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Abstract

A classic example of the power of generalized algebraic
datatypes (GADTs) to verify a delicate implementation is the
type-indexed expression AST. This functional pearl refreshes
this example, casting it in modern Haskell using many of
GHC’s bells and whistles. The Stitch interpreter is a full
executable interpreter, with a parser, type checker, common-
subexpression elimination, and a REPL. Making heavy use of
GADTs and type indices, the Stitch implementation is clean
Haskell code and serves as an existence proof that Haskell’s
type system is advanced enough for the use of fancy types in
a practical setting. The paper focuses on guiding the reader
through these advanced topics, enabling them to adopt the
techniques demonstrated here.

CCS Concepts: · Theory of computation→ Type struc-

tures; · Software and its engineering→Data types and
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puting→ Lambda calculus.
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1 A Siren from the Folklore

A major focus of modern functional programming research
is to push the boundaries of type systems. The fancy types
born of this effort allow programmers not only to specify the
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shape of their dataÐtypes have done that for decadesÐbut
also the meaning and correctness conditions of their data. In
other words, while well typed programs do not go wrong,
fancy typed programs always go right. By leveraging a type
system to finely specify the format of their data, program-
mers can hook into the declarative specifications inherent
in type systems to be able to reason about their programs in
a compositional and familiar manner.
Though fancy types come in a great many varieties, this

work focuses on an entry-level fancy type, the generalized
algebraic data type, or GADT. GADTs, originally called first-
class phantom types [13] or guarded recursive datatypes [65],
exhibit one of themost basic ways to use fancy types. Pattern-
matching on a GADT value provides information about the
type of that value. Accordingly, different branches of a GADT
patternmatch have access to different typing assumptions. In
this way, a term-level, runtime operation (the pattern-match)
informs the type-level, compile-time type-checkingÐone of
the hallmarks of dependently typed programming. Indeed,
GADTs, in concert with other features, can be used to effec-
tively mimic dependent types, even without full-spectrum
support [18, 37].
It is high time for an example:1

data G :: Type → Type where

BoolCon :: G Bool

IntCon :: G Int

match :: ∀a.G a → a

match BoolCon = True

match IntCon = 42

The GADT G has two constructors. One constrains G’s
index to be Bool, the other Int . The match function matches
on a value of type G a. If the value is BoolCon, then we
learn that a is Bool; our function can thus return True :: a.
Otherwise, match’s argument is IntCon, and thus a is Int;
we return 42 :: Int . The runtime pattern-match informs the
compile-time type, allowing the branches to have different
types. In contrast, a simple pattern-match requires every
branch to have the same type.

1The examples in this paper are type-checked in GHC 8.10 during the
typesetting process, with gratitude to lhs2TeX [33].

39

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3406088.3409015
https://doi.org/10.1145/3406088.3409015


Haskell ’20, August 27, 2020, Virtual Event, USA Richard A. Eisenberg

1.1 Stitch

This paper presents the design and implementation of Stitch,
a simple extension of the simply typed λ-calculus (STLC),
including integers, Booleans, basic arithmetic, conditionals,
a fixpoint operator, and let-bindings. (łStitchž refers both
to the language and its implementation.) The expression
abstract syntax tree (AST) type in Stitch is a GADT such that
only well typed Stitch expressions can be formed. That is,
there is simply no representation for the expression true 5,
as that expression is ill typed. The AST type, Exp, is indexed
by the type of the expression represented, so that if exp ::
Exp ctx ty , then the Stitch expression encoded in exp has
the type ty in a typing context ctx .

The example of a λ-calculus implementation using aGADT
in this way is common in the folklore, and it has been ex-
plored in previous published work (see Section 10.4). How-
ever, the goal of this current work is not to present an type-
indexedAST as a novel invention, but instead tomethodically
explore the usage of one. It is my hope that, through this
example, readers can gain an appreciation for the power and
versatility of fancy types and learn techniques applicable in
their own projects.
It can be easy to dismiss the example of well typed λ-

calculus terms as too introspective: Can’t PL researchers
come up with a better example to tout their wares than a PL
implementation? However, I wish to turn this argument on
its head. A PL implementation is a fantastic example, as most
programmers in a functional language will quickly grasp the
goal of the example, allowing them to focus on the implemen-
tation aspects instead of trying to understand the program’s
behavior. Furthermore, implementing a language is practical.
Many systems require PL implementations, including web
browsers, database servers, editors, spreadsheets, shells, and
even many games.
This paper will focus on the version of Haskell imple-

mented in GHC 8.10, making critical use of GHC’s support
for usingGADT constructors at the type level [60, 67], higher-
rank type inference [45], and, of course, GADT type infer-
ence [46, 58].2 Accordingly, this paper can serve as an ex-
tended example of how recent innovations in GHC can power
a more richly typed programming style.

2The full set of extensions used somewhere in the codebase is as
follows: AllowAmbiguousTypes, BangPatterns, ConstraintKinds [38],
CPP, DataKinds [67], DefaultSignatures, DeriveAnyClass, DeriveDataTy-
peable [28, 29, 48], DeriveGeneric [34, 35], DeriveTraversable, Empty-

Case, ExistentialQuantification, ExplicitForAll, FlexibleContexts, Flexi-
bleInstances, FunctionalDependencies [26], GADTs [27, 46, 58], Gener-
alizedNewtypeDeriving [8], InstanceSigs, KindSignatures, LambdaCase,
MagicHash, MultiParamTypeClasses [41], NondecreasingIndentation, Pat-
ternGuards [20], PatternSynonyms [50], PolyKinds [60, 67], Quantified-

Constraints [6], RankNTypes [45], RoleAnnotations [8], Safe [55], Scoped-
TypeVariables [43], StandaloneDeriving, Trustworthy [55], TupleSections,
TypeApplications [19], TypeFamilies [10, 17], TypeFamilyDependencies [53],
TypeOperators, UnboxedSums, UnboxedTuples [42], UndecidableInstances,
UndecidableSuperClasses, ViewPatterns [59].

1.2 Contributions

While this functional pearl does not offer new technical con-
tributions, it illuminates recent innovations in Haskell and
invites intermediate programmers to use advanced PL tech-
niques in their programs. It makes the following contribu-
tions:

• Stitch is a full executable interpreter of the STLC, avail-
able online,3 and suitable for classroom use as a demon-
stration of a λ-calculus.

• Section 3 is an accessible primer on Haskell’s advanced
features, as used in the examples in this paper.

• This work offers many settings for the use of fancy
types. For example, parser output is guaranteed to be
well-scoped.

• Section 9 describes aspects of the common-subexpression
elimination pass implemented in Stitch, offered as
proof that the use of an indexed AST scales to the
more complex analyses inherent in real compilers.

• The development described here serves as an exis-
tence proof that HaskellÐeven without full dependent
typesÐis a suitable language in which to use practical
fancy types.

