
Power System State Estimation Using Gauss-Newton
Unrolled Neural Networks with Trainable Priors

Qiuling Yang
School of Automation

Beijing Institute of Technology
Beijing 100081, China

yang6726@umn.edu

Alireza Sadeghi
ECE Dept. and Digital Tech. Center

University of Minnesota
Minneapolis, MN 55455, USA

sadeghi@umn.edu

Gang Wang
School of Automation

Beijing Institute of Technology
Beijing 100081, China

gangwang@bit.edu.cn

Georgios B. Giannakis
ECE Dept. and Digital Tech. Center

University of Minnesota
Minneapolis, MN 55455, USA

georgios@umn.edu

Jian Sun
School of Automation

Beijing Institute of Technology
Beijing 100081, China

sunjian@bit.edu.cn

Abstract—Power system state estimation (PSSE) aims at finding
the voltage magnitudes and angles at all generation and load
buses, using meter readings and other available information. PSSE
is often formulated as a nonconvex and nonlinear least-squares
(NLS) cost function, which is traditionally solved by the Gauss-
Newton method. However, Gauss-Newton iterations for minimizing
nonconvex problems are sensitive to the initialization, and they can
diverge. In this context, we advocate a deep neural network (DNN)
based “trainable regularizer” to incorporate prior information for
accurate and reliable state estimation. The resulting regularized
NLS does not admit a neat closed form solution. To handle this, a
novel end-to-end DNN is constructed subsequently by unrolling a
Gauss-Newton-type solver which alternates between least-squares
loss and the regularization term. Our DNN architecture can
further offer a suite of advantages, e.g., accommodating network
topology via graph neural networks based prior. Numerical tests
using real load data on the IEEE 118-bus benchmark system
showcase the improved estimation performance of the proposed
scheme compared with state-of-the-art alternatives. Interestingly,
our results suggest that a simple feed forward network based prior
implicitly exploits the topology information hidden in data.

Index Terms—Regularized state estimation, trainable priors,
Gauss-Newton unrolled neural networks.

I. INTRODUCTION

Operation of power systems critically hinges on accurate

power system state estimation (PSSE), which is a prereq-

uisite for a number of tasks, such as optimal power flow,

unit commitment, economic dispatch, and contingency analysis

[1], [2]. However, contemporary power systems are being

challenged by frequent and sizable voltage fluctuations. This

is due mainly to rapid variations of renewable generation,

increasing deployment of electric vehicles, and human-in-the-

loop demand response incentives. Moreover, directly measuring

state variables is difficult. In this context, fast and accurate state

The work of Q. Yang, G. Wang, and J. Sun was supported in part by
the National Natural Science Foundation of China under Grants 61522303,
61720106011, 61621063, and U1613225. Q. Yang was also supported by the
China Scholarship Council. The work of A. Sadeghi and G. B. Giannakis was
supported in part by the National Science Foundation under Grants 1711471
and 1901134.

estimation (SE) is timely and of major importance to maintain

a comprehensive view of the system in real time.

The goal of PSSE is to retrieve the state variables, namely

complex voltages at all buses based on available system mea-

surements, including voltage magnitudes, power flows, and

power injections, offered by the supervisory control and data ac-

quisition (SCADA) system [2]. Traditionally, the least-squares

(LS) or least-absolute-value (LAV) criterion was employed

to formulate the PSSE, yielding a nonlinear and nonconvex

optimization problem [3]–[5]. The LAV-based estimator is

known for its robustness relative to the LS one. However,

due to nonconvexity and nonsmoothness, existing LAV solvers

are typically slow and, hence, inadequate for real-time system

monitoring [6]. On the other hand, focusing on the LS-based

PSSE formulation, the Gauss-Newton iterative solver is widely

employed in practice [2]. However, due to the nonconvexity and

quadratic loss function, the Gauss-Newton method is sensitive

to initialization and may diverge [7]. Semidefinite program-

ming approaches trade off these burdens with computational

complexities to some extent [8]. Recently, efforts have been

devoted to developing data- (and model-) driven neural network

(NN) solutions to bypass the nonconvex optimization hurdles in

power system monitoring and control [9]–[14]. The main idea

is to approximate the mapping from measurements to the state

variables through a deep neural network (DNN).

