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Abstract:Hydrology in low-relief coastal plains is especially challenging to simulate in flood modeling applications. Two-dimensional (2D)
hydrodynamic models are often necessary, but creating such models for regional-scale systems at a high spatial resolution presents significant
data challenges. The objective of this research is to explore these challenges using a 2D hydrodynamic model built for a 5,800-km2 region in
the coastal plain of Virginia as a case study. Systematic enhancements to the hydrodynamic model’s topographic, bathymetric, streamline,
surface roughness, and rainfall representations are tested to assess their impact on the model’s predictive skill. Results showed that incor-
porating high-resolution terrain and land use data sets alone only produced minor improvements to model accuracy. However, the addition of
river cross-section data collected through site visits and careful, detailed quality control (QC) of observed rainfall data produced much more
substantial improvements to accuracy. Based on these findings, increased focus should be placed on integrating topographic and river bathy-
metric data sets for low-relief coastal plain regions along with improved methods for QC of observed rainfall data, especially for extreme
weather events. DOI: 10.1061/(ASCE)HE.1943-5584.0002065. © 2021 American Society of Civil Engineers.
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Introduction

Recent storms have caused significant flooding to coastal plain
communities, and these flooding events are expected to increase
in frequency and intensity under changing climate conditions
(Feng et al. 2016; Prein et al. 2017). In the US, Hurricanes Harvey
and Irma, which occurred back to back in 2017, were part of one of
the most active Atlantic hurricane seasons (NOAA 2017). These
hurricanes caused both fatalities and significant damage, largely
due to rainfall-driven flooding (Bacopoulos 2019). Hurricane Flor-
ence, which struck the US East Coast in 2018, caused widespread

power outages and devastating damage due to significant rainfall, a
storm surge, and high wind speeds; these rainfall also caused sig-
nificant flooding throughout the coastal plain (NOAA 2018). With
such events becoming more frequent in the coming years, there is
an increased need to better forecast rainfall-driven flooding impacts
at a high spatial resolution to mitigate impacts and to assist in re-
covery efforts.

Efforts to improve rainfall-driven flood forecast modeling often
use computationally efficient one-dimensional (1D) river hydraulic
models (Kalyanapu et al. 2011; Timbadiya et al. 2015). For exam-
ple, one key effort in the US for improved flood forecasting is the
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National Water Model (NWM), which uses the Weather Research
and Forecasting Hydrologic model (WRF-Hydro). WRF-Hydro is
configured to use the Noah-MP land surface model (LSM) and a
1D Muskingum-Cunge channel routing procedure (Office of Water
Prediction 2019). Muskingum-Cunge routing assumes uniform
water velocity and a constant water surface elevation modeled at
each cross section (Bates and De Roo 2000; Crowder and Diplas
2000; García et al. 2015). These assumptions are appropriate and
widely used in flood forecasting applications in areas of the US that
have sufficient topographic relief (Bedient et al. 2008; Kalyanapu
et al. 2011; Knebl et al. 2005; Noman et al. 2001; Shrestha and
Nestmann 2009; Tate et al. 2002; Yan et al. 2015). However, they
are often not appropriate for low-relief regions like coastal plains
with more complex flow structures (Bates et al. 1992; Leandro
et al. 2009).

Hydrodynamic models can simulate the two-dimensional Saint-
Venant equations and provide flow field descriptions that are a bet-
ter alternative for these low-relief terrains (Engineers Australia
2012; National Research Council 2009; Timbadiya et al. 2015).
However, there are data and computational challenges with using
two-dimensional (2D) models that have limited their widespread
adoption in practice (Lamb et al. 2009). Researchers have focused
on approaches to improve the computation time of 2D hydrodynamic
models, including applying new numerical schemes and parallel
computing (Yu 2010). Others have leveraged advances in cloud com-
puting and graphical processing units (GPUs) to address computa-
tional challenges (Morsy et al. 2018). These advances are making 2D
models for flood forecasting applications more practical.

At the same time, advances in geospatial and remote sensing
data are providing more detailed representations of the landscape
needed for constructing accurate 2D hydrodynamic models. A key
focus of prior research has been on leveraging the now widely
available high-resolution topographic data collected using lidar to
capture the land surface within 2D hydrodynamic models. For ex-
ample, Marks and Bates (2000) compared standard parametrization
methods of 2D hydraulic models with high-resolution lidar. They
found that even small topography changes can affect flood hydraul-
ics, thus producing different percentages and patterns of inundation.
Still, significant terrain processing such as filtering, modeling sys-
temic errors, feature detection, and thinning must be applied to these
data before they can be used in hydrodynamic models (Abdullah
et al. 2012). Just selecting a filtering algorithm for terrain processing
can be quite difficult, as Abdullah et al. (2012) highlight. Once se-
lected, these filtering and quality control measures can consume an
estimated 60%–80% of processing time (Schumann et al. 2008). In
another study, an algorithm was developed for identifying features
such as short and tall vegetation in lidar data (Cobby et al. 2001). For
estuaries and bays, Muñoz et al. (2020) developed and used an Arc-
GIS version 10.1 tool to correct digital elevation models (DEMs)
using updated emergent herbaceous wetlands regions for improved
model maximum floodwater height (MFH) and velocity (MFV). En-
suring the compatibility of the topographic resolution and the com-
putational resolution is yet another challenge (Bates et al. 2003).

Prior research using 2D hydrodynamic models for flooding has
also explored parameterization, especially for critical parameters
like roughness coefficients (Lim and Brandt 2019; Liu et al. 2019),
distributed rainfall representations (Bruni et al. 2015; Ochoa-
Rodriguez et al. 2015), and other factors critical to accurate flood
forecasting (Zhao et al. 2013). For example, Manning’s coefficient
is often used for parameterizing roughness. Although standard
tables of Manning’s values are widely available and have been used
for decades to assign reasonable roughness values in 1D models
(Chow 1959), applying these values directly to 2D models may re-
sult in inaccurate model outputs (Horritt et al. 2006). Lim and

Brandt (2019) and Liu et al. (2019) found that models with high-
resolution DEMs perform better when their roughness values are
decreased from the standard recommendations, while models with
low-resolution DEMs perform better when their roughness values
are increased from the standard recommendations. In another study
by Medeiros et al. (2012), in situ Manning’s roughness values were
found to vary significantly from those prescribed using standard land
use/land cover (LULC) methods. Thus, more research is needed to
better understand how different improvements to such models influ-
ence their accuracy.