2 Introducing Stitch

Stitch is an implementation of the simply typed λ-calculus,
so we will start off with a review of this little language,
including the Stitch extensions. See Figure 1.4

We see that Stitch is quite a standard implementation of
the STLC [e.g., 51, Chapter 9] with modest extensions. It
has a call-by-value semantics, and the value of a let-bound
variable is computed before entering the body of the let.
Stitch supports general recursion by way of its (standard)
fix operator, which evaluates to a fixpoint.
Stitch comes with both a small-step and big-step opera-

tional semantics; these standard presentations are elided in
this paper. Users of Stitch may find it interesting to compare
its behavior with respect to the choice of semantics; com-
mands at the Stitch REPL allow the user to choose how they
wish to reduce an expression to a value, allowing users to
witness that big-step semantics tell you nothing about a term
during evaluation, while the small-step semantics can show
you the steps the expression takes as it reduces.

2.1 The Stitch REPL

Before we jump into the implementation, it is helpful to look
at the user’s experience of Stitch. The Stitch REPL allows
the user to enter in expressions for evaluation and to query
aspects of an expression. An example is illustrative:

3Some more general definitions have been monomorphized in this presen-
tation to aid in understanding. The executable code is at https://gitlab.com/

goldfirere/stitch/-/tree/hs2020.
4The formalization is type-checked and typeset with the help of ott [52].
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Metavariables:
x term vars

Grammar:
τ ::=τ1 → τ2 | Int | Bool types
op ::=+ | − | ∗ | /| % | < | ≤ | > | ≥ | ≡ operators
Z ::= . . . integers
B ::= true | false Booleans
e ::= x | λx:τ .e | e1 e2 | let x = e1 in e2 | e1 op e2

| if e1 then e2 else e3 | fix e | Z | B expressions
v ::= λx:τ .e | Z | B values
Γ ::= ∅ | Γ, x:τ contexts

result(op) is the result type of an operator: Int for
{+,−, ∗, /,%} and Bool for {<, ≤, >, ≤,≡}

Γ ⊢ e : τ Typing rules

x : τ ∈ Γ

Γ ⊢ x : τ
T_Var

Γ, x:τ1 ⊢ e : τ2

Γ ⊢ λx:τ1.e : τ1 → τ2
T_Lam

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2
T_App

Γ ⊢ e1 : τ1 Γ, x:τ1 ⊢ e2 : τ2

Γ ⊢ let x = e1 in e2 : τ2
T_Let

Γ ⊢ e : τ → τ

Γ ⊢ fix e : τ
T_Fix

Γ ⊢ e1 : Int Γ ⊢ e2 : Int

Γ ⊢ e1 op e2 : result(op)
T_Arith

Γ ⊢ e1 : Bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e3 : τ
T_Cond

Γ ⊢ Z : Int
T_Int

Γ ⊢ B : Bool
T_Bool

Figure 1.The simply typed λ-calculus, as embodied in Stitch.

Welcome to the Stitch interpreter, version 1.0.

λ> 1 + 1

2 : Int

λ> \x:Int->Int.\y:Int.x y

λ#:Int -> Int.λ#:Int.#1 #0 : (Int -> Int) -> Int -> Int

We see here that the syntax is straightforward and fa-
miliar, though Stitch requires a type annotation at every
λ-abstraction. The most distinctive aspect of this session is
Stitch’s approach to variable binding, which we explore next.

2.2 De Bruijn Indices

Every implementor of a programming language must make
a choice of representation of variable binding. The key chal-
lenge is that, no matter which representation we choose,
we must be sure that λx:τ .x and λy:τ .y are treated identi-
cally in all contexts. There are many possible choices out
there; Weirich et al. [63] offer an informative survey. In this

work, however, I choose trusty, old de Bruijn indices [15], as
these serve two design goals of Stitch well: de Bruijn indices
work easily with an indexed AST, and they can easily arise
when teaching implementations of the λ-calculus [e.g., 51,
Chapter 6].
A de Bruijn index is a number used in the place of a

variable name; it counts the number of binders that inter-
vene between a variable occurrence and its binding site. We
see above that the expression \x:Int->Int. \y:Int x y

desugars to λ#:Int -> Int. λ#:Int. #1 #0, where the
#1 refers to the outer binder (1 intervening binding site) and
the #0 refers to the inner binder (0 intervening binding sites).
De Bruijn indices have the enviable property of making α-
equivalence utterly trivial: because variables no longer have
names, we need not worry about renaming. However, they
make other aspects of implementation harder. Specifically,
two challenges come to the fore:

1. De Bruijn indices are hard for programmers to under-
stand and work with.

2. As an expression moves into a new context, the in-
dices may have to be shifted (increased or decreased)
in order to preserve their identity, as the number of
intervening binding sites might have changed. It is
very easy for an implementor to make a mistake when
doing these shifts.

As a partial remedy to the first problem, Stitch color-codes
its output (as can be seen in this typeset document). A vari-
able occurrence and its binding site are assigned the same
color, so that a reader no longer has to count binding sites.
Though only a modest innovation, this color-coding has
proved to be wildly successful in practice; not only has it
been helpful in my own debugging, but working functional
programmers who see it have gasped, łI finally understand
de Bruijn indices now!ž more than once. Note that program-
mers never have to write using de Bruijn indices (the parser
converts their names to indices quite handily) and so this
simple reading aid goes a long way toward fixing the first
drawback.

The second drawback can be more troublesome. The rea-
son we have such a plethora of approaches to variable bind-
ing must be, in part, that implementors have been unhappy
with the approaches availableÐthey thus invent a new one.
One reason for this unhappiness is that capture-avoiding
substitution is a real challenge. Pierce [51, Section 5.3] gives
an instructive account of the pitfalls an implementor encoun-
ters. And it is not just substitution. As a language grows in
complexity, dealing with name clashes and renaming crops
up in a variety of places. Indeed, the venerable GHC im-
plementation only relatively recently (January, 2016) added
checks to make sure its handling of variable naming is bug-
free; I count 33 call sites within the GHC source code (as of
March, 2020) that still use the łuncheckedž variant of sub-
stitution because using the checked version fails on certain
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test cases. Each of these call sites is perhaps a lurking bug,
waiting for a pathological program to induce an unexpected
name clash that could cause GHC to go wrong.

However, a solution to this conundrum is at hand: because
Stitch’s expression AST type is indexed by the type of the
expression represented, an erroneous or forgotten shifting
of a de Bruijn index leads to a straightforward error, caught
as Stitch itself is being compiled. Indeed, I shudder to think
about the challenge in getting all the shifts correct without
the aid of an indexed AST. Thus, using an indexed AST fully
remedies the second drawback.

One twist on the second drawback remains, however: all
this shifting can slow the interpreter down. A variable shift
requires a full traversal and rebuild of the AST, costing pre-
cious time and allocations. Though I have not done it in my
implementation, it would be possible to add a Shift construc-
tor to the AST type to allow these shifts to be lazily evaluated;
the design and implementation of other opportunities for
optimization are left as future work.
We are now almost ready to start seeing the fancy types,

but first, we need to install some necessary infrastructure.