Different from existing methods and motivated by recent

advancements in challenging inverse imaging problems [15]–

[17], in this work we develop a judiciously regularized state

estimation problem. Specifically, we regularize the conventional

LS-based PSSE formulation with a data-driven prior [15]–[18].

Deep (D) NN is advocated as prior to promote accurate, reli-

able, and physically meaningful PSSE solutions using historical

data. Despite its advantages, the resulting regularized nonlinear

LS does not admit a neat closed form solution. To handle this,

an alternating minimization-based solver with Gauss-Newton

iterations being as a critical algorithmic component is first

developed. Unfortunately, this solver incurs a heavy compu-

2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

978-1-7281-6127-3/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2021 at 00:47:37 UTC from IEEE Xplore. Restrictions apply.

tational load since it requires performing matrix inversion

per iteration. To accommodate real-time monitoring of large

networks and building on our previous work [11], we unroll
the proposed alternating minimization solver to construct a

new DNN architecture. Our developed Gauss-Newton unrolled

neural network (GNU-NN) with deep priors consists of a

Gauss-Newton iteration as a basic building block, followed

by a proximal step to account for the regularization term.

Interestingly, upon incorporating a graph (G) NN-based prior,

the proposed method exploits the structure of the underlying

smart grid. Different from [11], our proposed method provides

a systematic and flexible framework for incorporating prior

information into standard PSSE problems.

The rest of this paper is structured as follows. Section II

outlines the LS-based PSSE formulation. Section III presents a

general framework for incorporating data-driven and topology-

aware priors into PSSE task through trainable regularizers,

followed by an alternating minimization solver for the resultant

problem. Simulated tests are presented in Section IV, with

concluding remarks drawn in Section V.

II. PROBLEM FORMULATION

Consider a distribution grid comprising N buses (nodes)

with E lines (edges) that can be modeled as a graph G :=
(N , E ,W), where N := {1, . . . , N} collects all buses, E :=
{(n, n′)} ⊆ N × N all lines, and W ∈ R

N×N is a weight

adjacency matrix. If (n, n′) ∈ E for buses n and n′, then

[W]nn′ = wnn′ ; and [W]nn′ = 0 otherwise, with wnn′ denot-

ing the impedance between the two buses. Let Vn := vrn + jvin
be the complex voltage with magnitude denoted by |Vn|, and

Pn + jQn the complex power injection, for n ∈ N . For

notational brevity, column vectors |V | ∈ R
N , P ∈ R

N , and

Q ∈ R
N collect the voltage magnitudes, active and reactive

power injections across all buses, respectively.

System state variables v := [vr1 vi1 . . . vrN viN]� ∈ R
2N

are difficult to measure directly, however typically in practice

they are to be estimated using the abundant other available

measurements provided by the SCADA system, including

voltage magnitudes, active and reactive power injections, as

well as active and reactive power flows. Let SV , SP , SQ,

EP , and EQ represent the sets of buses or lines where in-

stall corresponding type meters. For a compact representation,

we collect the measurements from all meters into vector

z := [{|Vn|2}n∈SV
, {Pn}n∈SP

, {Qn}n∈SQ
, {Pnn′}(n,n′)∈EP

,
{Qnn′}(n,n′)∈EQ

,]� ∈ R
M . The m-th measurement is modeled

using the following model

zm = hm(v) + εm, m = 1, . . . ,M. (1)

where, non-linear function hm(v) := v�Hmv, maps the

real-valued state vectors to the m-th SACADA measurements

using a symmetric and network dependent measurement matrix

Hm ∈ R
2N×2N , finally εm captures the modeling error as well

as the measurement noise.