While this past research has focused primarily on topographic
and surface roughness improvements to 2D hydrodynamic models,
less work has focused on other data improvements including river
bathymetry and accurate rainfall forcing data. The objective of this
research is to systematically explore these data enhancements to
understand how they impact the predictive skill of a 2D hydrody-
namic model for a case study region. This study builds on prior
research applying a particular 2D hydrodynamic model, TUFLOW
version 2016-03, to a region of the coastal plain of Virginia to pro-
vide flood risk prediction of transportation infrastructure during se-
vere storm events (Morsy et al. 2018). The goal of this research is to
best direct time-consuming, expensive data collection and processing
efforts to those that will be most impactful in creating a more accu-
rate 2D hydrodynamic model.

Materials and Methods

Study Area

The study area is the portion of the Chowan River Basin in the
coastal plain of Virginia (Fig. 1). The 2D model domain of the
study area is about 5,800 km2 and includes the Nottoway, Black-
water, and Meherrin Rivers. The study area’s longest flow path is
about 180 km, with a slope varying from 21% in the higher-relief
western portion of the study domain to nearly level in the lower-
relief eastern portion of the study domain. The contributing subwa-
tersheds upstream of the study area (an additional ∼5,200 km2)
consist of high-relief terrain areas. These subwatersheds can be
adequately modeled using a lumped water-scale hydrologic model
[e.g., either the Hydrologic Engineering Center–Hydrologic Model-
ing System (HEC-HMS) model or the NWM] to provide inflow
boundary conditions for the 2D hydrodynamic model, TUFLOW.
The outlet is located downstream from where the Nottoway, Black-
water, and Meherrin Rivers merge into the Chowan River approx-
imately 80.5 km (50 mi) from the Albemarle Sound. Downstream
outlet boundary conditions were assumed not to be influenced by
tidal conditions and water backflows associated with tides in this
study because the watershed outlet is dominated by rainfall and run-
off, especially during flooding events. A report from the USGS states
that while tidal influence may extend to the lower portions of tribu-
taries to the Chowan River, most water fluctuations are minimal due
in large part to its distance from the ocean (Giese et al. 1985).

Original Model

The 2D hydrodynamic TUFLOW model used as the original model
in this study is described in detail in Morsy et al. (2018). The model
included a 10-m-resolution DEM from the National Elevation Data-
set (NED), county-scale soil data (SSURGO 2018), and 30-m-
resolution land use data from the 2011 National Land Cover Dataset
(USGS 2011) used to derive roughness coefficients within the
model. The model also included the location of 493 georeferenced
bridges and culverts owned and operated by the Virginia Depart-
ment of Transportation (Virginia DOT), each with survey roadway
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elevations that can be used for estimating flood inundation. Through-
out this study, the computational cell resolution was a 30-m fixed-
grid resolution, with 6.4 million computational cells as further
described in Morsy et al. (2018).

Two different real-time rainfall products were used by the system
for hindcasting applications to calibrate and evaluate the model:
(1) National Oceanic and Atmospheric Administration (NOAA)
gauges, and (2) Next Generation Weather Radar (NEXRAD) rainfall
estimates. The model was calibrated and evaluated against historical
water elevation data measured by USGS with the goal of matching
the modeled water elevation peaks rather than the complete stage
depth time series for major storm events. This original model could

be considered a basic starting point for any national-scale 2D hy-
drodynamic flood model given nationally-available geospatial and
observational data. The model’s enhancements described in the fol-
lowing section represent modifications made to the model to ex-
plore their impact on improving the model’s accuracy at
matching observed water elevations.

Data Enhancements

Table 1 summarizes all enhancements made to the original model
to test the model’s sensitivity to these input data improvements.
Improvements to the model were quantified as a reduction in the

Fig. 1. Study and contributing areas for water depths and flows simulated by the 2D hydrodynamic model. [Map data from ESRI, HERE, Garmin,
USGS, Intermap, INCREMENT P, NRCan, ESRI Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), NGCC, © OpenStreetMap
contributors, and the GIS User Community.]

Table 1. Original and final model comparison

Original model Final model

Coarse-resolution DEM data set (10-m DEM) Higher-resolution data sets used where available (1-m DEM) for low-relief terrain
Missing and inaccurate streamlines
[National Hydrography Dataset Plus (NHDPlus)
and 10-m DEM]

Site visits for river cross-section bathymetric data to improve streamlines

Coarse-resolution land use data set (30-m LULC) 30-m LULC with 3-m resolution near channels and in floodplain
Sparse rain gauge observations, use of tropical rainfall
measuring mission (TRMM)

Improved rain gauging network and quality control of rainfall data before interpolation

© ASCE 05021002-3 J. Hydrol. Eng.
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relative error (RE) between observed and modeled water elevation
and improvement in the model’s Nash-Sutcliffe model efficiency
coefficient (NSE). NSE values can range from −∞ to 1, with an
NSE value of 1 indicating a perfect match between the modeled
outputs and the observed data (McCuen et al. 2006). The model
is generally considered a well-calibrated model of sufficient quality
when the NSE value is at least 0.5 (Moriasi et al. 2007, 2015; Ritter
and Muñoz-Carpena 2013).

Terrain
The original model used a 10-m-resolution DEM for representing
the terrain within the study domain. High-resolution lidar-derived
DEMs (from 0.76 to 1.52 m in horizontal resolution) are available
for most of the study region (VGIN 2016a). The small portion of
the study region not covered by these high-resolution lidar data and
for which the 10-m DEM was used, fortunately, has higher topo-
graphic relief. For consistency across the study area, the various
DEMs were resampled to a domain-wide 1-m DEM.