3 Fancy-Typed Utilities

Every great edifice necessarily requires some plumbing.What
is fun in this case is that even the plumbing needs some fancy
types in order to support what comes ahead. The definitions
in this section are standard, and readers familiar with depen-
dently typed programming may wish to skim this section
quickly or skip to the next section. The utilities described
here are useful beyond just Stitch, and some have implemen-
tations released separately. However, I have included them
within the Stitch package in order to keep it self-contained.
This section introduces Peano natural numbers (useful for
tracking the number of bound variables), length-indexed
vectors (useful for tracking the types of in-scope variables),
and singletons (useful during type checking, when we must
connect a type-level context with term-level type represen-
tations).

3.1 Length-Indexed Vectors

No exploration of fancy types would be complete without
the staple of length-indexed vectors, a ubiquitous example
because of their perspicuity and usefulness. A length-indexed
vector is simply a linked list, where the list type includes
the length of the list; thus, a list of length 2 is a distinct type
from a list of length 3. Here is the type definition:

data Nat = Zero | Succ Nat

data Vec :: Type → Nat → Type where

VNil :: Vec a Zero

(:>) :: a → Vec a n → Vec a (Succ n)

We will take this line-by-line. First is the declaration of
unary natural numbers. This type is terribly inefficient at

run-time, but we use it only at compile-time [67], where it
gives us nice inductive reasoning principles. We next see that
Vec is parameterized by an element type of kind Type and
a length index of kind Nat . The declaration for VNil states
that VNil is always a Vec of length Zero, but it can have any
element type a. The cons operator :> takes an element (of
type a), the tail of the vector (of type Vec a n) and produces a
vector that is one longer than the tail (of type Vec a (Succ n)).

Note the use of Nat as a kind and Zero and Succ as types.
When GHC is resolving names used in a type, it first looks
in the type-level namespace, where definitions like Vec and
Nat live. Failing that lookup (for capitalized identifiers), it
looks in the term-level namespace; this is what happens in
the case of Zero and Succ.5 Finding these constructors, GHC
has no trouble using them in types, where they keep their
usual meaning.

3.1.1 Appending. We will need to append vectors, and
the two vectors may be of different lengths. Clearly, the
append function should take arguments of type Vec a n

and Vec a m, where the element type a is the same but the
length indices n and m are different. However, what should
the result type of appending be? Of course, the length of the
concatenation of two vectors is the sum of the lengths of the
vectors: the result should be Vec a (n +m). We thus need to
define + on Nats. What is unusual here is that we need to
use + in types, not in terms. GHC’s approach here is to use
a type family [10, 17], which is essentially a function that
works on types and type-level data. Here are the definitions:

type family n +m where

Zero +m = m

Succ n +m = Succ (n +m)

(+++) :: Vec a n → Vec a m → Vec a (n +m)

VNil +++ ys = ys

(x :> xs)+++ ys = x :> (xs +++ ys)

Already, the fancy types are working for us, making sure
our code is correct. In the first clause of +++, we pattern-
match on VNil. This match tells us both that the first vector
is empty, and also that the type variable n equals Zero. This
second fact comes from the declared type of VNil in the
definition of Vec. All VNils have a type index of Zero, and
thus we know that if VNil :: Vec a n, then n must be Zero.
The type checker uses this fact to accept the right-hand side
of that equation: it must be convinced that ys ::Vec a (n+m),
the declared return type of +++. Because the type checker
knows that n is Zero, however, it can use the definition of
the type family + to reduce Zero+m tom, and then it simply
uses the fact that ys :: Vec a m, as ys is the second argument
to +++. The second equation is similar, except that it uses the
second equation of + to check the equation’s right-hand side.

5If the identifier exists in both namespaces, it can be prefixed with ’ to tell
GHC to look only in the term-level namespace.
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If we forgot to cons x onto xs +++ ys in this right-hand side,
the definition of +++ would be rejected as ill typed.

3.1.2 Indexing. How should we look up a value in a vec-
tor? We could use an operator like Haskell’s standard !!
operator that looks up a value in a list. However, this is un-
satisfactory, because the !! throws an exception when its
index is out of range. Given that we know a vector’s length
at compile-time, we can do better.
The key step is to have a type that represents natural

numbers less than some known bound. The type Fin (short
for łfinite setž), common in dependently typed programming,
does the job:

data Fin :: Nat → Type where

FZ :: Fin (Succ n)

FS :: Fin n → Fin (Succ n)

The Fin type is indexed by a natural number n. The type Fin n

contains exactly n values, corresponding to the numbers
0 through n − 1. This GADT tends to be a bit harder to
understand than Vec because (unlike Vec), you cannot tell
the type of a Fin just from the value. For example, the value
FS FZ can have both type Fin 2 and Fin 10 (taking liberty
to use decimal notation instead of unary notation for Nats),
but not Fin 1. Let us understand this type better by tracing
how we can assign a type to FS FZ :

• Suppose we are checking to see whether FS FZ :: Fin 1.
We see that FS ::Fin n → Fin (Succ n). Thus, for FS FZ ::
Fin 1, we must instantiate FS to have type Fin Zero →

Fin (Succ Zero). We must now check FZ :: Fin Zero.
However, this fails, because FZ :: Fin (Succ n)Ðthat
is, FZ ’s type index must not be Zero. We accordingly
reject FS FZ :: Fin 1.

• Now say we are checking FS FZ :: Fin 5. This proceeds
as above, but in the end, we must check FZ ::Fin 4. The
number 4 is indeed the successor of another natural,
and so FZ :: Fin 4 is accepted, and thus so is FS FZ ::
Fin 5.

Following this logic, we can see how Fin n really has precisely
n values.

As a type whose values range from 0 to n − 1, Fin n is the
perfect index into a vector of length n:

(!!!) :: Vec a n → Fin n → a

vec !!! fin = case (fin, vec) of -- reversed due to laziness
(FZ , x :> ) → x

(FS n, :> xs) → xs !!! n

GHC comeswith a pattern-match completeness checker [27]
that marks this case as complete, even without an error case.
To understand why, we follow the types. After matching
fin against either FZ or FS n, the type checker learns that n
must not be zeroÐthe types of both FZ and FS end with a
Succ index. Since n is not zero, then it cannot be the case that

vec is VNil. Even though the pattern match includes only :>,
that is enough to be complete.

Now, we can explore this match reversal. Haskell is a lazy
language [40], which means that variables can be bound to
diverging computations (denoted with ⊥). When matching
a compound pattern, Haskell matches the patterns left-to-
right, meaning that the left-most scrutinee (fin, in our case)
is evaluated to a value and then inspected before evaluating
later scrutinees, such as vec. Imagine matching against vec
first. In this case, it is conceivable that vec would be VNil

while fin would be ⊥. This is not just theoretical; witness the
following function:

lazinessBites :: Vec a n → Fin n → String

lazinessBites VNil = "empty vector"

lazinessBites = "non-empty vector"

If we try to evaluate lazinessBites VNil undefined , that ex-
pression is accepted by the type checker and evaluates hand-
ily to "empty vector". If we scrutinize vec first, then, the
completeness checker correctly tells us that we must handle
the VNil case. On the other hand, in the implementation of
!!! with the pattern match reversed, we ensure that fin is not
⊥ before ever looking at vec and can thus be sure that vec
cannot be VNil.