Given z, the objective is to recover the state vector v. Upon

vectorizing (1) and adopting the least-squares criterion, PSSE

can be formulated as minimizing the following nonlinear least-

squares (NLS)

v∗ := arg min
v∈R2N

‖z − h(v)‖22. (2)

Numerous iterative algorithms are proposed to solve the non-

convex objective in (2), including e.g., Gauss-Newton iterations

[2], and semidefinite programming-based solvers [8]. These

iterative algorithms typically generate a sequence {vi} by

implementing a mapping from vi to vi+1 with an initial v0.

Hopefully the sequence {vi} finally will converge to an optimal

solution v∗ or at worst a locally optimal point. In this paper, we

will focus on the most commonly used scheme for minimizing

this objective, that is the ‘workhorse’ Gauss-Newton PSSE

iterative solver.

The Gauss-Newton method relies on Taylor’s expansion to

linearize the function h(v) and iteratively updates the state

variables until convergence [19, Sec. 1.5.1]. Specifically, at a

given point vi, the linear approximation of h(v) is given by

h̃(v,vi) ≈ h(vi) + Ji(v − vi) (3)

where Ji := ∇h (vi) is the M×2N Jacobian of h evaluated at

vi, with [Ji]m,n := ∂hm/∂vn. Therefore, after approximating

the nonlinear function h(v) in (2), using (3) per iteration, the

Gauss-Newton method finds the next iterate by solving

vi+1 = argmin
v

‖z − h(vi)− Ji(v − vi)‖2 . (4)

Clearly, the subproblem (4) is convex quadratic. If matrix J�
i Ji

is invertible, the closed-form solution is readily available as

vi+1 = vi +
(
J�
i Ji

)−1
J�
i (z − h(vi)). (5)

In practice however, per iteration matrix inversion (J�
i Ji)

−1

leads to a high computational complexity. More importantly,

sensitivity to initialization limits its reliability in practice.

These challenges inhibit its use for real-time monitoring and

control, especially in large-scale networks. To bypass these

hurdles, first we will incorporate prior information into the

PSSE task through judiciously designed regularization, and then

will develop an end-to-end DNN to solve the regularized PSSE

problem, circumventing the need for iteratively solving the

nonconvex and regularized PSSE problem.

III. REGULARIZED PSSE WITH DEEP PRIORS

In this section, we first put forth a framework to incorporate

flexible regularizer in the PSSE problems formulated in (2).

Then an alternating minimization-based solver is developed

to solve the resultant regularized PSSE. Subsequently, we

construct an end-to-end DNN architecture by unrolling the

alternating minimization solver. Such a novel DNN consists

several layers of unrolled Gauss-Newton iterations followed by

proximal steps accounting the regularization term.

A. Deep NN based regularizer

As mentioned earlier, in practice, recovering v from z can

be ill posed due to e.g., lack of observability, for instance when

Ji is a rectangular matrix. To cope with such a challenge, we

regularize the PSSE loss (2) with a trainable prior as follows

min
v∈R2N

‖z − h(v)‖22︸ ︷︷ ︸
data consistency

+λ ‖v −Dθθθ(v)‖22︸ ︷︷ ︸
regularizer

(6)

2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2021 at 00:47:37 UTC from IEEE Xplore. Restrictions apply.

1-st iteration 2-nd iteration0-th iteration

Fig. 1: The structure of the proposed GNU-NN.

i-th iteration

Fig. 2: Plain-vanilla FNN based regularizer.

where λ > 0 is a hyper-parameter to tune the regularizer term

promoting states v to reside close to Dθθθ(v). The latter could

be considered as nonlinear v̂ := Dθθθ(v) estimator (obtained

possibly offline); For instance one may employ a quadratic-

linear function of the form Dθθθ(v) =
1
2θθθ

�v θθθ+θθθ�v as the prior.

In this paper, for the sake of expressibility and to encompass

a large family of priors, we advocate a DNN-based estimator

Dθθθ(v), where θθθ collects all weights of the NN, that can be

learned offline using historical data. This is stemmed from data-

driven deep priors advocated in image denoising [15]–[17].

