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Abstract—Pronounced variability due to the growth of renew-
able energy sources, flexible loads, and distributed generation
is challenging residential distribution systems. This context, mo-
tivates well fast, efficient, and robust reactive power control.
Optimal reactive power control is possible in theory by solving
a non-convex optimization problem based on the exact model of
distribution flow. However, lack of high-precision instrumentation
and reliable communications, as well as the heavy computational
burden of non-convex optimization solvers render computing and
implementing the optimal control challenging in practice. Taking
a statistical learning viewpoint, the input-output relationship
between each grid state and the corresponding optimal reactive
power control (a.k.a., policy) is parameterized in the present work
by a deep neural network, whose unknown weights are updated by
minimizing the accumulated power loss over a number of historical
and simulated training pairs, using the policy gradient method. In
the inference phase, one just feeds the real-time state vector into
the learned neural network to obtain the ‘optimal’ reactive power
control decision with only several matrix-vector multiplications.
The merits of this novel deep policy gradient approach include
its computational efficiency as well as robustness to random input
perturbations. Numerical tests on a 47-bus distribution network
using real solar and consumption data corroborate these practical
merits.

Index Terms—Reactive power control, deep neural network,
policy gradient, distribution systems.

I. INTRODUCTION

Reliability and operational efficiency of modern distribution

systems are currently being challenged by high penetration of

unpredictable renewable energy resources, large-scale deploy-

ment of electric vehicles, and ‘human-in-the-loop’ demand re-

sponse programs. As a consequence, reverse power flow as well

as voltage magnitude fluctuations are prevailing in nowadays

residential grids [1]. For instance, solar power generation may

drop by 15% of the photo voltaic (PV) nameplate rating within
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one minute due, for example, to intermittent cloud coverage

[2], which will result in a sizable voltage sag if no action

is taken. The role of networked control in power systems is

to maintain desired operations, while preventing contingency

events involving voltage and/or frequency instabilities from

developing into large-scale cascades and blackouts. To protect

electrical devices, bus voltage magnitudes in distribution grids

are typically regulated to be within a certain range, e.g., ±5%
around their nominal values. A common practice to achieve this

is through reactive power compensation.

Traditional approaches have relied on utility-owned devices

including load-tap-changing transformers, voltage regulators,

and capacitor banks to control reactive power injection into

the grid. Although these devices perform well in certain cases,

slow response times, discrete control actions, and lifespan

limitations discourage them from fast reactive power control

[3]. Recent advances in smart inverters offer new opportunities

by circumventing these limitations. Despite their advantages,

computing the optimal setpoints for smart inverters can be

cast as an instance of the optimal power flow task, which

entails solving a non-convex optimization problem [3]–[5].

Furthermore, to deal with the renewable energy uncertainties as

well as unreliable communication links (which cause delay and

even communication failures), stochastic, online, decentralized,

and localized smart inverter control schemes have been devel-

oped [4], [6]–[8]. Nonetheless, centralized solvers suffer from

high computational complexity, and decentralized and localized

schemes algorithms converge slowly [6], [9], [10].

To bypass these hurdles, recent proposals have engaged

machine learning approaches for fast networked control and

monitoring [11]–[14]. A support vector machine (SVM)-based

method was devised in [15] to approximate a near-optimal

inverter control rule. In [11], [14], the authors developed a volt-

age regulation scheme using deep reinforcement learning. Deep

(recurrent) neural networks were utilized for real-time power

system state estimation and forecasting in [12]. By exploiting

the power grid topology, a physics-aware neural network was
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proposed for state estimation [13]. Related schemes leveraging

deep neural networks that ‘learn-to-optimize’ also appeared in

resource allocation [16], optimal power flow [17], [18], and

power system state estimation [12], [13]. Unfortunately, training

existing supervised learning models for reactive power control,

requires often a large number of labeled training data, which

are difficult to be obtained in real-world physical systems.

Reinforcement learning approaches on the other hand, entail

prior knowledge on designing the so-called reward functions

and often converge slowly.

Different from existing efforts, in this work an unsupervised

statistical learning approach is developed for computationally

intensive and time-sensitive reactive power control. Specifically,

a deep neural network is used to parameterize the functional

relationship between the grid state vector and the optimal

reactive power compensation. The computational complexity of

solving non-convex optimization problems is shifted to offline

training of a deep neural network. In the training phase, by

feeding grid state vectors obtained from historical data or

through simulations, the weight parameters of the deep neural

network are updated iteratively via policy gradient method. In

the online inference phase, or real-time implementation, one

just needs to pass the observed state vector into the trained

deep neural network, and obtains a near-optimal reactive power

control at the output. Our model-free approach requires no

system knowledge and is computationally inexpensive. It also

bypasses the need for data labels, and tackles the optimal

reactive control problem through policy gradients.

