1) and Ly = 0, (L1) . By the result (i) of

and L5 = op, (wy) . Following from result (iii) of Lemma 8, we have: Hét

|G- = &

24

(G- G") G| <0, (a2) BT ()" B — HUB] (s;') B.H]

Lemma 8, we know that Ls = Op (ws,)

Op (dil) . Then note that

=0, (dilwn md) ,




based on result (ii) of Lemma 8. Therefore,
_ 2 ||
|24l < [[s7 BHT|||G - G| =0, (

On the other hand, by applying the Sherman-Morrison-Woodbury formula again for (&} )71 and (ct)f1 , and based

on the results (v) and (vi) in Lemma 8, we obtain:

[@™ =™ = op (wima)

which follows from the similar argument in the proof of subsection C.4.2 of Fan et al. (2013). Finally, by the

triangular inequality we obtain:

The theorem is thus proved. [

@) e <]

@)™ =@+ @ = e = 0y (whrma)

G More Detailed Simulation Results

G. 1 Simulation Comparison under Different Scenarios In the following, we present more
detailed simulation results in the three scenarios described in Section 6.3, where A7, = 5, 15, and 60 seconds,

respectively.
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Table G.1 Simulation Results: Comparison when A7,, = 5 seconds

# Stock

10
20

50

10

30
50

10
20
30
50

10
20
30
50

True

0.3852
0.6729
1.2709
1.8818
3.0549

0.1134
0.1735
0.2807
0.3909
0.6083

0.0732
0.1028
0.1676
0.2335
0.3725

0.0600
0.0599
0.0601
0.0601
0.0600

0 (kn, An, F;‘) without noise

0 (kn, An, FpA) with noise

V (AT, X; FY)

Bias

-0.0003
-0.0007
-0.0019
-0.0031
-0.0057

0.0033
0.0010
-0.0047
-0.0093
-0.0220

0.0075
0.0086
-0.0058
-0.0187
-0.0468

-0.0053
-0.0012
0.0007
0.0011
0.0016

Stdev

0.0039
0.0065
0.0116
0.0186
0.0295

0.0032
0.0037
0.0075
0.0108
0.0198

0.0045
0.0075
0.0066
0.0087
0.0200

0.0021
0.0009
0.0003
0.0005
0.0007

SE;

0.003687
0.006474
0.012252
0.018141
0.029685

0.001138
0.001741
0.002790
0.003884
0.006080

0.000811
0.001196
0.001875
0.002508
0.004003

0.000392
0.000261
0.000223
0.000231
0.000273

SE3

0.003815
0.006771
0.012855
0.019073
0.031543

0.001182
0.001917
0.003239
0.004548
0.007433

0.000732
0.001171
0.001954
0.002707
0.004402

0.000304
0.000193
0.000152
0.000138
0.000132

Corr

0.99
0.99
0.99
0.99
0.99

0.98
0.93
0.89
0.78
0.90

0.55
0.51
0.50
0.44
0.57

0.46
0.45
0.42
0.20
0.20

Bias

2.6566
5.3605
10.7234
15.7908
26.5113

0.2006
0.4322
0.9268
1.4306
2.3871

0.0314
0.0626
0.1036
0.1447
0.2201

0.0014
0.0044
0.0055
0.0059
0.0061

Stdev

1.8238
2.5434
3.6999
4.3937
5.7413

0.1093
0.1674
0.2483
0.3307
0.4639

0.0209
0.0394
0.0633
0.0823
0.1148

0.0041
0.0024
0.0017
0.0015
0.0012

SE1

0.029434
0.058816
0.117462
0.173089
0.292705

0.003015
0.005845
0.011683
0.017620
0.029237

0.001021
0.001639
0.002733
0.003796
0.006128

0.000436
0.000279
0.000234
0.000230
0.000262

SE2

0.034323
0.068704
0.137289
0.202844
0.340136

0.002985
0.005824
0.011653
0.017623
0.029266

0.000991
0.001714
0.003006
0.004267
0.007013

0.000356
0.000224
0.000176
0.000160
0.000153

Corr

1.00
1.00
1.00
1.00
0.99

0.99
0.99
0.99
0.99
0.99

0.95
0.97
0.95
0.94
0.72

0.78
0.59
0.34
0.17
0.32

Bias

-0.0012

0.0025
-0.0015
-0.0052
-0.0032

0.0005
0.0003
0.0001
0.0004
-0.0006

0.0033
0.0004
-0.0023
-0.0015
-0.0017

-0.0020
-0.0002

0.0000
-0.0001
-0.0001

Stdev

0.0193
0.0340
0.0634
0.0892
0.1415

0.0079
0.0104
0.0155
0.0224
0.0336

0.0085
0.0114
0.0122
0.0163
0.0242

0.0033
0.0017
0.0008
0.0006
0.0005

SE2

0.021074
0.036826
0.070293
0.101588
0.167715

0.006412
0.009882
0.016167
0.022509
0.035443

0.004184
0.006005
0.009736
0.013438
0.021385

0.002033
0.001203
0.000843
0.000711
0.000596

Notes. This table reports the summary statistics for the estimation of the four integrated eigenvalues, i.e., for p = 1,2,3 and 4, fOT

p-th largest eigenvalue.