Given that the model’s primary application is to forecast flood-
ing impacts on transportation infrastructure, it was particularly im-
portant to represent channel cross sections at bridges and culverts.
To do this, it was first necessary to obtain accurate road centerlines
in the study domain from the Virginia Geographic Information
Network (VGIN). Using a georeferenced data set of bridges and
culverts provided by Virginia DOT, it was possible to identify the
road segments representing each bridge and culvert. Next, the road
segment crossing the flow path was extended to cover the entire
floodplain at that bridge or culvert. Finally, elevation values were
extracted from the 1-m DEM from across this road segment center-
line to capture the channel cross section at the bridge or culvert
location. Typical airborne, terrestrial lidar may be unable to capture
the bathymetric portion of a channel cross section because it
typically operates with near-infrared (NIR) wavelengths (typically
1,064-nm lasers), which cannot penetrate water (Fernandez-Diaz
et al. 2014; McKean et al. 2009; NOAA 2013). For some bridges
that cross larger rivers in the study domain, accurate representation
of river cross sections must be obtained through other means, as
will be discussed in the section “Channel Cross Section.”

Streamlines
The TUFLOW model uses a vector streamline to define a path as
well as start and end elevations for each segment for directing chan-
nelized flow through the model. The original model’s streamlines
were compared with aerial imagery for the lowest-relief portion of
the study region, showing significant discrepancies and potential
sources of error for the original model. The streamlines in the origi-
nal model were also compared to the National Hydrography Data-
set Plus (NHDPlus), revealing that some rivers were missing in the
model. A new version of the streamlines was generated to address
these potential sources of error, starting with the latest available
version of NHDPlus for the study region. There was a mismatch

with the 1-m DEM data set and with areal imagery data for some
reaches in the NHDPlus flowlines feature data set. To ensure the
alignment of these reaches with the 1-m DEM data set and imagery
data, the streamline data were modified through both partial auto-
mation and manual modification, with the automation adjustments
made using hydrologic terrain processing tools in geographic in-
formation system (GIS) software.

Roughness Coefficients
The model’s roughness coefficients were obtained from land cover
maps and established lookup tables relating land cover types to typ-
ical Manning’s coefficient values. The original model relied on
only the National Land Cover Database (USGS 2011), which has
a relatively coarse spatial resolution of 30 m. To improve on this, a
second source of land cover data with 3-m spatial resolution, the
Virginia Land Cover Database (VLCD) provided by VGIN, was
used (VGIN 2016b). Because the 3-m resolution of VLCD 2015
is not required for the entire study area (e.g., outside of river chan-
nels and floodplains) and because doing so would significantly in-
crease the computational demands of the model, the National Land
Cover Database 2011 was used as the default land cover represen-
tation in the study area and VLCD 2015 as the land cover repre-
sentation in and near (within 1 km) river channels.

From this merged land cover map, Manning’s coefficient values
were used for each land cover type recommended by Kalyanapu
et al. (2009) for defining initial roughness coefficients (Table 2).
These roughness coefficients were then adjusted so that the simu-
lated water elevation values better match water elevation values ob-
served at the USGSmonitoring stations within the study domain for
the Hurricane Matthew storm event. These adjustments were made
for the eight dominant land covers in the study domain manually,
given the significant model runtime, which prohibited more auto-
mated sensitivity and calibration procedures. Table 2 gives the ini-
tial and final values of Manning’s coefficients for these land cover
types.

Channel Cross Section
Channel bathymetry cannot be obtained from typical airborne,
topographic lidar because they use NIR wavelengths that do not
have enough energy to penetrate water (Fernandez-Diaz et al. 2014;
McKean et al. 2009; NOAA 2013). Additionally, bathymetry data
are not available for most rivers in the US. Therefore, site visits
were conducted to the larger streams with USGS gauging stations
located in the lower-relief eastern portion of the study area
(i.e., USGS Stations OS-E, OS-F, OS-G, OS-H, and OS-I shown
in Fig. 1). Cross-sectional information was collected during these
site visits by measuring the distance between the bridge deck and the
stream bed. Bridge deck locations, where measurements were taken,
were recorded using GPS. The obtained cross-sectional information
was then included in the channel information within TUFLOWas the
cross-section properties. When available, historical cross-section

Table 2. Modified Manning’s coefficient values for different land cover types resulting from the model calibration

Land cover code Land cover description Initial Manning’s coefficient (n) Final Manning’s coefficient (n)

41 Deciduous forest 0.360 0.12
42 Evergreen forest 0.320 0.10
43 Mixed forest 0.400 0.15
52 Shrub/scrub 0.400 0.15
71 Grassland/herbaceous 0.368 0.12
81 Pasture/hay 0.325 0.10
82 Crop/vegetation 0.323 0.10
95 Emergent herbaceous wetlands 0.183 0.15

Source: Data from Kalyanapu et al. (2009).
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surveys for these same bridge locations were obtained from Virginia
DOT. The new and historical survey data were then compared to the
1-m DEM data set used by the model, and the channel cross sections
were adjusted accordingly. While the inclusion of channel bathymet-
ric data for all large rivers in the model would be ideal, such data are
unavailable, so the collected cross-sectional data were used instead.

Rainfall
The original model used TRMM gridded rainfall estimates because
NEXRAD estimates were not available for the modeled storm
events. Both TRMM and NEXRAD assist in measuring the spatial
distribution of rainfall for large domains, such as the one in this
study. To improve the spatially distributed rainfall estimates and
the temporal resolution of rainfall used by the model, careful analy-
sis and interpolation of gauged rainfall data available within the
study region were completed. First, all gauged rainfall data from
NOAA gauges in and near the study area were obtained for the
modeled storm events (Table 3). Then, by using an inverse distance
weight (IDW) interpolation method available within the TUFLOW
model with the default exponent of 2 (BMT WBM 2016, p. 655),
these 12 rainfall gauges were converted to gridded rainfall data with
a 500-m spatial resolution and a 20-min temporal resolution.