3.2 Singletons

The technique of singletons is a well worn and well stud-
ied [37] way to simulate dependent types in a non-dependent
language. Though at least two libraries exist for automati-
cally generating singletons in Haskell [18, 36], Stitch does
not depend on these libraries, in order to maintain some sim-
plicity and be self-contained. However, the design of these
libraries is the direct inspiration for the definitions in Stitch.

To motivate singletons, consider writing replicate for vec-
tors. The replicate function takes a natural number n and
an element elt and creates a vector of length n consisting
of n copies of elt . Despite this simple specification, there
is no easy way to write a type signature for replicate; you
might try replicate ::Nat → a → Vec a ?, but you’d be stuck
at the ?. The problem is that the choice of the type index
for the return type must be the value of the first parameter.
This is the hallmark of dependent types. However, because
Haskell does not yet support dependent types, singletons
will have to do. Here is the definition of a singleton Nat (or,
more precisely the family of singleton Nats):

data SNat :: Nat → Type where

SZero :: SNat Zero
SSucc :: SNat n → SNat (Succ n)

The type SNat is indexed by a Nat that corresponds to the
value of the SNat . That is, the type of SSucc (SSucc SZero)

is SNat (Succ (Succ Zero)). Conversely, the only value of the
type SNat (Succ (Succ Zero)) is SSucc (SSucc SZero). This
last fact is why singleton types are so named: a singleton
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-- Stitch types, and their singletons
data Ty = TInt | TBool | Ty :→ Ty

data STy :: Ty → Type where

SInt :: STy TInt

SBool :: STy TBool

(::→) :: STy arg → STy res → STy (arg :→ res)

toSTy :: Ty → (∀t . STy t → r) → r

toSTy TInt k = k SInt

toSTy TBool k = k SBool

toSTy (a :→ b) k = toSTy a $ λsa → toSTy b $ λsb →

k (sa ::→ sb)

-- Propositional equality
data (a :: k) :∼:(b :: k) where

Refl :: a :∼: a

-- Informative equality comparison
class TestEquality (t :: k → Type) where

testEquality :: t a → t b → Maybe (a :∼: b)

instance TestEquality STy where . . .

Figure 2. Stitch types and singletons

type has precisely one value. Because of the correspondence
between types and terms with singleton types, matching
on the values of a singleton inform the type indexÐexactly
what we need here.

Here is the definition for replicate:

replicate :: SNat n → a → Vec a n

replicate SZero = VNil

replicate (SSucc n′) elt = elt :> replicate n′ elt

TheGADT patternmatch against SZero tells the type checker
that n is Zero in the first equation, making VNil an appropri-
ate result. Similarly, the match tells the type checker that n
is Succ n′ (for some n′) in the second equation, and thus a
vector one longer than n′ is an appropriate result. Essentially,
the n in the type signature for replicate is the value of the
first parameter, exactly as desired.
Singletons are not the final word for dependent types in

Haskell. They can be unwieldy [32] and conversions between
singleton types and unrefined base types (such as converting
from SNat n to Nat) are potentially costly. Work is under
way [16, 23, 62, 66] to add full dependent types to Haskell.
However, for our present purposes, the singletons work quite
nicely, and their drawbacks do not bite.

4 Stitch Types

We start our exploration of the Stitch implementation by
looking at its representation for types, in Figure 2. The type
definition, Ty is uninteresting, defining integers, Booleans,
and functions between these. However, Ty is not enough: in

order to build our indexed AST, we will need to reason about
Stitch types both at runtime and at compile time. We thus
need the singleton type STy , indexed by Ty .
When processing a λ-abstraction, Stitch needs to parse

the type annotation on the argument, producing a Ty . Dur-
ing type-checking, however, Stitch needs an STy ; we thus
must be able to convert from Ty to STy . This is done in the
toSTy function. However, we cannot give this function a type
such as Ty → STy t: there is no way to choose what the
output t should be. What we would like to write, ideally, is
toSTy ::Ty → ∃t . STy ty . However, Haskell does not support
such a convenient construct. While Haskell’s support for ex-
istential variables in datatypes could work here, I found that
continuation-passing style (CPS), as seen in the higher-rank
type of toSTy in Figure 2, was easier and made for code with
a better flow. With CPS, we can easily pass the type index t
to the continuation k.
A critical job of any type-checker is comparing types for

equality. In Stitch, though, we must compare the singleton
STys, not the unrefined Tys. The usual (==) operator will
not work for us, because the two STys we are comparing
might have different type indices. Instead, we want to be able
to compare STy a with STy b. Furthermore, if STy a equals
STy b, we need to be able to tell GHC’s type-checker that
a equals b: this will allow GHC to accept the implementa-
tion of Stitch’s type checker. (See the case for type-checking
function applications in Section 7 for an illustrative exam-
ple.) Because this general patternÐtesting an indexed type
for equality in order to get a type equality usable by GHCÐ
comes up with some regularity when doing fancy-typed
programming, GHC includes the (:∼:) type and TestEquality
class in its Data.Type.Equalitymodule. These also appear
in Figure 2.
The type (:∼:) encodes propositional equality. That is, if

you have a value of type a :∼: b, then you can pattern-match
on this value to learn that a equals b. Types that are indexed
by awill now be equal to types indexed by b. The testEquality
method in TestEquality thus optionally returns a :∼: b; this
way, if the test succeeds, we can pattern-match on the result
to learn that two types should be considered equivalent.
We call this an informative equality comparison, because it
informs GHC’s type checker of the equality. In contrast, a
Bool return type would not.

Having seen how types are represented throughout Stitch,
we are now ready to start exploring the Stitch pipeline, be-
ginning with the parser.

5 Scope-Checked Parsing

Though Stitch’s hallmark is its indexed AST for expressions,
we cannot parse into that AST directly. Type-checking can
produce better error messages and is more easily engineered
independent from the left-to-right nature of parsing. We thus
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must define an unchecked (un-indexed) AST for the result
of parsing the user’s program.

However, even here there is a role for fancy types. While
type-checking during parsing is a challenge, name resolu-
tion during parsing works nicely. We can thus parse into an
AST that can express only well-scoped terms. The AST type
definition follows:

-- Unchecked expression, indexed by the
-- number of variables in scope

data UExp (n :: Nat)
= UVar (Fin n) -- de Bruijn index for a variable
| ULam Ty (UExp (Succ n))

| UApp (UExp n) (UExp n)

| UIntE Int

. . .

The type UExp (łunchecked expressionž) is indexed by a
Nat that denotes the number of local variables in scope. So,
a UExp 0 is a closed expression, while a UExp 2 denotes an
expression with up to two free variables. Note that ULam
increments this index for the body of the λ-abstraction.
Variables are naturally stored in a Fin nÐprecisely the

right type to store de Bruijn indices. If an expression has
only 2 variables in scope, then we must make sure that a
variable has an index of either 0 or 1, never more. Using Fin
gives us this guarantee nicely.
Lambda-abstractions store a Ty , the type of the bound

variable. Types are further explored in Section 4. Note that
there is no explicit place in the AST for the bound variable,
as the bound variable always has a de Bruijn index of 0.