The Monte Carlo simulation consists of 1000 trials and A7, = 5 seconds.

(cs)ds denotes the integrated

The Column “True” denotes the average of true integrated

eigenvalue; Column “Bias” denotes the mean of estimation error; Column “Stdev” denotes the standard deviation of the estimation error. “SE;” denotes the mean

of the standard error estimators by plugging S\Ti’s into formula (16) of Corollary 1 in Ait-Sahalia and Xiu (2019). “SE2” denotes the mean of the standard error

estimators constructed as formula (6.2). “Corr” denotes the correlation coefficient between the standard error estimators generated from the columns “SE;” and

LLSE277 .
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Table G.2 Simulation Results: Comparison when A7, = 15 seconds

# Stock

10
20

50

10

30
50

10
20
30
50

10
20
30
50

True

0.3852
0.6729
1.2709
1.8818
3.0549

0.1134
0.1735
0.2807
0.3909
0.6083

0.0732
0.1028
0.1676
0.2335
0.3725

0.0600
0.0599
0.0601
0.0601
0.0600

0 (kn, An, F;‘) without noise

0 (kn, An, FpA) with noise

V (AT, X; FY)

Bias

-0.0007
-0.0018
-0.0058
-0.0127
-0.0217

0.0066
0.0062
-0.0068
-0.0237
-0.0502

0.0109
0.0246
0.0065
-0.0088
-0.0824

-0.0085
-0.0040
0.0003
0.0016
0.0033

Stdev

0.0065
0.0121
0.0206
0.0323
0.0533

0.0051
0.0084
0.0134
0.0281
0.0438

0.0056
0.0125
0.0145
0.0255
0.0273

0.0025
0.0014
0.0005
0.0008
0.0011

SE;

0.006496
0.011519
0.021698
0.032587
0.052890

0.002112
0.003428
0.005301
0.007970
0.011955

0.001520
0.002647
0.004122
0.006974
0.009965

0.000662
0.000492
0.000471
0.000549
0.000610

SE3

0.006802
0.011806
0.022332
0.035693
0.057982

0.002129
0.003456
0.005906
0.009260
0.014655

0.001263
0.002094
0.003599
0.005647
0.008835

0.000475
0.000297
0.000256
0.000260
0.000253

Corr

0.98
0.99
0.98
0.98
0.97

0.80
0.40
0.65
0.35
0.69

0.51
0.11
0.26
0.17
0.24

0.66
0.28
0.25
0.21
0.26

Bias

0.7520
1.4618
2.8525
4.1342
6.9353

0.1798
0.4112
0.9077
1.4196
2.3867

0.0339
0.0718
0.1102
0.1547
0.2247

-0.0011
0.0023
0.0047
0.0047
0.0054

Stdev

0.5949
0.8399
1.2350
1.4673
1.9426

0.1041
0.1632
0.2426
0.3279
0.4606

0.0191
0.0361
0.0614
0.0832
0.1203

0.0042
0.0024
0.0015
0.0012
0.0010

SE1

0.019426
0.037315
0.072194
0.107679
0.178620

0.005038
0.010310
0.020833
0.032759
0.053909

0.001862
0.003258
0.005234
0.008124
0.012383

0.000753
0.000547
0.000488
0.000564
0.000608

SE3

0.022131
0.041411
0.081170
0.124500
0.207900

0.004772
0.009165
0.018657
0.029675
0.049252

0.001700
0.002977
0.005342
0.008391
0.013463

0.000566
0.000353
0.000298
0.000300
0.000289

Corr

1.00
0.99
0.99
0.98
0.99

0.96
0.82
0.92
0.69
0.83

0.89
0.47
0.86
0.43
0.54

0.65
0.22
0.30
0.19
0.20

Bias

-0.0010
0.0031
-0.0019
-0.0036
0.0014

0.0027
0.0021
-0.0015
0.0010
0.0011

0.0059
0.0046
-0.0024
-0.0048
-0.0086

-0.0047
-0.0012

0.0000
-0.0001
-0.0001

Stdev

0.0242
0.0423
0.0781
0.1103
0.1725

0.0102
0.0142
0.0713
0.0297
0.0463

0.0098
0.0155
0.0765
0.0257
0.0365

0.0039
0.0022
0.0020
0.0009
0.0007

SE2

0.025175
0.043862
0.082760
0.122126
0.201230

0.007795
0.012365
0.020381
0.028373
0.044385

0.004916
0.007449
0.012203
0.016794
0.026863

0.002175
0.001337
0.001002
0.000884
0.000784

Notes. This table reports the summary statistics for the estimation of the four integrated eigenvalues, i.e., for p = 1,2,3 and 4, fOT

p-th largest eigenvalue.