Before the rainfall gauge data were interpolated and used in the
model, they were first checked for quality control (QC). This QC
identified not only rainfall observation outliers but also rain gauge
malfunctions during extreme rainfall events. Fig. 2 shows the col-
lected cumulative rainfall data at each of the 12 NOAA gauges

identified within the region for Hurricane Matthew. Although there
were data available from all 12 NOAA stations for this event, some
data had to be disregarded due to what appears to be rain gauge
malfunctions. For example, for an extreme rainfall event such as
Hurricane Matthew, sudden flat lines in cumulative rainfall data
can often mean a gauge, which is often a mechanical tipping
bucket, malfunctioned (Skinner et al. 2009; Steiner et al. 1999).
This was likely the case with Gauge RG-I, which has significantly
lower precipitation values in comparison with another gauge in its
proximity (RG-D), and with RG-H, which appears to have failed
early in the storm event. The incremental jumps in the RG-J data
seems to be unnatural. RG-K has one of the most significant rainfall
totals but may have malfunctioned near the end of the event. Based
on this analysis, RG-I, RG-J, and RG-K were excluded from the
data set used for rainfall interpolation for Hurricane Matthew; data
from the nearby gauges RG-D, RG-L, and RG-G were complete
and could be referenced in their absence.

Model Evaluation

Model Scenarios
Four different versions of the model inputs were evaluated to better
understand the impact of the data enhancements described in the
prior section (Table 4). The first version of the model described
in the “Original Model” section is referred to as the original model.
The second version is the original model enhanced with the new
terrain representation, streamlines, and roughness coefficients de-
scribed in the “Terrain” section through the “Roughness Coeffi-
cients” section and is referred to as the new data set model in
subsequent sections. The third version builds from the new data
set version of the model and further enhances it with improved chan-
nel cross-section information obtained through site visits, as de-
scribed in the section “Channel Cross Section.” This version of
the model is referred to as the site visit model. Finally, the fourth
version of the model represents further enhancements from the site
visit model with improved rainfall estimation, as described in the
“Rainfall” section, and is referred to as the final model. Even with
the use of powerful GPU machines, running the model for the Hur-
ricaneMatthew event took approximately 10 h to complete, limiting
the variety and combinations of model alternatives that could be
tested.

Conducting Model Runs
All test runs for data enhancements to the model were done using
Hurricane Matthew. Once data enhancements were complete, the
model was evaluated using a second, unnamed storm that occurred
on October 11, 2018. The October 11, 2018, storm event had less

Table 3. Rainfall gauges available from NOAA within and nearby the study area

ID

NOAA station

Start EndStation number Station name

RG-A 72027803704 EMPORIA-GRENVLE RGNL ARPT, VIRGINIA January 1, 2006 Current date
RG-B 72401993773 WAKEFIELD MUNICIPAL ARPT, VIRGINIA January 1, 2006 Current date
RG-C 72308313763 FRANKLIN MUNICIPAL-JOHN BEVERLY ROSE AIRPORT, VIRGINIA October 16, 1994 Current date
RG-D 72077799999 LAWRENCEVILLE BRUNSWICK MUNI, VIRGINIA June 25, 2014 Current date
RG-E 72401599999 ALLEN C PERKINSON BLACKSTONE AAF/FT PICKETT, VIRGINIA September 22, 2003 Current date
RG-F 72401493714 DINWIDDIE COUNTY AIRPORT, VIRGINIA January 1, 2006 Current date
RG-G 72400703719 SUFFOLK MUNICIPAL AIRPORT, VIRGINIA January 1, 2006 Current date
RG-H 72307993796 TRI-COUNTY AIRPORT, NORTH CAROLINA January 1, 2006 Current date
RG-I 72411893797 MCKNBRG-BRUNWICK RGNL ARPT, VIRGINIA January 1, 2006 Current date
RG-J 72308793735 FELKER ARMY AIRFIELD, VIRGINIA November 1, 1960 Current date
RG-K 72049999999 HAMPTON ROADS EXECUTIVE AIRPORT, VIRGINIA May 3, 2011 May 20, 2018
RG-L 72308693741 NWPT NEWS/WIMBURG INTL APT, VIRGINIA January 1, 2000 Current date

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70

C
um

ul
at

iv
e P

re
ci

pi
ta

tio
n 

(m
m

)

Time (hrs)

RG-A RG-B
RG-C RG-D
RG-E RG-F
RG-G RG-H
RG-I RG-J
RG-K RG-L

Fig. 2. Cumulative rainfall data at each of the 12 NOAA rainfall
gauges for Hurricane Matthew.
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impact on the study domain than Hurricane Matthew, and therefore
it demonstrates the flood warning system’s ability to model a less
intense storm event. Reynolds et al. (2020) studied the use of single
events compared to using multiple or no historical events for model
calibration and found that using a single extreme event can signifi-
cantly improve model predictions compared to those models with-
out historical data. For this reason, and due to the computational
demands of the model, we have chosen to use one event for model
calibration and an additional event for validation and evaluation.
For these evaluation model runs, the input data (inflow boundary
conditions and rainfall data) from the NWMwere obtained and pre-
processed to mimic a run of the flood warning system that would
leverage the NWM, rather than HEC-HMS models as described
previously, for boundary conditions. The NWM was used for in-
flow boundary conditions because the NWM output is now avail-
able, but was not available before 2016 (Office of Water Prediction
2019), requiring the use of a HEC-HMS model to model contrib-
uting subwatersheds and provide input streamflows as boundary
conditions for the 2D hydrodynamic model. The inflow boundary
conditions and input rainfall data were obtained from the NWM for
this run to mimic a real-time flood forecasting scenario and had a
coarse temporal resolution of 1 h compared to the rainfall data set
used for modeling Hurricane Matthew. The outlet boundary con-
ditions were assumed not to be influenced by tidal conditions
and water backflows associated with tides. The rainfall data ob-
tained from the NWM have a spatial resolution of 500 m. The mod-
eled water elevations were compared to observed water elevations
collected from the available USGS stations to demonstrate the
model’s performance. Both local machines and the Google Cloud
Platform (GCP) were used as computational resources to run
the model.

Comparison to Observed Conditions
Streamflow, along with unpublished, provisional water elevation
data for the stations in the study region, were obtained from USGS
(Fig. 1; Table 5). A basic QC was performed on USGS water eleva-
tion observation data before using the data to compare with the

TUFLOW model predictions. Water depth observations for each
station were converted to a water elevation estimation using the
gauge’s elevation and vertical datum. The NOAA VDatum tool
(NOAA 2019) was used to convert the water elevations into the
vertical datum used within the TUFLOW model (NAVD88). Fi-
nally, a Python script was written to automate the comparison
of the gauge water elevations to the model-predicted water
elevations.