Although this innovative regularized formulation tackles the

ill conditioning, the nonconvexity of PSSE objective (6) still

remains a challenge. Moreover, the nested structure of Dθ(·)
brings further challenges, since still one needs to find ∇vvvDθθθ(vvv),
which is not readily available specifically when Dθθθ is a DNN.

To overcome this limitation, we use an alternating minimiza-

tion algorithm to iteratively approximate the solution of (6),

which mimics the Gauss-Newton method for NLS in (2). In

particular, starting with an initial guess v0, a linearized data

consistency term is introduced at each iteration i to obtain the

state at next iteration vi+1; that is,

vi+1 = argmin
v

‖z − h(vi)− Ji(v − vi)‖2+ λ‖v −Dθθθ(vi)‖2

= Aiz +Biui + bi

where we define

Ai := (J�
i Ji + λI)−1J�

i

Bi := λ(J�
i Ji + λI)−1

bi := (J�
i Ji + λI)−1J�

i (Jivi − h(vi)).

Alternating between ensuing two steps

ui = Dθθθ(vi) (8a)

vi+1 = Aiz +Biui + bi (8b)

until some convergence criterion is met, and a solution of (6) is

reached. For instance, given measurement z, and initialization

v0 = 0, the i = 0 iteration yields v1 = A0z+B0u0+b0. The

DNN Dθ(·) takes as input the v1, to generate u1 = Dθθθ(v1)
according to (8a), which is also the input to i = 1 iteration.

Hence, by repeating these alternating iterations whenever a new

system measurement z becomes available, the state estimates

can be obtained. Notice that every iteration i must evaluate the

Jacobian matrix Ji, followed by matrix inversions to form Ai,

Bi, and bi. These steps are computationally expensive.

Encouraged by results reported in our preceding work [20],

we pursue an unrolling method that builds a DNN architecture,

as depicted in Fig. 1. The constructed DNN is obtained by

unrolling I iterations of the proposed alternating minimizer in

(8). Recall that the DNN prior information Dθθθ(·) in (8a) is

considered pre-trained, with weight parameters θθθ being fixed.

In the constructed DNN in Fig. 1 however, all the coefficients

{Ai}Ii=0, {Bi}Ii=0, {bi}Ii=0, as well as the DNN weights

{θi}Ii=0 are considered learnable during a single training phase.

We call this architecture as GNU-NN, since it is obtained

unrolling Gauss-Newton like iterations.

During training, our GNU-NN takes as input the

measurements-state pairs {(zt,v∗t)}Tt=1, where v∗t is the

ground-truth state vector. For notational brevity, we concatenate

all trainable parameters of the GNU-NN in vector ω :=
[{Ai}Ii=0, {Bi}Ii=0, {b1i }Ii=0]. After specifying a certain loss

�(v∗,vI+1) to measure how accurate GNU-NN predicts are,

the GNU-NN weights ω can be updated using backpropagation

to minimize this loss. The proposed method is tabulated in

Algorithm 1.

During testing phase, one just feeds the real-time measure-

ment zt into the learned GNU-NN, after only a few matrix-

vector multiplications, the estimated voltage vt can be obtained.

Our GNU-NN enjoys competitive estimation performance com-

pared with other iterative algorithms, e.g., the Gauss-Newton

method. Furthermore, due to skipping connections from the

input layer to intermediate and output layers, our GNU-NN

can avoid vanishing and exploding gradients.

Interestingly, by judiciously choosing model for Dθθθ(·), de-

sired merits can further be attained. For instance, we can use

plain-vanilla feed forward (F) NNs as Dθθθ(·), which is referred

to GNU-FNN. The i-th iteration structure of GNU-FNN is

illustrated in Fig. 2. The main advantage of FNN structure is

simplicity and computational efficiency. However, it is difficult

to design a decentralized algorithm using FNN. Fortunately,

upon utilizing recent DNN architectures as priors, such as graph

neural networks (GNNs), one can easily design decentralized

algorithms and enjoy scalability. Using GNNs as priors for

2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2021 at 00:47:37 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 PSSE Solver with NN Priors.