Regarding the remainder of this paper, Section II introduces

our system model. Section III outlines the reactive power con-

trol problem formulation, followed by the proposed statistical

learning solver in Section IV. Numerical tests using a real-world

feeder are presented in Section V, with concluding remarks

drawn in Section VI.

Notation. Lower- (upper-) case boldface letters denote col-

umn vectors (matrices), with the exception of power flow

vectors (PPP ,QQQ), and normal letters represent scalars. Calli-

graphic symbols are reserved for sets, and �(S) represents the

distribution over space S.

II. SYSTEM MODEL

Consider a radial power distribution network modeled by a

tree graph G := (N0, E), where N0 := {0} ∪ N denotes the

set of buses, and E the set of edges. The tree is rooted at the

substation bus indexed by n = 0, and all branch buses are

collected in N := {1, 2, ..., N}. For each bus i ∈ N , let vn
denote its squared voltage magnitude, and pn + jqn denote its

complex power injection, where pn := pgn−pcn and qn := qgn−
qcn with superscript g (c) specifying generation (consumption).

Thanks to the radial distribution grid topology, every non-root

bus n ∈ N has a unique parent bus, denoted by πn; and they

are joined through the n-th distribution line (πn, n) ∈ E , whose

impedance is given by rn + jxn. Let Pn + jQn represent the

complex power flow from buses πn to n seen at the ‘front’ end,

and �n represent the magnitude square of the current over line

n ∈ E . For future reference, collect all nodal and line quantities

into column vectors vvv, ppp, qqq, pppg , qqqg , pppc, qqqc, and ���.

The radial grid can be described by the so-termed branch flow
model [19], which enforces the following equations ∀n ∈ N

Pn =
∑
j∈χn

Pj − pn + rn�n (1a)

Qn =
∑
j∈χn

Qj − qn + xn�n (1b)

vn = vπn− 2(rnPn+ xnQn)+ (r2n+ x2
n)�n (1c)

�n =
P 2
n +Q2

n

vπn

(1d)

where the set χn ⊆ N collects all children buses for bus n.

Traditionally, for a smart inverter located at bus n with

nominal power capacity s̄n, and a solar panel equipped at this

bus with an nameplate active power capacity p̄gn, it should hold

that s̄n = p̄gn. In addition, the reactive power qgn generated by

the inverter is constrained by

|qgn| ≤
√

(s̄n)2 − (pgn)2, ∀n
where pgn is the smart inverter output. However, to capture

the special scenario that no reactive power can be provided

when the maximum inverter output is reached (i.e., pgn = p̄gn),

oversized inverters’ nameplate capacity (i.e., s̄n > p̄gn) is used

in practice [20]. For instance, the reactive power compensa-

tion provided by inverter n can be |qgn| ≤ 0.4p̄gn, if choose

s̄n = 1.08p̄gn and limit qgn to
√
(s̄n)2 − (p̄gn)2 instead of√

(s̄n)2 − (pgn)2, regardless of the instantaneous PV output pgn
[4]. Under this policy, the reactive injection region is the time-

invariant convex set

qqqg ≤ qqqg ≤ q̄qqg (2)

where qqqg ∈ RM , and M denotes the number of inverters

in the grid. Moreover, the voltage magnitude at every bus

n ∈ N should be maintained within a prespecified range, i.e.,

vn ∈ [vn, vn]. In practice this range is chosen to be ±5% of

its nominal value. For future use, rewrite voltage regulation

constraints at all buses n ∈ N in a compact way as

vvv ∈ V := {vvv : vvv ≤ vvv ≤ vvv}. (3)

In distribution grids, it holds that pgn = pcn = qcn = 0 and

qgn > 0 when bus n only has a capacitor; while pgn = qgn =
0, pcn ≥ 0, qcn ≥ 0 when bus n is a purely load bus; and a

distributed generation bus n not only consumes power denoted

by pcn, qcn, but also generate active power pgn ≥ 0, and provide

negative or positive reactive power qgn. Moreover, active power

consumption and solar generation (pppc, qqqc, pppg) can be predicted

through the hourly and real-time market (see e.g., [4]), or by

means of running load demand (solar generation) prediction

algorithms [12].