The main novelty in working with UExp is, of course, the
Fin n type for de Bruijn indices. Supporting this design re-
quires accommodations in the parser. Stitch’s parser is a
monadic parser built on the Parsec library [31]. Its input is
the series of tokens, each annotated with location informa-
tion, produced by the entirely unremarkable lexer (also built
using Parsec). It can parse either statements or expressions.

The most interesting aspect of the parser is that the parser
type must be indexed by number of in-scope variablesÐthis
is what will set the index of any parsed Fin de Bruijn indices.
We thus have this definition for the parser monad:

type Parser n a

= ParsecT [LToken] () (Reader (Vec String n)) a

The ParsecT monad transformer [25] is indexed by (1) the
type of the input stream, which in our case is [LToken]; (2)
the state carried by the monad, which in our case is trivial; (3)
an underlyingmonad, which in our case isReader (Vec String n),
where the environment is a vector of the names of the in-
scope variables; and (4) the return type of computations, a.
Thus, a computation of type Parser n a parses a list of lo-
cated tokens into something of type a in an environment
with access to the names of n in-scope local variables.

type Ctx n = Vec Ty n

data Exp :: ∀n.Ctx n → Ty → Type where

Var :: Elem ctx ty → Exp ctx ty

Lam :: STy arg → Exp (arg :> ctx) res

→ Exp ctx (arg :→ res)

App :: Exp ctx (arg :→ res) → Exp ctx arg → Exp ctx res

IntE :: Int → Exp ctx TInt

. . .

-- An encoding of (\x:Int. x) 5, as an example
example :: Exp VNil TInt

example = App (Lam SInt (Var EZ )) (IntE 5)

Figure 3. The type-indexed Exp expression AST

6 The Type-Indexed Expression AST

We now are ready to greet the Exp type, the type-indexed
AST for expressions. Its definition appears in Figure 3. The
Exp type is indexed by two parameters: a typing context of
kind Ctx n, where n is the number of bound variables; and a
the expression’s type, a Ty .
Compare the definition of Exp with the typing rules in

Figure 1. Each constructor corresponds with precisely one
rule. The types of the constructor arguments correspond
precisely with the premises of the rule, and the type of the
constructor result corresponds precisely with the rule con-
clusion. Take function application as an example. The T_App
rule has two premises: one gives expression e1 type τ1 → τ2,
and the other checks to see that e2 has the argument type τ1.
In the same way, the first argument to the constructor App
takes an expression in some context ctx and with some type
arg :→ res. The second argument to App then has type arg.
Furthermore, just as the conclusion to the T_App rule says
that the overall e1 e2 expression has type τ2, the result type
of the App constructor is an expression of type res. An easier
example is for the constructor IntE , where the resulting type
is simply TInt , regardless of the context.

Note the Lam constructor for building λ-abstractions. The
first argument is STy arg. This argument contains both a
Stitch type, suitable for runtime comparisons and pretty-
printing, and also a compile-time type index arg, used later
in the type of Lam. Like replicate, this is a place where a de-
pendent type is called for. Happily, the STy singleton works
well here.

The definition of Exp shows us why modeling a typed
language is such a perfect fit for GADTsÐthe information
in the typing rules is directly expressed in the AST type
definition.
Perhaps the most distinctive aspect of ExpÐother than

its indicesÐis the choice of representation for variables. Exp
continues our use of de Bruijn indices, but wemust be careful
here: we need the type of a variable to be expressed in the
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return index to the Var constructor. While it is conceivable
to do this via some Lookup type family, the Elem type is a
much more direct approach:

data Elem :: ∀a n. Vec a n → a → Type where

EZ :: Elem (x :> xs) x

ES :: Elem xs x → Elem (y :> xs) x

The Elem type is indexed by a vector (of any element
type a) and a distinguished element of that vector. An Elem

value, when viewed as a Peano natural number, is simply the
index into the vector that selects that distinguished element.
Equivalently, a value of type Elem xs x is a proof that x is an
element of the vector xs; the computational content of the
proof is x’s location in xs.
The definitions of the two constructors support this de-

scription. The EZ constructor has type Elem (x :> xs) xÐwe
can see plainly that the distinguished element x is the first
element in the vector. The ES constructor takes a proof that
x is in a vector xs and produces a proof that x is in the vector
y :>xs (for any y). Naturally, x’s index in y :>xs is one greater
than x’s index in xs, thus underpinning the interpretation of
ES as a Peano successor operator.
In the case of our use of Elem within the Exp type, the

vectors at hand are contexts (vectors of Tys) and the elements
are types of Stitch variables. The Elem type gives us exactly
what we need: a type-level relationship between a context
and a type, along with the term-level information (the de
Bruijn index) to locate that type within that context.

7 The Sound Type-Indexed Type Checker

We are ready now for the part we have all been waiting for:
the sound type-indexed type checker. The core cases appear
in Figure 4; these cases illustrate the points of interest.

The check function takes an unchecked expression of type
UExp and converts it into a checked expression of type Exp.
For the same reasons that toSTy was written using CPS in
Section 4, we use CPS here. We also must pass STy t to the
continuation, so that runtime comparisons can be performed.

The check function works over closed expressions, as we
always call it on a top-level expression. However, it must re-
cur into open expressions, and so we define the more-general
go local helper function. The go function’s type mimics that
of check but allows for the possibility of open expressions,
quantifying over the context length, n, and context ctx . Be-
cause we will need to look up variable types at runtime, we
need the context to be available both at compile-time (to use
as an index to Exp) and at runtime. This means that we need
a singleton for the context, as embodied by this definition:

data SCtx :: ∀n.Ctx n → Type where

SCNil :: SCtx VNil

(:%>) :: STy t → SCtx ts → SCtx (t :> ts)

check :: MonadError Doc m

⇒ UExp Zero

→ (∀(t :: Ty). STy t → Exp VNil t → m r)

→ m r

check = go SCNil where

go :: MonadError Doc m

⇒ SCtx (ctx :: Ctx n) → UExp n

→ (∀t . STy t → Exp ctx t → m r) → m r

go ctx (UVar n) k = check_var n ctx $ λty elem →

k ty (Var elem) where

check_var :: Fin n → SCtx (ctx :: Ctx n)

→ (∀t . STy t → Elem ctx t → m r) → m r

check_var FZ (ty :%> ) k0 = k0 ty EZ

check_var (FS n0) ( :%> ctx0) k0 =
check_var n0 ctx0 $ λty elem → k0 ty (ES elem)

go ctx (ULam ty body) k =

toSTy ty $ λsty →

go (sty :%> ctx) body $ λres_ty body ′ →

k (sty ::→ res_ty) (Lam sty body ′)

go ctx e@(UApp e1 e2) k =

go ctx e1 $ λfun_ty e′1 →

go ctx e2 $ λarg_ty e′2 →

case fun_ty of

arg_ty ′ ::→ res_ty

| Just Refl ← testEquality arg_ty arg_ty ′

→ k res_ty (App e′1 e
′
2)

→ typeError e . . .

go (UIntE n) k = k SInt (IntE n)

Figure 4. The sound type-indexed type checker (excerpted)

Checking variables. The variable case is handled by the
helper function check_var . The check_var function uses the
Fin n stored by the UVar constructor to index into the typing
context, stored as the singleton SCtx . When check_var finds
the type it is looking for, it passes that type to the contin-
uation, along with an Elem value which will store the de
Bruijn index in the Exp type. GHC’s type checker is working
hard here to make sure this function definition is correct,
using the definition of Fin to ensure that our pattern-match
is complete,6 and that the Elem we build really does show
that the type t is in the context ctx . Note that there is no
possibility of errors here: the use of Fin in the UExp type
guarantees that the variable is in scope.