Training phase:
1: Input: Training samples {(zt,v∗t)}Tt=1

2: Initialize:
ω := [{θ1

i }Ii=0, {A1
i }Ii=0, {B1

i }Ii=0, {b1i }Ii=0], v0 = 0.

3: for t = 1, 2, . . . , T do
4: Feed zt and v0 as input into GNU-NN.

5: for i = 0, 1, . . . , I do1

6: Obtain ui using (8a).

7: Obtain vi+1 ∈ R2N via (8b).

8: end for
9: Obtain vt

I+1 from the GNU-NN output.

10: Minimize the loss �(v∗t,vt
I+1) and update ωt.

11: end for
12: Output: ωT

Inference phase:
1: for t = T + 1, . . . , T ′ do
2: Feed real-time zt to the trained GNU-NN.

3: Obtain the estimated voltage vt.

4: end for

PSSE will be elaborated in ensuing subsection.

B. Graph NN based deep prior
In order to use expressive state estimators in our regular-

ization term, we model Dθθθ(·) by a GNN, which is a careful

choice due to having a networked data. Recently, GNNs have

demonstrated remarkable performance in several tasks specifi-

cally semi-supervised learning [21], [22]. By directly operating

over the graph, GNN can explicitly utilize the power system

topology information. Therefore, it is an attractive choice for

parameterization in our application domain, where the data

follows the power network graph structure [21].
From the graph signal processing perspective, the measure-

ments X ∈ R
N×F can be seen as a signal on the power network

graph. Its n-th row denoted by x�
n := [X]n: represents an F×1

feature vector per node n, where for the PSSE problem, the

feature vector is vr
n and vi

n, i.e., F = 2. By pre-multiplying the

graph signal X from left with weighted adjacency W , features

are propagated over the underlying graph, yielding a diffused

version Y̌ ∈ R
N×F obtained as follows

Y̌ = WX. (9)

Interestingly, one can replace the weighted adjacency matrix

with any matrix that preserves the structure of the power

network (i.e. Wnn′ = 0 if (n, n′) /∈ E), such as the graph

Laplacian, the random walk Laplacian matrix, and their nor-

malized versions.
The transformation in (9) is a feature propagation transfor-

mation. It gives the f -th feature at every node by linearly

combining f -th features of neighboring nodes. For instance,

the shifted f -th feature [Y̌]nf for bus n, is given by

[Y̌]nf =
N∑
i=1

[W]ni[X]if =
∑
i∈Nn

wnix
f
i (10)

1For brevity the superscript t is removed from inner iteration i.

Fig. 3: The signal diffuses from layer l − 1 to l with K = 3.

where Nn = {i ∈ N : (i, n) ∈ E} represents the set of neigh-

boring buses for bus n. Clearly, this interpretation generates a

diffused X over the graph. The ‘graph convolution’ operation

in GNNs exploits network topology to linearly combine K hop

neighborhood information, as follows

[Y]nd := [H �X;W]nd :=
K−1∑
k=0

[W kX]n:[Hk]:d (11)

where H := [H0 · · · HK−1] with Hk ∈ R
F×D concatenates

the filter coefficient parameters; Y ∈ R
N×D is the intermediate

(hidden) matrix with D features each bus; and, W kX linearly

combines features of buses within the k-hop neighborhood by

recursively applying the shift operator W .

To obtain a GNN with L hidden layers, let Xl−1 denote the

output of the (l− 1)-th layer, which is also the l-th layer input

for l = 1, . . . , L, and X0 = X is the input matrix. The hidden

signal Yl ∈ R
N×Dl with Dl features is obtained by applying

the graph convolution operation (11) at layer l, namely

[Yl]nd =

Kl−1∑
k=0

[W kXl−1]n:[Hlk]:g (12)

where Hlk ∈ R
Fl−1×Fl are the graph convolution coefficients

for k = 0, . . . ,Kl − 1. The output Xl at layer l is found

by applying a graph convolution followed by a point-wise

nonlinear operation σl(·), such as the rectified linear unit

(ReLu) σl(t) := max{0, t} for t ∈ R; see Fig. 3 for an

illustration. Upon rewriting (12) in a compact form, one can

arrives at

Xl = σl(Yl) = σl

(
Kl−1∑
k=0

W kXl−1Hlk

)
. (13)

The GNN-based PSSE provides a nonlinear functional mapping

XL = Φ(X0;Θ,W) that maps the GNN input X0 to voltage

estimates by taking into account the graph structure, that is

Φ(X0;Θ,W) = (14)

σL

(
KL−1∑
k=0

W k

(
. . .