The modeled streamflow was compared to the observed stream-
flow available for nine USGS stations in the study area as an initial
model evaluation. To extract the predicted flow from the TUFLOW
model, a polyline feature was defined in GIS across the floodplain
at each USGS station. The length of this polyline covered the entire
floodplain, and not just the bank-full width of the stream, in order to
extract the streamflow from the TUFLOW model. If this was not
done correctly, the model-predicted streamflow would not re-
present the total streamflow at the gauging location for that flood
event, and, therefore, would likely be a poor match with the ob-
served streamflow time series.

Improvements to the model’s predictive skill were quantified as
a reduction in the RE between observed and modeled water eleva-
tion peaks and improvement in the model’s NSE. Watershed-scale
models at the spatial and temporal resolution of the TUFLOW sim-
ulations are considered to be accurate when the NSE values are at
least 0.5 (Moriasi et al. 2007, 2015; Ritter and Muñoz-Carpena
2013).

Results and Discussion

Results from Data Enhancements

Fig. 3 shows results from the four different model versions compar-
ing modeled to observed water elevation at nine different observa-
tional stations during Hurricane Matthew. Table 6 gives the water
elevation RE and NSE for each station and version of the model.
The results show that, after including the high-resolution DEM,

Table 4. Model versions tested through this research

Model version name Description

Original model Original model as described in the “Original Model” section
New data set Original model enhanced with new terrain, new streamlines, and the roughness coefficients
Site visit New data set model enhanced through site visits to collect stream cross-section data
Final model Site visit model enhanced through improved rainfall estimation

Table 5. Water depth data availability at USGS stations within the study domain

ID

USGS station

Start EndStation number Station name

OS-A 02045500 NOTTOWAY RIVER NEAR STONY CREEK, VIRGINIA October 1, 2003 Current date
OS-B 02047000 NOTTOWAY RIVER NEAR SEBRELL, VIRGINIA October 1, 2002 Current date
OS-C 02052000 MEHERRIN RIVER AT EMPORIA, VIRGINIA October 1, 2003 Current date
OS-D 02052090 MEHERRIN RIVER NEAR BRYANTS CORNER, VIRGINIA November 26, 2012 Current date
OS-E 02047500 BLACKWATER RIVER NEAR DENDRON, VIRGINIA October 1, 2003 Current date
OS-F 02047783 BLACKWATER RIVER AT ROUTE 620 NEAR ZUNI, VIRGINIA April 25, 2013 Current date
OS-G 02049500 BLACKWATER RIVER NEAR FRANKLIN, VIRGINIA October 1, 2007 Current date
OS-H 02050000 BLACKWATER RIVER AT HWYS 58=258 AT FRANKLIN, VIRGINIA June 30, 2010 Current date
OS-I 02047370 NOTTOWAY RIVER NEAR RIVERDALE, VIRGINIA July 11, 2013 Current date
OS-J 02053200 POTECASI CREEK NEAR UNION, NORTH CAROLINA October 1, 2007 Current date
OS-K 02051500 MEHERRIN RIVER NEAR LAWRENCEVILLE, VIRGINIA October 1, 2002 Current date
OS-L 02051000 NORTH MEHERRIN RIVER NEAR LUNENBURG, VIRGINIA October 1, 2003 Current date
OS-M 02044500 NOTTOWAY RIVER NEAR RAWLINGS, VIRGINIA October 1, 2003 Current date
OS-N 02046000 STONY CREEK NEAR DINWIDDIE, VIRGINIA October 1, 2003 Current date
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modified streamlines, high-resolution land cover, and road network
data sets, the model predictions better fit with the observed water
elevation peaks. The model predictions for modeled water elevation
were significantly improved for five of the nine USGS stations (OS-
A, OS-B, OS-D, OS-E, and OS-F). The RE improved from −9% to
18% in the original model to−1.4% to 7% in the new data set model.
There was also a noticeable improvement for the NSE values at all
stations except OS-A.

Although the majority of the stations improved after applying
the new data set, the model still had poor accuracy at the three sta-
tions located on the southeast portion of the model domain (OS-G,
OS-H, and OS-I), as shown in Fig. 3 and Table 6. These three sta-
tions are located in the lowest-relief region in the study domain,
where it is hard to extract the correct bathymetric features of rivers
(i.e., river bed elevation and width), even with the use of a high-
resolution lidar-derived DEM data set. Thus, these stations high-
light the need for bathymetry and cross-section information in
low-relief regions.

The model performed as well as or better than the new data set
run at most of the USGS stations with cross-section data collected

through the site visits described in the section “Channel Cross Sec-
tion.” This improvement made the most substantial difference for
the stations located in the low-relief regions of the model domain
(OS-G, OS-H, and OS-I). These results show that obtaining accurate
cross-sectional data was very important for low-relief terrains and
can significantly enhance model performance.

When enhanced rainfall data were used, there were significant
improvements to the modeled hydrographs at the USGS stations
OS-B, OS-G, OS-H, and OS-I. This improvement suggests that
the gridded rainfall data generated from using the gauged rainfall
instead of TRMM data provide a better representation of the study
region’s rainfall, especially for the subbasins draining to these
USGS stations. Most of the rainfall came from four NOAA gauges
(RG-B, RG-C, RG-G, and RG-H) that are located primarily in the
eastern half of the study domain, thereby improving the accuracy of
these difficult-to-model, low-relief subbasins.

Finally, the model’s ability to predict flow accurately was tested.
Fig. 4 compares streamflow hydrographs between the modeled and
observed discharge for the final model version during Hurricane
Matthew. Except for OS-E and OS-B, all the USGS stations

Fig. 3.Model output for the four data enhancement versions at nine USGS stations for Hurricane Matthew: (a) OS-A; (b) OS-B; (c) OS-C; (d) OS-D;
(e) OS-E; (f) OS-F; (g) OS-G; (h) OS-H; and (i) OS-I.
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modeled streamflow that approximately matches the observed dis-
charge with RE values ranging from −10.81% to 10.56% and NSE
values ranging from 0.72 to 0.95. Overall, this comparison to dis-
charge provides further evidence that the model has predictive skill
in that it can simulate streamflow resulting from Hurricane Mat-
thew accurately.