Checking a λ-abstraction. The Lam case is where we
use the toSTy function introduced in Section 4. After con-
verting the input Ty into an STy named sty , we check the

6Note that we match the Fin before the vector, as we did in Section 3.1.2.
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abstraction body, learning its result type res_ty and getting
the type-checked expression body ′. We then continue with
a function type composed from sty and res_ty , using the ::→
constructor of STy .

Checking an application. Checking function applica-
tions is really the heart of any type checker: this is the princi-
pal place where two types may be in conflict. In our case, we
check the two expressions separately, getting their types and
type-checked expression trees. We then must ensure that
fun_ty , the type of the applied function, is indeed a func-
tion type. This is done by a case-match, looking for a ::→
constructor. We then must ensure that the actual argument
type arg_ty matches the function’s expected argument type
arg_ty ′. We use the testEquality function, explained in Sec-
tion 4. If successful, this function returns a proof to the type
checker that arg_ty equals arg_ty ′, and we are then allowed
to build the application with App. If either check fails, we
issue an error.

The type discipline in Stitch works to keep us correct here.
If we skipped the type checks, the App application would be
ill-typed, as App expects its first argument to be a function
and its second argument to have the argument type of that
function. The checks ensure this to GHC, which then allows
our use of App to succeed.

There are several more cases in the type checker, all sim-
ilar to those presented here. In all, this type checker was
remarkably easy to write, given the groundwork in setting
up the types correctly. GHC’s type checker stops us from
making mistakes hereÐthe whole point of using an indexed
expression AST. Furthermore, the type errors I encountered
during implementation were indeed helpful, pointing out
any missing type equality checks.

Beyond these observations, I wish to note simply that such
a type checker is possible to write at all. In conversations
with experienced functional programmers, some have been
surprised that the type-indexed expression AST has any prac-
tical use, despite the fact that this technique is not new [e.g.,
39]. After all, how could you guarantee that expressions are
well typed? The answer is: check them first, as check does
for us here.

8 Evaluation with an Indexed AST

Writing evaluators is where the indexed AST really shines:
we essentially can not get it wrong.

A type-indexed AST allows us to easily write a tagless in-
terpreter, where a value does not need to be stored with a run-
time tag that indicates the value’s type. To see the problem,
imagine an unindexedAST and a function eval::Exp → Value.
The Value type would have to be a sum type with several
constructors, say, for integer, Boolean, and function values.
This means that every time we extract a value, we have to
check the tag, a potentially costly step at runtime. However,

data Length :: ∀a n. Vec a n → Type where

LZ :: Length VNil

LS :: Length xs → Length (x :> xs)

subst :: ∀ctx s t . Exp ctx s → Exp (s :> ctx) t → Exp ctx t

subst e = go LZ where

go :: Length (lcls :: Ctx n) → Exp (lcls +++ s :> ctx) t0
→ Exp (lcls +++ ctx) t0

go len (Var v) = var len v

go len (Lam ty body) = Lam ty (go (LS len) body)

. . . -- other forms are treated homomorphically

var :: Length (lcls :: Ctx n) → Elem (lcls +++ s :> ctx) t0
→ Exp (lcls +++ ctx) t0

var LZ EZ = e -- no locals; substitute
var LZ (ES v) = Var v -- no locals; decrement
var (LS ) EZ = Var EZ -- var is local; no change
var (LS len) (ES v) = shift (var len v) -- recur

Figure 5. Indexed substitution

with our indexed expression type, we can evaluate to a type
Value ty , where Value is this type family:

type family Value t where

Value TInt = Int

Value TBool = Bool

Value (a :→ b) = Exp VNil a → Exp VNil b

Values are accordingly taglessÐno runtime check needs to be
performed when inspecting one. Tagless interpreters have
been studied at some length [9, 39, 54], and we will not
explore this aspect of Stitch further.

Evaluation is as one might expect. The interesting part is
about substitution, which we focus on next.

8.1 Substitution

Substitution is the bane of implementors using de Bruijn
indices. Once again, the type indices save us from making
errorsÐthere seems to be no real way to go wrong, and the
type errors that we encounter gently guide us to the right
answer. The final result is in Figure 5.
The subst function takes an expression e of type s and

another expression with a free variable of type s and substi-
tutes e into the latter expression. The subst function’s type
requires that the variable to be substituted have a de Bruijn
index of 0, as is needed during β-reduction. However, as
anyone who has proved a substitution lemma knows, we
must generalize this type to get a powerful enough recursive
function to do the job.

Note that the type of subst is precisely the shape of a sub-
stitution lemma: that if Γ ⊢ e1 : σ and Γ, x:σ ⊢ e2 : τ , then
Γ ⊢ e2[e1/x] : τ . A proof of this lemma must strengthen
the induction hypothesis to allow bound local variables,
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leading to a proof of this stronger claim: if Γ ⊢ e1 : σ and
Γ, x:σ , Γ′ ⊢ e2 : τ , then Γ, Γ

′ ⊢ e2[e1/x] : τ . If we call Γ′ lcls
and Γ ctx , this strengthened induction hypothesis matches
up with the type of the helper function go. (Recall that con-
texts in the implementation are in reverse order to those
in the formalism.) As one implements such a function, this
correspondence is a strong hint that the function type is
correct.

The go function takes one additional argument: a value of
type Length lcls. The Length type is included in Figure 5; val-
ues are Peano naturals that describe the length of a vector.7

This extra piece is necessary as local variables get treated
differently in a substitution than do variables from the outer
context. The number of locals informs the var function when
to substitute, when to shift, and when to leave well enough
alone. Pierce [51, Chapter 6] offers an accessible introduction
to the delicate operation of substitution in the presence of
de Bruijn indices, and a full exploration of this algorithm
would take us too far afield; suffice it to say that any misstep
in var would be caught by GHC’s type checker.
For an example of a plausible mistake and its error mes-

sage, imagine we forgot to call shift (explained below) in the
last equation of the var helper function. GHC produces an
error saying it

Could not deduce: (xs +++ ctx) ∼∼ (x :> (xs +++ ctx))

from the context: (. . . , lcls ∼∼ (x :> xs))

. . .

Expected type: Exp (lcls +++ ctx) t0
Actual type: Exp (xs +++ ctx) t0

We can see here that the actual type of var len v does not
account for adding the new variable, x , to the context. This
must mean we need to add that variable; the way to do so is
via a shifting operation, which we cover next.