(
σ1

(
K1−1∑
k=0

W kX0H1k

)
. . .

))
HLk

)

where the parameter set Θ collects all the filter weights, i.e.,

Θ := {Hlk, ∀l, k}, and also recall that the input X0 = X .

To accommodate the GNN implementation over the

proposed unrolled architecture, we concatenate all train-

able parameters of the GNU-GNN in vector ω′ :=
[{Θi}Ii=0, {Ai}Ii=0, {Bi}Ii=0, {b1i }Ii=0], which can be updated

2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2021 at 00:47:37 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Reshaping the inputs and outputs of GNNs.

1: for i = 0, 1, . . . , I do
2: Reshape vi ∈ R2N to get Xi

0 ∈ R
N×2.

3: Feed Xi
0 into GNN.

4: Vectorize the GNN output Xi
L ∈ R

N×2 to get ui.

5: Obtain vi+1 ∈ R2N using (8b).

6: end for

Fig. 4: The estimated voltage profiles at bus 50 from slot 70 to 90.

using backpropagation. The whole process is the same with

Algorithm 1 except steps 5-8. Specifically, at the i-th iteration,

we reshape the states vi ∈ R
2N to form the N × 2 GNN input

matrix Xi
0 ∈ R

N×2. Next, to obtain the vector ui ∈ R
2N ,

we vectorize the GNN output Xi
L ∈ R

N×2 (cf. (8a)). This

difference is depicted in Algorithm 2.

IV. NUMERICAL TESTS

In this section, we used the IEEE 118-bus system to assess

the performance of our proposed PSSE solver. The simulations

were executed on an NVIDIA Titan X GPU with a 12GB RAM.

For numerical tests, we used real load consumption data from

the 2012 Global Energy Forecasting Competition (GEFC) [23],

using which training and testing data were created as follows.

To match the scale of power demands, we first normalized the

load data. Next, we fed it into MATPOWER, to generate 1, 000
pairs of measurements and ground-truth voltages, by solving the

exact AC power flow equations. Finally, we randomly selected

80% of the measurement-state pairs to be the training set and

the remaining 20% to be the test set, the algorithm was then

trained and tested on these sets.

Note that our GNU-GNN architecture explicitly captures the

topology and the physics of the smart grid, while our GNU-

FNN leverages the network topology only indirectly through

simulated data. It is therefore natural to ask how much gain

will be obtained using topology information explicitly? Fur-

thermore, what are the gains of using trainable regularizer for

Fig. 5: The estimated voltage profiles at bus 100 from slot 70 to 90.

Fig. 6: The estimated voltage profiles for the first 20 buses at slot 80.

PSSE compared with alternatives? To answer these questions,

we have carried out numerical tests, where three PSSE solvers

are employed as baselines, namely: i) the prox-linear network

in [11]; ii) a 6-layer vanilla feed-forward (F)NN; and iii) an 8-

layer FNN. The weights of all these NNs were updated using

the ‘Adam’ optimizer [24] to minimize the Hüber loss with

learning rate fixed to 10−3. The training phase was carried out

with 500 epochs, and the batch size was set to 32.

Our GNU-GNN and GNU-FNN were implemented by un-

rolling I = 6 iterations of the proposed alternating minimizing

solver, respectively. Per unrolled iteration, a GNN with K = 2

2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2021 at 00:47:37 UTC from IEEE Xplore. Restrictions apply.

hops, and D = 8 hidden units with ReLU activation functions

was used as the deep prior of GNU-GNN, while a FNN with

one hidden layer and 8 hidden units with ReLU activation

was employed as the deep prior for GNU-FNN. The GNU-

GNN, GNU-FNN, and prox-linear network architectures were

designed to have roughly the same number of weight parame-

ters.