III. PROBLEM FORMULATION

In the envisioned distribution network operation scenario,

active power ppp is controlled at a coarse timescale. Depending

on the variability of active power and cyber resources (sensing,

communication, and computation delays), reactive power com-

pensation occurs over time intervals indexed by t = 0, 1, . . .,
which could either be real-time market periods, e.g., 5 minutes,
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or even shorter, e.g., 30 seconds. Let (pppt, qqqt) denote the active

and reactive power injections at all non-root buses during

control period t. The total power loss across all distribution lines

can be expressed as
∑N

n=1 rn,t�n,t. Given load consumptions

(pppct , qqq
c
t) and generation pppgt at the beginning of each interval t,

the goal of reactive power control is to find feasible reactive

power injections qqqg,∗t for smart inverters such that the power

loss across all distribution lines is minimized while maintaining

all bus voltage magnitudes within a prescribed range. Formally,

the reactive power control problem is formulated as follows

qqqg,∗t : = arg min
qqqg≤qqqg≤q̄qqg

f(pppt, qqq
g − qqqct) (4)

where f(pppt, qqq
g − qqqct) admits the following form

f(pppt, qqq
g − qqqct) = min

PPPt,QQQt
�t,vvvt

L∑
n=1

rn,t�n,t (5a)

s.to Pn,t =
∑

j∈Cn,t

Pj,t − pn,t + rn,t�n,t, n ∈ N (5b)

Qn,t =
∑
j∈Cn

Qj,t − qn,t + xn,t�n,t, n ∈ N (5c)

vn,t = vπn,t
+ (r2n,t + x2

n,t)�n,t

− 2(rn,tPn,t + xn,tQn,t), n ∈ N (5d)

�n,t =
P 2
n,t +Q2

n,t

vπn,t

, n ∈ E (5e)

vvv ∈ V. (5f)

Clearly, constraints (5b)–(5d) and (5f) are linear with respect

to system variables (pppt, qqqt,PtPtPt,QtQtQt, �t, vtvtvt). Nevertheless, con-

straints in (5e) are quadratic equalities, depicting a non-convex

feasible set and rendering the optimization problem non-convex

and NP-hard in general [21].

To address this issue, these equalities in (5e) have been

recently relaxed to convex inequalities described by the hy-

perbolic constraints [21]

P 2
n,t +Q2

n,t ≤ vπn,t
�n,t. (6)

Substituting (6) into (5) yields

f(pppt, qqqt) = min
PPPt,QQQt
�t,vvvt

L∑
n=1

rn,t�n,t (7a)

s.to (5b) − (5d), and (5f) (7b)

�n,t ≥
P 2
n,t +Q2

n,t

vπn,t

, n ∈ E (7c)

where (7c) can also be equivalently expressed as a second-order

cone ∥∥∥∥∥∥
2Pn,t

2Qn,t

�n,t − vπn,t

∥∥∥∥∥∥ ≤ vπn,t
+ �n,t. (8)

Constraints (7b) and (7c) represent now a convex feasible set,

and the problem in (7) can be solved by standard convex pro-

gramming methods. Interestingly, it has been shown that under

certain conditions, at the optimal solution of (7), equalities are

Input layer Hidden layers Output layer

… … ……

Probability
density
function

…

Measurement
Optimal reactive power

Fig. 1: Statistical learning architecture.

attained in (8); see details in e.g., [21]. In this case, the optimal

solution of the original problem (5) is recovered too.

It is worth pointing out that problem (4) formally char-

acterizes the optimal reactive power control policies for a

diverse set of networked control problems, including e.g.,

voltage regulation, Volt/VAR control, and optimal power flow

[21], by choosing suitable objective functions. If active and

reactive power injections (pppt, qqq
c
t) were both known precisely

in advance and remained constant within period t, the optimal

reactive power compensation qqqg,∗t would be found by solving

(4). However, such conditions are hardly met in contemporary

distribution systems, due partly to i) time-varying active and

reactive injections; and, ii) noise-contaminated observations

caused by direct measurements, delayed estimates, or inaccurate

forecasts. To bypass these challenges, minimizing the averaged

power loss over the power injections (pppt, qqq
c
t) provides an

alternative to the static reactive power control formulation in

(4), given by

qqqg,∗t := arg min
qqqg≤qqqg≤q̄qqg

E [f(pppt, qqq
g − qqqct)] . (9)

For notational convenience, let us define the state vector

ssst := (pppt, qqq
c
t), which is assumed to be a stationary random

process, and rewrite the loss function f(pppt, qqq
g−qqqct) as f(qqqg;ssst).