Discussion of Data Enhancements

This work started with the original model with an average RE and
NSE of −14.21% and 0.39, respectively. In the first phase of the
model enhancement, higher-resolution terrain data, streamline rep-
resentations, land cover data, and road network data sets were care-
fully combined to improve the underlying geospatial framework
used to generate the model input files. With these changes, the aver-
age RE and NSE were reduced slightly to −12.59% and 0.23, re-
spectively. These time-consuming efforts to improve the model,
arguably, did not justify the effort.

In the second phase of the model enhancement, site visits were
performed at select locations in the region to obtain surveyed cross-
section data to improve the model’s bathymetric representation. As
a result, there was a significant improvement in the model perfor-
mance, especially for the model’s low-relief areas. The average RE
was reduced to −3.29%, and the NSE improved to 0.56, which is
within the acceptable range of a well-calibrated model according to
established guidelines (McCuen et al. 2006; Moriasi et al. 2007,
2015; Ritter and Muñoz-Carpena 2013). Some work has focused
on estimating river bathymetry using standard geometric shapes
due to the lack of widely available river bathymetric data and the
computational demands of using such data (Grimaldi et al. 2018).
However, results from the data enhancements in this study indicate
that the model is sensitive to channel bathymetry relative to other
inputs, especially within the study region’s low-relief portion. Con-
sequently, future work should focus on improving river bathymetric
representation within the model.

In the final phase of the model enhancement, rainfall represen-
tation was improved by using NOAA gauges. The QC measures
taken for this phase of model enhancements allowed for outliers
and stations that had malfunctioned during the studied storm event
to be removed. These outliers and malfunctions could have led to
increased or reduced rainfall amounts. Thus, with their removal, the
rainfall distribution created had a more accurate representation of
rainfall in the study domain. These final adjustments led to an aver-
age RE of 5.15% and an average NSE of 0.67. These results suggest
that, in addition to pursuing bathymetric representation improve-
ments, future research should also work to improve rainfall inputs
and representations within the study domain.

Model Evaluation

Figs. 5 and 6 show the modeled water elevation for the October 11,
2018, event using observed rainfall and inflow boundary condition
time series. For stations in the higher-relief portion of the study
domain (Fig. 5), the model results for water elevation estimates
can be considered acceptable at Stations OS-A, OS-B, OS-C, and
OS-D with RE values of −0.58%, 2.04%, 1.42%, and 0.67%, re-
spectively, and NSE values of 0.76, 0.24, 0.51, and 0.43, respec-
tively. The model in its current state could be used for flood
forecasting of less extreme events within this higher-relief portion
of the watershed.

While the model performed well for stations in the higher-relief
portion of the study domain (OS-A through OS-D), it did not per-
form as well for stations in the lower-relief portion (OS-E through
OS-I) (Fig. 6). Station OS-E had an RE of 9.75% with a low NSE

value of −0.86. Station OS-I, which is located near the outlet of the
2D model, had an RE value of 47.53% and a low NSE value of
−0.32. Similarly, Stations OS-F, OS-G, and OS-H performed
poorly. It can be seen from the results that the model tended to pre-
dict a higher water level than observed at Stations OS-E through
OS-I. The model showed that the rivers largely did not respond
to the rainfall event at these stations. OS-E through OS-H are part
of the same low-relief watershed; thus, it is possible the rainfall in
this basin did not match the rainfall used to drive the model. An-
other possibility is that more channel cross sections and bathymet-
ric information are needed to better characterize this low-relief
portion of the study domain. More model testing including with
other rainfall events would be needed before the model could be
used for flood forecasting within this lower-relief portion of the
watershed.

OS-I is located near the outlet of the watershed and includes
flow from both the western, higher-relief watershed (with Stations
OS-A and OS-B) and eastern, lower-relief watershed (with Stations
OS-E through OS-H). Because there was relatively little runoff gen-
erated from October 11, 2018 storm event compared to the Hurri-
cane Matthew event, it seems from the observation data at OS-I that
tidal effects influenced the lower portion of the catchment during
the October 11, 2018 storm event. This tidal influence was not ob-
served in the Hurricane Matthew data, and, as a result, tidal effects
were not included in the model. This is most likely due to the larger
volume of runoff associated with HurricaneMatthew dominating the
flood behavior in the lower, tidally influenced portion of the study
area. In addition to highlighting the impacts of the omission of tidal
effects, this test run also highlights the impact that relatively coarse,
hourly rainfall data can have on the model’s performance when ap-
plied to a second, independent storm event. Thus, while this test run
indicated acceptable model performance for the higher-relief portion
of the watershed, it also demonstrated the model’s reliance on high-
quality data, especially in low-relief regions. Therefore, results from
this test run suggest other factors, such as improved rainfall obser-
vation and channel bathymetric representations, and including down-
stream boundary conditions such as tidal effects, may need to be
included in future iterations of the model if there is a need to simulate
flooding impacts from smaller events, like the October 11, 2018,
event. These results support Santiago-Collazo et al.’s (2019) find-
ings, which were that downstream boundary conditions must be in-
cluded for compound flooding due to rainfall-runoff and storm surge
in coastal floodplains.

Model Limitations

In addition to these factors, other dynamics may need to be in-
cluded for the realization that tidal effects may be needed in future
versions of the 2D hydrodynamic model. For example, the initial
assumption in the model was that the domain was saturated prior to
the storm event. For Hurricane Matthew, this was an appropriate
assumption. In the days preceding Hurricane Matthew, two signifi-
cant storm events (Hurricane Hermine on September 3, 2016, and
Tropical Storm Julia on September 19, 2016) impacted the study
domain. Because the soil was already saturated from these two
events, it could be safely assumed that infiltration would not be
a dominating process for modeling water surface elevation and
discharge for Hurricane Matthew. However, in general, it will be
necessary to consider antecedent soil moisture conditions and in-
filtration processes in the model to enhance the model performance
for other events.