The estimated voltage profiles obtained at buses 50 and

100 from test slots 70 to 90 are reported in Figs. 4 and

5, respectively. The ground-truth and estimated voltages for

the first 20 buses at slot 80 are presented in Fig. 6. These

plots corroborate the improved PSSE performance using our

GNU-GNN and GNU-FNN relative to alternative approaches.

Furthermore, based on the results in Figs. 4-6, the GNU-

FNN and GNU-GNN perform similarly. This implies that

explicitly incorporating topology information through GNNs

does not provide any performance gain compared with im-

plicitly exploiting it through FNNs. This suggests that a GNN

architecture may inherit unnecessary complexity and redundant

computation, while a FNN offers the same performance without

any need for topology information. Recently, it has been shown

that successively removing nonlinearities and collapsing weight

matrices between consecutive layers of a GNN architecture

does not influence its performance in practice [25]. These

observations suggest that measurements already contain the

required information about the network topology, thus there is

no need to employ a GNN to explicitly use network topology. In

terms of runtime, our GNU-GNN, GNU-FNN, the prox-linear

net, the 6-layer FNN, and the 8-layer FNN over 200 testing

samples took 1.5×10−2s, 1.3×10−2s, 1.6×10−2s, 2.8×10−2s,

and 3.9 × 10−2s, respectively. These results corroborate the

improved performance of the our GNU-GNN and GNU-FNN

relative to the simulated PSSE solvers.

V. CONCLUSIONS

PSSE is an important task for monitoring and control of

current smart grids, which is typically formulated as a least-

absolute-value or a least-square problem, both of which are

nonlinear and nonconvex. In this work, DNN-based trainable

regularizers were adopted to promote accurate, reliable, and

physically meaningful PSSE solutions using historical data. To

obtain the solution of the regularized PSSE problem, an alter-

nating minimization solver using Gauss-Newton iterations was

introduced. This slover however, requires performing matrix

inversion per iteration, thus incurring a heavy computational

burden that may discourage its use for real-time monitoring

of large networks. To accommodate realtime operations, we

construted a new DNN architecture by unrolling the Gauss-

Newton iterations, followed by a proximal step. The proposed

architecture provides a principled framework for designing

deep neural networks that can incorporate prior information

into solving inverse problems. The merits of our proposed

scheme relative to existing methods were corroborated through

numerical tests using real data. This work also opens up

interesting directions for future research, including using data-

driven and topology-aware regularizer for optimal power flow

and unit commitment problems.

REFERENCES

[1] F. C. Schweppe, J. Wildes, and D. Rom, “Power system static-state
estimation: Parts I, II, III,” IEEE Trans. Power App. Syst., vol. PAS-89,
pp. 120–135, Jan. 1970.

[2] A. Abur and A. G. Exposito, Power System State Estimation: Theory and
Implementation. New York, USA: CRC Press, 2004.

[3] G. Wang, G. B. Giannakis, J. Chen, and J. Sun, “Distribution system state
estimation: An overview of recent developments,” Front. Inform. Technol.
Electron. Eng., vol. 20, no. 1, pp. 4–17, Jan. 2019.

[4] A. S. Zamzam, Y. Liu, and A. Bernstein, “Model-free state estimation
using low-rank canonical polyadic decomposition,” arXiv:2004.05741,
2020.

[5] G. Wang, A. S. Zamzam, G. B. Giannakis, and N. D. Sidiropoulos, “Power
system state estimation via feasible point pursuit: Algorithms and cramér-
Rao bound,” IEEE Trans. Signal Process., vol. 66, no. 6, pp. 1649–1658,
Mar. 2018.