Substituting this display into the original problem (9), yields

qqqg,∗(ssst) := arg min
qqqg≤qqqg≤q̄qqg

E [f(qqqg;ssst)] . (10)

Rather than the unreliable and possibly obsolete instantaneous

qqqg,∗t found through (4), problem (10) is expected to yield

smoother power control decisions. But, evaluating the expec-

tation in (10) is nearly impossible in practice, even if the

probability density function of ssst was known. Challenge also

comes from the computational burden of dealing with the

non-convex constraint (5e). To approximate qqqg,∗ in a compu-

tationally efficient manner, a statistical learning approach is

developed next.

IV. STATISTICAL LEARNING

The rapid growth in renewable generation is displacing

traditional forms of energy generation while increasing the need

for controllable and flexible resources to balance fluctuations

in load and generation. In this section, we introduce a novel

parameterization form of the reactive power control problem,

as well as a learning solver based on a deep neural network.
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A. Parameterization

Instead of solving (10) exactly, consider a parametrization

for the reactive power compensation as follows

qqqg = φ(sss;θθθ) (11)

where φ(sss;θθθ) is some function given by e.g., a deep neural

network, and θθθ ∈ R
d collects all unknown parameters. Building

on this, finding the optimal reactive power control qqqg,∗ in (10)

boils down to finding the optimal parameter vector θθθ∗, such that

the expected loss is minimized; that is,

θθθ∗ = argmin
θθθ

E [f(φ(sss;θθθ);sss)] . (12)

To find θθθ∗, a natural approach is to apply gradient descent

type algorithms. To this aim, one needs to obtain the gradi-

ent of the objective function in (12) with respect to θθθ, i.e.,

∇θθθE [f(φ(sss;θθθ);sss)]. In practice however, there is no analytic

form of f(φ(sss;θθθ);sss) as a function of φ(sss;θθθ) or θθθ. In (5),

for instance, the loss function f depends only implicitly on

qqqg . Instead, we can observe the function value f for any

grid operating point (ppp,qqq,PPP ,QQQ, �, vvv) [cf. (5)], which can be

used to estimate the gradient. This motivates development of

a model-free approach. Specifically, for a given set of iterates

and reactive power realizations {θ̃θθ, q̃qqg}, the corresponding loss

function values f̃(q̃qqgθθθ ;sss) can be observed from the system. Using

{θ̃θθ, q̃qqg} and f̃(q̃qqgθθθ ;sss), the parameter vector θθθ can be updated

through the policy gradient method [22], which constructs a

gradient estimate with only function observations.

A control policy here is a mapping from state vectors sss to

reactive power control decisions (a.k.a. actions) qqqg . Consider

first the stochastic control policy π : sss → qqqg , specifying a

conditional distribution of all possible decisions qqqg given the

current state sss. Denoting the probability of taking action qqqg at

state sss as πsss,θθθ(qqq
g), the gradient of E [f(φ(sss;θθθ);sss)] with respect

to θθθ can be written as

∇θθθE [f(φ(sss;θθθ);sss)] = ∇θθθ

∫
sss

f(φ(sss;θθθ);sss)Pr(sss)dsss (13a)

= ∇θθθ

∫
sss

∫
qqqg

f(qqqg;sss)πsss,θθθ(qqq
g)Pr(sss)dqqqgdsss (13b)

=

∫
sss

∫
qqqg

f(qqqg;sss)
∇θθθπsss,θθθ(qqq

g)

πsss,θθθ(qqqg)
πsss,θθθ(qqq

g)Pr(sss)dqqqgdsss (13c)

= Eqqqg,sss [f(qqq
g;sss)∇θθθlogπsss,θθθ(qqq

g)] (13d)

where Pr(sss) denotes the probability of state sss, and qqqg is

drawn from the distribution πsss,θθθ(·). Here, the computation of

∇θθθE [f(φ(sss;θθθ);sss)] is translated to evaluating the expectation

of function f(qqqg;sss) multiplied by the gradient of the policy

distribution ∇θθθlogπsss,θθθ(qqq
g). This is indeed useful when we

have an analytic form for πsss,θθθ(qqq
g). In such case, we may

further replace the expectation on the right-hand side (13)

with a sample mean. Specifically, by using previous function

observations, we obtain the following gradient estimate

∇̂θθθE [f(φ(sss;θθθ);sss)] = f̂(q̂qqgθθθ ;sss)∇θθθlogπsss,θθθ(q̂qq
g
θθθ) (14)

where q̂qqgθθθ is the injected reactive power into the distribution

grid, drawn from the distribution πsss,θθθ(·), and f̂(q̂qqgθθθ ;sss) is the

corresponding loss function value obtained by solving (5).