8.2 Shifting

As hinted at previously, substitution with de Bruijn indices
is subtle not only because it is hard to keep track of which
variable one is substituting, but also because the expression
being substituted suddenly appears in a new context and
accordingly may require adjustments to its indices. This
process is called shifting. If we have an expression #1 #0

(where both variables are free) and wish to substitute into
an expression with an additional bound variable, we must
shift to #2 #1. I have intentionally kept the colors consistent
during the shift, as the identity of these variables does not
changeÐjust the index does.
Shifting is an operation that makes sense both on full

expressions Exp and also on indices Elem directly. We will
discover that both of these are sometimes necessary when

7Although vectors are indexed by their length, that index is a compile-time
natural only. To get the length of a vector at runtime, it is still necessary to
recur down the length of the vector.

class Shiftable (a :: ∀n.Ctx n → Ty → Type) where

shifts :: Length prefix → a ctx ty → a (prefix +++ ctx) ty

shifts0 :: a VNil ty → a prefix ty -- closed exprs only
unshifts :: Length prefix → a (prefix +++ ctx) ty

→ Maybe (a ctx ty) -- needed for CSE

instance Shiftable Exp where . . .

instance Shiftable Elem where . . .

-- Common case: shifting by one
shift :: ∀(a :: ∀n.Ctx n → Ty → Type) ctx t ty .

Shiftable a ⇒ a ctx ty → a (t :> ctx) ty

shift = shifts (LS LZ )

Figure 6. De Bruijn index shifting

shifts0Exp :: ∀prefix ty . Exp VNil ty → Exp prefix ty

shifts0Exp = . . .

-- Short-circuit the no-op shifts0Exp:
{−# noinline shifts0Exp #−}
{−# rules shifts0Exp shifts0Exp = unsafeCoerce #−}

Figure 7. Shifting closed expressions should be trivial

performing common-subexpression elimination (CSE, Sec-
tion 9), and so we generalize the notion of shifting by intro-
ducing a type class, presented in Figure 6.
The first detail to notice here is that Shiftable classifies

a polykinded type variable aÐnote the ∀n in a’s kind. This
gives Shiftable a higher-rank kind. GHC deals with this exotic
species in stride; the only challenge is that GHC will never
infer a variable to have a polykind, and so all introductions of
amust be written with a kind annotation. The polymorphism
in the kind of a is essential here because, as a stand-in for
Exp or Elem, a must be able to be applied to contexts of any
length. Without this polymorphism, it would be impossible
to write the Shiftable class.

As before, the implementation of these instances is straight-
forward, once we have written down the types and can be
guided by GHC’s type checker.

8.3 Shifting Closed Expressions

The Shiftable class includes a method shifts0, specializing
shifts to work over closed expressions. Closed expressions
are a special case for shifting, because we can prove that no
variables need to be shifted. And yet, shifting also changes
the type of the expression (from Exp VNil ty to Exp ctx ty),
so we can omit the call to shifts0. This method is needed
in the processing of user-defined globals, a feature Stitch
supports, but a full description of which would distract from
our main goal.
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class IHashable (t :: k → Type) where

ihashWithSalt :: Int → t a → Int

instance TestEquality (Exp ctx) where . . .

instance . . .⇒ IHashable (Exp (ctx :: Ctx n)) where . . .

data IHashMap :: ∀k . (k → Type) → (k → Type) → Type

insert :: (TestEquality k, IHashable k)

⇒ k i → v i → IHashMap k v → IHashMap k v

lookup :: (TestEquality k, IHashable k)

⇒ k i → IHashMap k v → Maybe (v i)

map :: (∀i. v1 i → v2 i) → IHashMap k v1 → IHashMap k v2

type ExpMap ctx a = IHashMap (Exp ctx) a

Figure 8. Key definitions for indexed HashMaps

See Figure 7, which defines shifts0Exp, the definition of
shifts0 in the Shiftable instance for Exp. This function must
tiresomely walk the entire structure of its argument in order
to do nothing. The problem is the change in type; the only
way to convince GHC that no action needs to be taken is a
full recursive traversal.

This is disappointing. We want our types to help prevent
errors, not require extra runtime work. It is conceivable that
a language with full dependent types would support a proof
that shifts0Exp has no runtime effect, but this is still hard to
imagine, given that the output of shifts0Exp has a different
type than its input.

The fullness of GHC’s feature set comes to the rescue here.
GHC supports rewrite rules [44], which allow a programmer
to provide arbitrary term rewriting rules that GHC applies
during its optimization passes. These rules are type-checked
to make sure both sides have the same type, but no checking
is done for semantic consistency. It is just the ticket for us
here: we can fix the types up with an unsafeCoerce and trust
our by-hand analysis that shifts0Exp really does nothing at
runtime. The noinline is necessary to force GHC not to
inline the function, so that the rewrite rule can trigger.
Is this design a win or a loss? I am not sure. It surely has

aspects of a loss because the compiler can not figure out that
shifts0Exp is pointless. On the other hand, the workaround
is very easy and fully effective. And, even in a language with
a richer type system than GHC’s Haskell, it is not clear we
can do better.

9 Common-Subexpression Elimination

Having covered the basic necessities of an interpreter, we
now explore an extension, as evidence that we can still im-
plement non-trivial transformations over an indexed AST.
Common-subexpression elimination is a standard optimiza-
tion pass, which identifies expressions with common subex-
pressions, transforming these to use a let-bound variable

instead. A full description of the CSE algorithm is unneces-
sary here but is well documented in the Stitch’s CSE module;
instead, we will focus on the (indexed) data structures used
to power the CSE algorithm.
The key data structure needed for CSE is a finite map

that uses expressions as keys. Using such a map, we can
store what expressions we have seen so far in order to find
duplicates, and we can map expressions to fresh let-bound
variables. The challenge here is that we need to make sure
an expression of type ty maps to a variable of type ty ; failing
to do so would lead the CSE algorithm not to pass GHC’s
type checker.
Naturally, we want the CSE algorithm to be reasonably

efficient. Instead of creating our own mapping structure, we
would like to use the existing optimized HashMap structure
from the unordered-containers library, a widely-used con-
tainers implementation. However, a HashMap requires that
all the keys in the map have the same type. This is usually
a desired property, but not in our case here: the different
keys will all be Exps, but they may have different type in-
dices. The solution is to alterHashMap to work with indexed
types. To implement this idea, I took the source code from
unordered-containers, made a few small changes to the types,
and then simply fixed the errors that GHC reported. Some
key definitions are in Figure 8.

9.1 Indexed Maps

Just as a traditional mapping structure must depend on a
key’s Eq instance, an indexed mapping structure must de-
pend on a key’s TestEquality instance. Our Exp type naturally
is a member of the TestEquality class: if two expressions are
equal (in a shared context ctx), their types are, too.

We also must generalize the Hashable class used for tradi-
tional HashMaps so that we can state that Exp has a hash, no
matter its type. This is straightforward to do; see IHashable.

In the definition of IHashMap, we must index the map by
the type constructors, not the concrete types. Note that in
the definition for ExpMap, the key is Exp ctx , not Exp ctx ty .
In this way, a map can contain expressions of many types.
Accordingly, the insert and lookup functions work by apply-
ing the key type k and value type v to an index i. (Note: the k
in the definition of IHashMap is the kind of the index, not the
key.) The magic here is that IHashMap is not itself indexed
by i, so we can look up k i, for any i, in a IHashMap k v ,
retrieving (perhaps) a v i.