The Monte Carlo simulation consists of 1000 trials and A7, = 15 seconds.

(cs)ds denotes the integrated

The Column “True” denotes the average of true integrated

eigenvalue; Column “Bias” denotes the mean of estimation error; Column “Stdev” denotes the standard deviation of the estimation error. “SE;” denotes the mean

of the standard error estimators by plugging S\Ti’s into formula (16) of Corollary 1 in Ait-Sahalia and Xiu (2019). “SE2” denotes the mean of the standard error

estimators constructed as formula (6.2). “Corr” denotes the correlation coefficient between the standard error estimators generated from the columns “SE;” and

LLSE277 .
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Table G.3 Simulation Results: Comparison when A7, = 60 seconds

# Stock

10
20

50

10

30
50

10
20
30
50

10
20
30
50

True

0.3852
0.6729
1.2709
1.8818
3.0549

0.1134
0.1735
0.2807
0.3909
0.6083

0.0732
0.1028
0.1676
0.2335
0.3725

0.0600
0.0599
0.0601
0.0601
0.0600

0 (kn, An, F;‘) without noise

0 (kn, An, FpA) with noise

V (AT, X; FY)

Bias

-0.0013
-0.0060
-0.0288
-0.0508
-0.0884

0.0230
0.0242
0.0492
0.0140
-0.0653

0.0183
0.0536
0.1700
0.1978
0.1667

-0.0212
-0.0106
-0.0113
-0.0061
-0.0004

Stdev

0.0138
0.0237
0.0506
0.0731
0.1161

0.0102
0.0142
0.0398
0.0574
0.1147

0.0080
0.0177
0.0482
0.0703
0.1250

0.0036
0.0022
0.0019
0.0018
0.0022

SE;

0.013781
0.024039
0.048097
0.070762
0.114829

0.005183
0.008241
0.019092
0.026514
0.041530

0.003574
0.006855
0.018870
0.028505
0.046640

0.001171
0.001035
0.001276
0.001478
0.001678

SE3

0.013942
0.024801
0.054901
0.081311
0.132814

0.004297
0.007443
0.015997
0.023128
0.037052

0.002217
0.004349
0.009664
0.014294
0.023284

0.000617
0.000515
0.000488
0.000503
0.000518

Corr

0.98
0.97
0.81
0.82
0.63

0.78
0.58
0.22
0.23
0.22

0.38
0.26
0.13
0.14
0.07

0.30
0.37
0.22
0.08
0.08

Bias

0.1163
0.1726
0.2789
0.3434
0.5290

0.1112
0.2484
0.5815
0.8892
1.5007

0.0395
0.0955
0.2460
0.3159
0.4305

-0.0148
-0.0043
-0.0071
-0.0034
-0.0002

Stdev

0.1231
0.1588
0.2192
0.2659
0.3634

0.0633
0.1109
0.1655
0.2181
0.2930

0.0144
0.0279
0.0494
0.1245
0.1185

0.0045
0.0026
0.0020
0.0040
0.0014

SE1

0.018269
0.030962
0.061616
0.089415
0.143709

0.008725
0.016760
0.039424
0.059747
0.098119

0.004345
0.008068
0.020026
0.031813
0.047476

0.001350
0.001172
0.001383
0.001543
0.001641

SE3

0.019019
0.033499
0.072925
0.106247
0.173954

0.006612
0.012952
0.028149
0.042254
0.070033

0.002816
0.005694
0.012483
0.018627
0.030606

0.000733
0.000607
0.000565
0.000574
0.000583

Corr

0.93
0.93
0.73
0.42
0.58

0.71
0.76
0.48
0.25
0.32

0.56
0.45
0.28
0.05
0.27

0.40
0.19
0.16
0.08
0.17

Bias

-0.0064
-0.0063
-0.0232
-0.0265
-0.0468

0.0016
-0.0016
-0.0044
-0.0062
-0.0130

0.0063
0.0043
-0.0077
-0.0140
-0.0205

-0.0061
-0.0019
-0.0006
-0.0005
-0.0006

Stdev

0.0297
0.0528
0.0958
0.1376
0.2118

0.0143
0.0226
0.0292
0.0412
0.0674

0.0133
0.0421
0.0317
0.0400
0.0589

0.0048
0.0058
0.0018
0.0013
0.0009

SE2

0.028149
0.049096
0.092862
0.135494
0.222117

0.008652
0.013644
0.022589
0.031709
0.049727

0.005426
0.008299
0.013656
0.018715
0.029121

0.002362
0.001488
0.001123
0.000995
0.000884

This table reports the summary statistics for the estimation of the four integrated eigenvalues, i.e., for p = 1,2, 3 and 4, fOT