[6] G. Wang, G. B. Giannakis, and J. Chen, “Robust and scalable power
system state estimation via composite optimization,” IEEE Trans. Smart
Grid, vol. 10, no. 6, pp. 6137–6147, Nov. 2019.

[7] B. Blaschke, A. Neubauer, and O. Scherzer, “On convergence rates for
the iteratively regularized Gauss-Newton method,” IMA J. Numer. Anal.,
vol. 17, no. 3, pp. 421–436, 1997.

[8] H. Zhu and G. B. Giannakis, “Power system nonlinear state estimation
using distributed semidefinite programming,” IEEE J. Sel. Topics Signal
Process., vol. 8, no. 6, pp. 1039–1050, Jun. 2014.

[9] E. Manitsas, R. Singh, B. C. Pal, and G. Strbac, “Distribution system
state estimation using an artificial neural network approach for pseudo
measurement modeling,” IEEE Trans. Power Syst., vol. 27, no. 4, pp.
1888–1896, Nov. 2012.

[10] P. P. Barbeiro, J. Krstulovic, H. Teixeira, J. Pereira, F. J. Soares, and J. P.
Iria, “State estimation in distribution smart grids using autoencoders,” in
IEEE Intl. Power Eng. and Opt. Conf., 2014, pp. 358–363.

[11] L. Zhang, G. Wang, and G. B. Giannakis, “Real-time power system
state estimation and forecasting via deep unrolled neural networks,” IEEE
Trans. Signal Process., vol. 67, no. 15, pp. 4069–4077, Aug. 2019.

[12] Q. Yang, G. Wang, A. Sadeghi, G. B. Giannakis, and J. Sun, “Two-
timescale voltage control in distribution grids using deep reinforcement
learning,” IEEE Trans. Smart Grid, pp. 1–11, 2019.

[13] A. S. Zamzam and N. D. Sidiropoulos, “Physics-aware neural networks
for distribution system state estimation,” IEEE Trans. Power Syst., pp.
1–1, 2020.

[14] Q. Yang, M. Coutino, G. Wang, G. B. Giannakis, and G. Leus, “Learning
connectivity and higher-order interactions in radial distribution grids,” in
Proc. Intl. Conf. Acoustics Speech Signal Process. Barcelona, Spain:
IEEE, May 4-8 2020, pp. 5555–5559.

[15] S. G. Lingala and M. Jacob, “Blind compressive sensing dynamic MRI,”
IEEE Trans. Med. Imag., vol. 32, no. 6, pp. 1132–1145, Mar. 2013.

[16] J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price, and D. Rueckert, “A
deep cascade of convolutional neural networks for dynamic MR image
reconstruction,” IEEE Trans. Med. Imag., vol. 37, no. 2, pp. 491–503,
Oct. 2017.

[17] H. K. Aggarwal, M. P. Mani, and M. Jacob, “MoDL: Model-based deep
learning architecture for inverse problems,” IEEE Trans. Med. Imag.,
vol. 38, no. 2, pp. 394–405, Aug. 2018.

[18] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60,
no. 1-4, pp. 259–268, Nov. 1992.

[19] D. P. Bertsekas, Nonlinear Programming. 2nd ed. Belmont, MA, USA:
Athena Sci., 1999.

[20] L. Zhang, G. Wang, and G. B. Giannakis, “Real-time power system
state estimation and forecasting via deep unrolled neural networks,” IEEE
Trans. Signal Process., vol. 67, no. 15, pp. 4069–4077, Aug. 2019.

[21] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv:1609.02907, 2016.

[22] V. N. Ioannidis, A. G. Marques, and G. B. Giannakis, “Tensor
graph convolutional networks for multi-relational and robust learning,”
arXiv:2003.07729, 2020.

[23] [Online]. Available: https://www.kaggle.com/c/global-energy-forecasting-
competition-2012- load-forecasting/data.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980, 2014.

[25] F. Wu, T. Zhang, A. H. d. Souza Jr, C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying graph convolutional networks,” arXiv:1902.07153, 2019.

2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2021 at 00:47:37 UTC from IEEE Xplore. Restrictions apply.