Offline training

Online inference

Historical measurements Reactive power compensation

Real-time measurement Optimal reactive power

Trained

Deep neural network

Deep neural network

Fig. 2: Two-phase reactive power control procedure

Previously, it was assumed that the policy φ(sss;θθθ) is stochas-

tic. In deterministic cases, where the distribution is a delta func-

tion, i.e., πsss,θθθ(xxx) = δ(xxx− φ(sss;θθθ)). To evaluate ∇θθθlogπsss,θθθ(q̂qq
g
θθθ)

in (14), one may approximate the delta function with a known

density function centered around φ(sss;θθθ). To capture the power

constraint qqqg ≤ qqqgt ≤ q̄qqg , a truncated Gaussian distribution with

a fixed support on the domain [qqqg, q̄qqg] is considered in next

subsection.

B. Model-free learning

To find the policy πsss,θθθ(·), we restrict ourselves to the increas-

ingly popular set of parameterizations, known as deep neural

networks [23]. Indeed, deep neural networks have recently

demonstrated remarkable performance in numerous fields, in-

cluding computer vision, speech recognition, and robotics.

A deep neural network can effectively tackle the ‘curse of

dimensionality’ by extracting low-dimensional representation

for high-dimensional data [23].

Consider a feed-forward deep neural network connected to a

truncated Gaussian probability density function πsss,θθθ(·) block;

see Fig. 1 for an illustration. It takes as input the state vector

sss, followed by L fully connected hidden layers with ReLU

activation functions. The output of the deep neural network

is a set of mean and standard deviation pairs {μm, σm}Mm=1,

each corresponding to M truncated Gaussian distributions.

By feeding the outputs of the deep neural network into the

probability density function πsss,θθθ(·) block, the reactive power

compensation vector qqqg is sampled from πsss,θθθ(qqq
g). Stacking all

the weights of the deep neural network into the vector θθθ, we

have a function approximation to estimate the reactive power

compensation qqqg(sss) = φ(sss;θθθ).
Using the gradient estimate in (14), the weights θθθ can be

successively updated as follows

θθθt+1 = θθθt − βt∇̂θθθE [f(φ(ssst;θθθ);ssst)]
∣∣∣
θθθ=θθθt

(15)

where βt > 0 is a preselected learning rate. This update

in (15) is a model-free approach, since it does not require

explicit knowledge about the actual form of the function f(·)
or distribution of sss. Different from a traditional supervised

approach where requires a set of a given training labeled

data [12], the developed method here is unsupervised; hence

circumvents the need for labeled data and directly solves (10).

The proposed reactive power control procedure is tabulated in

Alg. 1. It is implemented in two phases, namely offline training
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Algorithm 1 A deep policy gradient approach to reactive power

control
Training phase:
1: Initialize: θθθ.

2: for t = 1, 2, . . . , T do
3: Observe historical measurement ssst.
4: Feed ssst into the deep neural network.

5: Obtain deep neural network output mean μμμt and vari-

ance σσσt.

6: Feed μμμt and σσσt into πssst,θθθt
(·).

7: Draw a sample q̂qqgθθθt
from the distribution πssst,θθθt

(qqqg).

8: Obtain an estimate for f̂(ssst, q̂qq
g
θθθt
) via (7).

9: Calculate ∇̂θθθE [f(ssst, φ(ssst;θθθt))] via (14).

10: Update θθθt+1 according to (15).

11: end for
Inference phase:
1: for τ = 1, 2, . . . do
2: Feed real-time measurement sssτ into the trained deep

neural network.

3: Obtain the deep neural network output mean μμμτ and

variance σσστ .

4: Feed μμμτ and σσστ into πsssτ ,θθθτ
(·).