For this study, tests were also conducted to determine model sen-
sitivity to groundwater elevation. These results showed that the four
groundwater wells available in this large domain are likely unable to
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Table 6. Comparison of the modeled and observed water elevation based on the RE and NSE statistics for the four data enhancement versions at nine USGS
stations for Hurricane Matthew

Station ID

Original model New data set Site visit Final model

Water elevation
peak RE (%) NSE

Water elevation
peak RE (%) NSE

Water elevation
peak RE (%) NSE

Water elevation
peak RE (%) NSE

OS-A −2.41 0.74 3.23 0.5 3.24 0.5 0.99 0.64
OS-B 18.27 0.42 6.97 0.45 7.04 0.73 8.78 0.81
OS-C 3.07 0.39 7.93 0.43 7.94 0.47 1.75 0.4
OS-D −8.95 0.2 0.35 0.43 0.31 0.35 −0.6 0.5
OS-E −1.61 0.64 −1.36 0.05 −0.085 0.77 3.31 0.59
OS-F −2.34 −0.1 −1.22 0.03 −4.12 −0.05 8.98 0.3
OS-G −19.18 0.55 −30.3 0.12 −12.33 0.8 2.11 0.85
OS-H −50.66 0.45 −30.1 −0.01 1.43 0.86 17.63 0.94
OS-I −64.12 0.21 −68.81 0.08 −32.24 0.62 3.38 0.96
Average −14.21 0.39 −12.59 0.23 −3.29 0.56 5.15 0.67

Fig. 4. Final model output for Hurricane Matthew showing the match to discharge observations for USGS stations (a) OS-A; (b) OS-B; (c) OS-C;
(d) OS-D; (e) OS-E; (f) OS-F; (g) OS-G; (h) OS-H; and (i) OS-I.
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capture the real groundwater table variability across the study do-
main. Assuming a high groundwater table, based on antecedent soil
moisture conditions, may bemore appropriate for the HurricaneMat-
thew simulations. For other events, this could be considered a setting
in the model that is adjusted based on antecedent rainfall and, per-
haps, baseflow conditions before the storm event occurs.

Some locations, particularly those in lower-relief portions of the
watershed, may also require a more complex hydrodynamic model
that includes factors, like wind and tide, or a finer computational
cell resolution than the 30-m fixed-grid resolution used in this study
to capture flow dynamics. For instance, Station OS-F had the low-
est water elevation NSE value of 0.3, but still showed a significant
improvement compared to the original model, new data set, and site
visit runs. This station’s location has tremendous amounts of stor-
age within its broad floodplain. Routing water through these sys-
tems is not as straightforward because sometimes the water flows
out into floodplain storage and then back into the channel as the
system drains, and sometimes it will flow upstream due to wind
and tide. These complications could be a source of the errors af-
fecting Station OS-F and could be improved with a more complex
hydrodynamic model that.

Conclusions

This study’s primary objective was to understand the effect of
input data quality on model accuracy for a regional-scale 2D

hydrodynamic model implemented in a low-relief coastal plain.
The goal of this study was not to produce a fully calibrated and
validated flood forecasting model but rather to understand how
various enhancements to underlying geospatial data used by the
model contribute to the accuracy of water level predictions. The
study results, therefore, are recommendations for which data en-
hancements should be prioritized for similar 2D hydrodynamic
modeling efforts given often limited resources in creating such
models and their significant runtime that limit the ability to perform
a thorough model calibration and validation. Building from a model
described in Morsy et al. (2018), data enhancements to the model
explored through this study were divided into three phases, or ver-
sions of the model. In the first phase, the original topographical and
land use information were replaced with data sets of a higher res-
olution, and streamlines in the model were updated to match the
new high-resolution topography, areal imagery, and NHDPlus
streamlines. In the second phase, detailed, ground-truthed cross-
sectional data for major rivers near USGS sites in the study do-
main’s low-relief portion were added. In the third phase, rainfall
data were put through improved QC procedures before being used
in the model. After each phase, improvements to the model were
quantified as a reduction in the RE between observed and modeled
water elevation and improvement in the model’s NSE.

The study results suggest that only having high-resolution DEM
and land use data sets to build a 2D hydrodynamic model for de-
tailed flood predictions will likely be insufficient in low-relief
coastal plain regions. Instead, accurate channel cross-sectional

Fig. 5.Modeled water surface elevation for higher-relief USGS stations (a) OS-A; (b) OS-B; (c) OS-C; and (d) OS-D with the corresponding RE and
NSE values for the October 11, 2018, storm event used for model evaluation.
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data, not derived from a high-resolution DEM but through site vis-
its to capture the river bathymetry, was the most critical of the tested
factors in achieving an accurate model. Additionally, this analysis
reinforced how QC methods for observed rainfall data were critical
for flood prediction, given how rain gauges can malfunction during
extreme rainfall events. Many of the rainfall gauging locations en-
countered errors during Hurricane Matthew and needed to be ex-
cluded from the analysis due to mechanical faults with the stations
during this extreme event. Including these data without a thorough
QC would increase error in the model that no amount of enhance-
ments and calibration can overcome. Thus, this study suggests that
additional focus should be placed both on (1) improved collection
and integration of river bathymetry with topographic data for low-
relief coastal plains, and (2) improved methods for QC of observed
rainfall data that can detect faulty stations during extreme rainfall
events.

In addition to these suggestions, the model results suggest that
future work may also need to include downstream tidal boundary
conditions, especially for events like the October 11, 2018, event
that had less rainfall, causing tidal boundary conditions to pay a
more major role near the outlet of the watershed. As previously
mentioned, these gauges near the outlet of the study domain expe-
rienced significant tidal effects during the October 11, 2018, event,
while the rainfall was less than that of the Hurricane Matthew event
used for model calibration. The inclusion of tidal boundary condi-
tions at the ocean–river interface is possible in hydrodynamic mod-
els like TUFLOW used in this study as a stage observation at the
watershed outlet; however, velocity measurements would be ideal
to simulate the propagation of momentum upstream from the tidal
forces. Similar to the techniques employed by Bilskie and Hagen
(2018) for defining flood zone transitions, transects across the study
area may help identify where dominant flood-driving mechanisms

Fig. 6.Modeled water surface elevation for lower-relief USGS stations (a) OS-E; (b) OS-F; (c) OS-G; (d) OS-H; and (e) OS-I with the corresponding
RE and NSE values for the October 11, 2018, storm event used for model evaluation.
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transition from hydrologic to coastal (e.g., tidal) within this study
area for various storm events.