Though not used in CSE, I have included here the type of
the map function. Its function argument must be polymor-
phic in the index i. This is because the function must work
over all values stored in the map; these values, of course, may
have different indices. With a higher-rank type, however,
map (and other functions) are straightforward to adapt to
the indexed setting.
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9.2 Experience Report

The adaptation of HashMap into an indexed setting was
shockingly easy. Once I had committed to adapting the ex-
isting implementation, it took me roughly 2 hours to up-
date the 2.5k lines of code implementing lazy HashMaps and
HashSets. The process flowed as we all imagine typed refac-
toring should: I changed the datatype definitions and just
followed the errors. It all worked splendidly once it compiled.
I was aided by the fact that TestEquality is already exported
from GHC’s set of libraries and that this class has just the
right shape for usage in a finite map structure.
Many functions, such as map, require higher-rank types.

Interestingly, several class instance definitions also require a
higher rank, but these require a higher-rank constraint, also
known as a quantified constraint [6]. For example, here are
the instance heads for two instances of IHashMap:

instance (TestEquality k, IHashable k

,∀i. Read (k i),∀i. Read (v i)) ⇒ Read (IHashMap k v)

instance

(∀i. Show (k i),∀i. Show (v i)) ⇒ Show (IHashMap k v)

In order to parse the contents of a IHashMap k v , we need
to be able to read elements of type k i and v i, for any i, and
similarly for pretty-printing. With quantified constraints, we
can express this fact directly, and type-checking proceeds
without a hiccup.

The CSE implementation overall was also agreeably easy.
While the design of the algorithm took some careful thought,
working with indexed types was an aid to the process, not an
obstacle. The way Exp’s indices track contexts, in particular,
was critical, because any recursive algorithm over Exps must
occasionally change contexts; it would have been very easy
to forget a shift or unshift during this process without GHC’s
type checker helping me get it right.

10 Discussion

10.1 let Should Sometimes be Generalized

Type inference in the presence of GADTs is hard [12, 46, 47,
58]. One of the confounding effects of GADTs is that GHC
does not generalize local let-bound variables in a module
with the MonoLocalBinds language flag enabled, which is
implied by the GADTs extension [57].8 However, this lack of
generalization stymied my implementation.
In the adaptation of HashMap to IHashMap, it was nec-

essary to make many traversal functions have higher-rank
types, likemap in Section 9.1. Other functions in theHashMap

library use these traversals with locally defined helper func-
tions, which generally lacked type signatures. However, be-
cause lets were not generalized in the module, the type of

8More precisely, GHC does not generalize local let-bound variables whose
right-hand side mentions a variable bound from an outer scope. In other
words, if the local definition can be easily lifted out to top-level, GHC still
does generalize it.

the let-bound function was not polymorphic enough to be
used as the argument to the higher-rank traversal function.
While adding the type signatures to the local functions was
not terribly difficult, it was tedious, and I opted instead to
specify NoMonoLocalBinds, to good effect.

10.2 Dependent Types

To my surprise, this project did not strongly want for full
dependent types. As we have seen, we needed a few single-
tons. A language with support for dependent types would
naturally not need these singletons. However, one of the
real pain points for singletonsÐcostly runtime conversions
between singletons and unrefined typesÐarose in only one
place: the calculation of what color is used to render a de
Bruijn index. Another big pain point is code duplication, but
that problem, too, was almost entirely absent from Stitch.
Despite being the author of the singletons library [18] that
automates working with them, I was not tempted to use it.

10.3 Type Errors and Editor Integration

One aspect in which GHC/Haskell lags behind other depen-
dently typed languages is in its editor integration. Idris, for
example, supports interactive type errors, allowing a user to
explore typing contexts and other auxiliary information in
reading an error [14]. Idris, Agda, and Coq all allow a pro-
grammer to focus on one goal at a time. The closest feature
in GHC is its support for typed holes [21], where a program-
mer can replace an expression with an underscore and GHC
will tell you the desired type of the expression and suggest
type-correct replacements.

The extra features in other language systems would have
been helpful, but their lack did not bite in this development.
I used typed holes a few times, and I had to comment out
code in order to focus on smaller sections, but these were
not burdens. Type errors were often screen-filling, but it was
easy enough to discern the key details without being over-
whelmed. So, while I agree that GHC has room to improve
in this regard, its current state is still quite usable.

10.4 Related Work

The basic idea embodied in Stitch is not new. Though written
before the invention of indexed data types, Pfenning and
Lee [49] consider an encoding of System F in a third-order
polymorphic λ-calculus (F3); only well-typed programs are
representable. Their encoding is very much a foreshadow-
ing of more recent papers. Perhaps the first elucidation of
the technique of restricting evaluation only to well-typed
ASTs is by Augustsson and Carlsson [4], who implemented
their interpreter in Cayenne [3]. The idea was picked up
by Pašalić et al. [39], who use a similar example to power
the introduction of Meta-D, a language useful for writing in-
dexed ASTs. Other work principally focusing on an indexed
AST includes that by Chen and Xi [11], which includes an
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indexed CPS transform, implemented in ATS [64]. An imple-
mentation of this idea in Haskell is described by Guillemette
and Monnier [22], who embed System F; their encoding is
limited by the lack of, e.g., rich kinds in Haskell at the time,
and their focus is more on compiler transformations than
on type checking. More recently, an indexed AST has been
encoded in Agda [1, 2]; the authors’ focus in both works
cited is in generating correct definitions and proofs without
boilerplate. Going beyond just embedding the λ-calculus,
Weirich [61] embeds a richly typed AST for regular expres-
sions in Haskell. The indexed AST idea comes up, in passing
or with focus, in many more works beyond these, both in
the folklore and in published literature.
The real focus of this paper is not an indexed AST, how-

ever; it is to serve as a tutorial to the advanced features of Has-
kell. In this space, this paper’s contribution is indeed novel:
to my knowledge, this is the first formally peer-reviewed
work aiming to teach these techniques. There is educational
material in the folklore and posted online [24, 30]. A tutorial
focusing on an indexed AST embedding in Idris [7] is part
of that language’s online documentation [56], and Benton
et al. [5] use an indexed AST to explore intrinsic-verification
features of Coq. In contrast to those materials, this paper is
set in the context of a complete software artifact that is a
practical tool for teaching the operation of the λ-calculus,
with a user-oriented executable. The goal in doing so is to
demonstrate that it is indeed possible to build relatively mun-
dane software components, such as a REPL or parser, using
fancy types in HaskellÐa fact not necessarily yet appreciated
by the broader programming language community.

10.5 Conclusion

I have presented Stitch, a simply typed λ-calculus interpreter,
amenable for pedagogic use and implemented using an in-
dexed AST. This paper has explored the implementation and
described the features of Haskell that power the encoding
and enable Stitch to be written. I have reported on Haskell’s
support for richly typed work such as Stitch, concluding that
Haskell is ready for serious work with fancy types.
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