5: Draw a sample q̂qqgθθθτ
from the distribution πsssτ ,θθθτ

(qqqg).
6: end for

and online inference phases, as shown in Fig 2. Specifically,

in the training phase, historical/simulated datum sss is fed into

the deep neural network. For a given input datum ssst, our

network spits out a reactive power compensation qqqgt = φ(ssst;θθθt).
Subsequently, the distribution network returns a loss for this

state-action pair (ssst, qqq
g
t ) (which can also be found by solving

(5)). Finally, a gradient estimate can be obtained using the

policy gradient method in (14), based on which the neural

network weight parameters are updated following (15). The

trained deep neural network will be utilized in the inference

phase. By taking the real-time state vector ssst = (pppt, qqq
c
t) as input,

the trained deep neural network outputs the optimal reactive

power compensation qqqgt to be implemented in the grid. Note

that the proposed statistical learning approach is desirable for

real-time reactive power control, as it shifts the computational

burden of tackling non-convex optimization to offline training

of a neural network.

V. NUMERICAL TESTS

In this section, the performance of our proposed statistical

learning scheme was evaluated on a real-world 47-bus feeder

with high penetration of renewables [3]; see Fig. 3 for a

depiction. This feeder is integrated with M = 5 smart inverters

located on buses 2, 16, 18, 21, and 22, with capacities 300, 80,

300, 400, and 200 kW, respectively. A power factor of 0.8 was

assumed for all loads.

The training and test data were obtained by splitting the

consumption and solar generation from the Smart∗ project

collected on August 24, 2011 [2]. The CVX toolbox [24] was

used to solve the SOCP problem in (7) to evaluate f̂(q̂qqgθθθ ;sss).
The deep neural network used here consists of three fully

Fig. 3: Schematic diagram of the 47-bus distribution feeder.

connected hidden layers, with 48, 32 and 16 neurons per layer,

respectively. To carry out the simulations, we used ‘TensorFlow’

[25] on an NVIDIA Titan X GPU with 12 GB RAM. The

weight parameters of the deep neural network were updated

using the back-propagation algorithm with ‘Adam’ optimizer.

The learning rate was fixed to 0.001, and the batch size was 30
throughout 40 epochs of tests.

To assess the performance of the proposed approach, the fol-

lowing baseline was considered. Assuming perfect observations

of active and reactive power injections (pppt, qqq
c
t) at the beginning

of slot t, the optimal reactive power control can be found by

solving the following problem

f(pppt, qqq
g
t − qqqct) = min

qqq
g
t ,PPPt,QQQt
�t,vvvt

L∑
n=1

rn,t�n,t (16a)

s.to (7b) − (7c) (16b)

where qqqgt is treated as an optimization variable. It should be

noted that tackling this problem in real time is computation-

ally demanding for large-scale systems, while the proposed

approach finds qqqgt after performing only several matrix-vector

multiplications. The red curve in Fig. 4 shows the observed

loss for the proposed approach, while the blue one depicts loss

for the deterministic optimal one obtained via (16) during the

training phase. The light colour curves correspond to the actual

observed losses, while the dark ones are the running averaged

ones. Clearly, our model-free approach learns to make optimal

decisions qqqgt . In the inference phase, the loss of the proposed

approach versus the baseline is presented in Fig. 5. This plot

demonstrates that the proposed model-free approach finds near-

optimal reactive power control decisions. The running time of

the proposed approach is one order of magnitude less than the

optimization-based approach.

VI. CONCLUSIONS

In this work, a deep learning framework for real-time reactive

power control in distribution grids was developed. Uncertainties

and delays in acquiring grid state motivate well this data-

driven learning framework. The non-convexity of the underlying

optimization, and lack of model knowledge makes reactive

power control a challenge in modern grids, if not impossible,

to solve directly. The theory of statistical learning empowered

by the non-linear functional approximation property of deep

neural networks provided a fresh viewpoint for power system

operation and control. In particular, this work parameterizes
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Fig. 4: The training loss of the statistical learning approach

compared with the baseline (optimal).

Fig. 5: The inference loss values of statistical learning approach

and the baseline (optimal).

the reactive power control policy via a deep neural network,

whose weights are updated in an unsupervised and model-free

fashion using a policy gradient method. This circumvents the

need for labeled data as well as an explicit model for the

underlying system. Our proposed method is computationally

inexpensive, since all computational complexity is shifted to

the training phase. Preliminary numerical results on the SCE

47-bus distribution network using real load data corroborate

the merits of our developed approach.

This work opens up several interesting directions for future

research. Robust statistical methods for reactive power control

in the presence of corrupted or even adversarial observations is

worth investigating. Exploiting the topology information of the

underlying power grid to design physics-informed architecture

of the learning model is also pertinent.
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