The computational demands of 2D hydrodynamic models, de-
spite the ability to use multiple GPUs in parallel as was done in this
study, remains a significant challenge. While 230 model runs were
conducted in this study, each model run still took approximately
10 h to complete, limiting the variety of model alternatives that
could be tested. Additional opportunities for speeding up simula-
tions should be explored in future work, such as new approaches for
representing spatial heterogeneity in the model like quadtree multi-
domains. A newly released version of the TUFLOW hydrodynamic
model used in this study now includes quadtree functionality and
subgrid sampling, which will help to further speed up 2D hydro-
dynamic models for flood warning applications. With quadtree
multidomains, a finer resolution of computational grid cell size
can be used in rivers and floodplains where high resolution is nec-
essary, and coarse resolution can be applied to other regions in the
model domain. Future research should explore this new capability
to test a larger number of model alternatives and further advance
approaches for generating accurate, high-resolution flood forecast-
ing information to support decision makers.
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of 1D/1D and 1D/2D coupled (sewer/surface) hydraulic models for ur-
ban flood simulation.” J. Hydraul. Eng. 135 (6): 495–504. https://doi
.org/10.1061/(ASCE)HY.1943-7900.0000037.

Lim, N. J., and S. A. Brandt. 2019. “Flood map boundary sensitivity due to
combined effects of DEM resolution and roughness in relation to model
performance.” Geomatics Nat. Hazards Risk 10 (1): 1613–1647. https://
doi.org/10.1080/19475705.2019.1604573.

Liu, Z., V. Merwade, and K. Jafarzadegan. 2019. “Investigating the role of
model structure and surface roughness in generating flood inundation
extents using one- and two-dimensional hydraulic models.” J. Flood
Risk Manage. 12 (1): e12347. https://doi.org/10.1111/jfr3.12347.

© ASCE 05021002-12 J. Hydrol. Eng.

 J. Hydrol. Eng., 2021, 26(4): 05021002 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f V
irg

in
ia

 o
n 

07
/0

9/
21

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.

https://doi.org/10.2166/hydro.2011.089
https://doi.org/10.2166/hydro.2011.089
https://doi.org/10.1007/s11069-018-3327-7
https://doi.org/10.1002/esp.3290170604
https://doi.org/10.1002/esp.3290170604
https://doi.org/10.1016/S0022-1694(00)00278-X
https://doi.org/10.1016/S0022-1694(00)00278-X
https://doi.org/10.1002/hyp.1113
https://doi.org/10.1002/2018GL077524
https://doi.org/10.5194/hess-19-691-2015
https://doi.org/10.5194/hess-19-691-2015
https://doi.org/10.1016/S0924-2716(01)00039-9
https://doi.org/10.1016/S0924-2716(01)00039-9
https://doi.org/10.1016/S0022-1694(00)00177-3
http://arr.ga.gov.au/__data/assets/pdf_file/0019/40573/ARR_Project15_TwoDimensional_Modelling_DraftReport.pdf
http://arr.ga.gov.au/__data/assets/pdf_file/0019/40573/ARR_Project15_TwoDimensional_Modelling_DraftReport.pdf
http://arr.ga.gov.au/__data/assets/pdf_file/0019/40573/ARR_Project15_TwoDimensional_Modelling_DraftReport.pdf
https://doi.org/10.1038/ncomms13429
https://doi.org/10.1109/JSTARS.2013.2265255
https://doi.org/10.1109/JSTARS.2013.2265255
https://doi.org/10.1016/j.advwatres.2015.08.007
https://doi.org/10.1002/2017WR021765
https://doi.org/10.1002/2017WR021765
https://doi.org/10.1016/j.jhydrol.2006.02.016
https://doi.org/10.1016/j.jhydrol.2006.02.016
https://doi.org/10.1016/j.envsoft.2011.02.014
https://doi.org/10.1016/j.envsoft.2011.02.014
https://doi.org/10.1016/j.jenvman.2004.11.024
https://doi.org/10.1016/j.jenvman.2004.11.024
https://doi.org/10.1680/wama.2009.162.6.363
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000037
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000037
https://doi.org/10.1080/19475705.2019.1604573
https://doi.org/10.1080/19475705.2019.1604573
https://doi.org/10.1111/jfr3.12347


Marks, K., and P. Bates. 2000. “Integration of high-resolution topographic
data with floodplain flow models.” Hydrol. Process. 14 (11–12): 2109–
2122. https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2109::
AID-HYP58>3.0.CO;2-1.

McCuen, R. H., Z. Knight, and A. G. Cutter. 2006. “Evaluation of the
Nash–Sutcliffe efficiency index.” J. Hydrol. Eng. 11 (6): 597–602.
https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597).

McKean, J., D. Isaak, andW.Wright. 2009. “Improving stream studies with
a small-footprint green lidar.” EOS Trans. Am. Geophys. Union 90 (39):
341–342. https://doi.org/10.1029/2009EO390002.

Medeiros, S. C., S. C. Hagen, and J. F. Weishampel. 2012. “Comparison of
floodplain surface roughness parameters derived from land cover data
and field measurements.” J. Hydrol. 452–453 (Jul): 139–149. https://doi
.org/10.1016/j.jhydrol.2012.05.043.

Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel,
and T. L. Veith. 2007. “Model evaluation guidelines for systematic
quantification of accuracy in watershed simulations.” Trans. ASABE
50 (3): 885–900. https://doi.org/10.13031/2013.23153.

Moriasi, D. N., M. W. Gitau, N. Pai, and P. Daggupati. 2015. “Hydrologic
and water quality models: Performance measures and evaluation Crite-
ria.” Trans. ASABE 58 (6): 1763–1785. https://doi.org/10.13031/trans
.58.10715.

Morsy, M. M., J. L. Goodall, G. L. O’Neil, J. M. Sadler, D. Voce, G.
Hassan, and C. Huxley. 2018. “A cloud-based flood warning system
for forecasting impacts to transportation infrastructure systems.” Envi-
ron. Modell. Software 107 (Sep): 231–244. https://doi.org/10.1016/j
.envsoft.2018.05.007.
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