FA

(¢s)ds denotes the integrated p-th largest

eigenvalue. The Monte Carlo simulation consists of 1000 trials and A7, = 60 seconds. The Column “True” denotes the average of true integrated eigenvalue; Column

“Bias” denotes the mean of estimation error; Column “Stdev” denotes the standard deviation of the estimation error. “SE;” denotes the mean of the standard error

estimators by plugging S\T,i ’s into formula (16) of Corollary 1 in Alt-Sahalia and Xiu (2019). “SE2” denotes the mean of the standard error estimators constructed as

formula (6.2). “Corr” denotes the correlation coefficient between the standard error estimators generated from the columns “SE;” and “SE>”.



CLT: 1st Eigenvalue CLT: 2nd Eigenvalue

Figure G.1 Finite Sample Distributions of Standardized Statistics
Notes. This figure reports the histogram of the 1000 trials simulation for estimating the four integrated eigenvalues with Ar, = 5 seconds
for 30 stocks over 1 week. The solid blue lines are the standard normal density; the histograms with bars of red dashed border are the

distributions of the estimates before bias correction; the gray histograms are the distributions of the estimates after bias correction.

G.2 Distributional performance of the bias-corrected estimator
To validate the asymptotic behavior of the bias corrected estimator, the finite sample distribution of the
standardized statistics for d = 30 stocks are reported in Figure G.1 where A71,, = 15 seconds. Note that the

standardized statistics are calculated by the following formulas:

V (AT, X3 F)) — [T F) (cs) ds

p

AVAR (AT,, X; F))

)

N|=

for the standardized statistics of bias-corrected estimator, while

V (AT, X3 F)) — [T F) (cs) ds

AVAR (AT, X; F))*

)

for the standardized statistics of the estimator before bias correction.

29



Acknowledgments

We would like to thank the Editors, Associate Editor, and the Referees, for comments that substantially
improved the paper. Financial support from the National Science Foundation under grants DMS 14-07812 and
DMS 17-13129, (Mykland), and DMS 14-07820 and DMS 17-13118, (Zhang) is gratefully acknowledged.

References

ATT-SAHALIA, Y. AND D. Xi1u (2019): Principal component analysis of high frequency data, Journal of the
American Statistical Association, 114, 287-303.

Fan, J., A. FURGER, AND D. X1U (2016a): Incorporating Global Industrial Classification Standard Into Portfolio
Allocation: A Simple Factor-Based Large Covariance Matrix Estimator With High-Frequency Data, Journal of
Business € Economic Statistics, 34, 489-503.

30



	Introduction
	PCA and Factor Analysis (in Statistics and Econometrics)
	PCA and Factor Analysis (in Finance and Economics)
	Time Varying and High Frequency PCA and Factor Analysis
	Organization and Notation

	Basic Setup
	The model
	The Smoothed TSRV

	Estimator of Spot Covariance
	High Frequency PCA under Finite Dimensionality
	Selection of Tn
	Consistency and Second-order Behavior of ( Tn,X;F) 
	Bias Corrected Estimator

	Estimation of High Dimensional Spot Covariance PCA and Precision Matrices
	Factor model with time-varying factor loadings
	Realized POET
	Constrained least quadratic variation method
	Estimators and convergence rates


	Monte Carlo Evidence
	Bias corrected estimator for non-simple eigenvalues
	Simulation settings
	Simulation results

	Empirical Study
	Realized Eigenvalues and Principal Components
	The Index and the First Principal Component
	Other Principal Components

	Appendices
	Decomposition of the Smoothed TSRV Estimator
	Edge Part of Noise U-Statistics
	Further Decomposition of Signal Part

	Proof of Lemma 1
	Proof of Lemma 2
	Bound of "026B30D 0=x"010CTn,t( r1,s1) 0=x"010CTn,t( r2,s2) -E( 0=x"010CTn,t( r1,s1) 0=x"010CTn,t( r2,s2) |Ft) "026B30D 2
	Bound of "026B30D E( 0=x"010CTn,t( r1,s1) 0=x"010CTn,t( r2,s2) |Ft) -1Tn20=x"0127Tn,t( r1,r2,s1,s2) "026B30D 2

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorems 3, 4 and 5
	Results by conditioning on t=q

	More Detailed Simulation Results

